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1 Preliminaries

Let H be a periodic Hamiltonian with eigenfunctions |ng) = €7 [tng)
and eigenenergies €np = (V| H|Unk) = (nge| H (k)|tng). Here, H(k) =
e~ %7 [Je* 7 ig the Bloch Hamiltonian, and we will define a gauge, U(k), of
rotated Bloch functions given by |unk) = >/ |wwk) Unw (k). This gauge
is chosen to obtain a set of maximally-localized Wannier functions, given
by a Fourier transform as |[nR) = 3, ¢* B [w,). If O is an operator, we
denote by O (k) the matrix elements of O in the basis of periodic Bloch
functions at fixed k, i.e. the Hamiltonian gauge, as OX (k) = (tink|O|time),
and we let O" (k) be the matrix elements in the Wannier gauge, given by
oV (k) = <wnk|O\wmk>. Furthermore, by construction €,x0,m = HZ (k) =
(UT(k)HY (k)U (E))nm and U(k) is unitary when H is a Hermitian opera-
tor. In practice, we evaluate O} (k) by Wannier interpolation as O (k) =
SR eFROW - where OW = (nR|O|mR).
We say that an operator O is gauge-covariant when O (k) = Ut (k)OW (k)U (k)

and denote O (k) = UT(k)OW (k)U (k) for further calculation [2].

2 (Gauge-covariant derivatives

Let O be an operator for which we have a Wannier interpolant, oV (k).
The interpolant conveniently admits analytic differentiation 9,0 (k) =

Y giR.e®EOW . Here, we abbreviate 0, = %. Note also that 9,0 (k) =

O (Wit | O Wts) = (Wte| 0O\ Winte) + (O] Olwime) + (Wite| O|Oatornss). By
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resolving the identity, I = ) |wuk)wnk|, defining the Berry connection,
AV (k) = i {(Wpk|Oawmk), and using the orthonormality of the |wp), we

may write
(020) (k) = (0o 02O wmte) = 0a03, (k) + O™ (k) A ()] (1)

An analogous formula exists in any gauge, with its own respective Berry
connection. By construction, (9,0)" (k) is gauge-covariant, so we call it a
gauge-covariant derivative (notice the 9, symbol is inside the matrix element,
not outside). However, it can be shown that A% (k) is not gauge-covariant,
since

AnHma(k> = i (Unk| Oatimk) , (2)
=3 <Z ]wn/k> Unn/(k) Oq Z ‘wm'k> Umm’(k)> ) (3>
= (UN(k)AY (k)U (k) + iU (k) 0uU (k) )rum, (4)
= (A (k) + iU (K)DoU (K)) - (5)

Ref. [1] defines D, (k) = U'(k)d,U (k) and obtains its matrix elements in the

Hamiltonian gauge using first order perturbation theory,

DE (k) = (UN(k)O.U(K))pm = {

(6)
Note that this definition does not use the gauge-covariant derivative, so to me

it is unclear which operator is the perturbation to the Hamiltonian, although
below it will be clear this gives a consistent definition of the velocity.

3 Example: velocity operator

The velocity operator can be defined by 94 = —i[f, H] = 0.H(k), (h = 1).
Semi-classically, the group velocity is simply v,xq = Oa€nk- T0 obtain this in
the Wannier gauge, we start from (1) in the Hamiltonian gauge:

OnntOnm = O HL (k) = (Une|OnH [ttmr) — i[H™ (k), AT (K)] (7

)
= (U (k) (0 H" (k) +i[H" (k), AY (k))U (k) — i[U*(k)HW(k)U(;f),
)

= (U (k)0 " (k)U (k) + (U (k) H" (k)U (K), Dy (K)])um
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(UT(K)OoH™ (R)U (k) )um / (€mr — €nx) 1 #m0
0 n=m



In the final expression, the off-diagonal elements cancel with the commu-
tator, which is purely off-diagonal (since H¥ is diagonal) given the above
definition of D,. This leaves only the diagonal elements of the first term,
which correctly match the derivatives of the eigenvalues.

4 Example: inverse effective mass

~

We can conveniently define a second derivative operator —i[ry, 0g] = —[Fa, [F5, H]| =
933H (k). This can also take a gauge-covariant form:

(O H ) (k) = (0a3) (k) = Dot () + ilvg (k), Ay (k)]wm (10)

nmf3
— 02, HY (k) + 10 [H" (), AY (k)] (11)
(05 HY (k) + i[H" (), AY (k)], AY (k)] m (12)

However, the inverse effective mass is defined as a second derivative of an
eigenvalue, 92 sénk = O (tnk|0p|tnk) = (tnk|Oalsltink) —i[vf (k), ALl (K)]nn =
(Ut (k) (Oavy (k) + i[vy (k), AY (K))U (E))nn — i[vf (k), Al (k)]nn where we
have used the Hellman-Feynman theorem to obtain the second expression.
Alternatively, as in Ref. [2], we may write O, (Unk|0g|tnk) = On({Unk|Wimk) (Wink|Vs|wik) (Wik|tnk)) =
(Ut (k)0qvy (k)U(k)+{0.UT(k)U(k)U'(k)vy (k)U(k)+h.c.})n,. This latter
formula is consistent with the former given and the way the Berry connection
transforms from Wannier to Hamiltonian gauge.
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