

M21C Land Budgets: Final Summary

Rolf Reichle

26 July 2024

Land Water and Energy Balance (MERRA-2)

Balance equations from the land ("Ind" Collection) perspective:

– Lf * PRECSNO – SPLAND – SPSNOW

These errors could be fixed in the documentation. <u>However</u>, there is still a small error in the energy balance equation, and there are inconsistencies in the outputs...

Land Energy Balance (MERRA-2)

Inconsistent output within "Ind" Collection:

See 11 June 2024 slides for plots.

≠ LHLAND III Inconsistent energy balance terms. EVPSOIL + EVPINTR + EVPTRNS + EVPSBLN (EVPSOIL + EVPINTR + EVPTRNS) / Lv + EVPSBLN / Ls ≠ EVLAND !!! Inconsistent energy/water balance.

In the GCM, prior to output, the turbulent fluxes computed by Catchment (EVAPOUT, SHOUT, HLATN) are adjusted to match what TurbGC expects (per its linearization), with [*]ACC being the difference (computed in Catchment):

if (associated (EVLAND)) EVLAND = EVAPOUT-EVACC [In offline mode, we set EVACC=LHAC	CC=SHACC=0.]		
ii (associated (SHLAND)) SHLAND = SHOUT -SHACC	Poor choice of var pamae b/c E//[*] and		
if (CATCH_INTERNAL_STATE%CATCH_OFFLINE == 0) then	EVP[*] have different units; made worse by lack of in-code documentation. Wrong in all* GEOS products!!! *Except SMAP L4.		
<pre>!XXX add correction term to latent heat diagnostics (HLATN always allocated) ! this will impact the export LHLAND</pre>			
HLATN = HLATN - LHACC			
! also add some portion of the corr. term to evap from soil, int, veg & snow			
SUMEV = EVPICE+EVPSOI+EVPVEG+EVPINT			
where (SUMEV>0.) EVPICE = EVPICE - EVACC*EVPICE/SUMEV EVPSOI = EVPSOI - EVACC*EVPSOI/SUMEV EVPINT = EVPINT - EVACC*EVPINT/SUMEV • Error 1: Excludes dewfa	t components (EVP[*]) is wrong: all, need "where (SUMEV /= 0.)".		

• Error 2: Units are wrong \rightarrow EVP[*] essentially unchanged.

endwhere

endif

[kg/m2/s] [W/m2] / [W/m2] = [kg/m2/s]

EVPVEG = EVPVEG - EVACC*EVPVEG/SUMEV

[W/m²]

Land Energy Balance (MERRA-2)

Revised M-2 land energy balance:

Global Modeling and Assimilation Office

gmao.gsfc.nasa.gov

ECHANGE = SWLAND + LWLAND - SHLAND - EVPSOIL - EVPINTR - EVPTRNS - EVPSBLN - Lf * PRECSNO - SPLAND - SPSNOW

Why is there still a small error in the revised energy balance? Note that: SPLAND = SHACC = sensible heat "accounting" term \leftarrow \Rightarrow SHLAND + SPLAND = sensible heat flux computed by Catchment.

However, the correct balance cannot be verified because M-2 does not write out LHACC. Because of the units error, we have: LHLAND + LHACC = EVPINTR + EVPSBLN + EVPSOIL + EVPTRNS

For the same reason, the water balance and the energy balance are connected as follows: EVLAND + SPWATR ≅ (EVPINTR + EVPSOIL + EVPTRNS)/Lv + EVPSBLN/Ls

National Aeronautics and Space Administration

SPLAND short
 & long names.

Poor choice of

Water Balance Across Land and Atmosphere (MERRA-2)^{ational Aeronautics and Space Administration}

Land:

WCHANGE = PRECTOTLAND – EVLAND – RUNOFF – BASEFLOW – SPWATR

Atmosphere:

DQVDT_PHY + DQLDT_PHY + DQIDT_PHY = EVAP – PRECCU – PRECLS – PRECSN + QTFILL *(flx" Collection (Turbulence GC)*

For land-only grid cells:

 \checkmark EVLAND_{Ind} = EVAP_{flx}

(Works b/c EVLAND is adjusted to match what TurbGC expects.)

Energy Balance Across Land and Atmosphere (MERRA-2) National Aerona Space Adm

Land:

ECHANGE = SWLAND + LWLAND - SHLAND - (<u>EVPINTR + EVPSBLN + EVPSOIL + EVPTRNS</u>) - Lf * PRECSNO - SPLAND - SPSNOW = SUMEVP

<u>Atmosphere</u>: (Closure to be confirmed by Nathan.)

DHDT_PHY + DKDT_PHY + DQVDT_PHY + DQIDT_PHY = (SWNETTOA – SWNETSRF) – (LWTNET + LWGNET) + HFLUX + Lv*EVAP + Lf*(FRZRN + SUBSN + SDMCI + COLCNVSN) + Lv*DQVDT_CHM + Lv*DQVDT_FIL – Lf*DQIDT_FIL

"int" Collection (Solar GC)

"flx" Collection (Turb GC)

See 28 June 2024 slides for plots.

For <u>land-only</u> grid cells:

- \otimes SWLAND_{Ind} **#** SWNETSRF_{int}
- ☺ LWLAND_{Ind} ≠ LWGNET_{int}
- \checkmark SHLAND_{Ind} = HFLUX_{flx}
- \checkmark LHLAND_{Ind} = EFLUX_{flx}
- SUMEVP_{Ind} ≠ EFLUX_{flx}

Surface radiation terms in "Ind" and "int" are inconsistent in MERRA-2 (old model, not further investigated here).

Turbulent flux terms in "Ind" and "flx" are consistent (except for the latent heat components b/c of the inconsistency within "Ind", see above).

Summary of Balance Equations (MERRA-2) National Aeronautics and Space Administration

MERRA-2	Evap mass flux	Latent heat	EVLAND, LHLAND, and SHLAND	Sensible heat			
Expected by Turb GC	EVLAND	LHLAND	<i>in "Ind" <u>as expected by TurbGC</u>. No "spurious" export for LH.</i>	SHLAND			
Calculated by Catchment	EVLAND+SPWATR	R *SUMEVP = EVPINTR+EVPSBLN+EVPSOIL+EVPTRNS SHLAND+SPLAND					
*Matches the flux calculated by Catchment only approximately. Land water: Wrong in M-2 file specs. Land energy:							
ECHANGE SWLAND + LWLAND – SHLAND – SPLAND – SUMEVP – Lf * PRECSNO – SPSNOW LHACC SUMEVP – LHLAND ≠ 0 (LHACC not output!!!)							
Land water and energy: EVLAND + SPWATR = (EVPINTR + EVPSOIL + EVPTRNS)/Lv + EVPSBLN/Ls							

For land-only grid cells: Land vs. atm. water: Land vs. atm. energy:

G

 $EVLAND = EVAP_{fix}$ $LHLAND = EFLUX_{fix}$ $SHLAND = HFLUX_{fix}$ $SWLAND \neq SWNETSRF_{int}$ $LWLAND \neq LWGNET_{int}$

 $= EFLUX_{flx}$ (and consistent w/ EVAP_{flx}) = HFLUX_{flx} $(and consistent w/ EVAP_{flx})$

All variables from "Ind" collection unless subscript indicates otherwise.

NASA

Land Water and Energy Balance (M21C)

National Aeronautics and Space Administration

EARTH SCIENCES

M21C	Evap mass flux	Latent heat		Paradigm shift	Sensible heat			
Expected by Turb GC	EVLAND – SP EVLAND	LHLAND – SP LHLAND	New "spurious" term for LH.	EVLAND, LHLAN and SHLAND in "I	ID, SHLAND Ind" – SP SHLAND			
Calculated by Catchment	EVLAND	LHLAND = SU	JM(LHLAND[*])	as calculated b Catchment.				
_and water: WCHANGELAND = PRECTOTCORRLAND – EVLAND – RUNSURFLAND – BASEFLOWLAND								
Land energy: ECHANGELAND = SWLAND + LWLAND – SHLAND – LHLAND – Lf * PRECSNOCORRLAND – SPSNLAND								
I and water and energy:	•	Improved short No "spurious" E	^t names of LH comp EV, LH, or SH terms	oonents, "spurious" i s in land balance eq	terms, and other exports. uations.			
EVLAND	= (LHLANDINTR	+ LHLANDSC	DIL + LHLANDTR	NS)/Lv + LHLAN	DSBLN/Ls			
LHLAND	= LHLANDINTR	+ LHLANDSC	DIL + LHLANDTR	NS + LHLAN	DSBLN			
For land-only grid cells: Land vs. atm. water: Land vs. atm. energ	: EVLAND – S y: LHLAND – S	SPEVLAND SPLHLAND	= EVAP _{flx} = EFLUX _{flx}	(and consistent w	/ EVAP _{flx})			
	SHLAND – S SWLAND LWLAND	SPSHLAND	= HFLUX _{flx} = SWNETSRF _{int} = LWGNET _{int}	t	All variables from "Ind" collection unless subscript indicates otherwise.			
Global Modeling and								

Land Water and Energy Balance (1-day AMIP)

National Aeronautics and

"Develop" branch (exports as in M-2)

20000215T0030z-20000215T0030z EnBal = swland +lwland -shland

-evpintr -evpsbln -evpsoil -evptrns -Lf*precsno -spland -spsnow

Colorbar is from 5th to 95th percentile (except for budget: +/-max(abs([5th 95th])) Stats are not area-weighted.

exp_develop.geosgcm_lnd

20000215T0030z-20000215T0030z

EnBal = swland +lwland -shland -Lf*precsno -spland -spsnow -echange;

Colorbar is from 5th to 95th percentile (except for budget: +/-max(abs([5th 95th])) Stats are not area-weighted.

EnBal [W/m2]

avg=0.0001 std=0.0217 min=-0.1609 max=0.1419 EnBal [W/m2]

avg=0.0001 std=0.0217 min=-0.1609 max=0.1419

> *Variable names in graphics do not reflect new M21C short names.

exp_82b359f.geosgcm_1nd

 $\times 10^{-3}$

2

0

-1

- 20000215T0030z-20000215T0030z
- WatBal = prectot -evland -runsurf -baseflow -wchange;
- Colorbar is from 5th to 95th percentile (except for budget: +/-max(abs([5th 95th])) Stats are not area-weighted.

Colorbar is from 5th to 95th percentile (except for budget: +/-max(abs([5th 95th])) Stats are not area-weighted.

Global Modeling and Assimilation Office

Consistency Across Water and Energy Budgets (1-day AMIP) Aeronautics and Administration

LHLAND

- = LHLANDINTR
- + LHLANDSOIL
- + LHLANDTRNS
- + LHLANDSBLN

EVLAND = (LHLANDINTR + LHLANDSOIL

- + LHLANDTRNS)/Lv
- + LHLANDSBLN /Ls

Here, "evap" refers to the mass flux computed from the "Ind" LH components as follows:

evap=(evptrns+evpsoil+evpintr)/Lv + evpsbln/Ls

Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

*Variable names in graphics do not reflect new M21C short names.

Consistency Between Atm. and Land Exports (1-day AMIP) nal Aeronautics and pace Administration

Revised (exports as in M21C*)

Consistency Between Atm. and Land Exports (1-day AMIP) nal Aeronautics and pace Administration

MERRA2.tavg1_2d_lnd_Nx 19970226T0030-19970226T0030 FRLAND > 0.995

C

Global Modeling and Assimilation Office

*Variable names in graphics do not reflect new M21C short names.

Summary (1/3)

Because of the nature of the land-atmosphere coupling problem, the surface turbulent fluxes calculated by Catchment do not match those expected by Turbulence GC. The difference must be captured in "spurious" (or "accounting") terms.

MERRA-2:

- The water and energy balance equations in the M-2 file specs are wrong and need to be corrected!
- Owing to a bug in the source code, the surface turbulent fluxes in "Ind" are an inconsistent mix of what is calculated by Turb GC and what is calculated by Catchment.
- The LHACC "accounting" term for the latent heat flux is not written out. A fortuitous side effect of the aforementioned bug is that LHACC can be (approximately) diagnosed from the existing output, allowing for an approximately correct formulation of the land energy balance.
- The inconsistencies do not apply in offline (land-only) mode because the "accounting" terms for the surface turbulent fluxes are all zero.
- Inadequate in-code documentation and confusing variable names contributed to the bug.
- The long and short names in the M-2 file specs are unclear.
- The surface radiation terms do not match between "int" (SolarGC) and "Ind" (SurfaceGC).

Summary (2/3)

- Surface radiation terms from "Ind" (SurfaceGC) and "int" (SolarGC) are consistent (newer model).
- <u>Paradigm shift</u>: "Ind" contains surface turbulent fluxes <u>calculated by Catchment</u> (not Turb GC).
 - Implemented for M21C in <u>GEOSgcm_GridComp PR#963</u> and <u>GEOSgcm_App PR#630</u>.
 - Simpler land water and energy balance equations.
 - Surface turbulent fluxes from "Ind" and "flx" are consistent (after consideration of "spurious" terms).
 - New output of "spurious" term for latent heat.
 - Added in-code documentation and revised in-code variable names.
 - Improved long and short names in M21C file specs ("export" variables).
 - A very minor and exceedingly rare residual energy balance error ("snow mass-limited sublimation from top snow layer") was addressed in <u>GEOSgcm_GridComp PR#946</u>.
- Remaining issues:
 - Regrid method for "Ind" is BILINEAR_MONOTONIC. Do we need conservative regridding?
 - The spatial pattern of balance residuals is persistent, and residuals are larger than roundoff. Acceptable?
 - Verify land water and energy balances with new M21C sample output.

Summary (3/3)

- The surface turbulent flux issues of MERRA-2 apply to all current GEOS products (except SMAP L4).
- The inconsistency in surface turbulent flux outputs may impact "ocn", "gmichem", and "S2S" output.
- For M21C, many variable long names were updated.
- The bug fixes and long name updates must be:
 - 1) merged into "develop" (<u>GEOSgcm_GridComp PR#957</u>, <u>GEOSgcm_App PR#621</u>) and
 - 2) adopted in GEOS-FP file specs.

