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1 Preliminaries

Let Ĥ be a periodic Hamiltonian with eigenfunctions |ψnk⟩ = eik·r̂ |unk⟩
and eigenenergies ϵnk = ⟨ψnk|Ĥ|ψnk⟩ = ⟨unk|Ĥ(k)|unk⟩. Here, Ĥ(k) =
e−ik·r̂Ĥeik·r̂ is the Bloch Hamiltonian, and we will define a gauge, U(k), of
rotated Bloch functions given by |unk⟩ =

∑
n′ |wn′k⟩Unn′(k). This gauge

is chosen to obtain a set of maximally-localized Wannier functions, given
by a Fourier transform as |nR⟩ =

∑
k e

ik·R |wnk⟩. If Ô is an operator, we

denote by OH(k) the matrix elements of Ô in the basis of periodic Bloch
functions at fixed k, i.e. the Hamiltonian gauge, as OH

nm(k) = ⟨unk|Ô|umk⟩,
and we let OW (k) be the matrix elements in the Wannier gauge, given by
OW

nm(k) = ⟨wnk|Ô|wmk⟩. Furthermore, by construction ϵnkδnm = HH
nm(k) =

(U †(k)HW (k)U(k))nm and U(k) is unitary when Ĥ is a Hermitian opera-
tor. In practice, we evaluate OW

nm(k) by Wannier interpolation as OW
nm(k) =∑

R e
ik·ROW

nmR where OW
nmR = ⟨nR|Ô|mR⟩.

We say that an operator Ô is gauge-covariant whenOH(k) = U †(k)OW (k)U(k)
and denote ŌH(k) ≡ U †(k)OW (k)U(k) for further calculation [2].

2 Gauge-covariant derivatives

Let Ô be an operator for which we have a Wannier interpolant, OW
nm(k).

The interpolant conveniently admits analytic differentiation ∂αO
W
nm(k) =∑

R iRαe
ik·ROW

nmR. Here, we abbreviate ∂α ≡ ∂
∂kα

. Note also that ∂αO
W
nm(k) =

∂α ⟨wnk|Ô|wmk⟩ = ⟨wnk|∂αÔ|wmk⟩+ ⟨∂αwnk|Ô|wmk⟩+ ⟨wnk|Ô|∂αwmk⟩. By
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resolving the identity, I =
∑

n |wnk⟩⟨wnk|, defining the Berry connection,
AW

nmα(k) = i ⟨wnk|∂αwmk⟩, and using the orthonormality of the |wnk⟩, we
may write

(∂αO)
W
nm(k) ≡ ⟨wnk|∂αÔ|wmk⟩ = ∂αO

W
nm(k) + i[OW (k), AW

α (k)]nm. (1)

An analogous formula exists in any gauge, with its own respective Berry
connection. By construction, (∂αO)

W (k) is gauge-covariant, so we call it a
gauge-covariant derivative (notice the ∂α symbol is inside the matrix element,
not outside). However, it can be shown that AW

α (k) is not gauge-covariant,
since

AH
nmα(k) = i ⟨unk|∂αumk⟩ , (2)

= i

〈∑
n′

|wn′k⟩Unn′(k)

∣∣∣∣∣∂α ∑
m′

|wm′k⟩Umm′(k)

〉
, (3)

= (U †(k)AW
α (k)U(k) + iU †(k)∂αU(k))nm, (4)

= (ĀH
α (k) + iU †(k)∂αU(k))nm. (5)

Ref. [1] defines Dα(k) ≡ U †(k)∂αU(k) and obtains its matrix elements in the
Hamiltonian gauge using first order perturbation theory,

DH
nmα(k) = (U †(k)∂αU(k))nm =

{
(U †(k)∂αH

W (k)U(k))nm/(ϵmk − ϵnk) n ̸= m

0 n = m
.

(6)

Note that this definition does not use the gauge-covariant derivative, so to me
it is unclear which operator is the perturbation to the Hamiltonian, although
below it will be clear this gives a consistent definition of the velocity.

3 Example: velocity operator

The velocity operator can be defined by v̂α = −i[r̂α, Ĥ] = ∂αĤ(k), (h̄ = 1).
Semi-classically, the group velocity is simply vnkα = ∂αϵnk. To obtain this in
the Wannier gauge, we start from (1) in the Hamiltonian gauge:

∂αϵnkδnm = ∂αH
H
nm(k) = ⟨unk|∂αĤ|umk⟩ − i[HH(k), AH

α (k)]nm (7)

= (U †(k)(∂αH
W (k) + i[HW (k), AW

α (k)])U(k)− i[U †(k)HW (k)U(k), AH
α (k)])nm

(8)

= (U †(k)∂αH
W (k)U(k) + [U †(k)HW (k)U(k), DH

α (k)])nm (9)
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In the final expression, the off-diagonal elements cancel with the commu-
tator, which is purely off-diagonal (since HH is diagonal) given the above
definition of Dα. This leaves only the diagonal elements of the first term,
which correctly match the derivatives of the eigenvalues.

4 Example: inverse effective mass

We can conveniently define a second derivative operator−i[r̂α, v̂β] = −[r̂α, [r̂β, Ĥ]] =

∂2αβĤ(k). This can also take a gauge-covariant form:

(∂2αβH)Wnm(k) = (∂αvβ)
W
nm(k) = ∂αv

W
nmβ(k) + i[vWβ (k), AW

α (k)]nm (10)

= ∂2αβH
W
nm(k) + i∂α[H

W (k), AW
β (k)]nm (11)

+ i[∂βH
W (k) + i[HW (k), AW

β (k)], AW
α (k)]nm (12)

However, the inverse effective mass is defined as a second derivative of an
eigenvalue, ∂2αβϵnk = ∂α ⟨unk|v̂β|unk⟩ = ⟨unk|∂αv̂β|unk⟩−i[vHβ (k), AH

α (k)]nn =

(U †(k)(∂αv
W
β (k) + i[vWβ (k), AW

α (k)])U(k))nn − i[vHβ (k), AH
α (k)]nn where we

have used the Hellman-Feynman theorem to obtain the second expression.
Alternatively, as in Ref. [2], we may write ∂α ⟨unk|v̂β|unk⟩ = ∂α(⟨unk|wmk⟩ ⟨wmk|v̂β|wlk⟩ ⟨wlk|unk⟩) =
(U †(k)∂αv

W
β (k)U(k)+{∂αU †(k)U(k)U †(k)vWβ (k)U(k)+h.c.})nn. This latter

formula is consistent with the former given and the way the Berry connection
transforms from Wannier to Hamiltonian gauge.
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