. DOMAIN-DRIVEN

'DESIGN

FOREWORD BY ERIC EVANS 1N

Praise for Implementing Domain-Driven Design

“With Implementing Domain-Driven Design, Vaughn has made an important con-
tribution not only to the literature of the Domain-Driven Design community, but also
to the literature of the broader enterprise application architecture field. In key chap-
ters on Architecture and Repositories, for example, Vaughn shows how DDD fits with
the expanding array of architecture styles and persistence technologies for enterprise
applications—including SOA and REST, NoSQL and data grids—that has emerged in
the decade since Eric Evans’ seminal book was first published. And, fittingly, Vaughn
illuminates the blocking and tackling of DDD—the implementation of entities, value
objects, aggregates, services, events, factories, and repositories—with plentiful exam-
ples and valuable insights drawn from decades of practical experience. In a word, I
would describe this book as thorough. For software developers of all experience levels
looking to improve their results, and design and implement domain-driven enterprise
applications consistently with the best current state of professional practice, Imple-
menting Domain-Driven Design will impart a treasure trove of knowledge hard won
within the DDD and enterprise application architecture communities over the last cou-
ple decades.”

—Randy Stafford, Architect At-Large, Oracle Coherence Product Development

“Domain-Driven Design is a powerful set of thinking tools that can have a profound
impact on how effective a team can be at building software-intensive systems. The
thing is that many developers got lost at times when applying these thinking tools and
really needed more concrete guidance. In this book, Vaughn provides the missing links
between theory and practice. In addition to shedding light on many of the misunder-
stood elements of DDD, Vaughn also connects new concepts like Command/Query
Responsibility Segregation and Event Sourcing that many advanced DDD practitioners
have used with great success. This book is a must-read for anybody looking to put
DDD into practice.”

—Udi Dahan, Founder of NServiceBus

“For years, developers struggling to practice Domain-Driven Design have been wishing
for more practical help in actually implementing DDD. Vaughn did an excellent job in
closing the gap between theory and practice with a complete implementation reference.
He paints a vivid picture of what it is like to do DDD in a contemporary project, and
provides plenty of practical advice on how to approach and solve typical challenges
occurring in a project life cycle.”

—Alberto Brandolini, DDD Instructor, Certified by Eric Evans and
Domain Language, Inc.

“Implementing Domain-Driven Design does a remarkable thing: it takes a sophisti-
cated and substantial topic area in DDD and presents it clearly, with nuance, fun and
finesse. This book is written in an engaging and friendly style, like a trusted advisor
giving you expert counsel on how to accomplish what is most important. By the time
you finish the book you will be able to begin applying all the important concepts of

www.EBookswWorld.ir

DDD, and then some. As I read, I found myself highlighting many sections . . . [will be
referring back to it, and recommending it, often.”

—Paul Rayner, Principal Consultant & Owner, Virtual Genius, LLC., DDD Instruc-
tor, Certified by Eric Evans and Domain Language, Inc., DDD Denver Founder and
Co-leader

“One important part of the DDD classes I teach is discussing how to put all the ideas
and pieces together into a full blown working implementation. With this book, the
DDD community now has a comprehensive reference that addresses this in detail.
Implementing Domain-Driven Design deals with all aspects of building a system using
DDD, from getting the small details right to keeping track of the big picture. This is a
great reference and an excellent companion to Eric Evans seminal DDD book.”

—Patrik Fredriksson, DDD Instructor, Certified by Eric Evans and
Domain Language, Inc.

“If you care about software craftsmanship—and you should—then Domain-Driven
Design is a crucial skill set to master and Implementing Domain-Driven Design is the
fast path to success. IDDD offers a highly readable yet rigorous discussion of DDD’s
strategic and tactical patterns that enables developers to move immediately from under-
standing to action. Tomorrow’s business software will benefit from the clear guidance
provided by this book.”

—Dave Muirhead, Principal Consultant, Blue River Systems Group

“There’s theory and practice around DDD that every developer needs to know, and this
is the missing piece of the puzzle that puts it all together. Highly recommended!”

—Rickard Oberg, Java Champion and Developer at Neo Technology

“In IDDD, Vaughn takes a top-down approach to DDD, bringing strategic patterns
such as bounded context and context maps to the fore, with the building block patterns
of entities, values and services tackled later. His book uses a case study throughout,
and to get the most out of it you’ll need to spend time grokking that case study. But if
you do you’ll be able to see the value of applying DDD to a complex domain; the fre-
quent sidenotes, diagrams, tables, and code all help illustrate the main points. So if you
want to build a solid DDD system employing the architectural styles most commonly in
use today, Vaughn’s book comes recommended.”

—Dan Haywood, author of Domain-Driven Design with Naked Objects

“This book employs a top-down approach to understanding DDD in a way that fluently
connects strategic patterns to lower level tactical constraints. Theory is coupled with
guided approaches to implementation within modern architectural styles. Throughout
the book, Vaughn highlights the importance and value of focusing on the business
domain all while balancing technical considerations. As a result, the role of DDD, as
well as what it does and perhaps more importantly doesn’t imply, become ostensibly
clear. Many a time, my team and I would be at odds with the friction encountered in
applying DDD. With Implementing Domain-Driven Design as our luminous guide we
were able to overcome those challenges and translate our efforts into immediate busi-
ness value.”

—Lev Gorodinski, Principal Architect, DrillSpot.com

www.EBookswWorld.ir

Implementing
Domain-Driven Design

www.EBookswWorld.ir

This page intentionally left blank

www.EBookswWorld.ir

Implementing
Domain-Driven
Design

Vaughn Vernon

vvAddison-Wesley

Upper Saddle River, NJ e Boston ® Indianapolis ® San Francisco
New York ¢ Toronto ® Montreal ® London ® Munich e Paris ® Madrid
Capetown ® Sydney ® Tokyo ® Singapore ® Mexico City

www.EBookswWorld.ir

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liabil-
ity is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2012954071
Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission to use material from
this work, please submit a written request to Pearson Education, Inc., Permissions Department,
One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201)
236-3290.

ISBN-13: 978-0-321-83457-7

ISBN-10: 0-321-83457-7

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Second printing, July 2013

www.EBooksWorld.ir

This book is dedicated to my dearest Nicole and Tristan.
Thanks for your love, your support, and your patience.

www.EBookswWorld.ir

This page intentionally left blank

www.EBookswWorld.ir

Contents

Foreword e xvil
Preface o . . e Xix
Acknowledgments.o XXiX
Aboutthe Author. L oo xxxiii
Guideto ThisBook. o oo i XXXV
Chapter 1 Getting Started withDDD 1
CanIDDD? e 2
Why You Should DoDDD 6
HowtoDoDDD. 20
The Business Value of UsingDDD 25
1. The Organization Gains a Useful Model of Its Domain . . . 26

2. A Refined, Precise Definition and Understanding of the
Business Is Developed 27
3. Domain Experts Contribute to Software Design 27
4. A Better User Experience Is Gained 27
5. Clean Boundaries Are Placed around Pure Models 28
6. Enterprise Architecture Is Better Organized 28
7. Agile, Iterative, Continuous Modeling IsUsed 28
8. New Tools, Both Strategic and Tactical, Are Employed . . . 28
The Challenges of ApplyingDDD 29
Fiction, with Bucketfuls of Reality 38
Wrap-Up« . o e e e e 41

ix

www.EBooksWorld.ir

CONTENTS

Chapter 2 Domains, Subdomains, and Bounded Contexts 43
BigPicture e 43
Subdomains and Bounded Contexts at Work 44
Focus on the Core Domain 50
Why Strategic Design Is So Incredibly Essential 53
Real-World Domains and Subdomains. 56
Making Sense of Bounded Contexts 62
Room for More than the Model 66
Size of Bounded Contexts 68
Aligning with Technical Components 71
Sample CONteXts . . . v v v v v vt e e e e e e 72
Collaboration Context. oo ... 73
Identity and Access Context. v v v v v v v v 80
Agile Project Management Context 82
Wrap-Up o o o 84
Chapter 3 Context Maps . . .+ v v v v v v v v v e e e e e e e e e e 87
Why Context Maps Are So Essential 87
Drawing Context Maps 89
Projects and Organizational Relationships 91
Mapping the Three Contexts 95
Wrap-Up o o e 111
Chapter 4 Architecture. v v v v v v v e e e e e e e 113
Interviewing the Successful CIO 114
Layers o o e 119
Dependency Inversion Principle 123
Hexagonal or Ports and Adapters 125
Service-Oriented oL 130
Representational State Transfer—REST 133
REST as an Architectural Style 133
Key Aspects of a RESTful HTTP Server 135
Key Aspects of a RESTful HTTP Client 136
RESTandDDD it 136
Why REST? o e 138

www.EBookswWorld.ir

CONTENTS

Command-Query Responsibility Segregation, or CQRS 138
Examining Areasof CQRS 140
Dealing with an Eventually Consistent Query Model 146

Event-Driven Architecture 147
Pipesand Filters 149
Long-Running Processes, aka Sagas 153
Event Sourcing oo 160

Data Fabric and Grid-Based Distributed Computing 163
Data Replication 164
Event-Driven Fabrics and Domain Events 165
Continuous Querieso 0oL 166
Distributed Processing 167

Wrap-Up o o o 168

Chapter 5 Entities o vt it it i e e e 171

Why We Use Entities o v v v v v v v v v v v 171

Unique Identity. o 173
User Provides Identity 174
Application Generates Identity 175
Persistence Mechanism Generates Identity 179
Another Bounded Context Assigns Identity 182
When the Timing of Identity Generation Matters. 184
Surrogate Identity, 186
Identity Stability., 188

Discovering Entities and Their Intrinsic Characteristics 191
Uncovering Entities and Properties 192
Digging for Essential Behavior 196
Roles and Responsibilities 200
Construction v . i o e e 205
Validation 208
Change Tracking 216

Wrap-Up o o e 217

Chapter 6 Value Objects v v v v i i i e e et e e e 219

Value Characteristics. oot v o 221
Measures, Quantifies, or Describes 221
Immutable. 221

www.EBookswWorld.ir

X1

Xii

CONTENTS

Conceptual Whole
Replaceability,
Value Equality.
Side-Effect-Free Behavior
Integrate with Minimalism.
Standard Types Expressed as Values
Testing Value Objects
Implementation.
Persisting Value Objects
Reject Undue Influence of Data Model Leakage.
ORM and Single Value Objects
ORM and Many Values Serialized into a Single Column . . .
ORM and Many Values Backed by a Database Entity.
ORM and Many Values Backed by a Join Table.
ORM and Enum-as-State Objects.

Chapter 7 SErviCes . . v v v v v v v v e e e e e e e e e e e e e e

What a Domain Service Is (but First, What It IsNot)
Make Sure You Need a Service.
Modeling a Service inthe Domain
Is Separated Interface a Necessity?
A Calculation Process
Transformation Services. o v v v v oL
Using a Mini-Layer of Domain Services
Testing Services.o

Chapter 8 DomainEventst

The When and Why of Domain Events
ModelingEvents e
With Aggregate Characteristics
Identity e
Publishing Events from the Domain Model
Publisher
Subscriberso

www.EBookswWorld.ir

CONTENTS

Spreading the News to Remote Bounded Contexts 303
Messaging Infrastructure Consistency 303
Autonomous Services and Systems 305
Latency Tolerances 306

EventStore Lo o 307

Architectural Styles for Forwarding Stored Events 312
Publishing Notifications as RESTful Resources. 312
Publishing Notifications through Messaging Middleware . . 317

Implementation L e 318
Publishing the NotificationLog 319
Publishing Message-Based Notifications 324

Wrap-Up o o oo 331

Chapter 9 Modules it 333

Designing with Modules 333

Basic Module Naming Conventions 336

Module Naming Conventions for the Model. 337

Modules of the Agile Project Management Context 340

Modules in Other Layers 343

Module before Bounded Context 344

Wrap-Up« o o e e e e 345

Chapter 10 Aggregates v v v v v v v v v o v e v e e et e 347

Using Aggregates in the Scrum Core Domain 348
First Attempt: Large-Cluster Aggregate 349
Second Attempt: Multiple Aggregates 351

Rule: Model True Invariants in Consistency Boundaries. 353

Rule: Design Small Aggregates. 355
Don’t Trust EveryUse Case 358

Rule: Reference Other Aggregates by Identity 359
Making Aggregates Work Together through Identity

References o 361
Model Navigation« .o v vt e e 362
Scalability and Distribution 363

Rule: Use Eventual Consistency Outside the Boundary 364

Ask Whose JobItlIs 366

www.EBookswWorld.ir

X1i1

X1v

CONTENTS

Reasons to Break the Rules 367
Reason One: User Interface Convenience 367
Reason Two: Lack of Technical Mechanisms 368
Reason Three: Global Transactions 369
Reason Four: Query Performance. 369
AdheringtotheRules 370

Gaining Insight through Discovery. 370
Rethinking the Design, Again. 370
Estimating Aggregate Cost 372
Common Usage Scenarios 373
Memory Consumption 374
Exploring Another Alternative Design 375
Implementing Eventual Consistency. 376
Is It the Team Member’s Job? 378
Time for Decisions 379

Implementation e 380
Create a Root Entity with Unique Identity 380
Favor Value ObjectParts 382
Using Law of Demeter and Tell, Dont Ask 382
Optimistic Concurrency.« .« v v v v v v vt u .. 385
Avoid Dependency Injection. 387

Wrap-Up o o e 388

Chapter 11 Factories o o vt it ittt e 389

Factories in the Domain Model 389

Factory Method on Aggregate Root 391
Creating CalendarEntry Instances 392
Creating Discussion Instances 395

Factoryon Service oL 397

Wrap-Up o e e 400

Chapter 12 Repositories v v v v v v v v v v v e e e e e e 401

Collection-Oriented Repositories 402
Hibernate Implementation 407
Considerations for a TopLink Implementation 416

www.EBookswWorld.ir

CONTENTS

Persistence-Oriented Repositories
Coherence Implementation
MongoDB Implementation

Additional Behavior L oL Lo

Managing Transactions
AWarning L. e e e

Type Hierarchies,

Repository versus Data Access Object

Testing Repositories
Testing with In-Memory Implementations

Chapter 13 Integrating Bounded Contexts.
Integration Basics oo Lo
Distributed Systems Are Fundamentally Different
Exchanging Information across System Boundaries.
Integration Using RESTful Resources
Implementing the RESTful Resource

Implementing the REST Client Using an Anticorruption

Layero
Integration Using Messaging

Staying Informed about Product Owners and Team

Members e e
Can You Handle the Responsibility?
Long-Running Processes, and Avoiding Responsibility
Process State Machines and Time-out Trackers
Designing a More Sophisticated Process
When Messaging or Your System Is Unavailable

Chapter 14 Application. v v v v v v i e e e
UserInterface e

Rendering Domain Objects

Render Data Transfer Object from Aggregate Instances

Use a Mediator to Publish Aggregate Internal State

Render Aggregate Instances from a Domain Payload Object

www.EBookswWorld.ir

XV

XVi

CONTENTS

State Representations of Aggregate Instances 516
Use Case Optimal Repository Queries. 517
Dealing with Multiple, Disparate Clients 517
Rendition Adapters and Handling User Edits 518
Application Serviceso 521
Sample Application Service 522
Decoupled Service Output 528
Composing Multiple Bounded Contexts 531
Infrastructure e 532
Enterprise Component Containers 534
Wrap-Up o . o o 537
Appendix A Aggregates and Event Sourcing: A+ES 539
Inside an Application Service L. 541
Command Handlers 549
Lambda Syntax 553
Concurrency Control. 554
Structural Freedom with A+ES. 558
Performance 558
Implementing an Event Store 561
Relational Persistence 565
BLOB Persistence oo vt oo e e 568
Focused Aggregates 569
Read Model Projectionso v ... 570
Use with Aggregate Design 573
Events Enrichment 573
Supporting Tools and Patterns 576
Event Serializers. oL 576
Event Immutability, 577
Value Objects 577
Contract Generation o v vt ot oo 580
Unit Testing and Specifications 582
Event Sourcing in Functional Languages. 583
Bibliography e 585
................................... 589

www.EBookswWorld.ir

Foreword

In this new book, Vaughn Vernon presents the whole of Domain-Driven
Design (DDD) in a distinctive way, with new explanations of the concepts,
new examples, and an original organization of topics. I believe this fresh, alter-
native approach will help people grasp the subtleties of DDD, particularly the
more abstract ones such as Aggregates and Bounded Contexts. Not only do
different people prefer different styles—subtle abstractions are hard to absorb
without multiple explanations.

Also, the book conveys some of the insights of the past nine years that have
been described in papers and presentations but have not appeared in a book
before now. It places Domain Events alongside Entities and Value Objects as
the building blocks of a model. It discusses the Big Ball of Mud and places
it into the Context Map. It explains the hexagonal architecture, which has
emerged as a better description of what we do than the layered architecture.

My first exposure to the material in this book came almost two years ago
(although Vaughn had been working on his book for some time by then). At
the first DDD Summit, several of us committed to writing about certain topics
about which we felt there were fresh things to say or there was a particular
need in the community for more specific advice. Vaughn took up the challenge
of writing about Aggregates, and he followed through with a series of excellent
articles about Aggregates (which became a chapter in this book).

There was also a consensus at the summit that many practitioners would
benefit from a more prescriptive treatment of some of the DDD patterns.
The honest answer to almost any question in software development is, “It
depends.” That is not very useful to people who want to learn to apply a tech-
nique, however. A person who is assimilating a new subject needs concrete
guidance. Rules of thumb don’t have to be right in all cases. They are what
usually works well or the thing to try first. Through their decisiveness, they
convey the philosophy of the approach to solving the problem. Vaughn’s book
has a good mix of straightforward advice balanced with a discussion of trade-
offs that keep it from being simplistic.

Xvii

www.EBooksWorld.ir

XViil

FOREWORD

Not only have additional patterns, such as Domain Events, become a main-
stream part of DDD—people in the field have progressed in learning how to
apply those patterns, not to mention adapting them to newer architectures and
technologies. Nine years after my book, Domain-Driven Design: Tackling
Complexity in the Heart of Software, was published, there’s actually a lot to
say about DDD that is new, and there are new ways to talk about the funda-
mentals. Vaughn’s book is the most complete explanation yet of those new
insights into practicing DDD.

—Eric Evans
Domain Language, Inc.

www.EBookswWorld.ir

Preface

All the calculations show it can’t work. There’s only one thing to do:
make it work.

—Pierre-Georges Latécoere,
early French aviation entrepreneur

And make it work we shall. The Domain-Driven Design approach to software
development is far too important to leave any capable developer without clear
directions for how to implement it successfully.

Getting Grounded, Getting Airborne

When I was a kid, my father learned to pilot small airplanes. Often the whole
family would go up flying. Sometimes we flew to another airport for lunch,
then returned. When Dad had less time but longed to be in the air, we’d go out,
just the two of us, and circle the airport doing “touch-and-goes.”

We also took some long trips. For those, we always had a map of the route
that Dad had earlier charted. Our job as kids was to help navigate by looking
out for landmarks below so we could be certain to stay on course. This was
great fun for us because it was a challenge to spot objects so far below that
exhibited little in the way of identifying details. Actually, ’'m sure that Dad
always knew where we were. He had all the instruments on the dashboard,
and he was licensed for instrument flight.

The view from the air really changed my perspective. Now and then Dad
and I would fly over our house in the countryside. At a few hundred feet up,
this gave me a context for home that I didn’t have before. As Dad would cruise
over our house, Mom and my sisters would run out into the yard to wave at
us. I knew it was them, although I couldn’t look into their eyes. We couldn’t

XiX

www.EBooksWorld.ir

XX

PREFACE

converse. If T had shouted out the airplane window, they would never have
heard me. I could see the split-rail fence in the front dividing our property from
the road. When on the ground I’d walk across it as if on a balance beam. From
the air, it looked like carefully woven twigs. And there was the huge yard that
I circled row by row on our riding lawn mower every summer. From the air, I
saw only a sea of green, not the blades of grass.

I loved those moments in the air. They are etched in my memory as if Dad
and I were just taxiing in after landing to tie down for the evening. As much
as I loved those flights, they sure were no substitute for being on the ground.
And as cool as they were, the touch-and-goes were just too brief to make me
feel grounded.

Landing with Domain-Driven Design

Getting in touch with Domain-Driven Design (DDD) can be like flight to a
kid. The view from the air is stunning, but sometimes things look unfamiliar
enough to prevent us from knowing exactly where we are. Getting from point
A to point B appears far from realistic. The DDD grownups always seem to
know where they are. They’ve long ago plotted a course, and they are com-
pletely in tune with their navigational instruments. A great number of oth-
ers don’t feel grounded. What is needed is the ability to “land and tie down.”
Next, a map is needed to guide the way from where we are to where we need
to be.

In the book Domain-Driven Design: Tackling Complexity in the Heart of
Software [Evans], Eric Evans brought about what is a timeless work. It is my
firm belief that Eric’s work will guide developers in practical ways for decades
to come. Like other pattern works, it establishes flight far enough above the
surface to give a broad vision. Yet, there may be a bit more of a challenge when
we need to understand the groundwork involved in implementing DDD, and
we usually desire more detailed examples. If only we could land and stay on
the surface a bit longer, and even drive home or to some other familiar place.

Part of my goal is to take you in for a soft landing, secure the aircraft, and
help you get home by way of a well-known surface route. That will help you
make sense of implementing DDD, giving you examples that use familiar tools
and technologies. And since none of us can stay home all the time, I will also
help you venture out onto other paths to explore new terrain, taking you to
places that perhaps you’ve never been before. Sometimes the path will be steep,
but given the right tactics, a challenging yet safe ascent is possible. On this
trip you’ll learn about alternative architectures and patterns for integrating

www.EBookswWorld.ir

MAPPING THE TERRAIN AND CHARTING FOR FLIGHT

multiple domain models. This may expose you to some previously unexplored
territory. You will find detailed coverage of strategic modeling with multiple
integrations, and you’ll even learn how to develop autonomous services.

My goal is to provide a map to help you take both short jaunts and long,
complicated treks, enjoying the surrounding detail, without getting lost or
injured along the way.

Mapping the Terrain and Charting for Flight

It seems that in software development we are always mapping from one thing
to another. We map our objects to databases. We map our objects to the user
interface and then back again. We map our objects to and from various appli-
cation representations, including those that can be consumed by other systems
and applications. With all this mapping, it’s natural to want a map from the
higher-level patterns of Evans to implementation.

Even if you have already landed a few times with DDD, there is probably
more to benefit from. Sometimes DDD is first embraced as a technical tool set.
Some refer to this approach to DDD as DDD-Lite. We may have homed in on
Entities, Services, possibly made a brave attempt at designing Aggregates, and
tried to manage their persistence using Repositories. Those patterns felt a bit
like familiar ground, so we put them to use. We may even have found some use
for Value Objects along the way. All of these fall within the catalog of tacti-
cal design patterns, which are more technical. They help us take on a serious
software problem with the skill of a surgeon with a scalpel. Still, there is much
to learn about these and other places to go with tactical design as well. I map
them to implementation.

Have you traveled beyond tactical modeling? Have you visited and even lin-
gered with what some call the “other half” of DDD, the strategic design pat-
terns? If you’ve left out the use of Bounded Context and Context Maps, you
have probably also missed out on the use of the Ubiquitous Language.

If there is a single “invention” Evans delivers to the software development
community, it is the Ubiquitous Language. At a minimum he brought the Ubig-
uitous Language out of the dusty archives of design wisdom. It is a team pat-
tern used to capture the concepts and terms of a specific core business domain
in the software model itself. The software model incorporates the nouns, adjec-
tives, verbs, and richer expressions formally spoken by the development team,
a team that includes one or more business domain experts. It would be a mis-
take, however, to conclude that the Language is limited to mere words. Just as
any human language reflects the minds of those who speak it, the Ubiquitous

www.EBookswWorld.ir

XX1

XX11

PREFACE

Language reflects the mental model of the experts of the business domain you
are working in. Thus, the software and the tests that verify the model’s adher-
ence to the tenets of the domain both capture and adhere to this Language, the
same conceived and spoken by the team. The Language is equally as valuable
as the various strategic and tactical modeling patterns and in some cases has a
more enduring quality.

Simply stated, practicing DDD-Lite leads to the construction of inferior
domain models. That’s because the Ubiquitous Language, Bounded Context,
and Context Mapping have so much to offer. You get more than a team lingo.
The Language of a team in an explicit Bounded Context expressed as a domain
model adds true business value and gives us certainty that we are implement-
ing the correct software. Even from a technical standpoint, it helps us create
better models, ones with more potent behaviors, that are pure and less error
prone. Thus, I map the strategic design patterns to understandable example
implementations.

This book maps the terrain of DDD in a way that allows you to experience
the benefits of both strategic and tactical design. It puts you in touch with its
business value and technical strengths by peering closely at the details.

It would be a disappointment if all we ever did with DDD is stay on the
ground. Getting stuck in the details, we’d forget that the view from flight
teaches us a lot, too. Don’t limit yourself to rugged ground travel. Brave the
challenge of getting in the pilot’s seat and see from a height that is telling. With
training flights on strategic design, with its Bounded Contexts and Context
Maps, you will be prepared to gain a grander perspective on its full realization.
When you reward yourself with DDD flight, I will have reached my goal.

Summary of Chapters

The following highlights the chapters of this book and how you can benefit
from each one.

Chapter 1: Getting Started with DDD

This chapter introduces you to the benefits of using DDD and how to achieve
the most from it. You will learn what DDD can do for your projects and your
teams as you grapple with complexity. You’ll find out how to score your proj-
ect to see if it deserves the DDD investment. You will consider the common
alternatives to DDD and why they often lead to problems. The chapter lays the
foundations of DDD as you learn how to take the first steps on your project,

www.EBookswWorld.ir

SUMMARY OF CHAPTERS

and it even gives you some ways to sell DDD to your management, domain
experts, and technical team members. That will enable you to face the chal-
lenges of using DDD armed with the knowledge of how to succeed.

You are introduced to a project case study that involves a fictitious company
and team, yet one with real-world DDD challenges. The company, with the
charter to create innovative SaaS-based products in a multitenant environment,
experiences many of the mistakes common to DDD adoption but makes vital
discoveries that help the teams solve their issues and keep the project on track.
The project is one that most developers can relate to, as it involves developing
a Scrum-based project management application. This case study introduction
sets the stage for subsequent chapters. Each strategic and tactical pattern is
taught through the eyes of the team, both as they err and as they make strides
toward maturity in implementing DDD successfully.

Chapter 2: Domains, Subdomains, and Bounded Contexts

What is a Domain, a Subdomain, and a Core Domain? What are Bounded Con-
texts, and why and how should you use them? These questions are answered
in the light of mistakes made by the project team in our case study. Early on
in their first DDD project they failed to understand the Subdomain they were
working within, its Bounded Context, and a concise Ubiquitous Language. In
fact, they were completely unfamiliar with strategic design, only leveraging the
tactical patterns for their technical benefits. This led to problems in their ini-
tial domain model design. Fortunately, they recognized what had happened
before it became a hopeless morass.

A vital message is conveyed, that of applying Bounded Contexts to distin-
guish and segregate models properly. Addressed are common misapplications
of the pattern along with effective implementation advice. The text then leads
you through the corrective steps the team took and how that resulted in the
creation of two distinct Bounded Contexts. This led to the proper separation
of modeling concepts in their third Bounded Context, the new Core Domain,
and the main sample used in the book.

This chapter will strongly resonate with readers who have felt the pain of
applying DDD only in a technical way. If you are uninitiated in strategic design,
you are pointed in the right direction to start out on a successful journey.

Chapter 3: Context Maps

Context Maps are a powerful tool to help a team understand their business
domain, the boundaries between distinct models, and how they are currently,
or can be, integrated. This technique is not limited to drawing a diagram of

www.EBookswWorld.ir

xX1ii

XX1V

PREFACE

your system architecture. It’s about understanding the relationships between
the various Bounded Contexts in an enterprise and the patterns used to map
objects cleanly from one model to another. Use of this tool is important to suc-
ceeding with Bounded Contexts in a complex business enterprise. This chapter
takes you through the process used by the project team as they applied Context
Mapping to understand the problems they created with their first Bounded
Context (Chapter 2). It then shows how the two resulting clean Bounded Con-
texts were leveraged by the team responsible for designing and implementing
the new Core Domain.

Chapter 4: Architecture

Just about everyone knows the Layers Architecture. Are Layers the only way to
house a DDD application, or can other diverse architectures be used? Here we
consider how to use DDD within such architectures as Hexagonal (Ports and
Adapters), Service-Oriented, REST, CQRS, Event-Driven (Pipes and Filters,
Long-Running Processes or Sagas, Event Sourcing), and Data Fabric/Grid-
Based. Several of these architectural styles were put to use by the project team.

Chapter 5: Entities

The first of the DDD tactical patterns treated is Entities. The project team
first leaned too heavily on these, overlooking the importance of designing with
Value Objects when appropriate. This led to a discussion of how to avoid wide-
spread overuse of Entities because of the undue influence of databases and per-
sistence frameworks.

Once you are familiar with ways to distinguish their proper use, you see
lots of examples of how to design Entities well. How do we express the Ubiq-
uitous Language with an Entity? How are Entities tested, implemented, and
persisted? You are stepped through how-to guidance for each of these.

Chapter 6: Value Objects

Early on the project team missed out on important modeling opportunities
with Value Objects. They focused too intensely on the individual attributes
of Entities when they should have been giving careful consideration to how
multiple related attributes are properly gathered as an immutable whole. This
chapter looks at Value Object design from several angles, discussing how to
identify the special characteristics in the model as a means to determine when
to use a Value rather than an Entity. Other important topics are covered, such
as the role of Values in integration and modeling Standard Types. The chapter
then shows how to design domain-centric tests, how to implement Value types,

www.EBookswWorld.ir

SUMMARY OF CHAPTERS

and how to avoid the bad influence persistence mechanisms can have on our
need to store them as part of an Aggregate.

Chapter 7: Services

This chapter shows how to determine when to model a concept as a fine-
grained, stateless Service that lives in the domain model. You are shown when
you should design a Service instead of an Entity or Value Object, and how
Domain Services can be implemented to handle business domain logic as well
as for technical integration purposes. The decisions of the project team are
used to exemplify when to use Services and how they are designed.

Chapter 8: Domain Events

Domain Events were not formally introduced by Eric Evans as part of DDD
until after his book was published. You’ll learn why Domain Events published
by the model are so powerful, and the diverse ways that they can be used,
even in supporting integration and autonomous business services. Although
various kinds of technical events are sent and processed by applications, the
distinguishing characteristics of Domain Events are spotlighted. Design and
implementation guidance is provided, instructing you on available options and
trade-offs. The chapter then teaches how to create a Publish-Subscribe mech-
anism, how Domain Events are published to integrated subscribers across the
enterprise, ways to create and manage an Event Store, and how to properly
deal with common messaging challenges faced. Each of these areas is discussed
in light of the project team’s efforts to use them correctly and to their best
advantage.

Chapter 9: Modules

How do we organize model objects into right-sized containers with limited
coupling to objects that are in different containers? How do we name these
containers so they reflect the Ubiquitous Language? Beyond packages and
namespaces, how can we use the more modern modularization facilities, such
as OSGi and Jigsaw, provided by languages and frameworks? Here you will see
how Modules were put to use by the project team across a few of their projects.

Chapter 10: Aggregates

Aggregates are probably the least well understood among DDD’s tactical
tools. Yet, if we apply some rules of thumb, Aggregates can be made simpler
and quicker to implement. You will learn how to cut through the complexity

www.EBookswWorld.ir

XXV

XXVi

PREFACE

barrier to use Aggregates that create consistency boundaries around small
object clusters. Because of putting too much emphasis on the less important
aspects of Aggregates, the project team in our case study stumbled in a few
different ways. We step through the team’s iterations with a few modeling chal-
lenges and analyze what went wrong and what they did about it. The result
of their efforts led to a deeper understanding of their Core Domain. We look
in on how the team corrected their mistakes through the proper application
of transactional and eventual consistency, and how that led them to design
a more scalable and high-performing model within a distributed processing
environment.

Chapter 11: Factories

[Gamma et al.] has plenty to say about Factories, so why bother with treating
them in this book? This is a simple chapter that does not attempt to reinvent
the wheel. Rather, its focus is on understanding where Factories should exist.
There are, of course, a few good tips to share about designing a worthy Fac-
tory in a DDD setting. See how the project team created Factories in their Core
Domain as a way to simplify the client interface and protect the model’s con-
sumers from introducing disastrous bugs into their multitenant environment.

Chapter 12: Repositories

Isn’t a Repository just a simple Data Access Object (DAO)? If not, what’s the
difference? Why should we consider designing Repositories to mimic collec-
tions rather than databases? Learn how to design a Repository that is used
with an ORM, one that supports the Coherence grid-based distributed cache,
and one that uses a NoSQL key-value store. Each of these optional persistence
mechanisms was at the disposal of the project team because of the power and
versatility behind the Repository building block pattern.

Chapter 13: Integrating Bounded Contexts

Now that you understand the higher-level techniques of Context Mapping and
have the tactical patterns on your side, what is involved in actually implement-
ing the integrations between models? What integration options are afforded
by DDD? This chapter uncovers a few different ways to implement model inte-
grations using Context Mapping. Instruction is given based on how the project
team integrated the Core Domain with other supporting Bounded Contexts
introduced in early chapters.

www.EBookswWorld.ir

Java AND DEVELOPMENT ToOOLS

Chapter 14: Application

You have designed a model per your Core Domain’s Ubiquitous Language.
You’ve developed ample tests around its usage and correctness, and it works.
But how do other members of your team design the areas of the application
that surround the model? Should they use DTOs to transfer data between the
model and the user interface? Or are there other options for conveying model
state up to the presentation components? How do the Application Services
and infrastructure work? This chapter addresses those concerns using the now
familiar project to convey available options.

Appendix A: Aggregates and Event Sourcing: A+ES

Event Sourcing is an important technical approach to persisting Aggregates
that also provides the basis for developing an Event-Driven Architecture.
Event Sourcing can be used to represent the entire state of an Aggregate as a
sequence of Events that have occurred since it was created. The Events are used
to rebuild the state of the Aggregate by replaying them in the same order in
which they occurred. The premise is that this approach simplifies persistence
and allows capturing concepts with complex behavioral properties, besides the
far-reaching influence the Events themselves can have on your own and exter-
nal systems.

Java and Development Tools

The majority of the examples in this book use the Java Programming Lan-
guage. I could have provided the examples in C#, but I made a conscious deci-
sion to use Java instead.

First of all, and sad to say, I think there has been a general abandonment
of good design and development practices in the Java community. These days
it may be difficult to find a clean, explicit domain model in most Java-based
projects. It seems to me that Scrum and other agile techniques are being used
as substitutes for careful modeling, where a product backlog is thrust at devel-
opers as if it serves as a set of designs. Most agile practitioners will leave their
daily stand-up without giving a second thought to how their backlog tasks will
affect the underlying model of the business. Although I assume this is needless
to say, I must assert that Scrum, for example, was never meant to stand in
place of design. No matter how many project and product managers would
like to keep you marching on a relentless path of continuous delivery, Scrum

www.EBookswWorld.ir

XXVil

XXViii

PREFACE

was not meant only as a means to keep Gantt chart enthusiasts happy. Yet, it
has become that in so many cases.

I consider this a big problem, and a major theme I have is to inspire the Java
community to return to domain modeling by giving a reasonable amount of
thought to how sound, yet agile and rapid, design techniques can benefit their
work.

Further, there are already some good resources for using DDD in a .NET
environment, one being Applying Domain-Driven Design and Patterns: With
Examples in C# and .NET by Jimmy Nilsson [Nilsson]. Due to Jimmy’s good
work and that of others promoting the Alt. NET mindset, there is a high tide of
good design and development practices going on in the NET community. Java
developers need to take notice.

Second, I am well aware that the CENET community will have no problem
whatsoever understanding Java code. Due to the fact that much of the DDD
community uses C#NET, most of my early book reviewers are C# developers,
and I never once received a complaint about their having to read Java code. So,
I have no concern that my use of Java in any way alienates C# developers.

I need to add that at the time of this writing there was a significant shift
toward interest in using document-based and key-value storage over rela-
tional databases. This is for good reason, for even Martin Fowler has aptly
nicknamed these “aggregate-oriented storage.” It’s a fitting name and well
describes the advantages of using NoSQL storage in a DDD setting.

Yet, in my consulting work I find that many are still quite married to
relational databases and object-relational mapping. Therefore, I think that
in practical terms there has been no disservice to the community of NoSQL
enthusiasts by my including guidance on using object-relational mapping tech-
niques for domain models. I do acknowledge, however, that this may earn me
some scorn from those who think that the object-relational impedance mis-
match makes it unworthy of consideration. That’s fine, and I accept the flames,
because there is a vast majority who must still live with the drudgeries of this
impedance mismatch on a day-to-day basis, however unenlightened they may
seem to the minority.

Of course, I also provide guidance in Chapter 12, “Repositories,” on the use
of document-based, key-value, and Data Fabric/Grid-Based stores. As well, in
several places I discuss where the use of a NoSQL store would tend to influence
an alternative design of Aggregates and their contained parts. It’s quite likely
that the trend toward NoSQL stores will continue to spur growth in that sec-
tor, so in this case object-relational developers need to take notice. As you can
see, I understand both sides of the argument, and I agree with both. It’s all part
of the ongoing friction created by technology trends, and the friction needs to
happen in order for positive change to happen.

www.EBookswWorld.ir

Acknowledgments

I am grateful to the fine staff at Addison-Wesley for giving me the opportu-
nity to publish under their highly respected label. As I have stated before in
my classes and presentations, I see Addison-Wesley as a publisher that under-
stands the value of DDD. Both Christopher Guzikowski and Chris Zahn
(Dr. Z) have supported my efforts throughout the editorial process. I will not
forget the day that Christopher Guzikowski called to share the news that he
wanted to sign me as one of his authors. I will remember how he encouraged
me to persevere through the doubts that most authors must experience, until
publication was in sight. Of course, it was Dr. Z who made sure the text was
put into a publishable state. Thanks to my production editor, Elizabeth Ryan,
for coordinating the book’s publication details. And thanks to my intrepid
copyeditor, Barbara Wood.

Going back a ways, it was Eric Evans who devoted a major portion of five
years of his career to write the first definitive work on DDD. Without his
efforts, the wisdom that grew out of the Smalltalk and patterns communities,
and that Eric himself refined, many more developers would just be hacking
their way to delivering bad software. Sadly, this problem is more common than
it should be. As Eric says, the poor quality of software development, and the
uncreative joylessness of the teams that produce the software, nearly drove him
to exit the software industry for good. We owe Eric hearty thanks for concen-
trating his energy into educating rather than into a career change.

At the end of the first DDD Summit in 2011, which Eric invited me to
attend, it was determined that the leadership should produce a set of guidelines
by which more developers could succeed with DDD. I was already far along
with this book and was in a good position to understand what developers were
missing. I offered to write an essay to provide the “rules of thumb” for Aggre-
gates. I determined that this three-part series entitled “Effective Aggregate
Design” would form the foundation for Chapter 10 of this book. Once released
on dddcommunity.org, it became quite clear how such sound guidance was

XXI1X

www.EBooksWorld.ir

XXX

ACKNOWLEDGMENTS

greatly needed. Thanks to others among the DDD leadership who reviewed
that essay and thus provided valuable feedback for this book. Eric Evans and
Paul Rayner did several detailed reviews of the essay. I also received feedback
from Udi Dahan, Greg Young, Jimmy Nilsson, Niclas Hedhman, and Rickard
Oberg.

Special thanks go to Randy Stafford, a longtime member of the DDD com-
munity. After attending a DDD talk I gave several years ago in Denver, Randy
urged me to become more involved in the larger DDD community. Sometime
later, Randy introduced me to Eric Evans so I could pitch my ideas about draw-
ing the DDD community together. While my ideas were a bit grander and
possibly less achievable, Eric convinced us that forming a smaller contingent
composed of clear DDD leadership would have more near-term value. From
these discussions the DDD Summit 2011 was formed. Needless to say, without
Randy’s coaxing me to push forward with my views of DDD, this book would
not exist, and perhaps not even a DDD Summit. Although Randy was too busy
with Oracle Coherence work to contribute to this book, perhaps we will get
the chance to write something in the future in a combined effort.

A huge thank-you goes to Rinat Abdullin, Stefan Tilkov, and Wes Williams
for contributing sections about specialized topics to the text. It’s nearly impossi-
ble to know everything about everything related to DDD, and absolutely impos-
sible to be an expert in all areas of software development. That’s why I turned
to experts in specific areas to write a few sections of Chapter 4 and Appendix A.
Thanks go to Stefan Tilkov for his uncommon knowledge of REST, to Wes Wil-
liams for his GemFire experience, and to Rinat Abdullin for sharing his contin-
ually expanding experience with Event Sourcing for Aggregate implementation.

One of my earliest reviewers was Leo Gorodinsk, and he stuck with the
project. I first met Leo at our DDD Denver meetup. He provided a lot of great
feedback on this book based on his own struggles while implementing DDD
with his team in Boulder, Colorado. I hope my book helped Leo as much as his
critical reviews helped me. I see Leo as part of DDD’s future.

Many others provided feedback on at least one chapter of my book, and
some on several chapters. Some of the more critical feedback was provided
by Gojko Adzic, Alberto Brandolini, Udi Dahan, Dan Haywood, Dave Muir-
head, and Stefan Tilkov. Specifically, Dan Haywood and Gojko Adzic deliv-
ered much of the early feedback, which was based on the most-painful-to-read
content I produced. T am glad they endured and corrected me. Alberto Bran-
dolini’s insights into strategic design in general, and Context Mapping specif-
ically, helped me focus on the essence of that vital material. Dave Muirhead,
with an abundance of experience in object-oriented design, domain modeling,
as well as object persistence and in-memory data grids—including GemFire

www.EBookswWorld.ir

ACKNOWLEDGMENTS

and Coherence—influenced my text regarding some of the history and finer
details of object persistence. Besides his REST contribution, Stefan Tilkov sup-
plied additional insights into architecture in general, and SOA and Pipes and
Filters specifically. Finally, Udi Dahan validated and helped me clarify some
of the concepts of CQRS, Long-Running Processes (aka Sagas), and messag-
ing with NServiceBus. Other reviewers who provided valuable feedback were
Rinat Abdullin, Svein Arne Ackenhausen, Javier Ruiz Aranguren, William
Doman, Chuck Durfee, Craig Hoff, Aeden Jameson, Jiwei Wu, Josh Maletz,
Tom Marrs, Michael McCarthy, Rob Meidal, Jon Slenk, Aaron Stockton, Tom
Stockton, Chris Sutton, and Wes Williams.

Scorpio Steele produced the fantastic illustrations for the book. Scorpio
made everyone on the IDDD team the superheroes that they truly are. At the
other end of the spectrum was the nontechnical editorial review by my good
friend Kerry Gilbert. While everyone else made sure I was technically correct,
Kerry put me “under the grammar hammer.”

My father and mother have provided great inspiration and support through-
out my life. My father—A]J in the “Cowboy Logic” humor throughout this
book—is not just a cowboy. Don’t get me wrong. Being a great cowboy would
be enough. Besides loving flight and piloting airplanes, my father was an
accomplished civil engineer and land surveyor, and a talented negotiator. He
still loves math and studying the galaxies. Among many other things he taught
me, my Dad imparted to me how to solve a right triangle when I was around
ten years old. Thanks, Dad, for giving me a technical bent at a young age.
Thanks also go to my mom, one of the nicest people you could ever know.
She has always encouraged and supported me through my personal challenges.
Besides, what stamina I have comes from her. I could go on, but I could never
say enough good things about her.

Although this book is dedicated to my loving wife, Nicole, and our marvel-
ous son, Tristan, my thanks would not be complete without a special mention
here. They are the ones who allowed me to work on and complete the book.
Without their support and encouragement my task would not have been possi-
ble. Thanks so much, my dearest loved ones.

www.EBookswWorld.ir

XXX1

This page intentionally left blank

www.EBookswWorld.ir

About the Author

Vaughn Vernon is a veteran software craftsman with more than twenty-five years
of experience in software design, development, and architecture. He is a thought
leader in simplifying software design and implementation using innovative meth-
ods. He has been programming with object-oriented languages since the 1980s
and applying the tenets of Domain-Driven Design since his Smalltalk domain
modeling days in the early 1990s. His experience spans a wide range of business
domains, including aerospace, environmental, geospatial, insurance, medical and
health care, and telecommunications. He has also succeeded in technical endeav-
ors, creating reusable frameworks, libraries, and implementation acceleration
tools. He consults and speaks internationally and has taught his Implementing
Domain-Driven Design classes on multiple continents. You can read more about
his latest efforts at www.VaughnVernon.co and follow him on Twitter here:
@VaughnVernon.

xxxiii

www.EBooksWorld.ir

http://www.VaughnVernon.co

This page intentionally left blank

www.EBookswWorld.ir

Guide to This Book

The book Domain-Driven Design by Eric Evans presents what is essentially
a large pattern language. A pattern language is a set of software patterns that
are intertwined because they are dependent on each other. Any one pattern
references one or more other patterns that it depends on, or that depend on it.
What does this mean for you?

It means that as you read any given chapter of this book, you could run into
a DDD pattern that isn’t discussed in that chapter and that you don’t already
know. Don’t panic, and please don’t stop reading out of frustration. The refer-
enced pattern is very likely explained in detail in another chapter of the book.

In order to help unravel the pattern language, I used the syntax found in
Table G.1 in the text.

Table G.1 The Syntax Used in This Book
When You See This . .. It Means This . ..

Pattern Name (#) 1. It is the first time the pattern is referenced in the
chapter that you are reading, or

2. It is an important additional reference to a pattern
that was already mentioned in the chapter, but it’s
essential to know where to locate more information
about it at that point in the text.

Bounded Context (2) The chapter you are reading is referencing Chapter
2 for you to find out deep details about Bounded
Contexts.

Bounded Context It is the way I reference a pattern already mentioned

in the same chapter. I don’t want to irritate you by
making every reference to a given pattern bold, with a
chapter number.

[REFERENCE] It is a bibliographic reference to another work.

continues

XXXV

www.EBooksWorld.ir

XXXVi GuIDE TO THIS Book

Table G.1 The Syntax Used in This Book (Continued)

When You See This . .. It Means This . ..

[Evans] or [Evans, Ref] I don’t cover the specific referenced DDD pattern
extensively, and if you want to know more, you need
to read these works by Eric Evans. (They’re always
recommended reading!)

[Evans] means his classic book, Domain-Driven
Design.

[Evans, Ref] means a second publication that is a
separate, condensed reference to the patterns in [Evans]
that have been updated and extended.

[Gamma et al.] and [Gamma et al.] means the classic book Design
[Fowler, P of EAA] Patterns.

[Fowler, P of EAA] means Martin Fowler’s Paiterns of
Enterprise Application Architecture.

I reference these works frequently. Although I reference
several other works as well, you will tend to see these
a bit more than others. Examine the full bibliography
for details.

If you start reading in the middle of a chapter and you see a reference such
as Bounded Context, remember that you’ll probably find a chapter in this book
that covers the pattern. Just glance at the index for a richer set of references.

If you have already read [Evans] and you know its patterns to some degree,
you’ll probably tend to use this book as a way to clarify your understanding
of DDD and to get ideas for how to improve your existing model designs. In
that case you may not need a big-picture view right now. But if you are rela-
tively new to DDD, the following section will help you see how the patterns fit
together, and how this book can be used to get you up and running quickly.
So, read on.

Big-Picture View of DDD

Early on I take you through one of the pillars of DDD, the Ubiquitous Lan-
guage (1). A Ubiquitous Language is applicable within a single Bounded Con-
text (2). Straightaway, you need to familiarize yourself with that critical domain
modeling mindset. Just remember that whichever way your software models
are designed tactically, strategically you’ll want them to reflect the following: a
clean Ubiquitous Language modeled in an explicitly Bounded Context.

www.EBookswWorld.ir

Guipe TO THIS Book

Strategic Modeling

A Bounded Context is a conceptual boundary where a domain model is applica-
ble. It provides a context for the Ubiquitous Language that is spoken by the team
and expressed in its carefully designed software model, as shown in Figure G.1.

Ubiquitous Language (1)
modeled inside

Equities domain model with a
single, clean Ubiquitous Language

Equities Context
Bounded Context (2)
Explicit boundary around model

Figure G.1 A diagram illustrating a Bounded Context and relevant
Ubiquitous Language

As you practice strategic design, you’ll find that the Context Mapping (3)
patterns seen in Figure G.2 work in harmony. Your team will use Context
Maps to understand their project terrain.

We’ve just considered the big picture of DDD’s strategic design. Understand-
ing it is imperative.

) _—>{ Accounts Domain Model

Bounded Context (2
Accounts Context

Equities Domain Model

Equities Context
Context Mappings (3) with integration
relationships:

Open Host Service, Published Language,
Anticorruption Layer, Customer-Supplier,
Partnership, Conformist, Shared Kernel

Figure G.2 Context Maps show the relationships among Bounded Contexts.

www.EBookswWorld.ir

XXXVil

XXXViil

Guipe 1o THIs Book

Architecture

Sometimes a new Bounded Context or existing ones that interact through Con-
text Mapping will need to take on a new style of Architecture (4). It’s important
to keep in mind that your strategically and tactically designed domain models
should be architecturally neutral. Still, there will need to be some architecture
around and between each model. A powerful architectural style for hosting a
Bounded Context is Hexagonal, which can be used to facilitate other styles
such as Service-Oriented, REST and Event-Driven, and others. Figure G.3
depicts a Hexagonal Architecture, and while it may look a little busy, it’s a
fairly simplistic style to employ.

Sometimes we may be tempted to place too much emphasis on architecture
rather than focusing on the importance of carefully crafting a DDD-based
model. Architecture is important, but architectural influences come and go.
Remember to prioritize correctly, placing more emphasis on the domain model,
which has greater business value and will be more enduring.

Architecture (4) such as
the Hexagonal style

Tactical domain model at the
heart of the Bounded Context

\/Ql Adapter I

Application

Ny
e]
|

Domain Model
Adapter

Ul

(

é

Adapter

Figure G.3 The Hexagonal Architecture with the domain model at the heart
of the software

www.EBookswWorld.ir

Guipe TO THIS Book

Tactical Modeling

We model tactically inside a Bounded Context using DDD’s building block
patterns. One of the most important patterns of tactical design is Aggregate
(10), as illustrated in Figure G.4.

An Aggregate is composed of either a single Entity (5) or a cluster of Entities
and Value Objects (6) that must remain transactionally consistent throughout
the Aggregate’s lifetime. Understanding how to effectively model Aggregates is
quite important and one of the least well understood techniques among DDD’s
building blocks. If they are so important, you may be wondering why Aggre-
gates are placed later in the book. First of all, the placement of tactical pat-
terns in this book follows the same order as is found in [Evans]. Also, since
Aggregates are based on other tactical patterns, we cover the basic building
blocks—such as Entities and Value Objects—Dbefore the more complex Aggre-
gate pattern.

An instance of an Aggregate is persisted using its Repository (12) and later
searched for within and retrieved from it. You can see an indication of that in
Figure G.4.

Use stateless Services (7), such as seen in Figure G.5, inside the domain
model to perform business operations that don’t fit naturally as an operation
on an Entity or a Value Object.

Aggregate (10) with transactional
/ consistency boundary \

Aggregate Type 1

Aggregate Type 2

XXX1X

<<value object>> <<aggregate root>>

Value Type 1 Root Entity 1

<<aggregate root>> <<value object>>

Root Entity 2 Value Type 3

0. 0.

<<value object>>

Value Type 2

<<entity>>

<<value object>>

Entity Type 3 Value Type 4

* State inside reflecting true business rules
<<repository>> must remain completely consistent -
R itory 1 <<repository>>
eposi .
P y Use a Repository (12) topersist 3~ | Repository 2
a specific Aggregate type

Figure G.4 Two Aggregate types with their own transactional consistency boundaries

www.EBookswWorld.ir

x1

Guipe 1o THIs Book

Use a Service (7) to perform an operation
that cuts across Aggregates, for example

Query <<aggregate root>>

opeW Root Entity 1
Domain Service 1

\ <<aggregate root>>
Command

operation Root Entity 2

<<service>>

Figure G.5 Domain Services carry out domain-specific operations, which may
involve multiple domain objects.

Use Domain Events (8) to indicate the occurrence of significant happenings
in the domain. Domain Events can be modeled a few different ways. When
they capture occurrences that are a result of some Aggregate command opera-
tion, the Aggregate itself publishes the Event as depicted in Figure G.6.

Although often given little thought, it’s really important to design Modules
(9) correctly. In its simplest form, think of a Module as a package in Java or
a namespace in C#. Remember that if you design your Modules mechanically
rather than according to the Ubiquitous Language, they will probably do more
harm than good. Figure G.7 illustrates how Modules should contain a limited
set of cohesive domain objects.

Of course, there’s much more to implementing DDD, and I won’t try to
cover it all here. There’s a whole book ahead of you that does just that. I think
this Guide gets you off on the right foot for your journey through implement-
ing DDD. So, enjoy the journey!

Event
c/ / Subscriber

handle
/ Subscriber

Event Publisher | Event

Aggregate

publish

Subscriber

Figure G.6 Domain Events can be published by Aggregates.

www.EBookswWorld.ir

Guipe TO THIS Book

com.companyname.context.domain.model.concept
<<aggregate root>> <<entity>>
Entity 1 Entity 2
<<value object>> <<value object>>
Identity Value Type

Figure G.7 A Module contains and organizes cohesive domain objects.

Oh, and just to get you familiarized with Cowboy Logic, here’s one for the
trail:

Cowboy Logic

AJ: “Don’t worry about bitin’ off more than you can chew.
Your mouth is probably a whole lot bigger than you
think.” ;-)

LB: “You meant to say ‘mind,’ J. Your mind is bigger than
you think!”

www.EBookswWorld.ir

xli

This page intentionally left blank

www.EBookswWorld.ir

Chapter 1

Getting Started with DDD

Design is not just what it looks like and feels like.
Design is how it works.

—Steve Jobs

We strive to produce quality in the software we develop. We achieve some qual-
ity by using tests to help us avoid delivering software with a fatal number of
bugs. Yet, even if we could produce completely bug-free software, that in itself
does not necessarily mean that a quality software model is designed. The soft-
ware model—the way the software expresses the solution to the business goal
being sought—could still suffer greatly. Delivering software with few defects is
obviously good. Still, we can reach higher for a well-designed software model
that explicitly reflects the intended business objective, and our work may even
reach the level of great.

The software development approach called Domain-Driven Design, or
DDD, exists to help us more readily succeed at achieving high-quality software
model designs. When implemented correctly, DDD helps us reach the point
where our design is exactly how the software works. This book is about help-
ing you correctly implement DDD.

You may be completely new to DDD, you may have tried it and struggled,
or you may have already succeeded with it before. Regardless, you no doubt
are reading this book because you want to improve your ability to implement
DDD, and you can. The chapter road map helps you target your specific needs.

Road Map to This Chapter

¢ Discover what DDD can do for your projects and your teams as you grapple
with complexity.

* Find out how to score your project to see if it deserves the DDD investment.

* Consider the common alternatives to DDD and why they often lead to
problems.

* Grasp the foundations of DDD as you learn how to take the first steps on your
project.

* Learn how to sell DDD to your management, domain experts, and technical

team members.
continues

www.EBooksWorld.ir

v Chapter 1 GETTING STARTED WITH DDD

* Face the challenges of using DDD armed with knowledge of how to succeed.
* Look in on a team that is learning how to implement DDD.

What should you expect from DDD? Not a heavy, dense, ceremonial process
that blocks your way to progress. Rather, expect to use the agile development
techniques you probably already have come to trust. Beyond agile, anticipate
the acquisition of methods that help you gain deep insight into your business
domain, with the prospect of producing testable, malleable, organized, care-
fully crafted, high-quality software models.

DDD gives you both the strategic and tactical modeling tools necessary to
design high-quality software that meets core business objectives.

Can I DDD?

You can implement DDD if you have

¢ A passion for creating excellent software every day, and the tenacity to
achieve that goal

o The eagerness to learn and improve, and the fortitude to admit you need to

e The aptitude to understand software patterns and how to properly apply
them

¢ The skill and patience to explore design alternatives using proven agile
methods

¢ The courage to challenge the status quo

¢ The desire and ability to pay attention to details, to experiment and
discover

o A drive to seek ways to code smarter and better

I’'m not going to tell you that there isn’t a learning curve. To put it bluntly,
the learning curve can be steep. Yet, this book has been put together to help
flatten the curve as much as possible. My goal is to help you and your team
implement DDD with the greatest potential for success.

DDD isn’t first and foremost about technology. In its most central principles,
DDD is about discussion, listening, understanding, discovery, and business

www.EBookswWorld.ir

Can1DDD?

value, all in an effort to centralize knowledge. If you are capable of under-
standing the business in which your company works, you can at a minimum
participate in the software model discovery process to produce a Ubiquitous
Language. Sure, you’re going to have to learn more about the business, lots
more. Still, you are on your way to succeeding with DDD already because you
can comprehend the concepts of your business, you revel in developing great
software, and that gives you the proper footing to take DDD all the way.

Won’t having years, even a decade or two, of software development expe-
rience help? It might. Nevertheless, software development experience doesn’t
give you the ability to listen and learn from domain experts, the people who
know the most about some high-priority area of the business. You are at a
greater advantage if you can engage with those who seldom, if ever, express
themselves using technical lingo. You’re going to have to listen and listen care-
fully. You’re going to have to respect their viewpoint and trust that they know
a lot more than you do.

There Are Big Advantages to Engaging with Domain Experts

You are at a greater advantage if you can engage with those who seldom, if ever,
express themselves using technical lingo. Just as you are going to learn from them,
there is a high probability that they are also going to learn from you.

What you may like best about DDD is that the domain experts are also
going to have to listen to you. You are on the team just as they are. As strange
as it may seem, the domain experts don’t know everything about their business,
and they are also going to learn more about it. Just as you are going to learn
from them, there is a high probability that they are also going to learn from
you. Your questions about what they know will most likely also uncover what
they don’t know. You’ll be directly involved in helping everyone on the team
discover a deeper understanding of the business, even shaping the business.

It’s great when a team learns and grows together. If you give it a chance,
DDD makes that possible.

But We Don’t Have Domain Experts

A domain expert is not one by job title. These are the people who know the line of
business you are working in really well. They probably have a lot of background in
the business domain, and they might be product designers or even your salespeople.

Look past the job title. The people you are looking for know more about what
you are working on than anyone else, and for sure way more than you know. Find
them. Listen. Learn. Design in code.

So far we’re off to a pretty reassuring start. Still, I am also not going to tell
you that technical ability isn’t important, that somehow you can get by without

www.EBookswWorld.ir

Chapter 1 GETTING STARTED WITH DDD

it. You will have to grasp some advanced software domain modeling concepts.
Even so, it doesn’t necessarily mean you are going to be in over your head.
If you have abilities somewhere between grasping Head First Design Patterns
[Freeman et al.] and grokking the original Design Patterns [Gamma et al.] text,
or even more advanced patterns, you stand a really good chance of succeeding
with DDD. You can bank on this: I’'m going to do everything I can to make that
happen by lowering the bar, no matter what your level of experience.

What’s a Domain Model?

It’s a software model of the very specific business domain you are working in. Often
it’s implemented as an object model, where those objects have both data and behav-
ior with literal and accurate business meaning.

Creating a unique, carefully crafted domain model at the heart of a core, strate-
gic application or subsystem is essential to practicing DDD. With DDD your domain
models will tend to be smallish, very focused. Using DDD, you never try to model
the whole business enterprise with a single, large domain model. Phew, that’s good!

Consider the following perspectives of the people who can benefit from
DDD. I know you fit in here somewhere:

o Newbie, junior developer: “I’'m young, with fresh ideas, I’ve got pent-up
energy to code, and ’m going to have an impact. What’s got me miffed is
one of the projects I sprint on. I didn’t expect that my first gig off campus
would mean shoveling data back and forth using lots of almost identical
yet redundant ‘objects.” Why is this architecture so complex if that’s all
that’s happening? What’s up with #ha#? The code breaks a lot when I try
to change it. Does anyone actually understand what it’s supposed to do?
Now there are some complex new features I have to add. I regularly slap
an adapter around legacy classes to shield me from the goo. No joy. 'm
sure there’s something I can do besides code and debug all day and night
just to finish iterations. Whatever that is, 'm going to track it down and
own it. I heard some of the others talking about DDD. It sounds like
Gang of Four, but tuned for the domain model. Nice.”

Gotcha covered.

o Midlevel developer: “Over the past few months I’ve been included on
the new system. It’s my turn to make a difference. I get it, but what 'm
missing are profound insights when I’'m meeting with the senior develop-
ers. Sometimes things seem whacked, but ’'m not sure why. I'm going to
help change the way things are done around here. T know that throwing
technology at a problem only takes you so far, and that’s basically not far
enough. What I need is a sound software development technique that’s

www.EBookswWorld.ir

Can1DDD?

going to help me become a wise and experienced software practitioner.
One of the senior architects, the new guy, made a pitch for something
called DDD. I’'m listening.”

You’re sounding senior already. Read on. Your forward-thinking attitude
will be rewarded.

Senior developer, architect: “I’ve used DDD on a few projects, but not
since landing this new position. I like the power of the tactical patterns,
but there’s a lot more I could apply, with strategic design being one. What
I found most insightful when reading [Evans] was the Ubiquitous Lan-
guage. That’s powerful stuff. I've had discussions with a number of my
teammates and management, trying to influence DDD’s adoption here.
One of the new kids and a few of the midlevel and senior members are
jazzed about the prospects. Management isn’t so excited. I recently joined
this company, and although I was brought in to lead, it seems that the
organization is less interested in disruptive advancements than I thought.
Whatever. 'm not giving up. With other developers psyched about it, I
know we can make it happen. The payoffs are going to be much greater
than anticipated. We’ll draw the pure business people—the domain
experts—closer to our technical teams, and we’ll actually invest in our
solutions, not just grunt them out iteration after iteration.”

Now that’s what a leader does. This book has lots of guidance that shows
how to succeed with strategic design.

Domain expert: “I’ve been involved in specifying the IT solutions to our
business challenges for a long time now. Maybe it’s too much to expect,
but I wish the developers understood better what we do here. They’re
always talking down to us like we’re stupid. What they don’t understand
is, if it wasn’t for us there wouldn’t be jobs here for them to mess around
with computers. The developers always have some strange way of talking
about what our software does. If we talk about A, they say it’s really
called B. It’s like we have to have some sort of dictionary and road map
on hand every time we try to communicate what we need. If we don’t let
them have their way by calling B what we know is A, they don’t coop-
erate. We waste so much time in this mode. Why can’t the software just
work the way the real experts think about the business?”

You’ve got that right. One of the biggest problems is the false need for
translation between business people and techies. This chapter is for you.
As you’re going to see, DDD puts you and developers on level ground.

www.EBookswWorld.ir

v Chapter 1 GETTING STARTED WITH DDD

And, surprise! You’ve got some developers already leaning your way. Help
them here.

® Manager: “We are shipping software. It’s not always with the greatest
result, and changes seem to take longer than they should. The developers
keep talking about some domain something-or-another. I’'m not sure we
need to get high centered on yet another technique or methodology, like
it’s some kind of silver bullet. I’ve heard all that a thousand times before.
We try, the fad dies, and we are right back to the same-old same-old. I
keep saying that we need to stay the course and stop dreaming, but the
team keeps hounding me. They’ve worked hard, so I owe them a listen.
They are smart people and they all deserve a chance to improve things
before they get torqued and move on. I could allow them some time to
learn and adjust if I can get backing from upper management. I think I
could get that approval if I can convince my boss of the team’s claims of
achieving critical software investment and a centralization of business
knowledge. Truth is, it will make my job easier if I can do something to
inspire trust and cooperation between my teams and business experts.
Anyway, that’s what I am hearing I can do.”

Good manager!

Whoever you are, here’s an important heads-up. To succeed with DDD you
are going to have to learn something, and actually a lot of somethings. That
shouldn’t be a big deal, though. You are smart and you have to learn all the
time. Yet we all face this challenge:

Personally ’'m always ready to learn, although I do not always like being taught.
—Sir Winston Churchill

That’s where this book comes in. I’ve tried to make the teaching as pleas-
ant as possible while delivering the vital understanding you need to implement
DDD with success.

Your question, though, is: “Why should I do DDD?” That’s fair.

Why You Should Do DDD

Actually, I’ve already given you some pretty good reasons why DDD makes so
much practical sense. At the risk of breaking the DRY principle (“Don’t repeat
yourself”), I reiterate them here and also add to the earlier reasons. Does any-
one hear an echo?

www.EBookswWorld.ir

WnY You SHourp Do DDD

e Put domain experts and developers on a level playing field, which pro-
duces software that makes perfect sense to the business, not just the cod-
ers. This doesn’t mean merely tolerating the opposite group. It means
becoming one cohesive, tight-knit team.

e That “makes sense to the business” thing means investing in the business
by making software that is as close as possible to what the business lead-
ers and experts would create if they were the coders.

® You can actually teach the business more about itself. No domain expert,
no C-level manager, no one, ever knows every single thing about the busi-
ness. It’s a constant discovery process that becomes more insightful over
time. With DDD, everybody learns because everybody contributes to dis-
covery discussions.

¢ Centralizing knowledge is key, because with that the business is capable of
ensuring that understanding the software is not locked in “tribal knowl-
edge,” available only to a select few, who are usually only the developers.

e There are zero translations between the domain experts, the software
developers, and the software. That doesn’t mean maybe some few transla-
tions. It means zero translations because your team develops a common,
shared language that everyone on the team speaks.

¢ The design is the code, and the code is the design. The design is how it
works. Knowing the best code design comes through quick experimental
models using an agile discovery process.

¢ DDD provides sound software development techniques that address both
strategic and tactical design. Strategic design helps us understand what
are the most important software investments to make, what existing soft-
ware assets to leverage in order to get there fastest and safest, and who
must be involved. Tactical design helps us craft the single elegant model of
a solution using time-tested, proven software building blocks.

Like any good, high-yielding investment, DDD has some up-front cost of
time and effort for the team. Considering the typical challenges encountered by
every software development effort will reinforce the need to invest in a sound
software development approach.

Delivering Business Value Can Be Elusive

Developing software that delivers true business value is not the same thing as
developing ordinary business software. Software that delivers true business
value aligns with the business strategic initiatives and bears solutions with

www.EBookswWorld.ir

Chapter 1 GETTING STARTED WITH DDD

clearly identifiable competitive advantage—software that is not about technol-
ogy, but about the business.

Business knowledge is never centralized. Development teams have to bal-
ance and prioritize among the needs and requests of multiple stakeholders and
engage with many people having diverse skill sets, all with the goal of uncov-
ering software functional and nonfunctional requirements. After gathering all
that information, how can teams be certain that any given requirement delivers
true business value? In fact, what are the business values being sought, and
how do you uncover them, prioritize them, and realize them?

One of the worst disconnects of a business software development effort is
seen in the gap between domain experts and software developers. Generally
speaking, true domain experts are focused on delivering business value. On
the other hand, software developers are typically drawn to technology and
technical solutions to business problems. It’s not that software developers have
wrong motivations; it’s just what tends to grab their attention. Even when soft-
ware developers engage with domain experts, the collaboration is largely at
a surface level, and the software that gets developed often results in a trans-
lation/mapping between how the business thinks and operates and how the
software developer interprets that. The resulting software generally does not
reflect a recognizable realization of the mental model of the domain experts,
or perhaps it does so only partially. Over time this disconnect becomes costly.
The translation of domain knowledge into software is lost as developers transi-
tion to other projects or leave the company.

A different, yet related problem is when one or more domain experts do
not agree with each other. This tends to happen because each expert has more
or less experience in the specific domain being modeled, or they are simply
experts in related but different areas. It’s also common for multiple “domain
experts” to have no expertise in a given domain, where they are more of a busi-
ness analyst, yet they are expected to bring insightful direction to discussions.
When this situation goes unchecked, it results in blurred rather than crisp men-
tal models, which lead to conflicting software models.

Worse still is when the technical approach to software development actually
wrongly changes the way the business functions. While a different scenario,
it is well known that enterprise resource planning (ERP) software will often
change the overall business operations of an organization to fit the way the
ERP functions. The total cost of owning the ERP cannot be fully calculated
in terms of license and maintenance fees. The reorganization and disruption
to the business can be far more costly than either of those two tangible fac-
tors. A similar dynamic is at play as your software development teams inter-
pret what the business needs into what the newly developed software actually
does. This can be both costly and disruptive to the business, its customers, and

www.EBookswWorld.ir

WnY You SHourp Do DDD

its partners. Furthermore, this technical interpretation is both unnecessary and
avoidable with the use of proven software development techniques. The solu-
tion is a key investment.

How DDD Helps

DDD is an approach to developing software that focuses on these three pri-
mary aspects:

1. DDD brings domain experts and software developers together in order to
develop software that reflects the mental model of the business experts.
This does not mean that effort is spent on modeling the “real world.”
Rather, DDD delivers a model that is the most useful to the business.
Sometimes useful and realistic models happen to intersect, but to the
degree that they diverge, DDD chooses useful.

With this aspect the efforts of domain experts and software developers
are devoted to jointly developing a Ubiquitous Language of the areas of
the business that they are focused on modeling. The Ubiquitous Language
is developed with full team agreement, is spoken, and is directly captured
in the model of the software. It is worth reiterating that the team is com-
posed of both domain experts and software developers. It’s never “us and
them.” It’s always us. This is a key business value that allows business
know-how to outlive the relatively short initial development efforts that
deliver the first few versions of the software, and the teams that produce
it. It’s the point where the cost of developing software is a justifiable busi-
ness investment, not just a cost center.

This entire effort unifies domain experts who initially disagree with
each other, or who simply lack core knowledge of the domain. Further,
it strengthens the close-knit team by spreading deep domain insight
among all team members, including software developers. Consider this
the hands-on training that every company should invest in its knowledge
workers.

2. DDD addresses the strategic initiatives of the business. While this stra-
tegic design approach naturally includes technical analysis, it is more
concerned with the strategic direction of the business. It helps define the
best inter-team organizational relationships and provides early-warning
systems for recognizing when a given relationship could cause software
and even project failure. The technical aspects of strategic design have
the goal of cleanly bounding systems and business concerns, which pro-
tects each business-level service. This provides meaningful motivations

www.EBookswWorld.ir

v Chapter 1 GETTING STARTED WITH DDD

for how an overall service-oriented architecture or business-driven archi-
tecture is achieved.

3. DDD meets the real technical demands of the software by using tacti-
cal design modeling tools to analyze and develop the executable software
deliverables. These tactical design tools allow developers to produce soft-
ware that is a correct codification of the domain experts’ mental model,
is highly testable, is less error prone (a provable statement), performs
to service-level agreements (SLAs), is scalable, and allows for distrib-
uted computing. DDD best practices generally address a dozen or more
higher-level architectural and lower-level software design concerns, with
a focus on recognizing true business rules and data invariants, and pro-
tecting the rules from error situations.

Using this approach to software development, you and your team can succeed
in delivering true business value.

Grappling with the Complexity of Your Domain

We primarily want to use DDD in the areas that are most important to the
business. You don’t invest in what can be easily replaced. You invest in the
nontrivial, the more complex stuff, the most valuable and important stuff that
promises to return the greatest dividends. That’s why we call such a model a
Core Domain (2). It is these, and in second priority the significant Supporting
Subdomains (2), that deserve and get the biggest investment. Rightly, then, we
need to grasp what complex means.

Use DDD to Simplify, Not to Complicate

Use DDD to model a complex domain in the simplest possible way. Never use DDD
to make your solution more complex.

What qualifies as complex will differ from business to business. Different
companies have different challenges, different levels of maturity, and different
software development capabilities. So rather than determining what is com-
plex, it may be easier to determine what is nontrivial. Thus, your team and
management will have to determine if a system you are planning to work on
deserves the cost of making a DDD investment.

DDD Scorecard: Use Table 1.1 to determine whether your project qualifies
for an investment in DDD. If a row on the scorecard describes your project,
place the corresponding number of points in the right-hand column. Tally all
the points for your project. If it’s 7 or higher, seriously consider using DDD.

www.EBookswWorld.ir

11

Table 1.1 The DDD Scorecard

Does Your Project Score a Total of 7 Points or Higher?

Your

If Your Project . . . Points Supporting Thoughts Score
If your application is completely data-centric and truly qualifies 0 This seems like a no-brainer, but it’s not usually that
for a pure CRUD solution, where every operation is basically a easy to determine simple versus complex. It’s not as if
simple database query to Create, Read, Update, or Delete, you every application that isn’t pure CRUD deserves the
don’t need DDD. Your team just needs to put a pretty face on time and effort of using DDD. So maybe we could
a database table editor. In other words, if you can trust your come up with other metrics to help us draw a line
users to insert data directly into a table, update it, and some- between what is complex and what is not . . .
times delete it, you wouldn’t even need a user interface. That’s
not realistic, but it’s conceptually relevant. If you could even
use a simple database development tool to create a solution,
don’t waste your company’s time and money on DDD.
If your system requires just 30 or fewer business operations, it’s 1 To be clear, I am talking about 25 to 30 single busi-
probably pretty simple. This would mean that your applica- ness methods, not 25 to 30 whole service interfaces,
tion would have no more than 30 total user stories or use case each with multiple methods. The latter might be
flows, with each of those flows having only minimal business complex.
logic. If you could quickly and easily develop such an applica-
tion using Ruby on Rails or Groovy and Grails and not feel the
pain of lacking power and control over complexity and change,
your system probably doesn’t need to use DDD.
So let’s say that somewhere in the range of 30 to 40 user stories 2 Caveat emptor: Very often complexity is not rec-
or use case flows could be creeping toward complexity. Your ognized soon enough. We software developers are
system might be getting into DDD territory. really, really good at underestimating complexity and

level of effort. Just because we might want to code up

a Rails or Grails application doesn’t mean we should.

In the long run those could hurt more than help.

continues

www.EBookswWorld.ir

(4!

Table 1.1 The DDD Scorecard (Continued)

Does Your Project Score a Total of 7 Points or Higher?

Your
If Your Project . . . Points Supporting Thoughts Score
Even if the application is not going to be complex now, will it 3 Here it pays off to walk through the more complex
grow in complexity? You may not know this for sure until real usage scenarios with domain experts and see where it
users start working with it, but there is a step in the “Sup- leads. Are domain experts . . .
porting Thoughts” column that may help uncover the true 1. ... already asking for more complex features?
situation. If so, it’s likely an indication that the application is
Be careful here. If there is any hint at all that the application already or will soon become too complex to use a
has even moderate complexity—here’s a good time to be para- CRUD approach.
noid—that may be sufficient indication that it will actually be 2....so bored with the features that they can hardly
more than moderately complex. Lean toward DDD. bear discussing them? It’s probably not complex.
The application’s features are going to change often over a 4 DDD can help you manage the complexity of refac-
number of years, and you can’t anticipate that the kinds of toring your model over time.
changes will be simple.
You don’t understand the Domain (2) because it’s new. As N You are going to need to work with domain experts

far as you and your team know, nobody has done this before.
That most likely means it’s complex, or at least deserves due
diligence with analytical scrutiny to determine the level of
complexity.

and experiment with models to get it right. You
certainly also scored on one or more of the previous
criteria, so use DDD.

www.EBookswWorld.ir

WnY You SHourp Do DDD

This scoring exercise may have led your team to these conclusions:

It’s too bad that we can’t shift gears quickly and easily when we discover we are
on the wrong side of complexity, no matter if the wrong side is more or less com-
plex than we thought.

Sure, but that just means that we need to become much better at determining
simplicity versus complexity early on in our project planning. That would save us
a lot of time, expense, and trouble.

Once we make a major architectural decision and get several use cases deep in
development, we are usually stuck with it. We had better choose wisely.

If any of these observations resonates with your team, you are making good
use of critical thought.

Anemia and Memory Loss

Anemia can be a serious health ailment with dangerous side effects. When
the name Anemic Domain Model [Fowler, Anemic] was first coined, it wasn’t
meant to be a complimentary term, as if to say that a domain model that is
weak, without the power of inherent behavioral qualities, could possibly be a
good thing. Strangely enough, Anemic Domain Models have popped up left
and right in our industry. The trouble is that most developers seem to think
this is quite normal and would not even acknowledge that a serious condition
exists when employed in their systems. It’s a real problem.

Are you wondering if your model is feeling tired, listless, forgetful, clumsy,
needing a good shot in the arm? If you’re suddenly experiencing technical
hypochondria, here’s a good way to perform a self-examination. You’ll either
put yourself at ease or confirm your worst fears. Use the steps in Table 1.2 to
perform your checkup.

Table 1.2 Determine Your Domain Model Health History

Yes / No

Does the software you call a “domain model” have mostly public getters and setters,
and no business logic or almost none at all—you know, objects that are mostly attri-
bute value holders?

Are the software components that frequently use your “domain model” the ones
that house most of the business logic of your system, and do those heavily invoke the
public getters and setters on the “domain model”? You probably call this particular
client layer of the “domain model” a Service Layer or Application Layer (4, 14). If
instead this describes your user interface, answer “Yes” to this question and write a
thousand times on a whiteboard that you’ll never, ever do that again.

Hint: The correct answers are either “Yes” to both questions or “No” to both questions.

www.EBookswWorld.ir

v Chapter 1 GETTING STARTED WITH DDD

How did you do?
If you answered “No” to both questions, your domain is doing well.

If you answered “Yes” to both questions, your “domain model” is very, very
ill. It’s anemic. The good news is that you can get help for it by reading on.

If you answered “Yes” to one question and “No” to the other question, you
are either in denial or suffering from delusions or another neurological issue
that could be caused by anemia. What should you do if you have conflicting
answers? Go straight back to the first question and run the self-examination
once again. Take your time, but remember that your answer to both ques-
tions must be an emphatic “Yes!”

As [Fowler, Anemic]| says, an Anemic Domain Model is a bad thing because
you pay most of the high cost of developing a domain model, but you get little
or none of the benefit. For example, because of the object-relational impedance
mismatch, developers of such a “domain model” spend a lot of time and effort
mapping objects to and from the persistence store. That’s a high price to pay
while getting little or no benefit in return. I’ll add that what you have is not a
domain model at all, but just a data model projected from a relational model
(or other database) into objects. It’s an impostor that may actually be closer to
the definition of Active Record [Fowler, P of EAA]. You can probably simplify
your architecture by not being pretentious and just admit that you are really
using a form of Transaction Script [Fowler, P of EAA].

Reasons Why Anemia Happens

So if an Anemic Domain Model is the sickly outcome of a poorly executed
design effort, why do so many use it while thinking that their model is experi-
encing fine health? Certainly it does reflect a procedural programming mental-
ity, but I don’t think that’s the primary reason. A good portion of our industry
is made up of sample code followers, which isn’t bad as long as the samples
are quality ones. Often, however, sample code is purposely focused on demon-
strating some concept or application programming interface (API) feature in
the simplest possible way, without concern for good design principles. Yet
oversimplified sample code, which usually demonstrates with a lot of getters
and setters, is copied every day without a second thought about design.

There is another, older influence. The ancient history of Microsoft’s Visual
Basic had much to do with where we are today. I’'m not saying that Visual Basic
was a bad language and integrated development environment (IDE), because
it’s always been a highly productive environment and in some ways influenced
the industry for the good. Of course, some may have avoided its direct influ-
ence altogether, but Visual Basic indirectly caught up with just about every
software developer eventually. Just note the timeline shown in Table 1.3.

www.EBookswWorld.ir

Wny You SHouLp Do DDD v

Table 1.3 The Timeline from Behavior Rich to Infamous Anemia

1980s 1991 1992-1995 1996 1997 1998-

Objects make Visual Basic Visual tools and Java JDK JavaBean Explosion of

an impact due properties and IDEs become 1.0 released specification reflection-based
to Smalltalk property sheets prolific tools for Java
and C++ and .NET plat-

forms based on
properties

What I am talking about is the influence of properties and property sheets,
both backed by property getters and setters that were made so popular by the
original Visual Basic forms designer. All you had to do was place a few custom
control instances on a form, fill out their property sheets, and voila! You had
a fully functioning Windows application. It took just a few minutes to do that
compared to the few days required to program a similar application directly
against the Windows API using C.

So what does all that have to do with Anemic Domain Models? The Java-
Bean standard was originally specified to assist in the creation of visual pro-
gramming tools for Java. Its motivation was to bring the Microsoft ActiveX
capabilities to the Java platform. It offered the hope of creating a market full
of third-party custom controls of various kinds, just like Visual Basic’s. Soon
almost every framework and library jumped on the JavaBean bandwagon. This
included much of the Java SDK/JDK as well as libraries such as the popular
Hibernate. Specific to our DDD concerns, Hibernate was introduced to persist
domain models. The trend continued as the .NET platform reached us.

Interestingly, any domain model that was persisted using Hibernate in the
early days had to expose public getters and setters for every persistent sim-
ple attribute and complex association in every domain object. This meant that
even if you wanted to design your POJO (Plain Old Java Object) with a behav-
ior-rich interface, you had to expose your internals publicly so that Hibernate
could persist and reconstitute your domain objects. Sure, you could do things
to hide the public JavaBean interface, but by and large most developers didn’t
bother or even understand why they should have.

Should I Be Concerned about Using Object-Relational Mappers with DDD?

The preceding critique of Hibernate is from a historical perspective. For quite a
while now Hibernate has supported the use of hidden getters and setters, and even
direct field access. I demonstrate in later chapters how to avoid anemia in your mod-
els when using Hibernate and other persistence mechanisms. So, don’t sweat it.

www.EBookswWorld.ir

Chapter 1 GETTING STARTED WITH DDD

Most, if not all, of the Web frameworks also function solely on the JavaBean
standard. If you want your Java objects to be able to populate your Web pages,
the Java objects had better support the JavaBean specification. If you want
your HTML forms to populate a Java object when submitted to the server side,
your Java form object had better support the JavaBean specification.

Just about every framework on the market today requires, and therefore
promotes, the use of public properties on simple objects. Most developers can’t
help but be influenced by all the anemic classes all over their enterprises. Admit
it. You’ve been bitten by it, haven’t you? As a result, we have a situation that
might be best labeled anemia everywbere.

Look at What Anemia Does to Your Model

All right, so let’s say we can agree that this is both true and vexing to us. What
does anemia everywbhere have to do with memory loss? When you are reading
through the client code of an Anemic Domain Model (for example, the impos-
tor Application Service (4, 14), a la Transaction Script), what do we usually
see? Here’s a rudimentary example:

@Transactional
public void saveCustomer (
String customerId,
String customerFirstName, String customerLastName,
String streetAddressl, String streetAddress2,
String city, String stateOrProvince,
String postalCode, String country,
String homePhone, String mobilePhone,
String primaryEmailAddress, String secondaryEmailAddress) {

Customer customer = customerDao.readCustomer (customerId) ;

if (customer == null) {
customer = new Customer () ;
customer.setCustomerId(customerId) ;

customer.setCustomerFirstName (customerFirstName) ;
customer.setCustomerLastName (customerLastName) ;
customer.setStreetAddressl (streetAddressl) ;
customer.setStreetAddress?2 (streetAddress2) ;
customer.setCity (city) ;
customer.setStateOrProvince (stateOrProvince) ;
customer.setPostalCode (postalCode) ;
customer.setCountry (country) ;

customer . setHomePhone (homePhone) ;
customer.setMobilePhone (mobilePhone) ;

www.EBookswWorld.ir

WnY You SHourp Do DDD

customer.setPrimaryEmailAddress (primaryEmailAddress) ;
customer.setSecondaryEmailAddress (secondaryEmailAddress) ;

customerDao.saveCustomer (customer) ;

Example Purposely Kept Simple

Admittedly, this example is not from a very interesting domain, but it does help us
examine a less-than-ideal design and determine how we can refactor it to a much
better one. Let’s be clear that this exercise is not leading us to a cooler way to save
data. It’s about crafting a software model that adds value to your business, even
though this example may not seem valuable.

What did this code just do? Actually it’s pretty versatile code. It saves a
Customer no matter whether it is new or preexisting. It saves a Customer
no matter whether the last name changed or the person moved to a new home.
It saves a Customer no matter whether the person got a new home phone
number or discontinued home phone service, or whether he or she got a mobile
phone for the first time, or both. It even saves a Customer who switched from
using Juno to using Gmail instead, or who changed jobs and now has a new
work e-mail address. Wow, this is an awesome method!

Or is it? Actually, we have no idea under what business situations this
saveCustomer() method is used—not exactly, anyway. Why was this
method created in the first place? Does anyone remember its original intent,
and all the motivations for changing it to support a wide variety of business
goals? Those memories were quite likely lost only a few weeks or months after
the method was created and then modified. And it gets even worse. You don’t
believe me? Look at the next version of this same method:

@Transactional
public void saveCustomer (
String customerId,
String customerFirstName, String customerLastName,
String streetAddressl, String streetAddress2,
String city, String stateOrProvince,
String postalCode, String country,
String homePhone, String mobilePhone,
String primaryEmailAddress, String secondaryEmailAddress) {

Customer customer = customerDao.readCustomer (customerId) ;
if (customer == null) {

customer = new Customer () ;
customer.setCustomerId(customerId) ;

www.EBookswWorld.ir

Chapter 1 GETTING STARTED WITH DDD

if (customerFirstName != null) {
customer.setCustomerFirstName (customerFirstName) ;

if (customerLastName != null) {
customer.setCustomerLastName (customerLastName) ;

if (streetAddressl != null) {
customer.setStreetAddressl (streetAddressl) ;

if (streetAddress2 != null) {
customer.setStreetAddress?2 (streetAddress2) ;

if (city !'= null) {
customer.setCity(city) ;

if (stateOrProvince != null) {
customer.setStateOrProvince (stateOrProvince) ;

if (postalCode != null) {
customer.setPostalCode (postalCode) ;

if (country != null) {
customer.setCountry (country) ;

if (homePhone != null) {
customer.setHomePhone (homePhone) ;

if (mobilePhone != null) {
customer.setMobilePhone (mobilePhone) ;

if (primaryEmailAddress != null) {
customer.setPrimaryEmailAddress (primaryEmailAddress) ;

if (secondaryEmailAddress != null) {
customer.setSecondaryEmailAddress (secondaryEmailAddress) ;

customerDao.saveCustomer (customer) ;

I have to note here that this example isn’t as bad as it gets. Many times the
data-mapping code becomes quite complex, and a lot of business logic gets
tucked away in it. ’'m sparing you the worst in this example, but you’ve proba-
bly seen it for yourself.

Now each of the parameters other than the customerId is optional. We
can now use this method to save a Customer under at least a dozen business
situations, and more! But is that really a good thing? How could we actually

www.EBookswWorld.ir

WnY You SHourp Do DDD

test this method to ensure that it doesn’t save a Customer under the wrong
situations?

Without going into extensive detail, this method could function incorrectly
in more ways than it could correctly. Perhaps there are database constraints
that prevent a completely invalid state from being persisted, but now you have
to look at the database to be sure. Almost certainly it will take you some time
to mentally map between Java attributes and column names. Once you’ve
figured out that part, you find that the database constraints are missing or
incomplete.

You could look at the possibly many clients (not counting those added after
the user interface was completed to manage automatic remote clients) and com-
pare source revisions to gain some insight into why it is implemented the way
it is right now. As you search for answers, you learn that nobody can explain
why this one method works the way it does, or how many correct uses there
are. It could take several hours or days to understand it on your own.

Cowboy Logic

AJ: “That fella’s so confused, he doesn’t know if he’s
sackin’ potatoes or rollerskatin’ in a buffalo herd.”

Domain experts can’t help here because they would have to be programmers
to understand the code. Even if a domain expert or two knew enough about
programming or could at least read the code, they would probably be at least
equally at a loss as a developer regarding all that code is meant to support.
With all these concerns in mind, do we dare change this code in any way, and
if so, how?

There are at least three big problems here:

1. There is little intention revealed by the saveCustomer() interface.
2. The implementation of saveCustomer () itself adds hidden complexity.

3. The Customer “domain object” isn’t really an object at all. It’s really just

a dumb data holder.

Let’s call this unenviable situation anemia-induced memory loss. It happens
all the time on projects that produce this kind of implicit, completely subjective
code “design.”

www.EBookswWorld.ir

v Chapter 1 GETTING STARTED WITH DDD

Hold On a Minute!

At this point some of you may be thinking, “Our designs never really leave the
whiteboard. We just draw some structure, and once agreement on that is reached,
we are set free to implement. Scary.”

If so, try not to distinguish design from implementation. Remember that when
practicing DDD, the design is the code and the code is the design. In other words,
whiteboard diagrams aren’t the design, just a way to discuss the challenges of the
model.

Stay tuned, as youw’ll learn how to take ideas off the whiteboard and make them
work for you.

By now you should be worried about this kind of code and how you can
create a better design. The good news is that you can succeed in producing an
explicit, carefully crafted design in your code.

How to Do DDD

Let’s back away from heavy implementation discussions for a moment to con-
sider one of the most empowering features of DDD, the Ubiquitous Language.
It’s one of the two primary pillars of DDD’s strengths, the second being the
Bounded Context (2), and one cannot properly stand without the other.

Terms in a Context

For now think of a Bounded Context as a conceptual boundary around a whole
application or finite system. The reason for this boundary is to highlight that every
use of a given domain term, phrase, or sentence—the Ubiquitous Language—inside
the boundary has a specific contextual meaning. Any use of the term outside that
boundary could, and probably does, mean something different. Chapter 2 explains
Bounded Context in depth.

Ubiquitous Language

The Ubiquitous Language is a shared team language. It’s shared by domain
experts and developers alike. In fact, it’s shared by everyone on the project
team. No matter your role on the team, since you are on the team you use the
Ubiquitous Language of the project.

So, You Think You Know What a Ubiquitous Language Is
Obviously it’s the language of the business.

Well, no.
Surely it must be adopting industry standard terminology.

No, not really.

www.EBookswWorld.ir

How 10 Do DDD

Clearly it’s the lingo used by the domain experts.
Sorry, but no.

The Ubiquitous Language is a shared language developed by the team—a team
composed of both domain experts and software developers.

That’s it. Now you’ve got it!

Naturally, the domain experts have a heavy influence on the Language because
they know that part of the business best and may be influenced by industry stan-
dards. However, the Language is more centered on how the business itself thinks
and operates. Also, many times two or more domain experts disagree on concepts
and terms, and they are actually wrong about some because they haven’t thought of
every case before. So, as the experts and developers work together to craft a model
of the domain, they use discussion with both consensus and compromise to achieve
the very best Language for the project. The team never compromises on the quality
of the Language, just on the best concepts, terms, and meanings. Initial consensus is
not the end, however. The Language grows and changes over time as tiny and large
breakthroughs are achieved, much like any other living language.

This is no gimmick to get developers to be on the same page as domain
experts. It’s not just a bunch of business jargon being forced on developers. It’s
a real language that is created by the whole team—domain experts, developers,
business analysts, everyone involved in producing the system. The Language
may start out with terms that are the natural lingo of the domain experts, but
it isn’t limited to that because the Language must grow over time. Suffice it to
say that when multiple domain experts are involved in creating the Language,
they often disagree ever so slightly on the terms and meanings of what they
thought were already ubiquitous.

In Table 1.4, we not only model the administration of flu vaccines in code,
but the team must also speak the Language openly. When the team discusses
this aspect of the model, they literally speak phrases such as “Nurses adminis-
ter flu vaccines to patients in standard doses.”

There will be some haggling and wrangling over the Language that exists
in the minds of experts and what evolves from there. It’s all part of the nat-
ural progression of developing the best Language that will matter a lot for a
long time. This happens through open discussion, looking at existing docu-
ments, business tribal knowledge that finally surfaces, as well as referencing
standards, dictionaries, and thesauruses. There’s also a point reached where
we come to terms with the fact that some words and phrases just don’t aptly fit
the business context as well as we once thought, and we realize that others fit
it much better.

www.EBookswWorld.ir

Chapter 1 GETTING STARTED WITH DDD

Table 1.4 Analyzing the Best Model for the Business

Which is better for the business?
Though the second and third statements are similar, how should the code be designed?

Possible Viewpoints Resulting Code

“Who cares? Just code it up.” patient.setShotType (ShotTypes.TYPE_FLU);
patient.setDose(dose);

Um, not even close. ,
patient.setNurse(nurse);

“We give flu shots to patients.” patient.giveFluShot();

Better, but misses some
important concepts.

“Nurses administer flu vaccines Vaccine vaccine = vaccines.standardAdultFluDose();
to patients in standard doses.”
This seems like what we’d like nurse.administerFluvaccine (patient, vaccine);

to run with at this time, at least
until we learn more.

So how do you capture this all-important Ubiquitous Language? Here are
some ways that work as experimentation leads to advancement:

¢ Draw pictures of the physical and conceptual domain and label them with
names and actions. These drawings are mostly informal but may contain
some aspects of formal software modeling. Even if your team does some
formal modeling with Unified Modeling Language (UML), you want to
avoid any kind of ceremony that will bog down discussions and stifle the
creativity of the ultimate Language being sought.

¢ Create a glossary of terms with simple definitions. List alternative terms,
including the ones that show promise and the ones that didn’t work, and
why. As you include definitions, you cannot help but develop reusable
phrases for the Language because you are forced to write in the Language
of the domain.

¢ If you don’t like the idea of a glossary, still capture some kind of doc-
umentation that includes the informal drawings of important software
concepts. Again, the goal here is to force additional Language terms and
phrases to surface.

¢ Since only one or a few team members may capture the glossary or other
written documents, circle back with the rest of the team to review the

www.EBookswWorld.ir

How 10 Do DDD

resulting phrases. You won’t always, if ever, agree on all the captured lin-
guistics, so be agile and ready to edit heavily.

Those are some ideal first steps to coining a Ubiquitous Language that fits
your specific domain. However, this is absolutely not the model that you are
developing. It’s only the genesis of the Ubiquitous Language that will very soon
be expressed in your system’s source code. We are talking Java, or C#, or Scala,
or some other programming language of choice. These drawings and docu-
ments also don’t address that the Ubiquitous Language will continue to expand
and morph over time. The artifacts that originally led us down an inspiring
path to developing a useful Ubiquitous Language that was just right for our
specialized domain will very likely be rendered obsolete over time. That’s why
in the end it is team speech and the model in the code that are the most endur-
ing and the only guaranteed current denotations of the Ubiquitous Language.

Since team speech and the code will be the lasting expression of the Ubig-
uitous Language, be prepared to abandon the drawings, glossary, and other
documentation that will be difficult to keep up-to-date with the spoken Ubiq-
uitous Language and source code as they are rapidly enhanced. This is not a
requirement of using DDD, but it is pragmatic because it becomes impractical
to keep all the documentation in sync with the system.

With this knowledge we can redesign the saveCustomer () example. What
if we chose to make Customer reflect each of the possible business goals that
it must support?

public interface Customer {

public void changePersonalName (

String firstName, String lastName) ;
public void postalAddress (PostalAddress postalAddress) ;
public void relocateTo (PostalAddress changedPostalAddress) ;
public void changeHomeTelephone (Telephone telephone) ;
public void disconnectHomeTelephone () ;
public void changeMobileTelephone (Telephone telephone) ;
public void disconnectMobileTelephone () ;
public void primaryEmailAddress (EmailAddress emailAddress) ;
public void secondaryEmailAddress (EmailAddress emailAddress);

We can argue that this is not the best model for a Customer, but when
implementing DDD, questioning the design is expected. As a team we are free
to haggle over what is the best model and settle only after we’ve discovered the
Ubiquitous Language that is agreed upon. Still, the preceding interface does
explicitly reflect the various business goals that a Customer must support,
even if the Language could be improved by refinements again and again.

www.EBookswWorld.ir

Chapter 1 GETTING STARTED WITH DDD

It’s important to understand too that the Application Service would also be
refactored to reflect the explicit intentions of the business goals at hand. Each
Application Service method would be modified to deal with a single use case
flow or user story:

@Transactional

public void changeCustomerPersonalName (
String customerId,
String customerFirstName,
String customerLastName) ({

Customer customer = customerRepository.customerOfId(customerId) ;
if (customer == null) {
throw new IllegalStateException("Customer does not exist.");

}

customer.changePersonalName (customerFirstName, customerLastName) ;

This is different from the original example because in that code a single
method was used to deal with many different use case flows or user stories. In
the new example we have limited a single Application Service method to deal
with changing the personal name of the Customer, and nothing more. Thus,
when using DDD, it is our job to refine Application Services accordingly. This
implies that the user interface likewise reflects a narrower user goal, which
may have previously been true. Now, however, this specific Application Service
method doesn’t require its client to pass ten nulls following the first- and last-
name parameters.

Doesn’t this new design put your mind at ease? You can read the code and
easily comprehend it. You can also test it and confirm that it does exactly what
it is meant to do, and that it doesn’t do anything that it shouldn’t.

Thus, the Ubiquitous Language is a team pattern used to capture the con-
cepts and terms of a specific core business domain in the software model itself.
The software model incorporates the nouns, adjectives, verbs, and richer
expressions formally formulated and spoken by the close-knit team. Both the
software and the tests that verify the model’s adherence to the tenets of the
domain capture and adhere to this Language, the same one spoken by the
team.

Ubiquitous, but Not Universal
Some further clarification about the reach of a Ubiquitous Language is in
order. There are a few basic concepts that we need to keep carefully in mind:

www.EBookswWorld.ir

THE BusiNess VALUE oF Using DDD

e Ubiquitous means “pervasive,” or “found everywhere,” as spoken
among the team and expressed by the single domain model that the team
develops.

e The use of the word ubiquitous is not an attempt to describe some kind
of enterprise-wide, company-wide, or worldwide, universal domain
language.

¢ There is one Ubiquitous Language per Bounded Context.

¢ Bounded Contexts are relatively small, smaller than we might at first
imagine. A Bounded Context is large enough only to capture the complete
Ubiquitous Language of the isolated business domain, and no larger.

¢ The Language is ubiquitous only within the team that is working on the
project that develops in an isolated Bounded Context.

® On a single project that develops a single Bounded Context, there are
always one or more additional isolated Bounded Contexts with which it
integrates using Context Maps (3). Each of the multiple Bounded Con-
texts that integrate has its own Ubiquitous Language, even though some
terms of each may overlap.

¢ If you try to apply a single Ubiquitous Language to an entire enterprise,
or worse, universally among many enterprises, you will fail.

When you begin a new project in which you are properly using DDD, iden-
tify the isolated Bounded Context that is being developed. This places an
explicit boundary around your domain model. Discuss, research, conceptual-
ize, develop, and speak the Ubiquitous Language of the isolated domain model
within the explicit Bounded Context. Reject all concepts that are not part of
the agreed-upon Ubiquitous Language of your isolated Context.

The Business Value of Using DDD

If your experience is anything like mine, you know that software developers
can no longer pursue technologies and techniques just because they sound
cool or intriguing. We must justify everything that we do. I think that has not
always been true, but it is a good thing it is true now. I think the best justifica-
tion for using any technology or technique is to provide value to the business.
If we can establish real, tangible business value, why would the business ever
refuse to use what we recommend?

www.EBookswWorld.ir

Chapter 1 GETTING STARTED WITH DDD

The business case is strengthened especially if we can demonstrate that the
business values are higher with our recommended approach than with other
options.

Isn’t Business Value Most Important?

Sure, and perhaps I should have put this subheading “The Business Value of Using
DDD?” earlier in the book. But it’s done, now. This subheading could actually be
“How You Can Sell DDD to Your Boss.” Until you are mostly convinced that there
is a real chance that you can actually implement DDD in your company, this book
is just hypothetical. And I don’t want you to read this book as just a theoretical
exercise. Read it as a concrete reality for your company. Then you can become more
excited about how your company can really benefit. So read on.

Let’s consider the very realistic business value of employing DDD. Be sure to
share this openly with your management, domain experts, and technical team
members. The value and benefits are summarized here, then I will elaborate. I
start off with the less technical benefits.

1. The organization gains a useful model of its domain.

2. A refined, precise definition and understanding of the business is
developed.

. Domain experts contribute to software design.

. A better user experience is gained.

. Enterprise architecture is better organized.

3
4
5. Clean boundaries are placed around pure models.
6
7. Agile, iterative, continuous modeling is used.

8

. New tools, both strategic and tactical, are employed.

1. The Organization Gains a Useful Model of Its Domain

The emphasis of DDD is to invest our efforts in what matters most to the busi-
ness. We don’t over-model. We focus on the Core Domain. Other models exist
to support the Core Domain and are important, too. Yet the supporting mod-
els may not be given the priority and effort of the Core Domain.

When our focus is on what distinguishes our business from all others, our
mission is well understood and we have the parameters we need to keep on
track. We will deliver exactly what is needed to achieve competitive advantage.

www.EBookswWorld.ir

THE BusiNess VALUE oF Using DDD

2. A Refined, Precise Definition and Understanding of the
Business Is Developed

The business may actually come to understand itself and its mission better than
before. I have heard others state that the Ubiquitous Language developed for
the business’s Core Domain has found its way into marketing materials. Cer-
tainly it should be incorporated in vision documents and mission statements.

As the model is refined over time, the business develops a deep understand-
ing that can serve as an analysis tool. Details surface out of the minds of your
domain experts as you are challenged by one another and shaped by technical
team partners. These details can help your business analyze the value of the
current and future direction, both strategic and tactical.

3. Domain Experts Contribute to Software Design

There is business value when the organization grows a deeper understanding
of the core business. Domain experts don’t always agree on concepts and ter-
minology. Sometimes the differences are fostered by different experiences from
outside before joining the organization. Sometimes it happens because of the
divergent paths taken by each expert within the same organization. Yet when
brought together to a DDD effort, the domain experts gain consensus among
themselves. This fortifies the effort and the organization as a whole.

Developers now share a common Language as a unified team along with
domain experts. They benefit further from the knowledge transfer from the
domain experts they work with. As developers inevitably move on, either to a
new Core Domain or out of the organization, training and handoffs are eas-
ier. The chances of developing “tribal knowledge,” where only a select few
understand the model, are reduced. The experts, remaining developers, and
new ones continue to share a common knowledge that is available to anyone in
the organization who requires it. This advantage exists because there remains
an express goal to adhere to the Language of the domain.

4. A Better User Experience Is Gained

Often the end user experience can be tuned to better reflect the model of the
domain. Domain-Driven is formally “baked in,” influencing human use of the
software.

When software leaves too much to the understanding of its users, users must
be trained to make a great number of decisions. In essence the users are only
transferring the understanding in their minds into data that they enter into
forms. The data is then saved to a data store. If users don’t understand exactly

www.EBookswWorld.ir

Chapter 1 GETTING STARTED WITH DDD

what is needed, the results are incorrect. Often this leads to guesswork with
related lowered productivity until users can figure out the software.

When the user experience is designed to follow the contours of the under-
lying expert model, users are led to correct conclusions. The software actually
trains the users, which reduces the training overhead to the business. Quicker
to productivity with less training—that’s business value.

We next move into more technically driven benefits to the business.

5. Clean Boundaries Are Placed around Pure Models

The technical team is discouraged from doing what might appeal more to their
programming and algorithmic interests by aligning expectations with business
advantage. Purity in direction allows for focus on the potency of the solution,
with efforts directed to where they matter the most. Achieving this is very
closely connected to understanding the Bounded Context of the project.

6. Enterprise Architecture Is Better Organized

When Bounded Contexts are well understood and carefully partitioned, all
teams in the enterprise develop an acute understanding of where and why
integrations are necessary. The boundaries are explicit, and the relationships
between them are as well. The teams that have models that intersect by usage
dependency employ Context Maps to establish formal relationships and ways
to integrate. This can actually lead to a very thorough understanding of the
entire enterprise architecture.

7. Agile, Iterative, Continuous Modeling Is Used

The word design can evoke negative thoughts in the minds of business manage-
ment. However, DDD is not a heavyweight, high-ceremony design and devel-
opment process. DDD is not about drawing diagrams. It is about carefully
refining the mental model of domain experts into a useful model for the busi-
ness. It is not about creating a real-world model, as in trying to mimic reality.

The team’s efforts follow an agile approach, which is iterative and incremen-
tal. Any agile process that the team feels comfortable with can be used success-
fully in a DDD project. The model that is produced is the working software. It
is refined continuously until it is no longer needed by the business.

8. New Tools, Both Strategic and Tactical, Are Employed

A Bounded Context gives the team a modeling boundary in which to create
a solution to a specific business problem domain. Inside a single Bounded

www.EBookswWorld.ir

THE CHALLENGES OF AprrLYING DDD

Context is a Ubiquitous Language formulated by the team. It is spoken among
the team and in the software model. Disparate teams, sometimes each respon-
sible for a given Bounded Context, use Context Maps to strategically segregate
Bounded Contexts and understand their integrations. Within a single modeling
boundary the team may employ any number of useful tactical modeling tools:
Aggregates (10), Entities (5), Value Objects (6), Services (7), Domain Events (8),
and others.

The Challenges of Applying DDD

As you implement DDD, you will encounter challenges. So has everyone else
who has succeeded at it. What are the common challenges and how do we jus-
tify using DDD as we face them? I will discuss the more common ones:

¢ Allowing for the time and effort required to create a Ubiquitous Language
¢ Involving domain experts at the outset and continuously with the project
e Changing the way developers think about solutions in their domain

One of the greatest challenges in using DDD can be the time and effort
required to think about the business domain, research concepts and termi-
nology, and converse with domain experts in order to discover, capture, and
enhance the Ubiquitous Language rather than coding in techno-babble. If you
want to apply DDD completely, with the greatest value to the business, it’s
going to require more thought and effort, and it’s going to take more time.
That’s the way it is, period.

It can also be a challenge to solicit the necessary involvement from domain
experts. No matter how difficult it is, make sure you do. If you don’t get
commitment from at least one real expert, you are not going to uncover deep
knowledge of the domain. When you do get the domain experts’ involvement,
the onus falls back on the developers. Developers must converse with and listen
carefully to the true experts, molding their spoken language into software that
reflects their mental model of the domain.

If the domain you are working in is truly distinguishing to your business,
domain experts have the edge-knowledge locked up in their heads, and you
need to draw it out. I’ve been on projects where the real domain experts are
hardly around. Sometimes they travel a lot and it can be weeks between one-
hour meetings with them. In a small business it can be the CEO or one of the
vice presidents, and they have lots of other things to do that may seem more
important.

www.EBookswWorld.ir

v Chapter 1 GETTING STARTED WITH DDD

Cowboy Logic

AJ: “If you can’t rope the big steer, you’re gonna go
hungry.”

Getting domain expert involvement may require creativity . . .

A4 v
How to Involve Domain Experts in Your Project
Coffee. Use that Ubiquitous Language: £

“Hi, Sally, | got you a tall half-skinny half-one-per-
cent extra-hot split-quad-shot latte with whip. Do
you have a few minutes to talk about . . . ?”

Learn to use the Ubiquitous Language of C-Level
management: “. . . profits . . . revenues . . . com-
petitive edge . . . market domination.” Seriously.

Hockey tickets.
A A

Most developers have had to change the way they think in order to properly
apply DDD. We developers are technical thinkers. Technical solutions come
easy for us. It’s not that thinking technically is bad. It’s just that there are
times when thinking less technically is better. If it’s been our habit to practice
software development only in technical ways for years, perhaps now would
be a good time to consider a new way of thinking. Developing the Ubiquitous
Language of your domain is the best place to start.

Cowboy Logic

LB: “That fella’s boots are too small. If he don’t find him-
self another pair, his toes are gonna hurt.”

AJ: “Yep. If you don't listen, you’re gonna have to feel.”

There’s another level of thought that is required with DDD that goes beyond
concept naming. When we model a domain through software, we are required

www.EBookswWorld.ir

THE CHALLENGES OF AprrLYING DDD

to give careful thought to which model objects do what. It’s about designing
the behaviors of objects. Yes, we want the behaviors to be named properly to
convey the essence of the Ubiquitous Language. But what an object does by
means of a specific behavior must be considered. This is a level of effort that
goes beyond creating attributes on a class and exposing getters and setters pub-
licly to clients of the model.

Let’s now look at a more interesting domain, one that is more challenging
than the rudimentary one previously considered. I purposely repeat my previ-
ous guidance here to reinforce the ideas.

Again, what happens if we simply provide data accessors to our model? To
reemphasize, if we only expose the data accessors for our model objects, the
results will look much like a data model. Consider the following two exam-
ples and decide for yourself which of the two requires more thorough design
thought, and which produces the greater benefit to its clients. The requirement
is in a Scrum model, where we need to commit a backlog item to a sprint. You
probably do this all the time, so it’s most likely a familiar domain.

The first example, as is commonly done today, uses attribute accessors:

public class BacklogItem extends Entity {
private SprintId sprintId;
private BacklogItemStatusType status;

public void setSprintId(SprintId sprintId) ({
this.sprintId = sprintId;
}

public void setStatus (BacklogItemStatusType status) {
this.status = status;

}

As for the client of this model:

// client commits the backlog item to a sprint
// by setting its sprintId and status

backlogItem.setSprintId(sprintId) ;
backlogItem.setStatus (BacklogItemStatusType.COMMITTED) ;

The second example uses a domain object behavior that expresses the Ubiq-
uitous Language of the domain:

www.EBookswWorld.ir

Chapter 1 GETTING STARTED WITH DDD

public class BacklogItem extends Entity {
private SprintId sprintId;
private BacklogItemStatusType status;

public void commitTo (Sprint aSprint) {
if (!this.isScheduledForRelease()) {
throw new IllegalStateException (
"Must be scheduled for release to commit to sprint.");

if (this.isCommittedToSprint()) {
if (!aSprint.sprintId().equals(this.sprintId())) {
this.uncommitFromSprint () ;

this.elevateStatusWith (BacklogItemStatus.COMMITTED) ;
this.setSprintId(aSprint.sprintId()) ;

DomainEventPublisher

.instance()

.publish (new BacklogItemCommitted (
this.tenant (),
this.backlogItemId(),
this.sprintId()));

The client of this explicit model seems to operate on safer ground:

// client commits the backlog item to a sprint
// by using a domain-specific behavior

backlogItem.commitTo (sprint) ;

The first example uses a very data-centric approach. The onus is entirely on
the client to know how to correctly commit the backlog item to a sprint. The
model, which is not really a domain model, doesn’t help at all. What if the cli-
ent mistakenly changes only the sprintId but not the status, or the oppo-
site? Or what if in the future another attribute must be set? The client code
must be analyzed for correct mapping of data values to the proper attributes
on the BacklogItem.

This approach also exposes the shape of the BacklogItem object and
clearly focuses attention on its data attributes and not on its behaviors. Even

www.EBookswWorld.ir

THE CHALLENGES OF AprrLYING DDD

if you argue that setSprintId() and setStatus() are behaviors, the case
in point is that these “behaviors” have no real business domain value. These
“behaviors” do not explicitly indicate the intentions of the scenarios that the
domain software is supposed to model, that of committing a backlog item to
a sprint. They do cause cognitive overload when the client developer tries to
mentally select from among the BacklogItem attributes needed to commit
a backlog item to a sprint. There could be many because it’s a data-centric
model.

Now consider the second example. Instead of exposing the data attributes
to clients, it exposes a behavior that explicitly and clearly indicates that a client
may commit a backlog item to a sprint. Experts in this particular domain dis-
cuss the following requirement of the model:

Allow each backlog item to be committed to a sprint. It may be committed only
if it is already scheduled for release. If it is already committed to a different
sprint, it must be uncommitted first. When the commit completes, notify inter-
ested parties.

Thus, the method in the second example captures the Ubiquitous Language of
the model in context, that is, the Bounded Context in which the BacklogItem
type is isolated. And as we analyze this scenario, we discover that the first solu-
tion is incomplete and contains bugs.

With the second implementation clients don’t need to know what is required
to perform the commit, whether simple or complex. The implementation of this
method has as much or as little logic as necessary. We easily added a guard to
protect against committing a backlog item that is not yet scheduled for release.
True, you can also place guards inside the setters of the first implementation,
but the setter now becomes responsible for understanding the full context of
the object’s state rather than just the requirements for sprintId and status.

There’s another subtle difference here, too. Note that if the backlog item is
already committed to another sprint, it will first be uncommitted from the cur-
rent sprint. This is an important detail, because when a backlog item is uncom-
mitted from a sprint, a Domain Event is to be published to clients:

Allow each backlog item to be uncommitted from a sprint. When the backlog
item is uncommitted, notify interested parties.

The publication of the uncommitted notification is obtained for free just by
using the domain behavior uncommitFrom(). Method commitTo () doesn’t
even need to know that it notifies. All it needs to know is that it must uncom-
mit from any current sprint before committing to a new sprint. Additionally,
the commitTo() domain behavior also notifies interested parties with an
Event as its final step. Without placing this rich behavior in BacklogItem

www.EBookswWorld.ir

Chapter 1 GETTING STARTED WITH DDD

we would have to publish Events from the client. That would certainly leak
domain logic from the model. Bad.

Clearly, more thought is needed to create the BacklogItem of the second
example than that of the first. Yet the thought needed is not so much greater,
and the benefits are so much higher. The more we learn to design in this way,
the easier it becomes. In the end, there is certainly more required thought, more
effort, more collaboration and orchestration of team efforts, but not so much
that DDD becomes heavy. New thought is well worth the effort.

Whiteboard Time

¢ Using the specific domain you currently work in, think of the common
terms and actions of the model.

e Write the terms on the board.

¢ Next, write phrases that should be used by your team when you talk
about the project.

¢ Discuss them with a real domain expert to see how they could be refined
(remember to bring the coffee).

Justification for Domain Modeling

Tactical modeling is generally more complex than strategic modeling. Thus, if
you intend to develop a domain model using the DDD tactical patterns (Aggre-
gates, Services, Value Objects, Events, and so forth), doing so will require more
careful thought and greater investment. Since this is so, how does an organiza-
tion justify tactical domain modeling? What criteria can be used to qualify a
given project for the extra investment needed to properly apply DDD from top
to bottom?

Picture yourself leading an expedition through unfamiliar territory. You
would want to understand the surrounding landmasses and borders. Your
team would study maps, maybe even draw their own, and determine their stra-
tegic approach. You would consider aspects of the terrain and how it could be
used to your advantage. No matter how much planning is done, some facets of
such an endeavor are going to be really difficult.

If your strategy indicated that you’d have to scale a vertical rock face, youd
need some fitting tactical tools and maneuvers for that ascent. Standing at the
bottom and looking up, you might see some indication of specific challenges
and perilous areas. Yet, you wouldn’t see every detail until you were on the

www.EBookswWorld.ir

THE CHALLENGES OF AprrLYING DDD

rock face. You might need to drive pitons into slick rock, but you could use var-
ious-size cams to wedge into natural cracks. To latch on to these climbing pro-
tections, you’d bring along your carabiners. You would try to take as straight
a path as possible but would have to make specific determinations point by
point. Sometimes you might even have to backtrack and reroute depending on
what the rock dictated. Many people think of climbing as a dangerous thrill
sport, but those who actually climb will tell you it’s safer than driving a car or
flying an airplane. Clearly, for that to be true, climbers need to understand the
tools and techniques and how to judge the rock.

If developing a given Subdomain (2) requires such a difficult, even precari-
ous, ascent, we’d bring the DDD tactical patterns along for the climb. A busi-
ness initiative that matches the criteria of the Core Domain should not quickly
dismiss the use of the tactical patterns. The Core Domain is an unknown and
complex area. The team is best protected against a disastrous mid-asset fall if
using the right tactics.

Here’s some practical guidance. I begin with the high-level ones and prog-
ress to more details:

¢ If a Bounded Context is being developed as the Core Domain, it is stra-
tegically vital to the success of the business. The core model is not well
understood and will require lots of experimentation and refactoring. It
likely deserves commitment to longevity with continuous enhancement.
It may not always be your Core Domain. Nonetheless, if the Bounded
Context is complex, innovative, and needs to endure for a long time as it
undergoes change, strongly consider the use of the tactical patterns as an
investment in the future of your business. This assumes that your Core
Domain deserves the best developer resources with a high skill level.

¢ A domain that may become a Generic Subdomain (2) or Supporting Sub-
domain to its consumers may actually be a Core Domain to your busi-
ness. You don’t always judge a domain from the viewpoint of its ultimate
consumers. If you are developing a Bounded Context as your chief busi-
ness initiative, it is your Core Domain regardless of how it is viewed by
customers outside your business. Strongly consider the use of the tactical
patterns.

e If you are developing a Supporting Subdomain that, for various reasons,
cannot be acquired as a third-party Generic Subdomain, it is possible that
the tactical patterns would benefit your efforts. In this case consider the
skill level of the team and whether or not the model is new and inno-
vative. It is innovative if it adds specific business value, captures special
knowledge, and is not just technically intriguing. If the team is capable of

www.EBookswWorld.ir

Chapter 1 GETTING STARTED WITH DDD

properly applying tactical design, and the Supporting Subdomain is inno-
vative and must endure for years in the future, this is a good opportunity
to invest in your software using tactical design. However, this does not
make this model the Core Domain since in the eyes of the business it is
merely Supporting.

These guidelines may be somewhat confining if your business employs a
good number of developers with vast experience in and a very high comfort
level with domain modeling. Where experience is very high, and the engineers
themselves believe the tactical patterns would be the best choice, it makes sense
to trust their opinion. Honest developers, no matter how experienced, will
indicate in a specific case that developing a domain model is, or is not, the best
choice.

The type of business domain itself is not automatically the determining fac-
tor for choosing a development approach. Your team should consider import-
ant questions to help you make the final determination. Consider the following
short list of more detailed decision parameters, which is more or less aligned
with and expands on the preceding higher-level guidelines:

¢ Are domain experts available and are you committed to forming a team
around them?

¢ Although the specific business domain is somewhat simple now, will it
grow in complexity over time? There is risk in using Transaction Script!
for complex applications. If you use Transaction Script now, will the
potential for refactoring to a behavioral domain model later on be practi-
cal if/when the Context becomes complex?

e Will the use of the DDD tactical patterns make it easier and more prac-
tical to integrate with other Bounded Contexts, whether third-party or
custom developed?

¢ Will development really be simpler and require less code if you use Trans-
action Script? (Experience with both approaches proves that many times
Transaction Script requires as much or more code. This is probably
because the complexity of the domain and the innovation of the model
were not well understood during project planning. Underestimating
domain complexity and the innovation involved happens often.)

¢ Do the critical path and timeline allow for any overhead required for tac-
tical investment?

1. Here I am generalizing terms. In this list I use Transaction Script to represent sev-
eral non-domain-model approaches.

www.EBookswWorld.ir

THE CHALLENGES OF AprrLYING DDD

e Will the tactical investment in a Core Domain protect the system from
changing architectural influences? Transaction Script may leave it exposed.
(Domain models are often enduring while architectural influences tend to
be more disruptive to other layers.)

e Will clients/customers benefit from a cleaner, enduring design and devel-
opment approach, or could their application be replaced by an off-the-
shelf solution tomorrow? In other words, why would we ever develop this
as a custom application/service in the first place?

e Will developing an application/service using tactical DDD be more diffi-
cult than using other approaches such as Transaction Script? (Skill level
and availability of domain experts is vital to answering this question.)

o If the team’s toolkit was complete with DDD enablers, would we consci-
entiously choose to use another approach instead? (Some enablers make
model persistence practical, such as using object-relational mapping, full
Aggregate serialization and persistence, an Event Store, or a framework
that supports tactical DDD. There may be other enablers, too.)

This list is not prioritized for your domain, and you can probably assemble
additional criteria. You understand the compelling reasons for using the best
and most empowering methods possible to your advantage. You also know
your business and technology landscape. In the end it is the business customer,
not the object practitioners and technologists, who must be pleased. Choose
wisely.

DDD Is Not Heavy

In no way do I want to imply that properly practicing DDD leads to a heavy-
weight process with lots of ceremony and all the crufty documentation arti-
facts that must be supported. That’s not what DDD is about. It is meant to fit
well into any agile project framework, such as Scrum, that the team desires to
use. Its design tenets lean toward rather rapid test-first refinements of a real
software model. If you were in need of developing a new domain object, such
as an Entity or a Value Object, the test-first approach works like this:

1. Write a test that demonstrates how the new domain object should be used
by a client of the domain model.

2. Create the new domain object with enough code to make the test compile.

3. Refactor both until the test properly represents the way a client would use
the domain object, and the domain object has proper behavioral method
signatures.

www.EBookswWorld.ir

v Chapter 1 GETTING STARTED WITH DDD

4. Implement each domain object behavior until the test passes, refactoring
the domain object until no inappropriate code duplications exist.

5. Demonstrate the code to team members, including domain experts, to
ensure that the test is using the domain object according to the current
meaning of the Ubiquitous Language.

You may conclude that this is not any different from the test-first approach
you already practice. Well, it might be a little different, but the point is that it’s
basically the same. This test stage is not attempting to prove with absolute cer-
tainty that the model is bulletproof. Later we will add tests to do that. First we
want to focus on how the model will be used by clients, and these tests drive
the model’s design. The good news is that it really is an agile approach. DDD
promotes lightweight development, not ceremonious, heavy, up-front design.
From that standpoint it really isn’t different from common agile development.
So, while the preceding steps may not enlighten you about agile, I think they
clarify the position of DDD, that it is meant to be used in an agile way.

Later you also add tests that verify the correctness of the new domain object
from every possible (and practical) angle. At this point you are interested in the
correctness of the expression of a domain concept that is embodied in the new
domain object. Reading the demonstrative clientlike test code must reveal the
proper expressiveness using the Ubiquitous Language. Domain experts who
are nontechnical should be able, with the help of a developer, to read the code
well enough to get a clear impression that the model has achieved the goal of
the team. This implies that test data must be realistic and support and enhance
the desired expressiveness. Otherwise, domain experts cannot make a com-
plete judgment about the implementation.

This test-first agile methodology repeats until you have a model that is
working according to the tasks outlined for the current iteration. The steps
outlined previously are agile and represent what Extreme Programming orig-
inally promoted. Using agile does not eliminate any essential DDD patterns
and practices. They go together quite well. Of course, you can choose to use
full DDD without doing test-first development. You can always develop tests
against existing model objects. However, designing from the model client’s
perspective adds a very desirable dimension.

Fiction, with Bucketfuls of Reality

As I contemplated how to best present implementation guidance for contempo-
rary use of DDD, I wanted to provide justification for everything I say should

www.EBookswWorld.ir

FicTioN, wiTH BUCKETFULS OF REALITY

be done. That meant supplying not just the how, but the why. It occurred to
me that looking at a few projects as case studies would appropriately illustrate
why I made a certain suggestion and demonstrate how proper use of DDD will
solve the challenges commonly faced.

Sometimes it’s easier to look at the problems faced by other project teams
and learn from their misuse of DDD than it is to look inward. Certainly, once
you recognize the flaws of others’ work, you’ll be able to judge whether or
not you are leaning in the same precarious direction, or even standing in the
thick of the same morass. Then, knowing where you are headed or where you
already are, you can make the precise adjustments to correct problems and
avoid the same in the future.

Rather than present a series of actual projects that I have worked on—ones
that I could not discuss openly anyway—I decided to use a bit of fiction based
on real-world situations that I and others have experienced. That way I could
create the perfect state of affairs to demonstrate the reasons a specific imple-
mentation approach works best, or at least better, when dealing with chal-
lenges in DDD.

So it is not just fiction on which I am interested in building case studies. It is
a fictitious company with a real-world business charter, fictitious teams within
the company with real-world software to build and deploy, and real-world
DDD challenges and resulting problems with real-world solutions to them. It’s
what I call “fiction with bucketfuls of reality.” I have found it quite effective to
write in this style. I hope you benefit from it.

When presenting any set of examples, we must limit the scope to make it
practical. Otherwise, the volume will drown efforts to teach and learn. Exam-
ples cannot be overly simplistic either, or vital lessons would be lost. To balance
this effort, the business situation I have chosen is largely based on greenfield
development.

As we peer into the projects at various points in time, we’ll see different
problems and successes that the teams experience. The Core Domain that
is the focus of the examples is sufficiently complex to examine DDD from
various perspectives. Our Bounded Contexts use one or more others, which
enables us to investigate integration with DDD. Still, the three sample models
cannot possibly demonstrate every aspect of strategic design, such as occurs in
a “brownfield” environment common where many legacy systems exist. I don’t
completely dodge those less attractive regions, as if they are irrelevant. When-
ever advisable we will diverge from the main samples and study areas where
DDD guidance can be used in additional advantageous ways.

Now allow me to introduce you to the company and tell you a little bit
about its teams and the projects they are working on.

www.EBookswWorld.ir

Chapter 1 GETTING STARTED WITH DDD

SaaSOvation, Its Products, and Its Use of DDD

The company is SaaSOvation. As its name implies,
SaaSOvation’s charter is to develop a series of software
as a service, or SaaS, products. The SaaS products are
hosted by SaaSOvation and accessed and used by sub-
scribing organizations. The company’s business plan
includes two planned products, one to precede the other.

The flagship product is named CollabOvation. It is
a corporate collaboration suite, which sports the fea-
tures of leading social networks. These include forums,
shared calendars, blogs, instant messaging, wiki, mes-
sage boards, document management, announcements and alerts, activity tracking,
and RSS feeds. All of the collaboration tools are focused on the needs of corporate
businesses, helping them spike productivity in smaller projects, in larger programs,
and across business units. Business collaboration is important for creating and facil-
itating a synergistic atmosphere in today’s changing and sometimes uncertain, yet
fast-paced economy. Anything that can help propel productivity forward, transfer
knowledge, promote idea sharing, and associatively manage the creative process
so results will not be misplaced will be a boon to the corporate success equation.
CollabOvation provides a high-value proposition to customers, and the challenge will
also please its developers.

The second product, named ProjectOvation, is the Core Domain of primary focus.
The tool focuses on the management of agile projects, using Scrum as the itera-
tive and incremental project management framework. ProjectOvation follows the tra-
ditional Scrum project management model, complete with product, product owner,
team, backlog items, planned releases, and sprints. Backlog item estimation is pro-
vided through business value calculators that use cost-benefit analysis. If you think of
Scrum at its richest, that’s where ProjectOvation is headed. But SaaSOvation plans
to get more bang for its buck.

CollabOvation and ProjectOvation would not go down entirely separate paths.
SaaSOvation and its board of advisers envisioned innovation around weaving col-
laboration tools in with agile software development. Thus, CollabOvation features will
be offered as an optional add-on to ProjectOvation. Without a doubt, supplying col-
laboration tools for project planning, feature and story discussions, team and inter-
team group discussion, and support will be a popular option. SaaSOvation forecasts
that more than 60 percent of ProjectOvation subscribers will add on CollabOvation
features. And this kind of add-on sales often ends up leading to new full sales of the
add-on product itself. Once a sales channel is established and software development
teams see the power of collaboration in their project management suite, their enthu-
siasm will influence full corporate adoption of the complete collaboration suite. Due to
this viral sales approach, SaaSOvation further forecasts that at a minimum 35 percent
of all ProjectOvation sales will lead to full corporate adoption of CollabOvation. They
consider this a conservative estimate, but one that will make it extremely successful.

The CollabOvation product development team is staffed first. There are a few
seasoned veterans on the team, but a greater number of midlevel developers. Early

www.EBookswWorld.ir

Wrapr-Up

meetings pointed to Domain-Driven Design as the favored design and development
approach. One of the two senior developers had used a minimal set of DDD patterns
on a previous project at his former employer. As he described his experience to the
team, it would have been clear to a more experienced DDD practitioner that this was
not full use of DDD. What he had done is sometimes referred to as DDD-Lite.

DDD-Lite is a means of picking and choosing a subset of the DDD tactical pat-
terns, but without giving full attention to discovering, capturing, and enhancing the
Ubiquitous Language. As well, this technique generally bypasses the use of Bounded
Contexts and Context Mapping. lts focus is much more technical, with a desire to
solve technical problems. It can have benefits, but generally not with as high a reward
as including strategic modeling along with it. SaaSOvation bought into this. In its case
doing so soon led to problems because the team didn’t understand Subdomains and
the power and safety of explicit Bounded Contexts.

Things could have been worse. SaaSOvation actually avoided some major pit-
falls of using DDD-Lite, just because its two core products formed a natural set of
Bounded Contexts. This tended to keep the CollabOvation model and the Project-
Ovation model formally segregated. But that was just by chance. It didn’t mean the
team understood Bounded Context, which is why the problems they did experience
happened in the first place. Well, you either learn or you fail.

It’s good that we can benefit from examining SaaSOvation’s incomplete use
of DDD. The team eventually learned from their mistakes by acquiring a better
grasp of strategic design. You will also learn from the adjustments the Col-
labOvation team made, as the eventual ProjectOvation team benefited from
retrospectives of the early conditions of its sister and partner project. See Sub-
domains (2) and Bounded Contexts (2), as well as Context Maps (3), for the
full story.

LR

Wrap-Up

Well, that’s a pretty encouraging start with DDD. I think by now you probably
have gotten a good feeling that you and your team can actually succeed with
an advanced software development technique. I agree.

Of course, we aren’t going to oversimplify things. Implementing DDD takes
real concerted effort. If it were easy, everybody would be writing great code,

www.EBookswWorld.ir

v Chapter 1 GETTING STARTED WITH DDD

and we know that just doesn’t happen. So get ready. It will be worth it, because
your design will be exactly how your software works.
Here’s what you’ve learned so far:

You’ve discovered what DDD can do for your projects and your teams to
help you grapple with domain complexity.

You found out how to score your project to see if it deserves the DDD
investment.

You considered the common alternatives to DDD and why using those
approaches often leads to problems.

You’ve grasped the foundations of DDD and are prepared to take the first
steps on your project.

You’ve found out how to sell DDD to your management, domain experts,
and technical team members.

You are now armed with knowledge of how to succeed while facing the
challenges of DDD.

Here’s where we’re going next. The next two chapters are on the all-im-
portant strategic design, followed by a chapter on software architectures with
DDD. This is really important stuff to get a handle on before you move to the
subsequent chapters on tactical modeling.

www.EBookswWorld.ir

Chapter 2

Domains, Subdomains, and
Bounded Contexts

There are just as many notes as I required,
neither more nor less.

—Mogzart in the film Amadeus
(Orion Pictures, Warner Brothers, 1984)

There are three things you are going to have to understand very clearly:
e What your Domain is
¢ What your Subdomains are
¢ What your Bounded Contexts are

Just because all these concepts were discussed in detail in the second half of
[Evans] does not mean that they are of secondary importance. To succeed in
implementing DDD, you have to get these right.

Road Map to This Chapter

¢ Grasp the big picture of DDD by understanding Domains, Subdomains, and
Bounded Contexts.

* Learn why strategic design is so essential, and why designing without it hurts.
* Consider a practical real-world Domain with multiple Subdomains.

* Make sense of Bounded Contexts, both conceptually and technically.

* See SaaSOvation’s “aha!” moments as they discover strategic design.

Big Picture

A Domain, in the broad sense, is what an organization does and the world it
does it in. Businesses identify a market and sell products and services. Each
kind of organization has its own unique realm of know-how and way of doing

43

www.EBooksWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

things. That realm of understanding and its methods for carrying out its oper-
ations is its Domain. When you develop software for an organization, you are
working in its Domain. It should be pretty obvious to you what your Domain
is. You work in it.

One thing to be aware of is that the term Domain may be a bit overloaded.
Domain can refer to both the entire domain of the business, as well as just one
core or supporting area of it. I will do my best to distinguish each use of the
term. When referring to just one area of the business, I will generally qualify it
with the use of Core Domain, Subdomain, and the like.

Because the term domain model includes the word domain, we might get
the idea that we should create a single, cohesive, all-inclusive model of an orga-
nization’s entire business domain—you know, like an enterprise model. How-
ever, when using DDD, that is not our goal. DDD places emphasis on just the
opposite. The whole Domain of the organization is composed of Subdomains.
Using DDD, models are developed in Bounded Contexts. In fact, developing
a Domain Model is actually one way that we focus on only one specific area
of the whole business domain. Any attempt to define the business of even a
moderately complex organization in a single, all-encompassing model will be
at best extremely difficult and will usually fail. As is made clear in this chapter,
vigorously separating distinct areas of the whole business domain will help us
succeed.

So, if a domain model shouldn’t be all-inclusive of what the organization
does and how it does it, what should it be, exactly?

Almost every software Domain has multiple Subdomains. It really doesn’t
matter whether the organization is huge and extremely complex or consists of
just a few people and the software they use. There are different functions that
make any business successful, so it’s advantageous to think about each of those
business functions separately.

Subdomains and Bounded Contexts at Work

Here’s a fairly simple example to introduce how Subdomains can be used.
Think of a retail company that sells products online. The products it sells
could be just about anything, so we won’t think too carefully about them. To
do business in this Domain, the company must present a catalog of products
to shoppers, it must allow orders to be placed, it must collect payment for the
products sold, and it must ship the products to buyers. This online retailer’s
Domain seems to be composed of these four primary Subdomains: Product
Catalog, Orders, Invoicing, and Shipping. The upper part of Figure 2.1 shows
the e-Commerce System.

www.EBookswWorld.ir

BiG PICTURE

Domain The outer boundary is the
Dashed lines separate / whole business Domain

Subdomains

Thisis a
Subdomain
Product Catalog

Subdomain

Invoicing
Subdomain

Thisis a

—————T - Subdomain
-

-

1 -
I Shipping
1 Subdomain \

1
External Forecasting
System

-
-
-

Solid lines mark off
Bounded Contexts

! Inventory
Inventory
System Subdomain

Straight lines between Subdomains and Bounded
Contexts indicate integration relationships

Figure 2.1 A Domain with Subdomains and Bounded Contexts

This all seems quite straightforward, and to some degree it is. However, if
we introduce just one additional detail, we will make our example more com-
plex. Consider for a moment how difficult it can be to deal with Inventory,
an additional system and Subdomain seen in Figure 2.1. We’ll get back to the
increased complexity in a moment. First let’s peer into the physical subsystems
and logical Subdomains in the diagram.

Notice that at this time just three physical systems exist to realize this
retailer’s Domain, only two of which are hosted internally. Those two inter-
nal systems represent what we might think of as two Bounded Contexts.
Since, unfortunately, most systems today are not created by employing a DDD
approach, this ends up being a fairly typical situation, with fewer subsystems
responsible for many business functions.

Inside the e-Commerce Bounded Context there are really multiple implicit
domain models at play, even though they are not cleanly separated as such.
These otherwise separate domain models are actually fused into one software

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

model, and that’s very unfortunate. It might be less of a problem for the retailer
if it had purchased this Bounded Context from a third party rather than build-
ing it, but whoever maintains this system has experienced the negative conse-
quences of the increasing complexity that results from blending the Product
Catalog, the Orders, the Invoicing, and the Shipping models into one large
e-commerce model. As the various logical models need to grow to facilitate
new features, each of the conflicting concerns will impede the progress of each
of the others. This would be especially so if another logical model—a major
new feature set—must be added. It’s just what happens when software con-
cerns are not cleanly separated.

This is particularly unfortunate because a lot of software developers think
it’s clever to bake everything possible into one system. It’s your basic all-
knowing, all-doing e-commerce system, and thus it will certainly satisfy every-
one’s needs. This is deceiving, however, because no matter how many concerns
can be piled into one subsystem, it will never address the needs of every poten-
tial consumer. Never. Add to this the fact that not separating otherwise dis-
tinct software domain models by Subdomain will make ongoing changes much
more burdensome, since everything will tend to be connected to and depend on
everything else.

Yet, using one of the DDD strategic design tools, we can to some degree cut
through the complexity by externally dissecting these intertwined models into
logically separated Subdomains according to their actual functionality. The
logical Subdomain separations are indicated by the dashed lines in Figure 2.1.
It’s not that we have somehow refactored the third-party models into cleanly
separated ones. We’ve just indicated what separate models should exist, at least
as they apply to our specific retailer’s business operations. We’ve also drawn
some connections between logical Subdomains and even physical Bounded
Contexts to show integrations.

Now let’s shift from technical complexities and focus on the business com-
plexities faced by our small company. It has limited funds and it has limited
warehouse space. There’s a constant juggling act going on. The company must
not overspend on products that aren’t selling well, and some products sell bet-
ter at certain times than they do at other times. Obviously, if some products
don’t sell according to plans, the company’s funds are tied up with products
that its customers don’t want, not right now anyway. The money is frozen. As
a result, the company has limited room to stock products that are selling well
at any given time.

That’s not all. There ends up being another problem. If some products
sell more quickly than anticipated, the company will not be able to inven-
tory enough of them to fulfill customer demand. This insufficient inventory

www.EBookswWorld.ir

BiG PICTURE

challenge could cause customers to obtain the same urgently needed products
elsewhere. Sure, some product wholesalers are willing to drop-ship on behalf
of the retailer, but that option costs more and introduces other undesirable
consequences. There are also cost-saving strategies to stock some products
nearby for local consumption and drop-ship others that sell well in distant
regions. Thus, drop-shipping should be leveraged to the retailer’s advantage,
not as a last-minute tactic employed to rescue a sale gone bad. After all, it’s not
that the products that are selling the best are scarce. It’s just that they are
not readily available from the small retail company because it didn’t optimally
inventory them. If customers experience delays on a continuing basis, it will
likely cost the online sales company at least a significant part of any competi-
tive advantage it had previously earned. This example is inspired by customer
problems commonly solved by Lokad.!

To be clear, we haven’t investigated the limits of the challenges faced with
inventories, and these undesirable situations are not limited to small retailers.
Retailers everywhere desire to purchase and inventory precisely according to
their exact needs, minimizing cost and optimizing sales fulfillment according
to demand. Yet the small retailer tends to suffer the penalties of suboptimal
performance more quickly than large retailers.

What would help any online retailer tremendously is a way to base future
inventory and sales demands on past trends. If the retailer could use a forecast-
ing engine, providing it with data about inventory and sales history, it could
obtain demand forecasts with specific numbers for optimizing its inventory—
when to reorder and how much of each product to obtain.

For the small retailer to add such forecasting capabilities would probably
constitute a new Core Domain, because it is a nontrivial problem to solve,
and succeeding would help the company establish a new competitive advan-
tage. In fact, the third physical Bounded Context in Figure 2.1 is an External
Forecasting System. The Orders Subdomain and the Inventory Bounded Con-
text integrate with Forecasting to supply historical product sales and returns
information. Additionally, we should also have the Catalog Subdomain pro-
vide globally recognized product bar codes, which would allow Forecasting
to compare the small retailer’s product lines to related and similar sales trends
worldwide, resulting in a broader perspective. This leads to the Forecasting
engine possessing the means to calculate the most accurate numbers needed by
the small retailer to correctly stock products.

If this new solution were actually a Core Domain, and it most likely is, the
team developing it would benefit greatly from understanding the surrounding

1. www.lokad.com/.

www.EBookswWorld.ir

http://www.lokad.com/

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

business terrain composed of logical Subdomains and the integrations needed.
Thus, highlighting the preexisting integrations indicated on the diagram in
Figure 2.1 is key to grasping the project situation at the time the project begins.

It’s not always the case that Subdomains feature such distinct models of
significant size and functionality. Sometimes a Subdomain can be as simple as
a set of algorithms that, while essential to the business solution, are not part of
the distinguished Core Domain. Applying good DDD techniques, such simple
Subdomains can be separated from the Core using Modules (9) and need not
be housed in a heavy, architecturally significant subsystem component.

When we employ DDD, we strive for each Bounded Context to mark off
where the meaning of every term used by the domain model is well under-
stood, or at least should be if we’ve done a good job of modeling the software.
It’s chiefly a linguistic boundary. These contextual boundaries are a key to
implementing DDD.

Cowboy Logic

LB: “We get along just fine with the neighbors, until their
fences break down.”

AJ: “That's right. Keep your fences horse-high.”

Note that a single Bounded Context does not necessarily fall within only
a single Subdomain, but it may. In Figure 2.1, only one Bounded Context,
Inventory, falls within just one Subdomain.? That makes it rather apparent
that proper DDD was not in use when the e-Commerce System was devel-
oped. In that system we’ve identified four Subdomains, and there are probably
more. On the other hand, the Inventory System does seem to be aligned as one
Subdomain per Bounded Context by limiting its domain model to inventory-
ing products. The Inventory System’s apparently clean model may be due to
employing DDD, or it may be merely coincidental. We’d have to look under the
hood to know for sure. Regardless, we can still make practical use of Inven-
tory to develop the new Core Domain.

Linguistically, which of the Bounded Contexts in Figure 2.1 has a better
design? In other words, which has an unambiguous set of domain-specific terms?
When we consider that there are at least four Subdomains in the e-Commerce

2. True, the Shipping Subdomain uses Inventory, but that doesn’t make Inventory
part of the e-Commerce System where Shipping has context.

www.EBookswWorld.ir

BiG PICTURE

System, it’s almost certain that terms and meanings collide there. For example,
the term Customer must have multiple meanings. When a user is browsing the
Catalog, Customer means one thing, but when a user is placing an Order, it
means something else. Here’s why. When browsing the Catalog, Customer is
being used in the context of previous purchases, loyalty, available products, dis-
counts, and shipping options. On the Order itself, however, Customer has a lim-
ited meaning. Among the few details there is a name with a ship-to address, a
bill-to address, a total due, and payment terms. Just by this basic reasoning we
see that in the e-Commerce System there is no one clean meaning for Customer.
Given this situation, as we look around that system we would expect to find sev-
eral other terms that have multiple meanings. It’s not a clean Bounded Context
with an explicit meaning for each term naming a domain concept.

Yet, there’s also no guarantee that the Inventory System has a completely
clean model, possessing wholly unambiguous domain linguistics. Even in this
apparently focused Context we could face differences in meanings among the
things that are being controlled in inventory. This is because there are different
ways that inventoried Items are used. Is there a clean distinction between an
Item being ordered, one being received, one in stock, and one moving out of
stock? An Item on order that is not yet available for sale is called Back-Ordered
Item. An Item being received is often called Goods Received. An item in stock
may be called a Stock Item. An Item being consumed is often referred to as an
Item Leaving Inventory. An inventoried Item that becomes spoiled or broken is
often called a Wasted Inventory Item.

By looking at Figure 2.1, we don’t know how well the range of inventory
concepts and their accompanying linguistics are modeled. When using DDD,
we’d leave none of it to guesswork. We would be certain that each of those con-
cepts is well understood, spoken of explicitly, and modeled as such. The way
domain experts describe each of these concepts could lead to separating some
in different Bounded Contexts.

From outward appearances we would conclude that the Inventory System
has better DDD health than the e-Commerce System. Perhaps the team that
worked out its model didn’t attempt to make one Item represent all invento-
ried item situations. Although uncertain, it’s possible that the model of the
Inventory System will be easier to integrate with than that of the e-Commerce
System.

Speaking of integration, Figure 2.1 further shows that Bounded Contexts
in an enterprise rarely if ever completely stand alone. Even when the third-
party e-Commerce System attempts to provide a large, all-encompassing
model, it can’t do everything the retailer needs. The solid straight lines running
between and connecting the various Subdomains in the e-Commerce System,

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

the Inventory System, and the External Forecasting System show the neces-
sary integration relationships, which proves that different models must work
together. There are always specific kinds of relationships involved in integra-
tion, and you’ll learn more about the possible integration options in Contexts
Maps (3).

That’s the high-level summary of one view of a simple business domain.
We’ve briefly encountered a Core Domain and gotten the notion that it is an
important part of DDD. Now we need to understand it better.

Focus on the Core Domain

With an understanding of Subdomains and Bounded Contexts, consider an
abstract view of a different Domain found in Figure 2.2. This could repre-
sent any domain, perhaps even the one you work in. I’ve removed the explicit
names so you can mentally fill in the blanks. Naturally, our business goals are
on a path of continuous refinement and expansion reflected by ever-changing

Domain

Core
Domain

Supporting
’ Subdomain (A)

Bounded Context

Supporting
Subdomain (B)

Bounded Context

Bounded
Context

Generic
Subdomain

Bounded
Context
(External)

Figure 2.2 An abstract business Domain that includes Subdomains
and Bounded Contexts

www.EBookswWorld.ir

BiG PICTURE

Subdomains and the models within. This diagram only captures the whole
business Domain at a moment in time with a specific perspective, and one that
could be somewhat short-lived.

Whiteboard Time

¢ In one column make a list of all the Subdomains that you are aware of
in your daily work. In another column list the Bounded Contexts. Do
Subdomains intersect with multiple Bounded Contexts? If so, it’s not nec-
essarily a bad thing, just a fact of enterprise software.

¢ Now, using the template in Figure 2.2, write in some of the names of the
software running in your enterprise with the Subdomains, Bounded Con-
texts, and the integration relationships between them.

I Was that difficult? Probably, because the template in Figure 2.2 likely doesn’t
closely reflect the existing boundaries in your Domain.

e Start over. This time you should draw a diagram that aligns with your
Domain, Subdomains, and Bounded Contexts. Use the techniques dis-
played in Figure 2.2, but go ahead and fit them to your world.

Of course, you may not know about every Subdomain and Bounded Context in
your entire enterprise, especially if your Domain is really large and complex. But
you may be able to figure out the ones you deal with on a day-to-day basis. Anyway,
give it a go. Don’t be afraid of being wrong. You’ll get some good practice at Con-
text Mapping, which will be refined in the next chapter. If you want to jump to that
chapter briefly for more advice, that’s fine. Still, don’t worry about being perfect just
now. Grasp the basic ideas first.

Now look at the top of the Domain boundary in Figure 2.2 and you’ll
see the Subdomain labeled Core Domain. Introduced earlier, this is another
aspect of DDD of major importance. A Core Domain is a part of the busi-
ness Domain that is of primary importance to the success of the organization.
Strategically speaking, the business must excel with its Core Domain. It is of
utmost importance to the ongoing success of the business. That project gets
the highest priority, one or more domain experts with deep knowledge of that
Subdomain, the best developers, and as much leeway and leverage as possible
to give the close-knit team an unobstructed success path. Most of your DDD
project efforts will be focused on the Core Domain.

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

Two other kinds of Subdomains are found in Figure 2.2, Supporting Sub-
domain and Generic Subdomain. Sometimes a Bounded Context is created or
acquired to support the business. If it models some aspect of the business that
is essential, yet not Core, it is a Supporting Subdomain. The business creates
a Supporting Subdomain because it is somewhat specialized. Otherwise, if it
captures nothing special to the business, yet is required for the overall business
solution, it is a Generic Subdomain. Being Supporting or Generic doesn’t mean
unimportant. These kinds of Subdomains are important to the success of the
business, yet there is no need for the business to excel in these areas. It’s the
Core Domain that requires excellence in implementation, since it will provide
distinct advantages to the business.

Whiteboard Time

¢ To make sure you grasp the significance of the Core Domain concepts,
what you should do next is go back to your fresh whiteboard drawing and
see if you can identify where a Core Domain is being developed in your
organization.

¢ Next, see if you can identify the Supporting Subdomains and Generic
Subdomains in your Domain.

Remember: Ask the Domain Experts!

Even if you don’t get it just right the first time, this exer-
cise will help you to think carefully about what software
most distinguishes your business, what supports the
distinguishing software, and what doesn’t distinguish
your business’s success at all. Keep working at it so you
become more comfortable with the thought processes
and techniques.

Discuss each Subdomain and Bounded Context in your drawing with a few
domain experts who specialize in the different areas.

Not only will you learn a lot from them, but you’ll gain valuable experience in
listening to the experts. That’s a hallmark of implementing DDD well.

What you’ve just learned is the big-picture foundation of strategic design.

www.EBookswWorld.ir

WHY STRATEGIC DESIGN Is SO INCREDIBLY ESSENTIAL

Why Strategic Design Is So Incredibly Essential

OK, you’ve learned some DDD terminology and the meaning behind it, but
not much has been said about why this is so important. I’ve really just asserted
that it is very important and hoped that you’d believe me. But like most state-
ments of “fact,” I’d better back my assertion now. Let’s jump in on our run-
ning example, that of the projects going on at SaaSOvation. They’ve managed
to get themselves into a real jam.

Early on in their first effort with DDD, the
collaboration project team began to veer
off the path to developing a clean model.
This happened because they didn’t under-
stand strategic design, not even at its most
basic level. As is true of most developers,
their focus was on the details of Entities
(5) and Value Obijects (6), which obscured their vision of the bigger picture. They blended
their core concepts with generic ones, causing the creation of two models in one. Before
long they started to feel the pain of the design reflected in Figure 2.3. The bottom line?
They had not fully achieved the goal of implementing DDD.

A few on the SaaSOvation team asserted, “So what if collaboration concepts are
tightly coupled to Users and Permissions? We must track who did what!” The senior
developer pointed out that it’s actually not the coupling alone that the team should

Calendar Entry

. . 1 .
Discussion \ Permission

Figure 2.3 The team didn’t understand basic strategic design, which led to
mismatched concepts in the collaboration model. The dashes encircle the
problem elements.

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

be concerned with. “In the end, a Forum, a Post, a Discussion, a Calendar, and a
Calendar Entry will all be coupled to some kind of human collaborator objects. And
that’s just it. The linguistics are wrong here.” As he elaborated, he showed that Forum,
Post, Discussion, and the like were all coupled to the wrong linguistic concepts. Users
and Permissions have nothing to do with collaboration and don’t harmonize in the
true Ubiquitous Language of Collaboration. Users and Permissions are identity and
access concepts—security concerns. Every concept modeled in the Collaboration
Context—as in the Bounded Context surrounding the collaboration domain model—
should have a linguistic association to collaboration, and right now they don’t. “What
we should be focused on are collaboration concepts, such as Author and Moderator.
Those are the correct concepts and linguistic terms in a collaboration setting.”

Naming a Bounded Context

Did you notice the name Collaboration Context used here? This is the way we name
a Bounded Context, which is in the form Name-of-Model Context. In this case we
use Collaboration Context because it is the Bounded Context that contains the
domain model of the Collaboration project. We also have Identity and Access Con-
text for the Bounded Context that contains the model of the Identity and Access
project, and Agile Project Management (PM) Context for the Bounded Context that
holds the model of the Agile Project Management project.

To reiterate, at a fundamental level, the SaaSOvation developers didn’t at first
understand that Users and Permissions had nothing to do with collaboration tools.
Well, sure, they did have users of their software, and those users had to be distin-
guished one from another to determine the tasks each could perform. But collabora-
tion tools should be interested in the roles of users, rather than who they specifically
are and each little action they are permitted to perform. However, the collaboration
model now had user and permission details completely intertwined. If something
changed about the way users and/or permissions worked, a lot or all of the model
would suffer from the ripple. In fact, this problem was right at the threshold. The team
wanted to switch from a permissions approach and use role-based access manage-
ment instead. When they decided to make this switch, it made them more aware of
the strategic modeling problem at hand.

They now realized that a Forum should not be concerned with who can post a
subject, or under what conditions that is permitted. A Forum just needs to know that
an Author is doing that right now, or had done that previously. The team was now
grasping that determining who can do something is the concern of a completely sep-
arate model, and the core collaboration model only needed to know that any question
regarding who can do what had already been answered. The Forum just needed to be
given an Author who wants to Post to a Discussion. The Forum and Author are clearly
concepts of the Ubiquitous Language of the collaboration model, a Bounded Context
named Collaboration Context. User and Permission, or some similar concepts such
as Role, belonged someplace completely different. Those needed to be isolated from
the Collaboration Context.

It would be easy for the team to conclude that they only needed to factor out the
tight coupling to User and Permission. After all, there would not be anything wrong

www.EBookswWorld.ir

WHY STRATEGIC DESIGN Is SO INCREDIBLY ESSENTIAL

with separating User and Permission/Role into a separate Module. That could help
them place these concepts in a separate logical Security Subdomain within the same
Bounded Context. However, what made the best modeling choice stand out even
more boldly was the realization that the team’s next Core Domain project would
have very similar role-based access needs and would lean on the use of domain-
specific role characteristics. Clearly, Users and Roles were truly part of a Supporting
or Generic Subdomain that had an enterprise-wide, and even customer-facing, part
to play in the future.

Taking a more vigorous approach to clean modeling would help them avoid a more
insidious problem. They were probably leaning toward working their way into a Big
Ball of Mud (3). It wasn’t just that their User and Permission concepts were not prop-
erly modularized. While modularization is an essential DDD modeling tool, it doesn’t
fix linguistic misalignment.

The senior developer was very concerned that, if left unchecked, this situation
could easily lead to an undisciplined mindset that would allow more tangle to even-
tually creep in subtly. In time, as the team faced modeling another set of noncollab-
oration concepts, the Core Domain would become even less clear. They could end
up with only an implicit model with source code that wouldn’t reflect an expressive
Ubiquitous Language of Collaboration. What the team really needed to understand
was their business Domain, its Subdomains, as well as the Bounded Contexts they
were developing. Doing so would prevent the entry of the dastardly foe of strategic
design, the muck of the Big Ball of Mud. Thus, the team needed to gain a strategic
modeling mindset.

Oh, No! There’s That Word Design Again!

If you think that design is a dirty word when agile is in practice, it’s not with DDD.
Using DDD with agile is completely natural. Always keep design in check with agile.
Design need not be heavy.

Yeah, that was an important lesson to learn. They did manage to work their
way through it with a lot of research and finally got a handle on their Domain
and Subdomains. How they did that will be presented soon.

\4 v
Alignment with the DDD Community

The running examples in this book are provided as three Bounded Contexts.
These Bounded Contexts are likely different from those you work with. The
examples present fairly typical modeling situations. However, not everyone
would agree that Users and Permissions should be separated out of a given
Core Domain. Perhaps in some cases it might make sense to intertwine
them with your Core model. As always, that is the choice of a specific team.
In my experience, however, this is one of the basic problems encountered by
those new to DDD, and one that misleads their implementation efforts into

www.EBookswWorld.ir

v Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

an unnecessarily messy result. Another common misstep would be to meld
the collaboration and agile project management models into one. These are
only a few common problems. Other common modeling errors are discussed
in each chapter.

At a minimum, the problems posed here, and those that follow, are repre-
sentative of the kinds of modeling mistakes that are made when teams fail
to understand the importance of linguistic drivers and Bounded Contexts.
Thus, even if you disagree with the specific example problems, both the
problems and solutions are still applicable in a general way to all DDD proj-
ects, because they all focus on the linguistics of a given Bounded Context.

My goal is to teach the principles of implementing DDD using the simplest,
yet nontrivial, examples possible. | can’t afford to allow the examples to get
in the way of my teaching and your learning. If | demonstrate that identity and
access management, collaboration, and agile project management all have
separate linguistics, readers are well served by what the examples empha-
size. Since it is each team’s choice to discover the linguistic drivers that
they find important, and that help them achieve the vision of their domain
experts, assume that there is no mistake in the “ultimate correct” conclu-
sions reached by the SaaSOvation developers and the modeling choices
they made in their DDD implementation journey.

All of my guidance regarding Subdomains and Bounded Contexts is closely
aligned with that of the broader DDD community, as it reflects my own expe-
rience. Other DDD leaders may have a slightly different focus. However,
my explanations definitely provide a firm foundation for any team to move
forward without ambiguity. Clearing the murky areas of DDD is the most
important service to the community, and it is my primary goal. It should be
your goal to put these guidelines to use in the most practical way to benefit
your project.

A A

Real-World Domains and Subdomains

I have something more to tell you about domains. They have both a problem
space and a solution space. The problem space enables us to think of a stra-
tegic business challenge to be solved, while the solution space focuses on how
we will implement the software to solve the problem of the business challenge.
Here’s how that fits into what you’ve already learned:

¢ The problem space is the parts of the Domain that need to be developed to
deliver a new Core Domain. Assessing the problem space involves exam-
ining Subdomains that already exist and those that are needed. Thus,

www.EBookswWorld.ir

REAL-WORLD DOMAINS AND SUBDOMAINS

your problem space is the combination of the Core Domain and the Sub-
domains it must use. The Subdomains in the problem space are usually
different from project to project since they are used to explore a current
strategic business problem. This makes Subdomains a very useful tool in
assessing the problem space. Subdomains allow us to rapidly view differ-
ent parts of the Domain that are necessary to solve a specific problem.

e The solution space is one or more Bounded Contexts, a set of specific
software models. That’s because the Bounded Context is a specific solu-
tion, a realization view, once developed. The Bounded Context is used to
realize a solution as software.

It is a desirable goal to align Subdomains one-to-one with Bounded Con-
texts. Doing so expressly segregates domain models into well-defined areas of
business by objective, melding the problem space with the solution space. In
practice this is not always possible, but it can work in a greenfield effort. Con-
sidering a legacy system, and probably a Big Ball of Mud, however, Subdomains
often intersect Bounded Contexts, similar to what we discussed regarding Fig-
ure 2.1. In a large and complex enterprise we can employ an assessment view
to understand our problem space, which can save us from making costly mis-
takes. We can conceptually divide a single, large Bounded Context using two
or more Subdomains, or multiple Bounded Contexts as part of a single Subdo-
main. Consider an example to help clarify the difference between the problem
space and the solution space.

Imagine a large, monolithic system, classified as an ERP application. Strictly
speaking, an ERP may be thought of as a single Bounded Context. However,
since ERP systems provide many modular business services, there’s a benefit to
thinking of distinct modules as different Subdomains. For example, we could
divide the inventory module and purchasing module into separate, logical Sub-
domains. True, these modules aren’t available through completely different
systems. Both are part of the same ERP. Still, each provides a very different set
of services to the business domain. For analytical discussions let’s name these
as separate Subdomains, the Inventory Subdomain and the Purchasing Subdo-
main. Continuing with the example, we’ll see why doing so is useful.

As a core business initiative, the organization whose Domain is represented
in Figure 2.4 (a concrete example using the template from Figure 2.2) starts
planning the design and development of a specialized domain model to reduce
the cost of doing business. The model will provide decision-making tools to be
used by purchasing agents. Algorithms discovered over years of manual, human
process must now be automated by software to ensure that they are always used
by all purchasing agents without error. This new Core Domain will make the

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

Domain

Optimal Acquisition
Context

Purchasing
Context

Inventory
(Supporting)

Inventory Context

Resource
Planning
(Generic)

Mapping
Context
(External)

Figure 2.4 The Core Domain and other Subdomains involved in purchasing and
inventory. This view is limited to select Subdomains used for specific problem space
analysis, not the entire Domain.

organization more competitive by identifying better deals more quickly, and
then ensuring that the needed inventories are met. To accurately stock inven-
tory, use of the previously examined Forecasting System of Figure 2.1 would
help here as well.

Before we can execute a specific solution, we need to make an assessment of
the problem space and the solution space. Here are some questions that should
be answered in order to steer your project in the right direction:

e What is the name of and vision for the strategic Core Domain?

e What concepts should be considered part of the strategic Core Domain?

What are the necessary Supporting Subdomains and the Generic Subdomains?

Who should do the work in each area of the domain?

Can the right teams be assembled?

www.EBookswWorld.ir

REAL-WORLD DOMAINS AND SUBDOMAINS

If we don’t understand the vision and goals of the Core Domain and the
areas of the Domain that are needed to support it, we won’t be able to strategi-
cally take advantage of them and avoid associated pitfalls. Keep problem space
assessment high-level, but make it thorough. Be sure that all stakeholders are
aligned with and committed to successfully delivering on the vision.

Whiteboard Time

Take a moment to look at your whiteboard work and consider: What is your
problem space? Recall that it is the combination of the strategic Core Domain
and the Subdomains supporting it.

When you have a good understanding of the problem space, you then turn
to the solution space. The first assessment will contribute knowledge to the
second. The solution space will be strongly influenced by the existing systems
and technologies, and those that are to be newly created. Here we really need
to think in terms of cleanly separated Bounded Contexts because we are look-
ing at the Ubiquitous Language of each. Consider these crucial questions:

e What software assets already exist, and can they be reused?
e What assets need to be acquired or created?
¢ How are all of these connected to each other, or integrated?
¢ What additional integration will be needed?

¢ Given the existing assets and those that need to be created, what is the
required effort?

¢ Do the strategic initiative and all supporting projects have a high proba-
bility of success, or will any one of them cause the overall program to be
delayed or even fail?

e Where are the terms of the Ubiquitous Languages involved completely
different?

e Where is there overlap and sharing of concepts and data between Bounded
Contexts?

® How are shared terms and/or overlapping concepts mapped and trans-
lated between the Bounded Contexts?

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

e Which Bounded Context contains the concepts that address the Core
Domain and which of the [Evans] tactical patterns will be used to model it?

Remember, the efforts in developing the solutions in the Core Domain are a
key business investment!

The specialized purchasing model described previously and pictured in
Figure 2.4—the one that captures decision-making tools and algorithms—
represents the solution for the Core Domain. The domain model will be imple-
mented in an explicit Bounded Context: the Optimal Acquisitions Context.
This Bounded Context aligns one-to-one with the Subdomain, the Optimal
Acquisitions Core Domain. Being aligned with just one Subdomain, and its
carefully crafted domain model, will make it one of the best Bounded Contexts
in this business domain.

Yet another Bounded Context, the Purchasing Context, will be developed in
order to refine some technical aspects of the purchasing process as a helper to
the Optimal Acquisitions Context. These refinements don’t reveal any special
knowledge about an optimal approach to purchasing. They just make it easier
for the Optimal Acquisitions Context to interact with the ERP at an arm’s
length. It’s just a convenient model that operates against the ERP published
interface. The new Purchasing Context and the preexisting ERP purchasing
module fall within the Purchasing (Supporting) Subdomain.

The ERP purchasing module is as a whole a Generic Subdomain. That’s
because you could replace this Subdomain with any off-the-shelf purchasing
system as long as it fulfills your basic business needs. However, being used
along with the new Purchasing Context in the Purchasing Subdomain makes it
work in a Supporting fashion.

You Can’t Change the World of Bad Software Design

In a typical brownfield enterprise you are going to have undesirable situations like
those illustrated in Figures 2.1 and 2.4. This means that Subdomains in poorly
designed software will not align in an ideal way, one-to-one, with Bounded Con-
texts. You can’t change the world of bad software design. You can only hope to
implement proper DDD in projects you work on. In the end you will have to inte-
grate with and even work in brownfield domains, so be prepared to exercise the
techniques taught in the first one-third of this chapter as you analyze the multiple
implicit models found in a single, brown Bounded Context.

Sticking with Figure 2.4, the Optimal Acquisition Context must also inter-
act with the Inventory Context. Inventory manages warehousing items. It uses
the ERP inventory module, which falls within the Inventory (Supporting) Sub-
domain. As a convenience to delivery contractors, the Inventory Context can
provide maps and directions to each of its warehouses from an origin loca-
tion by using an external geographical mapping service. From the Inventory

www.EBookswWorld.ir

REAL-WORLD DOMAINS AND SUBDOMAINS

Context point of view, there is nothing special about mapping. There are sev-
eral geographical mapping services to choose from, and there may be advan-
tages to changing the chosen mapping system over time. The mapping service
is itself a Generic Subdomain, but it is consumed by a Supporting Subdomain.

Note these key points as viewed from the perspective of the company devel-
oping the Optimal Acquisition Context. In the solution space the geographical
mapping service is not part of the Inventory Context, although in the prob-
lem space it is considered part of the Inventory Subdomain. In the solution
space, even if the mapping services are provided by a simple component-based
APIL, it is in a different Bounded Context. The Ubiquitous Languages of Inven-
tory and of Mapping are mutually exclusive, which means they are in differ-
ent Bounded Contexts. When the Inventory Context uses something from the
external Mapping Context, the data may go through at least some minimal
translation to be properly consumed.

On the other hand, from the point of view of the external business organi-
zation that develops and offers the mapping service for subscription, mapping
is a Core Domain. That external organization has its own domain, or realm of
business operations. It must remain competitive, constantly refining its domain
model in order to retain subscribers and attract new ones. If you were the CEO
of the mapping organization, you’d make sure to give customers, including the
one subscriber under discussion, every reason to stick with your services rather
than move on to the competition. However, that doesn’t change the perspec-
tive of the subscriber that is developing its inventory system. To the inventory
system it is still a Generic Subdomain. It could, if it was to its advantage, sub-
scribe to a different mapping service.

Whiteboard Time

What are the Bounded Contexts in your solution space? At this point you
should be able to refer back to your whiteboard diagram for a good idea. Still,
you may be a bit surprised as we dig deeper into how to properly use Bounded
Contexts. So be ready for possible refinements. We are doing agile develop-
ment, after all.

So, for the balance of this chapter we are going to shift gears and consider
the importance of Bounded Contexts as an essential solution space modeling
tool for DDD. In Context Maps (3) the discussion primarily stresses how to
deal with mapping different, but related, Ubiquitous Languages, by integrating
their Bounded Contexts.

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

Making Sense of Bounded Contexts

Don’t forget, a Bounded Context is an explicit boundary within which a
domain model exists. The domain model expresses a Ubiquitous Language as a
software model. The boundary is created because each of the model’s concepts
inside, with its properties and operations, has a special meaning. If you are a
member of such a modeling team, you’d know exactly the meaning of each of
the concepts in your Context.

Bounded Context Is Explicit and Linguistic

A Bounded Context is an explicit boundary within which a domain model exists.
Inside the boundary all terms and phrases of the Ubiquitous Language have specific
meaning, and the model reflects the Language with exactness.

It is often the case that in two explicitly different models, objects with the
same or similar names have different meanings. When an explicit boundary
is placed around each of the two models individually, the meaning of each
concept in each Context is certain. Thus, a Bounded Context is principally a
linguistic boundary. You should use these points of reasoning as a touchstone
to determine if you are correctly using Bounded Contexts.

Some projects fall into the trap of attempting to create an all-inclusive
model, one where the goal is to get the entire organization to agree on concepts
with names that have only one global meaning. Approaching a modeling effort
in this way is a pitfall. First, it will be nearly impossible to establish agreement
among all stakeholders that all concepts have a single, pure, and distinct global
meaning. Some organizations are so large and complex that you’d never be able
to get all stakeholders together, let alone establish total meaningful agreement
among them. Even if you are working in a smaller company with relatively few
stakeholders, establishing an enduring definition of a single global concept is
still unlikely. Thus, the best position to take is to embrace the fact that dif-
ferences always exist and apply Bounded Context to separately delineate each
domain model where differences are explicit and well understood.

A Bounded Context does not dictate the creation of a single kind of project
artifact. It’s not an individual component, document, or diagram.? So it’s not a
JAR or DLL, but these can be used to deploy a Bounded Context as described
later in the chapter.

Consider this sharp contrast between an Account in a Banking Context and
an Account in a Literary Context as presented in Table 2.1.

3. You can draw a diagram of one or more Bounded Contexts as seen here and in
Context Maps. However, the diagram is not the Bounded Context.

www.EBookswWorld.ir

MAKING SENSE OF BOUNDED CONTEXTS

Table 2.1 The Diversity of Meanings That the Term Account Can Have

Context Meaning Example

Banking Context An Account maintains a record Checking Account and Sav-
of debit and credit transactions ings Account
indicating a customer’s current
financial state with the bank.

Literary Context ~ An Account is a set of literary Amazon.com sells the book
expressions about one or more Into Thin Air: A Personal
related events over a time span. Account of the Mt. Everest

Disaster.

Looking at Figure 2.5, there is nothing characteristic of the Account types
by name that distinguishes them. It is only by looking at the name of each con-
ceptual container—its Bounded Context—that you understand the differences
between the two.

These two Bounded Contexts are probably not in the same Domain. The
point is to demonstrate that context is king.

Context Is King

Context is king, especially when implementing DDD.

In the financial world the word security is often used. The Securities and
Exchange Commission (SEC) restricts the term security to use with equities. Now
consider this: Futures contracts are commodities and not under the jurisdiction of
the SEC. However, some financial firms call Futures by the name security as a refer-
ence but mark them with the Standard Type (6) Futures.

Is that the best Language for a Future? It depends on the Domain it’s used in.
Some would obviously say it is, while others would insist that it isn’t. Context is also
cultural. Inside a given firm that trades Futures, it may align best with the culture to
use the term Security in a specific Ubiquitous Language.

Account Account

Banking Context Literary Context

Figure 2.5 Account objects in two different Bounded Contexts have completely
different meanings, but you know that only by considering the name of each
Bounded Context.

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

It is often the subtly different meanings that are most commonly faced in
your enterprise. Here’s why. The name chosen by each team in each Context
is always made with the Ubiquitous Language in mind. You never name a con-
cept arbitrarily, such as to purposely distinguish it from a term in a different
Context. Consider two banking Contexts, one for checking accounts and one
for savings accounts.* We don’t need to give the name Checking Account to
the object in the Checking Context or the name Savings Account to the object
in the Savings Context. Both concepts may safely be named Account because
each Bounded Context distinguishes subtle meanings. Of course, there is no
rule that says that more meaning cannot be added to these names. That’s the
decision of your team.

When integrations are needed, mapping must be done between Bounded
Contexts. This can be a complex aspect of DDD and calls for a corresponding
amount of care. We don’t usually use an object instance outside its bound-
ary, but related objects in multiple contexts may share some subset of common
state.

Here’s another example with a common name used in multiple Bounded
Contexts, but this time within the same Domain. Consider the modeling chal-
lenges of a publishing organization that must deal with the various stages of
the life cycle of books. Roughly speaking, publishers deal with similar stages
as a book progresses through these different Contexts:

¢ Conceptualizing and proposing a book

¢ Contracting with authors

¢ Managing the book’s authorship and editorial process

¢ Designing the book layout, including illustrations

¢ Translating the book into other languages

¢ Producing the physical print and/or electronic editions

¢ Marketing the book

¢ Selling the book to resellers and/or directly to consumers
¢ Shipping a physical book to resellers and consumers

Throughout each of these stages, is there one single way to properly model
a Book? Absolutely not. At each of these stages the Book has different defini-
tions. It is not until contract that the Book has a tentative title, which might

4. This assumes a Domain where separate Bounded Contexts are used for checking
and savings accounts.

www.EBookswWorld.ir

MAKING SENSE OF BOUNDED CONTEXTS

change during editing. During the authorship and editorial phases, the Book
has a collection of drafts with comments and corrections, along with a final
draft. Graphic designers create page layouts. Production uses the layouts and
to create press images, “blue lines,” and finally plates. Marketing doesn’t need
most of the editorial or production artifacts, perhaps just cover art and high-
level descriptions. For shipping, the Book might carry only an identity, inven-
tory location, availability count, a size, and a weight.

What would happen if you tried to design a central model for Books that
facilitated all the stages in its life cycle? There would be a high degree of con-
fusion, disagreement, and contention, and little deliverable software. Even if
a correct common model could be delivered from time to time, it would likely
meet the needs of all clients only occasionally and far too briefly.

To counter that kind of undesirable churn and burn, such a publisher mod-
eling with DDD would use separate Bounded Contexts for each of the life cycle
stages. In every one of the multiple Bounded Contexts, there is a type of Book.
The various Book objects would share an identity across all or most of the
Contexts, perhaps first established at the conceptualization stage. However,
the model of a Book in each Context would be different from all others. That’s
fine, and in fact the way it should be. When the team of a given Bounded
Context speaks about a Book, it means exactly what they require for their
Context. The organization embraces the natural need for differences. This is
not to say that such positive outcomes are trivial to achieve. Nonetheless, using
explicit Bounded Contexts, software gets delivered regularly with incremental
improvements that address the specific needs of the business.

At this point let’s take a quick look at the solution used by the SaaSOvation
collaboration team to solve the modeling challenge as shown in Figure 2.3.

As indicated previously, in a Collaboration Context domain experts don’t
describe the people who employ the collaboration facilities as Users with Per-
missions. Rather, they talk about these collaborators in terms of the roles they
play in the Context, as Authors, Owners, Participants, and Moderators. Some
contact information may exist there, but probably not all of it. On the other
hand, it’s in an Identity and Access Context that we talk about Users. In that
Context User objects have usernames and detailed information about the indi-
vidual person, including detailed ways to contact the person.

Yet, we don’t create an Author object out of thin air. Every collaborator
must be prequalified. We confirm the existence of a User playing the appropri-
ate Role within the Identity and Access Context. The attributes of an authenti-
cation descriptor are passed with requests to the Identity and Access Context.
To create a new collaborator object, such as a Moderator, we use a subset of
User attributes and a Role name. The exact details of how we obtain object
state from a separate Bounded Context is not important (although later on

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

Moderator

Collaboration Context

Identity and Access
Context

Figure 2.6 The Moderator object in its Context is based on User and Role in a
different context.

it’s explained extensively). What’s important now is that these two different
concepts are similar and different at the same time, and that the differences
are determined by the Bounded Context. Figure 2.6 exemplifies User and Role
in their own Context being used to create a Moderator in a different Context.

Whiteboard Time

¢ See if you can identify some subtly different concepts that exist in multi-
ple Bounded Contexts in your Domain.

¢ Determine whether the concepts are properly separated, or if developers
simply copied code into both.

Generally you can determine a proper separation because the similar objects have
different properties and operations. In that case the boundary has separated the con-
cepts appropriately. However, if you see the exact same objects in multiple contexts,
it probably means there is some modeling error, unless the two Bounded Contexts
are using a Shared Kernel (3).

Room for More than the Model

A Bounded Context does not necessarily encompass only the domain model.
True, the model is the primary occupant of the conceptual container. How-
ever, a Bounded Context is not limited to the model only. It often marks off a
system, an application, or a business service.> Sometimes a Bounded Context

5. Admittedly the meanings of system, application, and business service are not
always agreed upon. However, in a general sense I intend these to mean a complex
set of components that interact to realize a set of significant business use cases.

www.EBookswWorld.ir

MAKING SENSE OF BOUNDED CONTEXTS

houses less than this if, for example, a Generic Subdomain can be produced
without much more than a domain model. Consider portions of a system that
are typically part of a Bounded Context.

When the model drives the creation of a persistence database schema, the
database schema will live inside the boundary. This is the case because the
schema is designed, developed, and maintained by the modeling team. It means
that the database table names and column names, for example, will directly
reflect names used in the model, rather than names translated to another style.
For example, say our model has a class named BacklogItem and that class has
Value Object properties named backlogItemId and businessPriority:

public class BacklogItem extends Entity {

private BacklogItemId backlogItemId;
private BusinessPriority businessPriority;

We would expect to see those mapped to the database in like manner:

CREATE TABLE ‘tbl_backlog_item (

“backlog_item_id_id' varchar (36) NOT NULL,
‘business_priority ratings_benefit® int NOT NULL,
‘business_priority_ratings_cost’ int NOT NULL,
‘business_priority_ratings_penalty' int NOT NULL,
‘business_priority_ratings_risk’' int NOT NULL,

) ENGINE=InnoDB;

On the other hand, if a database schema is preexisting or if a separate team of
data modelers forces contradicting designs on the database schema, the schema
does not live within the Bounded Context occupied by the domain model.

When there are User Interface (14) views that render the model and drive
execution of its behavior, these are also inside the Bounded Context. However,
this does not mean that we model the Domain in the user interface, causing
domain model anemia. We want to reject the Smart UI Anti-Pattern [Evans]
and any temptation to drag domain concepts that belong in the model into
other areas of the system.

Users of the system/application are not always limited to humans and
may include other computer systems. Components such as Web services may
exist. We might use RESTful resources to provide interaction with the model
as an Open Host Service (3, 13). Or perhaps we deploy Simple Object Access

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

Protocol (SOAP) or messaging service endpoints instead. In all such cases, the
service-oriented components are inside the boundary.

Both user interface components and service-oriented endpoints delegate to
Application Services (14). These are different kinds of services, generally pro-
viding security and transaction management, and acting as Facade [Gamma et
al.] to the model. They are task managers, transforming use case flow requests
into the execution of domain logic. Application Services are also inside the
boundary.

More on Architectural and Application Concerns

If you want to consider how DDD fits with various architectural styles, see Archi-
tecture (4). Also, Application Services are treated specially in Application (14). There
are helpful diagrams and code snippets in both chapters.

The Bounded Context primarily encapsulates the Ubiquitous Language
and its domain model, but it includes what exists to provide interaction with
and support of the domain model. Pay attention to keeping the aspects of each
Architectural concern in their proper place.

Whiteboard Time

¢ Look at each of the Bounded Contexts you identified in your whiteboard
diagram. When you think of those, do you imagine components other
than the domain model as being within the boundary?

o If there is a user interface and a set of Application Services, make sure
they are inside the boundary. (You have flexibility in how you represent
these. See Figures 2.8, 2.9, and 2.10 for some ideas for representing vari-
ous components.)

e If your database schema or other persistence store was developed for your
model, make sure it is also inside the boundary. (Figures 2.8, 2.9, and
2.10 provide one way to represent a database schema.)

Size of Bounded Contexts

How many Modules (9), Aggregates (10), Events (8), and Services (7)—the
primary building blocks of a domain model created using DDD—should a
Bounded Context contain? That’s a bit like asking, “How long is a piece of
string?” A Bounded Context should be as big as it needs to be in order to fully
express its complete Ubiquitous Language.

www.EBookswWorld.ir

MAKING SENSE OF BOUNDED CONTEXTS

Extraneous concepts that are not truly part of the Core Domain should be
factored out. If a concept is not in your Ubiquitous Language, it should not
be introduced in your model in the first place. Still, if one or more extraneous
concepts creep in, get rid of them. They probably belong in a separate Support-
ing or Generic Subdomain, or in no model at all.

Be careful not to mistakenly factor out concepts that do truly belong in the
Core Domain. Your model must completely exhibit the richness of the Ubiq-
uitous Language in context, leaving out nothing essential. Clearly, good judg-
ment is needed. Tools such as Context Maps (3) can help shape your team’s
good judgment.

In the film Amadeus® there is a scene where the Austrian emperor Joseph
IT communicates to Mozart that the musical work Mozart had just performed
was a quality piece, but one that contained “simply too many notes.” Mozart
aptly replies to the emperor, “There are just as many notes as I required, nei-
ther more nor less.” This reply well illustrates an essential mentality to take
into stepping off contextual boundaries around our models. There is a very
appropriate number of domain concepts to model in a given Bounded Context,
neither more nor less.

Of course this is rarely as easy for each of us to achieve as when Mozart
would compose a symphony with the ease of writing a letter to a friend. At any
given time we may have missed an opportunity to refine the domain model to
some degree. During each iteration we challenge our assumptions about the
model, which forces us to add or remove a concept or change the way con-
cepts behave and collaborate. But the point is that we face that challenge time
and again, and using DDD principles we give serious consideration to what
belongs and what does not. We use Bounded Context and tools such as Con-
text Maps to help analyze what is truly part of a Core Domain. We don’t resort
to applying arbitrary segregation rules based on non-DDD principles.

The Beautiful Sound of Domain Models

If our models were music, they would have the unmistakable sound of completeness,
purity, power, and possibly even elegance and beauty.

If we constrain a given Bounded Context too stringently, gaping holes
result from vital but missing contextual concepts. And if we keep piling con-
cepts onto the model that don’t express the core of the business problem being
solved, we will muddy the waters so much that we will fail to observe and
understand what is essential. Our goal? If our models were music, they would
have the unmistakable sound of completeness, purity, power, and possibly even

6. Orion Pictures, Warner Brothers, 1984.

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

elegance and beauty. The number of notes—the Modules, Aggregates, Events,
and Services inside—would be neither more nor less than what the correct
design requires. Those “listening” in on the model would never have to ask
what that strange “sound” is in the middle of an otherwise harmonious sym-
phony. Nor would they be distracted by moments of complete silence caused by
a missing page or two of musical notes.

What could lead us into creating a wrong-sized Bounded Context? We
might mistakenly allow architectural influences, rather than the Ubiquitous
Language, to guide us. Perhaps the way a platform, framework, or some infra-
structure is typically used to package and deploy components could unduly
influence the way we think about Bounded Contexts, treating them as techni-
cal rather than linguistic boundaries.

Another trap would be to divide Bounded Contexts in order to distribute
tasks to available developer resources. Technical leads and project managers
might think it is easier for developers to manage smaller tasks. While that
might be the case, enforcing boundaries for the sake of task distribution plays
false to the linguistic motivations of contextual modeling. In fact, there is no
need to impose fake boundaries in order to manage technical resources.

The important question is, What does the Language of the domain experts
indicate about the real contextual boundaries?

When a fake Context is formulated in order to address an architectural com-
ponent or developer resources, the Language becomes fragmented and lacks
expressiveness. Hence, focus on the Core Domain with the concepts that nat-
urally fit together into a single Bounded Context, according to the Language
spoken by domain experts. After you do so, you can identify the components
that naturally fit in a single, cohesive model. Keep all such components in the
Bounded Context.

Sometimes the problem of creating miniature Bounded Contexts can be
avoided with careful application of Modules. Given an analysis of a set of ser-
vices that are spread across multiple “Bounded Contexts,” you will find that
judicious use of Modules could reduce the total number of actual Bounded
Contexts to just one. Modules can also be used as a means to divide developer
responsibilities, hence managing task distribution using a more appropriate
tactical approach.

Whiteboard Time

¢ Draw a Bounded Context of your current model as a big, irregularly
shaped ellipse.

www.EBookswWorld.ir

MAKING SENSE OF BOUNDED CONTEXTS

I Even if you don’t yet have an explicit model, still think of the Language within.

¢ Inside the ellipse, write the names of the primary concepts that you are
sure your code implements. See if you can spot concepts that should be
there but are missing, and those that are there but shouldn’t be. What
should you do about each of those problems?

Be Careful to Practice DDD Using Linguistic Drivers

The bottom line: If you are not following the Language drivers, you are not working
with and listening to domain experts to create the Bounded Context. Think care-
fully about the size of your Bounded Contexts. Don’t be too quick to miniaturize
them.

Aligning with Technical Components

It doesn’t hurt to think about a Bounded Context in terms of the technical
components that house it. Just keep in mind that technical components don’t
define the Context. Let’s consider some common ways that they are composed
and deployed.

When using an IDE such as Eclipse or Intelli] IDEA, a Bounded Context is
often housed in a single project. When using Visual Studio and .NET, you may
favor dividing your user interface, Application Services, and domain model
into separate projects within the same solution, or you may decide on another
division. The source tree of the project may be limited to the domain model
itself, or it may contain surrounding Layers (4) or Hexagonal (4) areas. There
is a lot of flexibility here. Using Java, the top-level package generally defines
the highest-level Module name for the Bounded Context. Using one of the pre-
ceding examples, that could be done something like this:

com.mycompany .optimalpurchasing

The source tree of this Bounded Context would be further divided accord-
ing to Architectural responsibilities. Here’s a view of the project’s possible sec-
ond-level package names:

com.mycompany .optimalpurchasing.presentation
com.mycompany .optimalpurchasing.application
com.mycompany .optimalpurchasing.domain.model

com.mycompany .optimalpurchasing.infrastructure

Even with these modular divisions, only a single team should work in a single
Bounded Context.

www.EBookswWorld.ir

v Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

A Single Team for a Single Bounded Context

Assigning a single team to work on a single Bounded Context is not an attempt to
limit flexibility to team organization. It’s not as if teams can’t be arranged as needed,
or that individual members of one team cannot be used on one or more other proj-
ects. A company should use people in the way that best fits its needs. This is simply
stating that it is best for one well-defined, cohesive team of domain experts and
developers to focus on one Ubiquitous Language modeled in an explicit Bounded
Context. If you assign two or more distinct teams to one Bounded Context, each
team will contribute to a divergent and ill-defined Ubiquitous Language.

There is also the possibility that two teams will cooperate in the design of
a Shared Kernel, which is actually not a typical Bounded Context. This Context
Mapping pattern forms an intimate relationship between two teams, which requires
ongoing consultation when model changes are deemed necessary. This modeling
approach is less common and is generally avoided if possible.

When using Java, we may technically house a Bounded Context in one or
more JAR files, including WAR or EAR files. The desire for modularization
may have an influence here. Loosely coupled parts of the domain model could
be housed in separate JAR files, enabling them to be deployed independently
by version. This would be especially useful with large models. Creating mul-
tiple JAR files of a single model would provide the advantage of managing
versions of its elements using OSGi bundles or using Java 8 Jigsaw modules.
Thus, various high-level modules, their versions, and their dependencies could
be managed as bundles/modules. There are at least four such bundles/modules
represented by the preceding DDD-based, second-level Modules, and possibly
more.

For a native Windows Bounded Context, such as for the .NET platform,
deployment would be done using separate assemblies in DLL files. Think of
a DLL as having similar deployment motivations to those of JAR described
previously. The model could be partitioned for deployment in similar ways. All
common language runtime (CLR) modularization is managed through assem-
blies. The specific version of an assembly and the versions of dependent assem-
blies are recorded in the assembly’s manifest. See [MSDN Assemblies].

Sample Contexts

Because the samples represent a greenfield development environment, the three
chosen Bounded Contexts eventually align in the most desirable way, one-to-
one, with their respective Subdomains. The team wasn’t successful in aligning
them one-to-one from the start, which teaches a crucial lesson. The ultimate
outcome is shown in Figure 2.7.

www.EBookswWorld.ir

SaMPLE CONTEXTS

Domain

Agile PM (Core)

\
1
1
Agile PM Context ,'

Collaboration (Supporting)

)
/

Collaboration
Context

Identity and Access
(Generic)

ldentity and Access
Context

Figure 2.7 The assessment view of the sample Bounded Contexts in fully
aligned Subdomains

The following material demonstrates how the three models form a realistic,
modern enterprise solution. There are always multiple Bounded Contexts in
any project in the real world. Integration among them is an important scenario
in today’s enterprise. In addition to Bounded Context and Subdomains, we
must also grasp Context Mapping with Integration (13).

Let’s look at the three Bounded Contexts provided as sample DDD imple-
mentations.” They are the Collaboration Context, the Identity and Access
Context, and the Agile Project Management Context.

Collaboration Context

Business collaboration tools are one of the most important areas for creating
and facilitating a synergistic workplace in the fast-paced economy. Anything

7. Note that Context Maps provides more detail about the actual three sample
Bounded Contexts, how they are related to each other, and how they are
integrated. Still, more depth is concentrated on the Core Domain.

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

that can help increase productivity, transfer knowledge, promote idea sharing,
and associatively manage the creative process so results will not be misplaced
is a boon to the corporate success equation. Whether the software tools offer
features for broad communities or for narrow audiences targeted to daily activ-
ities and projects, corporations are flocking to the best-of-breed online tools,
and SaaSOvation wants a share of that market.

The core team tasked to design and implement the Collaboration Context
was given a first-release mandate to support the following minimum suite
of tools: forums, shared calendars, blogs, instant messaging, wiki, message
boards, document management, announcements and alerts, activity tracking,
and RSS feeds. While supporting a broad array of features, each of the indi-
vidual collaboration tools in the suite can also support targeted, narrow team
environments, yet they remain in the same Bounded Context because they are
all part of collaboration. Unfortunately this book cannot provide the entire
collaboration suite. However, we do explore parts of the domain model for the
tools represented in Figure 2.8, namely, Forums and Shared Calendars.

Now, to the team experience . . .

Collaboration Context

<<aggregate root>> <<domain event>> <<domain event>> <<domain event>>

Forum ForumClosed ForumReopened ForumDescriptionChanged

<<value object>>

<<value object>>

<<aggregate root>> <<domain event>> <<domain event>>

Author Owner Discussion DiscussionStarted ForumSubjectChanged

<<value object>>

<<value object>> <<aggregate root>> <<aggregate root>> <<domain event>>

Creator Participant Calendar Post PostedToDiscussion

<<value object>>

<<aggregate root>> <<domain event>>

Moderator CalendarEntry CalendarEntryScheduled

A\

Invitee Repetition [— Time Span

Collaboration Schema

Figure 2.8 The Collaboration Context. Its Ubiquitous Language determines what belongs
inside the boundary. For readability, some model elements are not shown. The same goes for
user interface (UI) and Application Service components.

www.EBookswWorld.ir

SaMPLE CONTEXTS

Tactical DDD was used from the inception of product develop-
ment, but the team was still learning some of DDD'’s finer points.
In fact, they were really using what amounted to DDD-Lite,
employing the tactical patterns mostly for a technical payoff.
Sure, they were attempting to capture the Ubiquitous Language
of collaboration, but they didn’t understand that the model had
clear limits that couldn’t be stretched too far. As a result, they
made a mistake by baking security and permissions into the
collaboration model. The team realized well into the project that designing security and
permissions as part of their model was not as desirable as they once thought.

Early on they were not overly concerned about or fully aware of the danger of
constructing an application silo. Yet, without using a central security provider, that’s
just what would happen. It constituted mixing two models in one. Soon enough they
learned that the confusing entanglement that resulted from blending security con-
cerns into their Core Domain had backfired. Right in the middle of core business
logic, in behavioral methods, developers would check for client permissions to carry
out the request:

public class Forum extends Entity {

public Discussion startDiscussion (
String aUsername, String aSubject) {
if (this.isClosed()) {
throw new IllegalStateException("Forum is closed.");

User user = userRepository.userFor (this.tenantId(), aUsername) ;

if (!user.hasPermissionTo (Permission.Forum.StartDiscussion)) {
throw new IllegalStateException (
"User may not start forum discussion.");

String authorUser = user.username () ;
String authorName = user.person() .name () .asFormattedName () ;
String authorEmailAddress = user.person().emailAddress();

Discussion discussion = new Discussion/(
this.tenant (), this.forumId(),
DomainRegistry.discussionRepository () .nextIdentity (),
authorUser, authorName, authorEmailAddress,
aSubject) ;

return discussion;

www.EBookswWorld.ir

v Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

Did I Just See a Train Wreck?

Some developers consider the chaining of multiple expressions in a row, such as
user.person().name().asFormattedName (), a “train wreck.” Others consider
it expressiveness in code. I am not addressing either of those viewpoints. Rather, I
am focused on the muddled model. The “train wreck” is another topic entirely.

This was really bad design. Developers should not have been able to reference
User here, let alone query a Repository (12) for one. Even Permission should
have been out of reach. It was possible because these were wrongly designed as part
of the collaboration model. What is more, this distortion caused them to overlook a
concept that they should have modeled, namely, Author. Instead of gathering three
related attributes into an explicit Value Object, the developers seemed to be satisfied
to deal with the data elements separately. Security was on their minds rather than
collaboration.

This was not an isolated case. Every collaboration object had similar issues. As
the risk of creating a Big Ball of Mud was becoming imminent, the team decided the
code had to change. Besides, the team also wanted to switch from a permissions
approach to security and use role-based access management instead. What would
they do?

Being users of agile development methodologies and eventual builders of agile
project management tools, they were not afraid to employ refactoring efforts just in
time. So iteratively refactor they would. Still the question remained: What were the
best DDD patterns to get them out of their bad situation, a deep bog of ill-placed
code?

As a few on the team spent extra hours poring over the [Evans] tactical building
block patterns, they realized that these were not the answer. They had followed the
guidance in those patterns to create Aggregates by composing Entities and Value
Objects in a technical way. They used Repositories and Domain Services (7) as
well. Nonetheless, they were missing something important, and possibly this pointed
to the need to pay closer attention to the second half of [Evans].

Finally doing so, they noted some empowering techniques. As they pored over
“Part Ill: Refactoring toward Deeper Insight” [Evans], it was obvious that DDD
offered far more than they once thought. With the techniques gleaned from that part
of [Evans], they now knew how they could improve their current model by paying
closer attention to the Ubiquitous Language. By spending more quality time with their
domain experts, they could produce a model that more closely resembled their men-
tal model. But that still didn’t address the security morass that distorted their vision of
a pure collaboration domain model.

Further into the book there was “Part IV: Strategic Design” [Evans]. One of the
team members found what proved to be crucial guidance that would eventually lead
them to the realization of a Core Domain. One of the first new tools employed was
Context Maps, which led to a better understanding of their current project situation.
Although a simple exercise, drawing the first Context Map and formulating discus-
sions about their predicament was a big step forward. It led to productive analysis
toward a resolution, which eventually unblocked the team.

www.EBookswWorld.ir

SaMPLE CONTEXTS

They now had a few options to make interim refinements, enabling them to stabi-
lize their increasingly brittle model:

1. They could possibly refactor the model into Responsibility Layers [Evans],
dividing the security and permissions features by pushing them down into
a lower logical layer of the existing model. But that didn’t seem like the best
approach. The use of Responsibility Layers is intended to address large-scale
models, or to plan for those that will eventually grow to a large scale. Each layer
is meant to remain in the model because it is part of the Core Domain, even
though the layers should be carefully divided. On the other hand, what the team
was dealing with were misappropriated concepts—ones that didn’t belong in the
Core Domain.

2. Alternatively they could work toward a Segregated Core [Evans]. This could
be accomplished by an exhaustive search for all security and permissions con-
cerns in the Collaboration Context, followed by the refactoring of the identity
and access components into completely separate packages in the same model.
It would not produce the ultimate outcome of creating a completely separate
Bounded Context, but it would move the team closer to it. This seemed to be
precisely what was needed, for the pattern itself states: “The time to chop out
a Segregated Core is when you have a large Bounded Context that is critical
to the system, but where the essential part of the model is being obscured by
a great deal of supporting capability.” The supporting capability was definitely
security and permissions. The team eventually realized that a separate Identity
and Access Context would emerge out of these efforts and serve as a Generic
Subdomain to their Collaboration Context.

The initiative to create a Segregated Core would not be simple. It could require a
few weeks of unplanned work. But if they didn’t take corrective action and refactor
soon, they’'d be paying for their lack of corrective action with bugs, coupled with a
fragile code base that would not respond well to change. Business leadership helped
confirm the wisdom of this direction when they determined that a successful separa-
tion into a new business service could someday lead to a new Saa$S product.

Importantly, the team now understood the value of Bounded Contexts and of fight-
ing hard to maintain a cohesive Core Domain. Using additional patterns of strategic
design, they could segregate reusable models in separate Bounded Contexts and
integrate as appropriate.

Likely the future Identity and Access Bounded Context would look different from
the embedded security and permissions design. Designing for reuse would force the
team to focus on a more general-purpose model, one that could be exploited by many
applications as necessary. That dedicated team—different from our Collaboration
Context team, but formed using a few members from it—could also introduce various
implementation strategies. The strategies could include use of third-party products
and customer-specific integrations, which had become far out of reach due to the
embedded security tangle.

Since the development of the Segregated Core became an interim step, we don’t
focus on those results here. Briefly, it amounted to moving all security and permissions

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

classes to segregated Modules and requiring Application Services clients to check
security and permissions using those objects prior to calling into the Core Domain.
That freed the Core to implement only collaboration model object compositions and
behaviors. The Application Service took care of security and object translation:

public class ForumApplicationService ... {

@Transactional
public Discussion startDiscussion(
String aTenantId, String aUsername,
String aForumId, String aSubject) {
Tenant tenant = new Tenant (aTenantId) ;
ForumId forumId = new ForumId(aForumId) ;

Forum forum = this.forum(tenant, forumId);

if (forum == null) {
throw new IllegalStateException ("Forum does not exist.");

Author author =
this.collaboratorService.authorFrom (
tenant,
anAuthorId) ;

Discussion newDiscussion =
forum.startDiscussion (
this.forumNavigationService(),
author,
aSubject) ;

this.discussionRepository.add (newDiscussion) ;

return newDiscussion;

The result to the Forum looked like this:

public class Forum extends Entity {

public Discussion startDiscussionFor (
ForumNavigationService aForumNavigationService,
Author anAuthor,
String aSubject) {
if (this.isClosed()) {
throw new IllegalStateException("Forum is closed.");

www.EBookswWorld.ir

SAMPLE CONTEXTS v
Discussion discussion = new Discussion/(

this.tenant (),

this.forumId(),

aForumNavigationService.nextDiscussionId(),

anAuthor,

aSubject) ;

DomainEventPublisher

.instance()

.publish(new DiscussionStarted
discussion.tenant (),
discussion. forumId(),
discussion.discussionId(),
discussion.subject()));

return discussion;

This removed the User and Permission tangle and focused the model strictly
on collaboration. Again, it was not a picture-perfect outcome, but it prepared the team
for the future refactorings to separate and integrate Bounded Contexts. The Collab-
oration Context team would finally remove all the security and permissions Modules
and types from their Bounded Context and gladly employ the new Identity and Access
Context. Their ultimate goal to make security central and reusable was now within
reach.

Granted, the team could have started out going in the other direction. They could
have miniaturized Bounded Contexts by creating a number of separate ones, ending
up with ten or more total—one for each collaboration facility (for example, Forum
and Calendar as separate models). What could have led them in that direction?
Since most of the collaboration facilities were not coupled to the others, each could
be deployed as an autonomous component. By placing each facility in a separate
Bounded Context, the team could create ten or so natural deployment units. True, but
producing ten different domain models was unnecessary to achieve those deploy-
ment objectives and would probably only serve to work against the modeling princi-
ples of the Ubiquitous Language.

Instead, the team kept the model as one but chose to create a separate JAR file for
each collaboration facility. Using Jigsaw modularization, they created a version-based
deployment unit for each. Besides JAR files for the natural collaboration divisions,
they also needed one for shared model objects, such as Tenant, Moderator,
Author, Participant, and others. Going this route supported the development of
a unified Ubiquitous Language, while meeting the deployment objectives that had
architectural and application management advantages.

With this understanding we can examine how the Identity and Access Con-
text came about.

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

Identity and Access Context

Most enterprise applications today need to have some form of security and
permissions components in place to ensure that people who try to use the sys-
tem are authentic users and are authorized to do what they attempt to do. As
we just analyzed, a naive approach to application security builds users and
permissions in with each discrete system, which creates a silo effect in every
application.

Cowboy Logic

LB: “You have no locks on your barns and silos, but
nobody steals your corn?”

AJ: “My dog Tumbleweed cares for access manage-
ment. It’s my own silo effect.”

LB: “l don’t think you really understand the book.”

The users of one system cannot be easily associated with the users of any
other systems, even though many of the people using them are the same. To
prevent silos from popping up all over the business landscape, architects need
to centralize security and permissions. This is done by purchasing or develop-
ing an identity and access management system. The route chosen will depend
much on the level of sophistication needed, the time available, and the total
cost of ownership.

Correcting the identity and access tangle in CollabOvation
would be a multistep process. First the team refactored using
Segregated Core [Evans]; see the “Collaboration Context”
section. This step served the intended purpose at the time to
ensure that CollabOvation was cleansed of security and per-
missions concerns. However, they figured that identity and
access management should eventually occupy a context
boundary of its own. That would require an even greater effort.

This constitutes a new Bounded Context—the Identity and Access Con-
text—and will be used by other Bounded Contexts through standard DDD
integration techniques. To the consuming contexts the Identity and Access
Context is a Generic Subdomain. The product will be named IdOvation.

As Figure 2.9 shows, the Identity and Access Context provides support for
multitenant subscribers. When developing an Saa$ product, this goes without

www.EBookswWorld.ir

SaMPLE CONTEXTS

Identity and Access Context

<<aggregate root>>

<<aggregate root>>
Tenant User

<<entity>>

<<entity>> <<value object>> <<value object>>

Registrationlnvitation Contactinformation Person Enablement

<<domain event>> <<domain event>>

<<domain event>>

TenantProvisioned

UserPasswordChanged UserRegistered

<<domain event>>

TenantActivated

<<domain event>>

TenantDeactivated

<<domain event>>

PersonNameChanged

<<aggregate root>> <<aggregate root>> <<domain event>>

Group Role PersonContactinformationChanged

<<value object>>

GroupMember Identity and Access Schema

Figure 2.9 The Identity and Access Context. Everything inside the boundary is in
context per the Ubiquitous Language. There are other components in this Bounded
Context, some in the model and some in other layers, but they are not shown here for
the sake of readability. The same goes for Ul and Application Service components.

saying. Each tenant and every object asset owned by a given tenant would have
a completely unique identity, logically isolating each tenant from all others.
Users of the systems are registered via self-service by invitation only. Secured
access is handled by means of an authentication service, and passwords are
always highly encrypted. Groups of users and nested groups enable sophis-
ticated identity management across the entire organization and down to the
smallest of teams. Access to system resources is managed through simple, ele-
gant, yet powerful role-based permissions.

As a more advanced step, throughout the model Domain Events (8) are
published when model behaviors cause state transformations of special inter-
est to observers of such occurrences. These Events are generally modeled as
nouns combined with verbs in the past tense, such as TenantProvisioned,
UserPasswordChanged, PersonNameChanged, and others as well.

The next chapter, “Context Maps,” shows how the Identity and Access
Context is used by the other two sample Contexts using DDD integration
patterns.

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

Agile Project Management Context

The lightweight methods of agile development have propelled it to popularity,
especially following the creation of the Agile Manifesto in 2001. In its vision
statement, SaaSOvation has as its second primary and strategic initiative to
develop an agile project management application. Here’s how things went . . .

After three quarters of successful Collab-
Ovation subscription sales, planned upgrades

with incremental improvements per customer
feedback, and better-than-expected reve-

nues, the company’s plans for ProjectOvation

were launched. It’s their new Core Domain,

and top developers from CollabOvation will s
be pulled in to leverage their SaaS multi- |
tenancy and newfound DDD experience.

The tool focuses on management of agile projects, using Scrum as the iterative
and incremental project management framework. ProjectOvation follows the tra-
ditional Scrum project management model, complete with product, product owner,
team, backlog items, planned releases, and sprints. Backlog item estimation is pro-
vided through business value calculators that use cost-benefit analysis.

The business plan began with a two-headed vision. CollabOvation and Project-
Ovation would not go down entirely separate paths. SaaSOvation and its board of
directors envisioned innovation around weaving collaboration tools in with agile
software development. Thus, CollabOvation features will be offered as an optional
add-on to ProjectOvation. Because it provides add-on features, CollabOvation is a
Supporting Subdomain to ProjectOvation. Product owners and team members will
interact in product discussions, release and sprint planning, and backlog item dis-
cussions, and they will share calendars, and more. There is a future plan to include
corporate resource planning with ProjectOvation, but initial agile product goals must
first be met.

The technical stakeholders originally planned to develop the ProjectOvation fea-
tures as an extension of the CollabOvation model by using a revision control sys-
tem source branch. That actually would have been a huge mistake, although typical
of those not focusing proper attention on Subdomains in their problem space and
Bounded Contexts in their solution space.

Fortunately the technical staff learned from early problems with the muddled Col-
laboration Context. The lesson they learned from that experience convinced them
that even starting down the path of combining the agile project management model
with the collaboration model would be a major mistake. Now the teams were starting
to think with a strong leaning toward DDD strategic design.

Figure 2.10 shows that as a result of adopting a strategic design mentality, the
ProjectOvation team now appropriately thinks of their consumers as Product Owners

www.EBookswWorld.ir

SaMPLE CONTEXTS

Agile Project Management Context

<<aggregate root>> <<aggregate root>> <<aggregate root>> <<aggregate root>>
Team Product Release Sprint

<<aggregate root>> <<aggregate root>> <<domain event>> <<domain event>>
ProductOwner Backlogltem ProductCreated ProductReleaseScheduled

<<aggregate root>> <<value object>> <<domain event>>
TeamMember BusinessPriority ProductBacklogltemPlanned
<<value object>> <<entity>> <<value object>> <<domain event>>

EstimationLogEntry Task BusinessPriorityRatings ProductSprintScheduled

<<domain event>> <<domain event>>

TaskStatusChanged BacklogltemStatusChanged

Agile PM Schema

<<domain event>> <<domain event>>

BacklogltemScheduled

BacklogltemCommitted

Figure 2.10 The Agile Project Management Context. The Ubiquitous Language of this Bounded
Context is concerned with Scrum-based agile products, iterations, and releases. For readability,
some components, including those from the UI and Application Services, are not shown here.

and Team Members. After all, those are the project member roles played by Scrum
practitioners. The users and roles are managed inside the separate Identity and
Access Context. By using that Bounded Context, self-service enables subscribers
to manage their own personal identity. Administrative controls enable managers,
such as product owners, to specify their product team members. With the roles prop-
erly managed, the Product Owners and Team Members can be created where they
belong, inside the Agile Project Management Context. The remainder of the project’s
design will benefit as the team focuses on capturing the Ubiquitous Language of agile
project management into a carefully crafted domain model.

One requirement calls for ProjectOvation to operate as a set of autonomous appli-
cation services. The team desires to limit the dependency of ProjectOvation on other
Bounded Contexts to a reasonable periodicity, or at least as much as is practical.
Generally speaking, ProjectOvation will be capable of operating on its own, and if
IdOvation or CollabOvation were to go offline for any number of reasons, Project-
Ovation would continue to function autonomously. Of course, in that case some
things might get out of sync for a while, and probably a very short while at that, but the
system would continue to function.

www.EBookswWorld.ir

Chapter 2 DOMAINS, SUBDOMAINS, AND BOUNDED CONTEXTS

The Context Gives Each Term a Very Specific Meaning

A Scrum-based Product has any number of BacklogItem instances that describe the
software being constructed. This is far different from the products on an e-commerce
site that you put in a shopping cart to purchase. How do we know? Because of the Con-
text. We understand what our Product means because it is in the Agile PM Context.
In an Online Store Context, Product means something very different. The team didn’t
need to name the product ScrumProduct in order to communicate the difference.

The Core Domain of Product, Backlog Items, Tasks, Sprints, and Releases
is already off to a better start given the SaaSOvation experience gains. Still,
we are interested in looking in on the big lessons they learned along the steep
learning curve of carefully modeling Aggregates (10).

g AT

Wrap-Up

That was a seriously intense discussion of the importance of DDD strategic
design!

You’ve looked into Domains, Subdomains, and Bounded Contexts.

You’ve discovered how to strategically assess the current lay of the enter-
prise landscape using both problem space and solution space assessments.

You peered extensively into the details of how to use Bounded Contexts
to explicitly segregate models linguistically.

You’ve learned what is included in Bounded Contexts, how to right-size
them, and how they can be built for deployment.

You felt the pain the SaaSOvation team experienced early on in the design
of the Collaboration Context and how the team worked their way out of
that bad situation.

You saw the formation of the current Core Domain, the Agile Project
Management Context, which is the focus of the design and implementa-
tion examples.

www.EBookswWorld.ir

Wrapr-Up

As promised, the next chapter takes a deep dive into Context Mapping. It
is an essential strategic modeling tool to use in designs. You may have figured
out that we’ve done a bit of Context Mapping already in this chapter. It was
unavoidable as we assessed different domains. Still, we will go into much more
detail next.

www.EBookswWorld.ir

This page intentionally left blank

www.EBookswWorld.ir

Chapter 3

Context Maps

Whatever course you decide upon, there is always someone to tell you
that you are wrong. There are always difficulties arising which tempt
you to believe that your critics are right. To map out a course of action
and follow it to an end requires courage.

—Ralph Waldo Emerson

The Context Map of a project can be expressed in two ways. The easier way is
to draw a simple diagram that shows the mappings between two or more exist-
ing Bounded Contexts (2). Understand, however, that you are just drawing a
simple diagram of what already exists. The drawing illustrates how the actual
software Bounded Contexts in the solution space are related to one another
through integration. This means that the more detailed way to express Context
Maps is as the source code implementations of the integrations. We’ll look at
both ways in this chapter, but for most of the implementation details see Inte-
grating Bounded Contexts (13).

At a high level, keep in mind that this chapter focuses on the solution space
assessment, whereas the previous chapter dealt quite a bit with the problem
Space assessment.

Road Map to This Chapter
* Learn why drawing a Context Map is essential for the success of your project.
* See how easy it can be to draw a meaningful Context Map.
» Consider the common organizational and system relationships and how they
affect your projects.

* Learn from the SaaSOvation teams as they produce Maps to get control of
their projects.

Why Context Maps Are So Essential

When you start out on a DDD effort, first draw a visual Context Map of your
current project situation. Produce a Context Map of the current Bounded

87

www.EBooksWorld.ir

Chapter 3 CONTEXT MaAPs

Name-A Context

Name-B Context

Name-C Context

Figure 3.1 A Context Map of an abstract Domain. Three Bounded Contexts
and their relationships are drawn. The U stands for Upstream and D stands for
Downstream.

Contexts involved in your project and the integration relationships between
them. Figure 3.1 shows an abstract Context Map. We’ll be filling in the details
as we progress.

This simple drawing is your team’s Map. Other project teams can refer to
it, but they should also create their own Maps if they are implementing DDD.
Your Map is drawn primarily to give your team the solution space perspective
it needs to succeed. Other teams may not be using DDD and/or they may not
care about your perspective.

Oh, No! There’s New Terminology!

We are introducing Big Ball of Mud, Customer-Supplier, and Conformist here. Be
patient; these and other DDD team and integration relationships noted here are dis-
cussed in detail later in this chapter.

For example, when you are integrating Bounded Contexts in a large enter-
prise, you may need to interface with a Big Ball of Mud. The team maintaining
the muddy monolith may not care what direction your project takes as long
as you adhere to their API. So, they aren’t going to gain any insight from your
Map or what you do with their API. Still, your Map needs to reflect the kind of
relationship you have with them, because it will give your team needed insight
and indicate areas where inter-team communication is imperative. Having
that understanding can do much to help your team succeed.

Communications Facility

Besides giving you an inventory of systems you must interact with, a Context Map
serves as a catalyst for inter-team communication.

www.EBookswWorld.ir

WHY CONTEXT MAPS ARE SO ESSENTIAL

Imagine what would happen if your team assumes that the team maintain-
ing the muddy monolith will provide new APIs that you are depending on, but
they don’t intend to provide them, or they don’t even know what you are think-
ing. Your team is counting on a Customer-Supplier relationship with the mud.
The legacy team, however, by providing only what they currently have, forces
your team into an unexpected Conformist relationship. Depending on how late
in the project you got the bad news, this unseen yet actual relationship could
delay your delivery or even cause your project’s failure. By drawing a Context
Map early, you will be forced to think carefully about your relationships with
all other projects you depend on.

Identify each model in play on the project and define its BOUNDED CON-
TEXT. ... Name each BOUNDED CONTEXT, and make the names part of the
UBIQUITOUS LANGUAGE. Describe the points of contact between the models,
outlining explicit translation for any communication and highlighting any shar-
ing. [Evans, p. 345]

When the CollabOvation team first
started developing its greenfield model,
they should have used a Context Map.
Even though they were nearly starting
from scratch, stating their assumptions
about the project in the form of a Map
would have prompted them to think
about separate Bounded Contexts. They still could have listed significant modeling
elements on a whiteboard, and then gathered them into groups of related linguistic
terms. That would have forced recognition of linguistic boundaries and resulted in a
simple Context Map. However, they actually didn’t understand strategic modeling in
the least. They first needed to attain a strategic modeling breakthrough. Later on they
did make the crucial discovery of this project-saving tool, applying it to their eventual
benefit. When the subsequent Core Domain project got under way, it again paid off
substantially.

Let’s see how you can quickly produce a useful Context Map.

Drawing Context Maps

A Context Map captures the existing terrain. First, you should map the pres-
ent, not the imagined future. If the landscape will change as your current proj-
ect progresses, you can update the Map at that time. First focus on the current
situation so you can form an understanding of where you are and determine
where to go next.

www.EBookswWorld.ir

Chapter 3 CONTEXT MaAPs

Creating a graphical Context Map need not be complicated. Your first
option is always hand-drawn diagrams where whiteboards and dry-erase
markers rule. The style used here is easily adapted as shown by [Brandolini].
If you decide to use a tool to capture the drawing, be sure to keep it informal.

Referring back to Figure 3.1, the Bounded Context names are just place-
holders, as are the integration relationships. They would all be actual names in
a tangible Map. The upstream and downstream relationships are shown, the
meanings of which are explained later in the chapter.

Whiteboard Time

Draw a simple diagram of your current project situation that communicates at
a high level where the boundaries are, the relationships between them and their
teams, what kinds of integrations are involved, and the necessary translations
between them.

Remember that software implements what’s in the drawing. If you need more infor-
mation about what you should draw, consider the systems that your Bounded Con-
text integrates with.

Sometimes we’ll want to zoom in and add more detail to a given part of a
Context Map. It’s just a different perspective on the same Context(s). Besides
boundaries, relationships, and translations, we may want to include other items
such as Modules (9), significant Aggregates (10), perhaps how teams are allo-
cated, and any other information relevant to the Contexts. These techniques
are demonstrated later in the chapter.

All of the drawings and any prose can be placed into a single reference doc-
ument if it has value to the team. With any such effort we should avoid cer-
emony and remain both simple and agile. The more ceremony you add, the
fewer people will want to use the Map. Putting too much detail in diagrams
won’t really help the team. Open communication is the key. As conversations
unveil strategic insight, add it to the Context Map.

No, It’s Not Enterprisy

A Context Map is not an Enterprise Architecture or system topology diagram.

A Context Map is not an Enterprise Architecture or system topology dia-
gram. The information is conveyed relative to interacting models and DDD
organizational patterns. Still, Context Maps may be used in high-level

www.EBookswWorld.ir

WHY CONTEXT MAPS ARE SO ESSENTIAL

architectural investigations, providing views of the enterprise not otherwise
available. They may highlight architectural deficiencies such as integration
bottlenecks. Because they exhibit an organizational dynamic, Context Maps
may even help us identify sticky governance issues that could block progress,
and other team and management challenges that are more difficult to uncover
using other methods.

Cowboy Logic

AJ: “The missus said, ‘| was out in the pasture with the
cows; didn’'t you notice me?’ | said, ‘Nope.” She
didn’t talk to me for a week.”

The diagrams deserve to be posted prominently on a wall in a team area. If
the team frequents a wiki, the diagrams might also be uploaded there. If a wiki
will be largely ignored, don’t bother. It’s been said that a wiki can be a place
where information goes to die. No matter where they are displayed, Context
Maps will be hidden in plain sight unless the team pays regular attention to
them through meaningful discussion.

Projects and Organizational Relationships

To briefly reiterate, SaaSOvation is on a path to develop and refine three
products:

1. A social collaboration suite product, CollabOvation, enables registered users
to publish content of business value using popular Web-based tools such as
forums, shared calendars, blogs, wikis, and the like. This is the SaaSOvation
flagship product and was the company’s first Core Domain (2) (although the
team didn’t know the DDD terminology at the time). It is the Context from
which IdOvation’s (point 2) model was eventually extracted. CollabOvation
now uses IdOvation as a Generic Subdomain (2). CollabOvation will itself
be consumed as a Supporting Subdomain (2), being an optional add-on to
ProjectOvation (point 3).

2. A reusable identity and access management model, IdOvation provides
secure role-based access management for registered users. These features
were first combined with CollabOvation (point 1), but that implementation
was limited and not reusable. SaaSOvation has refactored CollabOvation,
introducing a new, clean Bounded Context. A key product feature is the

www.EBookswWorld.ir

Chapter 3 CONTEXT MaAPs

support of multiple tenants, which is vital to an Saa$ application. [dOvation
serves as a Generic Subdomain to its consuming models.

3. An agile project management product, ProjectOvation, is at this point in
time the new Core Domain. Users of this SaaS product can create project
management assets, as well as analysis and design artifacts, and track prog-
ress using a Scrum-based execution framework. As with CollabOvation,
ProjectOvation uses IdOvation as a Generic Subdomain. One of the inno-
vative features adds team collaboration (point 1) to agile project manage-
ment, enabling discussions around Scrum products, releases, sprints, and
individual backlog items.

I Finally, the Definitions!
The organizational and integration patterns mentioned previously are defined . . .

What are the relationships between these Bounded Contexts and their indi-
vidual project teams? There are several DDD organizational and integration
patterns, one of which commonly exists between any two Bounded Contexts.
Each of the following definitions is largely quoted from [Evans, Ref]:

¢ Partnership: When teams in two Contexts will succeed or fail together,
a cooperative relationship needs to emerge. The teams institute a process
for coordinated planning of development and joint management of inte-
gration. The teams must cooperate on the evolution of their interfaces to
accommodate the development needs of both systems. Interdependent fea-
tures should be scheduled so that they are completed for the same release.

¢ Shared Kernel: Sharing part of the model and associated code forms a
very intimate interdependency, which can leverage design work or under-
mine it. Designate with an explicit boundary some subset of the domain
model that the teams agree to share. Keep the kernel small. This explicit
shared stuff has special status and shouldn’t be changed without consul-
tation with the other team. Define a continuous integration process that
will keep the kernel model tight and align the Ubiquitous Language (1) of
the teams.

¢ Customer-Supplier Development: When two teams are in an upstream-
downstream relationship, where the upstream team may succeed inter-
dependently of the fate of the downstream team, the needs of the down-
stream team come to be addressed in a variety of ways with a wide range
of consequences. Downstream priorities factor into upstream planning.
Negotiate and budget tasks for downstream requirements so that every-
one understands the commitment and schedule.

www.EBookswWorld.ir

WHY CONTEXT MAPS ARE SO ESSENTIAL

Conformist: When two development teams have an upstream/downstream
relationship in which the upstream team has no motivation to provide for
the downstream team’s needs, the downstream team is helpless. Altru-
ism may motivate upstream developers to make promises, but they are
unlikely to be fulfilled. The downstream team eliminates the complex-
ity of translation between bounded contexts by slavishly adhering to the
model of the upstream team.

Anticorruption Layer: Translation layers can be simple, even elegant,
when bridging well-designed Bounded Contexts with cooperative teams.
But when control or communication is not adequate to pull off a shared
kernel, partner, or customer-supplier relationship, translation becomes
more complex. The translation layer takes on a more defensive tone. As a
downstream client, create an isolating layer to provide your system with
functionality of the upstream system in terms of your own domain model.
This layer talks to the other system through its existing interface, requir-
ing little or no modification to the other system. Internally, the layer
translates in one or both directions as necessary between the two models.

Open Host Service: Define a protocol that gives access to your subsystem
as a set of services. Open the protocol so that all who need to integrate
with you can use it. Enhance and expand the protocol to handle new inte-
gration requirements, except when a single team has idiosyncratic needs.
Then, use a one-off translator to augment the protocol for that special
case so that the shared protocol can stay simple and coherent.

Published Language: The translation between the models of two Bounded
Contexts requires a common language. Use a well-documented shared
language that can express the necessary domain information as a com-
mon medium of communication, translating as necessary into and out of
that language. Published Language is often combined with Open Host
Service.

Separate Ways: We must be ruthless when it comes to defining require-
ments. If two sets of functionality have no significant relationship, they
can be completely cut loose from each other. Integration is always expen-
sive, and sometimes the benefit is small. Declare a bounded context to
have no connection to the others at all, enabling developers to find simple,
specialized solutions within this small scope.

Big Ball of Mud: As we survey existing systems, we find that, in fact,
there are parts of systems, often large ones, where models are mixed and
boundaries are inconsistent. Draw a boundary around the entire mess and

www.EBookswWorld.ir

Chapter 3 CONTEXT MaAPs

designate it a Big Ball of Mud. Do not try to apply sophisticated modeling
within this Context. Be alert to the tendency for such systems to sprawl
into other Contexts.

By integrating with the Identity and Access Context, both the Collabora-
tion Context and the Agile Project Management Context avoid going their
Separate Ways with respect to security and permissions. True, Separate Ways
may be applied Context-wide for a specific system, but it can also be employed
on a case-by-case basis. For example, one team could refuse to use a central-
ized security system but may still choose to integrate with some other corpo-
rate standard facilities.

The teams will cooperate with Customer-Supplier roles. There’s no way that
SaaSOvation’s management will allow one team to force others to be Con-
formists. It’s not that a Conformist relationship is always negative. Rather,
Customer-Supplier requires commitment on the part of the Supplier to provide
support for the Customer, which fosters the kind of inter-team relationships
SaaSOvation thinks it needs to achieve complete success. Of course, Customers
aren’t always right, and so some give-and-take must exist. Overall it is the pos-
itive organizational relationship that the teams need to maintain.

The teams’ integrations will make use of Open Host Service and Published
Language. Perhaps surprisingly they will also employ Anticorruption Layer.
This is not a contradiction, even though they are establishing open standards
between their Bounded Contexts. They can still realize the benefits of isolated
translation by using its fundamental principles in the downstream Contexts,
but with less complexity than needed when consuming a Big Ball of Mud. The
translation layers will be simple and elegant.

The Context Map drawings that follow use these abbreviations to indicate
the patterns employed at each end of a relationship:

¢ ACL for Anticorruption Layer
¢ OHS for Open Host Service
¢ PL for Published Language

As you review the following sample Context Maps and supporting text,
it may be helpful to glance back at Chapter 2, “Domains, Subdomains, and
Bounded Contexts.” The diagrams of each of the three sample Bounded Con-
texts are also useful here. Since they remain fairly high-level, those diagrams
could be included as part of the Maps for each Context, although they are not
repeated here.

www.EBookswWorld.ir

WHY CONTEXT MAPS ARE SO ESSENTIAL

Mapping the Three Contexts

Now let’s jump into the team experience so we can learn from what they

did. ..

When the CollabOvation team realized the tangle they had
created, they dug into [Evans] to help find their way out of it.
Among other discoveries of enormous value within the strate-
gic design patterns, they found a practical tool named Context
Maps. They also found a helpful article online by [Brandolini]
expanding on this technique. Since the tool’s guidance indi-
cated that they should map the existing terrain, that’s the first
step they took. Figure 3.2 shows the results.

The first Map produced by the team highlights their early recognition of the exis-
tence of a Bounded Context that they named Collaboration Context. By the odd shape
of the existing boundary they appropriately conveyed the likely existence of a second
Context, but one without a clean and clear separation from the Core Domain.

Users-Permissions

Collaboration Context

Figure 3.2 The tangle within the Collaboration Context caused by unwelcome
concepts is exposed by this Map. The caution sign points out the area of impurity.

A narrow passage near the top allows foreign concepts to migrate back
and forth almost without censure, as the caution sign indicates. It’s not that
Context boundaries need to be completely impenetrable. As with any bound-
ary, the team wants the Collaboration Context to control with full knowl-
edge what crosses its borders and for what purpose. Otherwise the territory
becomes overrun with unknown and possibly unwelcome visitors. In the case
of a model, the unwelcome visitors generally cause confusion and bugs. Mod-
elers should be cordial and even welcoming, but under conditions that favor
order and harmony. Any foreign concepts entering the boundaries need to
demonstrate the right to be there, even taking on characteristics compatible
with the territory within.

www.EBookswWorld.ir

Chapter 3 CONTEXT MaAPs

This analysis led to a better understanding

not only of the current condition of the model,

but in what direction the project needed to

go. Once the project team realized that con-
cepts such as security, users, and permis- f
sions did not belong inside the Collaboration ¥
Context, they responded accordingly. The
team had to segregate these from the Core |
Domain and allow them to enter only under
agreeable terms.

This is a vital DDD project commitment. The Language of each Bounded
Context must be honored in order for all models to remain pure. Linguistic
segregation and a strict adherence to it help each team involved in the project
to focus on their own Bounded Context and keep their vision correctly focused
on their own work.

Applying Subdomain analysis, or problem space assessment, led the team to the
diagram shown in Figure 3.3. Two Subdomains were carved out of a single Bounded
Context. Since it is a good goal to align Subdomains one-to-one with Bounded Con-
texts, this analysis showed the need to separate the single Bounded Context into two.

Security (Generic) Subdomain

Users-Permissions

Collaboration Context

Collaboration (Core) Subdomain

Figure 3.3 The team’s Subdomain analysis led to the discovery of two, a
Collaboration Core Domain and a Security Generic Subdomain.

www.EBookswWorld.ir

WHY CONTEXT MAPS ARE SO ESSENTIAL

The Subdomain and boundary analysis led to decisions. When human users of Col-
labOvation interact with the available features, they do so as Participants, Authors,
Moderators, and so forth. A variety of other contextual separations are discussed
later, but this gives a good idea of the necessary divisions that were created. With
that knowledge, the clean and crisp boundaries indicated on the high-level Context
Map shown in Figure 3.4 came about. The team used Segregated Core [Evans] to
refactor to reach this point of clarity. The recognizable shapes of the boundaries act
as icons or visual cues for each Context. Keeping the same relative shapes across
diagrams can help with cognition.

ldentity and Access
Context

OHS / PL

Collaboration Context

Figure 3.4 The original Core Domain is marked with a bold boundary and
integration points. Here IdOvation serves as a Generic Subdomain for the
downstream CollabOvation.

The Context Maps usually don’t appear all at once as the various sketches
may lead you to believe, although when finally understood, they are not dif-
ficult to produce. Thought and discussion help to refine a Map through rapid
iterations. Some of the refinements might come in the way of integration
points, which describe the relationships between Contexts.

The first two Maps indicate the gains made after applying strategic design. After the
original CollabOvation project was well under way, the team had factored out iden-
tity and access concerns. As they progressed, they produced the Context Map in
Figure 3.4. The team sketched only the Core Domain, Collaboration Context, along

www.EBookswWorld.ir

Chapter 3 CONTEXT MaAPs

with the new Generic Subdomain, Identity and Access Context. They didn’t depict
any future models, such as the Agile Project Management Context. It wouldn’t help
the team to jump ahead too far. They only needed to correct flaws with what existed.
Transformations supporting forthcoming systems would be needed soon enough, and
that Map belonged to the future team to produce.

Whiteboard Time

¢ Thinking of your own Bounded Context, can you identify concepts that
don’t belong? If so, draw a new Context Map that shows the desired Con-
texts and relationships between them.

e Which of the nine DDD organizational and integration relationships
would you choose, and why?

When the next project involving Project-
Ovation was starting up, it was time to
augment the existing Map with the new
Core Domain, the Agile Project Manage-
ment Context. The results of that map-
ping are seen in Figure 3.5. It was not
premature to capture what was in plan-
ning, even though it was not yet in code. The details inside the new Context weren’t
fully understood, but that would come with discussion. Applying high-level strategic
design at this early stage would help all teams understand where their responsibil-
ities lay. Since the third of the three high-level Maps is just an augmentation of the
previous, we’'ll be focusing on it. That’s where SaaSOvation is headed. The company
has assigned experienced lead developers to the new project. Being the richest of
the three Contexts and the current direction, the new Core Domain is where the best
developers should be working.

Some essential segregations are already well understood. Similar to the Collabo-
ration Context, when users of ProjectOvation create products, plan releases, sched-
ule sprints, and work on the tasks of backlog items, they do so as Product Owners
and Team Members. The Identity and Access Context is segregated out of the Core
Domain. The same goes for their use of the Collaboration Context. It is now a Sup-
porting Subdomain. Any consumption by the new model will be protected by bound-
aries and translations into Core Domain concepts.

Consider the finer details of these diagrams. They are not system architec-
ture diagrams. If they were, given that Agile Project Management Context is

www.EBookswWorld.ir

WHY CONTEXT MAPS ARE SO ESSENTIAL

ldentity and Access
Context

OHS / PL

Collaboration Context

OHS / PL

Agile Project Management
Context

Figure 3.5 The current Core Domain is marked with a bold boundary and
integration points. The CollabOvation Supporting Subdomain and IdOvation Generic
Subdomain are upstream.

our new Core Domain, we would expect it to reside at the top or center of the
diagram. Here, however, it is at the bottom. This possibly curious characteris-
tic indicates visually that the core model is downstream of the others.

This nuance serves as another visual cue. Upstream models have influences
on downstream models, as activities on a river that occur upstream tend to
have impacts on populations downstream, whether positive or negative. Con-
sider pollutants dumped into a river by a large city. Those pollutants may have
little impact on that city, but downstream cities may face severe consequences.
The vertical proximity of models on the diagram helps identify the upstream
influences on downstream models. The labels U and D explicitly call this out
between each associated model. These labels make vertical positioning of each
Context less important, yet it is still visually appealing to employ them.

Cowboy Logic

LB: “When you get yourself a powerful thirst, always
drink upstream from the herd.”

www.EBookswWorld.ir

Chapter 3 CONTEXT MaAPs

The Identity and Access Context is furthest upstream. It has an impact on
both the Collaboration Context and the Agile Project Management Context.
Our Collaboration Context is also upstream to the Agile Project Management
Context because the agile model depends on the collaboration model and ser-
vices. As noted in Bounded Contexts (2), ProjectOvation will operate as auton-
omously as is practical. Operation must continue largely independent of the
availability of surrounding systems. This does not mean that autonomous ser-
vices can operate entirely independently of upstream models. We must design
in ways to drastically limit direct real-time dependencies. Though autonomous,
our Agile Project Management Context is still downstream of the others.

Outfitting an application with autonomous services does not mean that
databases from upstream Contexts are simply replicated into the dependent
Context. Replication would force the local system to take on many undesir-
able responsibilities. That would require the creation of a Shared Kernel, which
doesn’t really achieve autonomy.

On the latest Map, note the connector boxes on the upstream side of each
connection. Both of the connectors are labeled OHS/PL, an abbreviation iden-
tifying Open Host Service and Published Language. All three downstream
connector boxes are labeled ACL, shorthand for Anticorruption Layer. The
technical implementations are covered under Integrating Bounded Contexts (13).
Briefly, these integration patterns have these technical characteristics:

® Open Host Service: This pattern can be implemented as REST-based
resources that client Bounded Contexts interact with. We generally think
of Open Host Service as a remote procedure call (RPC) API, but it can be
implemented using message exchange.

¢ Published Language: This can be implemented in a few different ways but
is many times done as an XML schema. When expressed with REST-based
services, the Published Language is rendered as representations of domain
concepts. Representations may include both XML and JSON, for exam-
ple. It is also possible to render representations as Google Protocol Buffers.
If you are publishing Web user interfaces, it might also include HTML rep-
resentations. One advantage to using REST is that each client can specify
its preferred Published Language, and the resources render representations
in the requested content type. REST also has the advantage of producing
hypermedia representations, which facilitates HATEOAS. Hypermedia
makes a Published Language very dynamic and interactive, enabling cli-
ents to navigate to sets of linked resources. The Language may be pub-
lished using standard and/or custom media types. A Published Language
is also used in an Event-Driven Architecture (4), where Domain Events (8)
are delivered as messages to subscribing interested parties.

www.EBookswWorld.ir

WHY CONTEXT MAPS ARE SO ESSENTIAL

¢ Anticorruption Layer: A Domain Service (7) can be defined in the down-
stream Context for each type of Anticorruption Layer. You may also
put an Anticorruption Layer behind a Repository (12) interface. If using
REST, a client Domain Service implementation accesses a remote Open
Host Service. Server responses produce representations as a Published
Language. The downstream Anticorruption Layer translates representa-
tions into domain objects of its local Context. This is where, for example,
the Collaboration Context asks the Identity and Access Context for a
User-in-Moderator-role resource. It might receive the requested resource
as XML or JSON, and then translates to a Moderator, which is a Value
Object. The new Moderator instance reflects a concept in terms of the
downstream model, not the upstream model.

The chosen patterns are common ones. Constraining the choices helps keep
the scope of integration discussed in this book manageable. We’ll see, even among
these select few patterns, that there is diversity in how they can be applied.

The question remains: Is that all there is to creating a Context Map? Pos-
sibly. The high-level view provides a good amount of knowledge about the
project as a whole. Still, we may be curious about what goes on inside the
connections and the named relationships on each Context. Curiosity among
team members influences us to produce a bit more detail. When we zoom in,
the somewhat blurred picture of the three integration patterns becomes clearer.

Let’s take a minor step back in time. Since the Collaboration Context was
the first Core Domain, let’s peer inside it. First we introduce the zooming tech-
nique with the simpler integrations, then progress to the more advanced ones.

Collaboration Context

Now, back to the experience of the Collaboration team . . .

The Collaboration Context was the first model and system—the
first Core Domain—and its workings are now well understood.
The integrations employed here are easier yet less robust in
terms of reliability and autonomy. Creating a zoomed Context
Map is done with relative ease.

As a client of the REST-based services published by the Identity and Access
Context, the Collaboration Context takes a traditional RPC-like approach to
reaching resources. This Context doesn’t permanently record any data from

www.EBookswWorld.ir

Chapter 3 CONTEXT MaAPs

the Identity and Access Context that it can subsequently reference for local
reuse. Rather, it reaches out to the remote system to request information every
single time it needs it. This Context is obviously highly dependent on remote
services, not autonomous. This is a fact that SaaSOvation is willing to live with
for now. Integration with a Generic Subdomain was completely unexpected.
To meet their demanding delivery schedule the team couldn’t invest time in
a more elaborate autonomous design. At the time the up-front ease-of-design
perk could not be passed up. After the rollout of ProjectOvation and the expe-
rience with autonomy gained there, similar techniques may be employed for
CollabOvation.

The boundary objects in the zoomed Map captured in Figure 3.6 request a
resource synchronously. When the remote model’s representation is received,
the boundary objects grab the content of interest out of the representation and
translate it, creating the appropriate Value Object instance. A Translation Map
to turn the representation into a Value Object is shown in Figure 3.7. Here a
User in the Role of Moderator in the Identity and Access Context is trans-
lated as a Moderator Value Object in the Collaboration Context.

ldentity and Access
Context

UserResource

Itenants/(tenantld)/users/(username)/inRole/(role)

[HrTPcient (Facade) |

UserRoleAdapter

CollaboratorTranslator |

| CollaboratorService

Collaboration Context

Figure 3.6 A zoom in on the Anticorruption Layer and Open Host Service of the
integration between the Collaboration Context and the Identity and Access Context

www.EBookswWorld.ir

WHY CONTEXT MAPS ARE SO ESSENTIAL

Moderator

emailAddress
identity

hame

HTTP/1.1 200 OK
Content-Type: /wnd.saadovation.idovation+xml
<userInRole>

<tenantId>CC -6409-41B9-B4DA-DB785107C8C8</tenantId>

<emailAddress>John.Doe@domainmethod.org</emailAddress>
<role>Moderator</role>
</userInRole>
Figure 3.7 A logical Translation Map that shows how a representational state (XML
in this case) is mapped to a Value Object in the local model.

Whiteboard Time

Create a Translation Map of one of the interesting aspects of integration found
in your project’s Bounded Context.

What if you find the translations overly complex, requiring a lot of data copying and
synchronization, making your translated object look a lot like the one from the other
model? Perhaps you are using too much from the foreign Bounded Context, adopting
too much from that model, and thus causing confusing conflict in your own model.

Unfortunately, if the synchronous request fails because the remote system is
unavailable, the entire local execution must fail. The user will be informed of
the problem and asked to try again later.

Systems integrations commonly rely on RPC. At a high level RPC appears
to be very much like a regular programming procedure call. Libraries and tools
make it attractive and easy to use. Unlike calling a procedure that resides in
your own process space, however, a remote call has a higher potential for per-
formance-degrading latency or outright failure. Network and remote system
load can delay RPC completion. When the RPC target system is unavailable, a
user’s request to your system will not complete successfully.

While REST-based resource usage isn’t really RPC, it still has similar char-
acteristics. Although complete system failure is relatively rare, this is a poten-
tially annoying limitation. The team looks forward to improving on this
situation as soon as possible.

www.EBookswWorld.ir

Chapter 3 CONTEXT MaAPs

Agile Project Management Context

Since the Agile Project Management Context is the new Core Domain, let’s
pay particularly close attention to it. Let’s zoom in on it and its connections to
other models.

To achieve a greater degree of autonomy than RPC affords, the Agile Proj-
ect Management Context team will need to carefully constrain its use. Out-of-
band, or asynchronous, event processing is therefore strategically favored.

A greater degree of autonomy can be achieved when dependent state is
already in place in our local system. Some may think of this as a cache of whole
dependent objects, but that’s not usually the case when using DDD. Instead
we create local domain objects translated from the foreign model, maintaining
only the minimal amount of state needed by the local model. To get the state in
the first place we may need to make limited, well-placed RPC calls, or similar
requests for REST-based resources. But any necessary synchronization with
remote model changes can often best be achieved through message-oriented
notifications published by remote systems. The notifications might be sent on a
service bus or a message queue, or be published via REST.

Think Minimalistic

The synchronized state is the limited, minimal attributes of the remote models that
are needed by the local model. It’s not only to limit our need to synchronize data, it’s
also a matter of modeling concepts properly.

It pays to limit our use of remote state, even when considering the design
of the local modeling elements themselves. We don’t want, for example, a
ProductOwner and a TeamMember to in reality reflect a UserOwner and
a UserMember because they take on so many characteristics of the remote
User object that a hybridization happens unwittingly.

Integration with the Identity and Access Context

Looking at the zoomed Map in Figure 3.8, we see that the resource URIs pro-
vide notifications about significant Domain Events that have occurred in the
Identity and Access Context. These are made available through the Notifi-
cationResource provider, which publishes a RESTful resource. Notification
resources are groups of published Domain Events. Every Event ever published
is always available for consumption in order of occurrence, but each client is
responsible for preventing duplicate consumption.

A custom media type indicates that two resources can be requested:

application/vnd.saasovation.idovation+json
//iam/notifications
//iam/notifications/{notificationId}

www.EBookswWorld.ir

WHY CONTEXT MAPS ARE SO ESSENTIAL

ldentity and Access
Context

NotificationResource

/tenants/notifications

ltenants/notifications/(notificationld)

[HrTPciient (Facade) |

| IdentityAccessNotificationsAdapter

MemberTranslator

MemberService

maintainMembers()

Agile Project Management
Context

Figure 3.8 A zoom in on the Anticorruption Layer and Open Host Service of the
integration between the Agile Project Management Context and the Identity and
Access Context

The first resource URI enables clients to get (literally HTTP GET) the current
notification log (a fixed set of individual notifications). Per the documented
custom media type,

application/vnd.saasovation.idovation+json

the URI is considered minted and stable because it never changes. No matter
what the current notification log consists of, this URI provides it. The current
log is a set of the most recent events that have occurred in the Identity and
Access model. The second resource URI enables clients to get and navigate a
chain of all previous event-based notifications that have been archived. Why
do we need a current log and any number of distinct archived notification logs?
See Domain Events (8) and Integrating Bounded Contexts (13) for details on
how feed-based notifications work.

Actually at this point the ProjectOvation team is not committed to using
REST in all cases. For example, they are currently negotiating with the Col-
labOvation team over whether to use a messaging infrastructure instead.

www.EBookswWorld.ir

Chapter 3 CONTEXT MaAPs

Under consideration is the use of RabbitMQ. Nonetheless, at this time their
integrations with the Identity and Access Context will be REST-based.

For now let’s leave most of the technology details out of the picture and
consider the role of each of the objects interacting in the zoomed Map. Here’s
an explanation of the integration steps visually demonstrated in the sequence
diagram found in Figure 3.9:

® MemberService is a Domain Service that is responsible for providing
ProductOwner and TeamMember objects to its local model. It is the
interface of the basic Anticorruption Layer. Specifically, maintain-
Members () is used periodically to check for new notifications from the
Identity and Access Context. This method is not invoked by normal clients
of the model. When a recurring timer interval fires, the notified component
uses the MemberService by invoking method maintainMembers().
Figure 3.9 shows the timer recipient as MemberSynchronizer, which
delegates to MemberService.

¢ The MemberService delegates to IdentityAccessNotification-
Adapter, which plays the role of the Adapter between the Domain Service
and the remote system’s Open Host Service. The Adapter acts as a client
to the remote system. The interaction with the remote Notification-
Resource is not shown.

¢ Once the Adapter has received the response from the remote Open Host
Service, it delegates to the MemberTranslator to translate the Published
Language media into concepts of the local system. If the local Member
instance already exists, the translation updates the existing domain
object. This is indicated by the MemberService self-delegation to its
internal updateMember (). The Member subclasses are ProductOwner
and TeamMember, which reflect the local contextual concepts.

| MemberSynchronizer | | MemberService ” ldentityAccessNotificationAdapter ” MemberTranslator ”HTTPCIientl

maintainMembers () I
synhchronizeMembers ()
|
|
|
|
|
|
|
|

| | |
| | |
[] | |
GET |
|
toMember() D
updateMember () D :
] | |
| |
| |

Figure 3.9 A view of the inner workings of the Agile Project Management Context and
Identity and Access Anticorruption Layer

www.EBookswWorld.ir

WHY CONTEXT MAPS ARE SO ESSENTIAL

We should not focus on the technologies or integration products involved.
Rather, by cleanly separating Bounded Contexts, we are able to keep each
Context pure, while applying data from other Contexts to express concepts in
our own.

The diagrams and supporting text exemplify how we might create Context
Map documents. It need not be extensive but should provide enough back-
ground and explanation to bring a new project member up to speed. However,
create a document only if it is helpful to the team.

Integration with the Collaboration Context Next, let’s consider how the
Agile Project Management Context interacts with the Collaboration Context.
Here, too, we strive for autonomy, but this raises the bar, posing some interest-
ing challenges to accomplish the goal of system independence.

ProjectOvation has add-on features that are supplied by CollabOvation.
Some include project-based forum discussions and shared calendar scheduling.
Users won’t directly interact with CollabOvation. ProjectOvation must deter-
mine whether the options are available to a given tenant and, if so, on its own
facilitate resource creation in CollabOvation.

Consider a section of this Create a Product use case:

Precondition: The collaboration feature is enabled (option was purchased).
1. The user provides Product descriptive information.
2. The user indicates a desire for a team discussion.
3. The user requests that the defined Product be created.
4. The system creates the Product with a Forum and Discussion.

A Forum and a Discussion must be created in the Collaboration Context
on behalf of the Product. In contrast, this is unlike the Identity and Access
Context where a tenant has already been provisioned and users, groups, and
roles have been defined, and notifications about those events are available. In
that case the objects are preexisting. In this case the Agile Project Manage-
ment Context needs objects that don’t exist yet and won’t exist until it requests
them. That’s a potential obstacle to autonomy because we depend on the avail-
ability of the Collaboration Context in order to create resources remotely.
With desired autonomy, this raises an interesting challenge.

Why Is Discussion Used in Both Contexts?

This is an interesting situation because it’s one where the name of the concept, Dis-
cussion, is the same in both Bounded Contexts, but they are different types, differ-
ent objects, and thus have different state and different behavior.

www.EBookswWorld.ir

Chapter 3 CONTEXT MaAPs

In the Collaboration Context a Discussion is an Aggregate and it manages a set
of Posts—implicit children that are themselves Aggregates. In the Agile PM Context
the Discussion is a Value Object and only holds a reference to the actual Discussion
with Posts in the foreign Context. Note, however, that in Chapter 13 when the team
implements the integrations, they discover that they should strongly type the differ-
ent kinds of Discussions in the Agile PM Context.

We need to leverage eventual consistency using Domain Events (8) and
an Event-Driven Architecture (4). There’s nothing that says that only remote
systems can consume notifications produced by our local system. When a
ProductInitiated Domain Event is published by our model, it is handled
by our own system. The local handler requests the Forum and Discussion to
be created remotely. This could be done via RPC or messaging, depending on
what CollabOvation supports. If using RPC and the remote collaboration sys-
tem were not available at that time, the local handler would simply keep trying
on a periodic basis until it finally met with success. If messaging is supported
instead of RPC, the local handler would send a message to the collaboration
system. In turn, collaboration would respond with its own message when
resource creation completes. When the Event handler back in ProjectOvation
received this notification, it would update the Product with an identity refer-
ence to its newly created discussion.

What happens if the product owner or team members try to use the discus-
sion prior to its existence? Is the unavailable discussion considered a bug in the
model? Will it cause the system to exhibit an unreliable condition? Consider
the fact that any given subscriber may not have paid to use the collaboration
add-on in the first place. That’s a nontechnical reason to design in resource
unavailability. Working around eventual consistency is in no way a kludge. It’s
just another valid state that should be modeled.

An elegant way to handle all of the possible unavailability scenarios is
to make them explicit. Consider this Standard Type implemented as a State
[Gamma et al.], as described in Value Objects (6):

public enum DiscussionAvailability {
ADD_ON_NOT_ENABLED, NOT_REQUESTED, REQUESTED, READY;
}

public final class Discussion implements Serializable {
private DiscussionAvailability availability;

private DiscussionDescriptor descriptor;

}

public class Product extends Entity {

www.EBookswWorld.ir

WHY CONTEXT MAPS ARE SO ESSENTIAL

private Discussion discussion;

Using this design, a Discussion Value Object is protected from misuse
because the State defined by DiscussionAvailability protects it. When
someone attempts to participate in a discussion about the Product, it can
safely hand off its discussion State. If not READY, the participant will be
shown one of three messages:

To use team collaboration you need to purchase the add-on option.
The product owner didn’t request the creation of a product discussion.
The discussion setup has not yet completed; check back soon.

If the Discussion availability is READY, we allow full team member
participation.

Interestingly, as implied by the first of the unavailable state messages, the
possibility exists that the business chooses to make collaboration options
selectable even though they have not yet been purchased. Leaving collabora-
tion Ul options enabled could be an effective marketing tickler to encourage
follow-on purchase. Who better to nag management to purchase an add-on
option than those who are daily reminded that they could be using it, but can-
not? Clearly, technical benefits are not the only ones realized by the use of the
availability State.

At this time the team isn’t certain what its actual integration with collabo-
ration will be. For the sake of Customer-Supplier discussions, they’ve produced
the diagram in Figure 3.10. The Agile Project Management Context may use
a second Anticorruption Layer to manage integration between itself and the
Collaboration Context. It would be like the one it uses for the Identity and
Access Context. The diagram shows the primary boundary objects, which are
similar to their counterparts used for identity and access management integra-
tion. Actually there is not one single CollaborationAdapter. It is just a
placeholder for the several needed, but unknown at this time.

Shown inside the local Context are DiscussionService and Schedul-
ingService. These represent the Domain Services that could be used to man-
age discussions and calendar entries in the collaboration system. The actual
mechanisms will be determined by Customer-Supplier negotiations between
the teams, which are implemented in Integrating Bounded Contexts (13).

The team can understand part of their model now. What happens, for
example, when a discussion has been created and the result is communicated

www.EBookswWorld.ir

Chapter 3 CONTEXT MaAPs

Collaboration Context

ForumResource | | CalendarResource

[HrTPClient (Facade)

\

| CollaborationAdapter

DiscussionTranslator |

SchedulingTranslator |

DiscussionService || SchedulingService

Agile Project Management
Context

Figure 3.10 A zoom in on an Anticorruption Layer and Open Host Service of the
possible integration components between Agile Project Management Context and
Collaboration Context

to the local Context? The asynchronous component—either RPC client or
message handler—tells the Product to attachDiscussion(), passing it a
new Discussion Value instance. All local Aggregates with pending remote
resource interests will be cared for in this fashion.

This examination has gone into some useful detail on Context Maps. We
need to exercise restraint, however, as we can quickly reach the point of dimin-
ishing returns. Perhaps we could have included Modules (9), but those have
been placed in their own dedicated chapter. Include any relevant, high-level
elements that will lead to vital team communication. On the other hand, push
back when detail seems ceremonious.

Produce Context Maps that you can post on the wall. You can upload them
to a team wiki as long as it’s not just the project’s attic where nobody ever goes.
Keep discussions about the project flowing back to your Map to stimulate use-
ful refinements.

www.EBookswWorld.ir

Wrapr-Up V

Wrap-Up
That was definitely a productive session with Context Mapping.

e We’ve discussed what Context Maps are, what help they provide to your
team, and how you can create them with ease.

® You took a detailed look into SaaSOvation’s three Bounded Contexts and
their supporting Context Maps.

e Using mapping, you zoomed in on the integrations between each of the
Contexts.

® You examined the boundary objects supporting Anticorruption Layer and
their interactions.

® You saw how to produce a Translation Map showing the local mapping
between REST-based resources and the corresponding object in the con-
suming domain model.

Not every project will need the level of detail demonstrated here. Others
may require more. The trick is to balance the need to understand with practi-
cality and not pile too much detail into this level. Remember that we are likely
not going to keep a very detailed graphical Map up-to-date far into the project.
We’ll benefit most from what can be posted on a wall, enabling team mem-
bers to point at them during discussions. If we reject ceremony and embrace
simplicity and agility, we’ll produce useful Context Maps that help us move
forward rather than bog down the project.

www.EBookswWorld.ir

This page intentionally left blank

www.EBookswWorld.ir

Chapter 4

Architecture

Architecture should speak of its time and place,
but yearn for timelessness.

—Frank Gebry

One of the big advantages of DDD is that it doesn’t require the use of any spe-
cific architecture. Since our carefully crafted Core Domain (2) resides at the
heart of a Bounded Context (2), it enables one or more architectural influences
to play a role in the entire application or system.! Some architectural influ-
ences surround the domain model and have a broad overall effect, while others
address specific demands. The goal is to use just the right choices and combi-
nations of architecture and architecture patterns.

The real demands for specific software qualities should drive the use of
architectural styles and patterns. The ones chosen must be proven to meet
or exceed required qualities. Avoiding architectural style and pattern over-
use is just as important as using the right ones. Allowing real, genuine qual-
ity demands to drive what we do with architecture is a beneficial risk-driven
approach [Fairbanks]. That way we use architecture only to mitigate the risk
of failure, not to increase our risk of failure by using an architectural style or
pattern that cannot be justified. Thus, we must be able to justify every archi-
tectural influence in use, or we eliminate it from our system.

Our ability to justify the selection of any architectural styles and patterns
is limited to the available functional requirements, such as use cases or user
stories, and even scenarios specific to the domain model. In other words, you
cannot determine the necessary software qualities without functional require-
ments. Lacking these kinds of inputs, we actually cannot make sound archi-
tectural choices, which implies that employing a use-case-driven architecture
approach to software development is still applicable today.

1. This chapter is about architectural styles, application architectures, and architec-
ture patterns. A style describes how to implement a specific architecture, while an
architecture pattern explains how to address a specific concern within an archi-
tecture but is broader than a design pattern. I suggest you not get too hung up on
the differences, but just understand that DDD can reside at the heart of a lot of
surrounding architectural influences.

113

www.EBooksWorld.ir

v Chapter 4 ARCHITECTURE

Road Map to This Chapter
e Listen in on a retrospective interview with SaaSOvation’s CIO.

* Learn how the trusty Layers Architecture has been improved on by DIP and
Hexagonal.

* See how Hexagonal can support Service-Oriented and REST.

e Gain perspective on Data Fabric or Grid-Based Distributed Cache and
Event-Driven styles.

» Consider how a newer architecture pattern called CQRS helps with DDD.
¢ Learn from the architectures employed by the SaaSOvation teams.

Architecture Isn’t a Coolness Factor

The following architectural styles and patterns are not a grab bag of cool tools we
should apply everywhere possible. Instead, use them only where applicable, where
they mitigate a specific risk that would otherwise increase the potential for project
or system failure.

[Evans] focused on the Layers Architec-
ture. That being so, SaaSOvation first
concluded that DDD could only be effec-
tive using that well-known pattern. It took
the teams some time to understand that
DDD is considerably more adaptable
than that, even though Layers was most
popular at the time [Evans] was written.

The principles of a Layers Architecture can still be used to govern good
decision making. We don’t need to stop there, however, as we’ll consider some
of the more modern architectures and patterns that can be leveraged where
needed. This will prove the versatility and broad applicability of DDD.

For sure, SaaSOvation did not need every architectural influence all at once,
but its teams needed to choose wisely from the options available to them.

Interviewing the Successful CIO

To give a bit of a perspective on why each of the architectural influences dis-
cussed in the chapter might be used, we’re going to leap a decade into the
future and talk to SaaSOvation’s CIO. While the company’s beginnings were

www.EBookswWorld.ir

INTERVIEWING THE SuccessruL CIO

humble, architectural decision helped it succeed each step of the way. Let’s
tune in to the program TechMoney, with Anchor Maria Finance-Ilmundo . . .

Maria: Tonight, my exclusive interview is with Mitchell Williams, CIO of
the enormously successful SaaSOvation. We’re continuing our “Know Your
Architectural $tyles” series. Tonight’s focus is on how selecting the right
architecture can bring enduring success. Welcome to the show, Mitchell,
and thanks for joining us.

Mitchell: I'm glad to be here again, Maria. It’s always a pleasure.

Maria: Can you take us through some of the early architectural decisions
you went with, and why?

Mitchell: Of course. Believe it or not, we actually started off planning our
projects around desktop deployment. Our team designed for the desktop
application to persist to a central database. They chose the Layers Architec-
ture for this approach.

Maria: Did that make sense?

Mitchell: Well, we believe it did, especially since we were only dealing with
a single application tier plus the central database. It would have served us
well for a simple client-server style.

Maria: But the tables soon turned, didn’t they?

Mitchell: They certainly did. We actually joined forces with a business
partner and decided to move forward with an SaaS subscription model.
We sought some significant funding to support our efforts and landed it.
We determined that our agile project management application would go
on the back burner for a while until we first developed a suite of collabo-
ration tools. This had a twofold benefit. First, we’d enter the accelerating
collaboration market, but then we’d also have a natural feature add-on for
the project management application. You know, collaborating on software
development project deliverables.

Maria: Interesting. It all sounds quite grassroots. Where did these decisions
lead you?

Mitchell: As the software complexity increased, we needed to manage qual-
ity by introducing unit and feature testing tools. To do that, we kind of
turned Layers on its ear by introducing the Dependency Inversion Principle,
or DIP. It was important since the team could easily test by stubbing out the
UI and Infrastructure Layers and concentrate on testing the Application and

www.EBookswWorld.ir

v Chapter 4 ARCHITECTURE

Domain. In fact, we could develop the Ul in isolation and delay decisions on
persistence technology for some time. And it actually wasn’t a big leap away
from Layers. The team had a high comfort level.

Maria: Wow, swapping out the Ul and persistence! That seems risky. How
tough was it?

Mitchell: Well, actually not so much. As it turns out, the fact that we were
using the Domain-Driven Design tactical patterns didn’t hurt us at all. Since
we used the Aggregate pattern and Repositories, we could develop against
in-memory persistence behind the Repository interfaces and swap in a per-
sistence mechanism after we had time to consider our options.

Maria: Dude.
Mitchell: Totally.
Maria: And?

Mitchell: Bang. Things were off and running. We delivered CollabOvation
and ProjectOvation, with successive profitable quarters.

Maria: Ka-ching.

Mitchell: Got that right. We then decided that we wanted to support mobile
devices in addition to desktop browsers since mobile exploded and it got
all over us. For that we’d use REST. Subscribers started asking for things
like federated identity and security, as well as sophisticated project and time
resource management tools. And then new investors wanted to see reports
on their preferred business intelligence dash.

Maria: Amazing. So mobile wasn’t the only thing exploding. Let me get
your take on dealing with all that.

Mitchell: The team decided that migrating to a Hexagonal Architecture
was an appropriate choice to handle all these additions. They found that
the Ports and Adapters approach gave them the ability to add new kinds of
clients almost ad hoc. The same went for new output Port types, like inno-
vative new persistence mechanisms, such as NoSQL, and messaging capa-
bilities. And that all spelled c-1-0-u-d.

Maria: So you had confidence in those modifications?
Mitchell: Absolutely.

Maria: Huge. If you don’t buckle under all that, it probably means you made
great choices that leveraged your ability to go even further.

www.EBookswWorld.ir

INTERVIEWING THE SuccessruL CIO

Mitchell: Exactly. By now we were adding new tenants by many hundreds
every month. We actually added a service to migrate existing data from leg-
acy corporate collaboration tools into our cloud. The team decided that an
SOA focus allowed them to aggregate this data nicely using Mule’s Collec-
tion Aggregator. It could sit on the service boundary while still using the
Hexagonal Architecture.

Maria: Ah, so you didn’t introduce SOA because it sounded cool. You used
it when it made sense. Perfect. We haven’t seen good decision making like
that throughout the industry.

Mitchell: Yes, Maria, and that’s really the approach we took all along. It
was our blueprint for success. For example, in time we added TrackOvation,
our defect tracking software, which integrated with ProjectOvation. And as
ProjectOvation features grew, the Ul became more and more sophisticated.
The Product Owner’s dashboard of all Scrum products and defects in their
systems updated with each application command and corresponding event.
Since Product Owners across subscribing tenants had different preferred
views, it made the dashboards even more complex. And, naturally, we also
had to support the mobile devices. The team considered the merits of includ-
ing a CQRS architecture pattern.

Maria: CQRS? Come on, Mitch, that’s pretty heady. Was that one of those
uncertainties that we don’t know how it plays out? What about walking off
the plank there?

Mitchell: No, not really. Once the team had a valid reason to use CQRS
to ease the friction between the command and query universes, it was full
steam ahead, and they never looked back.

Maria: Exactly. Wasn’t that about the time that your subscribers starting
asking for features that required distributed processing?

Mitchell: Yes; if we didn’t get this one right we’d soon be drowning in
complexity. Some features required running through a series of distributed
processes before delivering an answer. The ProjectOvation team would not
make the user wait for these potentially long-running tasks and risk time-
outs. They introduced a fully Event-Driven Architecture, employing a clas-
sic Pipes and Filters pattern to manage these.

Maria: But that wasn’t the end of your journey down Complexity Lane, was
it? How tough was that?

Mitchell: LOL. No, no. Never would that happen, it seemed. However,
when you have a smart team, it makes Complexity Lane like a stroll in the

www.EBookswWorld.ir

v Chapter 4 ARCHITECTURE

park. In actuality, the Event-Driven Architecture simplified many areas of
the expanding suite of systems.

Maria: True, that. Go on. That was an obvious opportunity. We’re getting
to my favorite part of the story. You know . . . [eyes twinkle $$$]

Mitchell: Our architecture allowed us to scale so rapidly and manage change
so well that RoaringCloud acquired SaaSOvation for, well . . . that’s all a
matter of public record.

Maria: I’d say, and very public. At $50 per common share that was around
$3 billion worth of public record.

Mitchell: Good memory for financial facts! And that was serious incentive
to get the integration right. They brought a vast number of new subscribers,
and the user base actually started to stress the ProjectOvation infrastruc-
ture. It was now time to distribute and parallelize the Pipes and Filters. That
called for adding in long-running processes, sometimes called Sagas.

Maria: Nice. Can you categorically say that that was fun?
Mitchell: Fun indeed, but necessary even more so.

Maria: And it seems that the fun would never end. Probably one of the least
expected and even shocking chapters in your long success story came next.

Mitchell: You know it. Now that RoaringCloud had a monopoly in the
marketplace due to the plethora of subscription applications and millions of
users, the government took notice and began regulating the industry. A new
law was passed to require RoaringCloud to track every change to a project.
Actually, the best way to handle this compliance situation as a natural part
of the domain model was to use Event Sourcing.

Maria: Man, you were poised. That’s crazy. I mean, really, really crazy.
Mitchell: That’s a crazy good problem to have, really.

Maria: What’s so amazing to me is that through all these years, the core of
your applications was based on DDD software models. Yet, obviously DDD
didn’t hurt you. You seemed to not experience hardships because of it.

Mitchell: In fact it was quite the opposite. We firmly believe that it was
because we chose DDD early, and took the time to understand it thoroughly,

that the business situations we could not escape—and didn’t want to—were
handled in stride.

www.EBookswWorld.ir

LAYERS

Maria: Well, as I like to say, “Ka-ching!” Thanks again, Mitchell. We’ve
learned how selecting the right architecture can bring enduring success,
right here on “Know Your Architectural $tyles.”

Mitchell: My pleasure, Maria. Thanks for inviting me.

That was a bit quirky, but helpful. It demonstrates how the architectural
influences discussed in the following sections can be used with DDD, and how
to introduce each at just the right time.

Layers

The Layers Architecture [Buschmann et al.] pattern is considered by many to
be the granddaddy of all. It supports N-tier systems and is, thus, commonly
used in Web, enterprise, and desktop applications. Here we rigorously separate
the various concerns of our application or system into well-defined layers.

Isolate the expression of the domain model and the business logic, and eliminate
any dependency on infrastructure, user interface, or even application logic that
is not business logic. Partition a complex program into layers. Develop a design
within each layer that is cohesive and that depends only on the layers below.
[Evans, Ref, p. 16]

Figure 4.1 shows the layers common to a DDD application that uses a tradi-
tional Layers Architecture. Here the isolated Core Domain resides in one layer

User Interface Layer

Application Layer

\

Domain Layer

/

Infrastructure Layer

Figure 4.1 The traditional Layers Architecture in which DDD is applied

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

in the architecture. Above it are the User Interface and Application Layers.
Below it is the Infrastructure Layer.

An essential rule of this architecture is that each layer may couple only to
itself and below. There are distinctions within the style. A Strict Layers Archi-
tecture is one that allows coupling only to the layer directly below. A Relaxed
Layers Architecture, however, allows any higher-level layer to couple to any
layer below it. Since both the User Interface and the Application Services often
need to employ infrastructure, many, if not most, systems are based on Relaxed
Layers.

Lower layers may actually loosely couple to higher layers, but this is only by
means of a mechanism such as Observer or Mediator [Gamma et al.]; there is
never a direct reference from lower to higher. Using Mediator, for example, the
higher layer would implement an interface defined by the lower layer, then pass
the implementing object as an argument to the lower layer. The lower layer uses
the implementing object with no knowledge of where it resides architecturally.

The User Interface is to contain only code that addresses user view and
request concerns. It must not contain domain/business logic. Some may con-
clude that since validation is required by the User Interface, it must contain
business logic. The kinds of validation found in the User Interface are not the
kinds that belong in the domain model (only). As discussed in Entities (5), we
still want to limit coarse-grained validations that express deep business knowl-
edge only to the model.

If the User Interface components use objects from the domain model, it is
generally limited to rendering its data on the glass. If using this approach, a
Presentation Model (14) can be used to prevent the view itself from knowing
about domain objects.

Since a user may be either a human or other systems, sometimes this layer
will provide the means to remotely invoke the services of an API in the form of
an Open Host Service (13).

Components in the User Interface are direct clients of the Application Layer.

Application Services (14) reside in the Application Layer. These are dif-
ferent from Domain Services (7) and are thus devoid of domain logic. They
may control persistence transactions and security. They may also be in charge
of sending Event-based notifications to other systems and/or for composing
e-mail messages to be sent to users. The Application Services in this layer are
the direct clients of the domain model, though themselves possessing no busi-
ness logic. They remain very lightweight, coordinating operations performed
against domain objects, such as Aggregates (10). They are the primary means
of expressing use cases or user stories on the model. Hence, a common func-
tion of an Application Service is to accept parameters from the User Interface,

www.EBookswWorld.ir

LAYERS

use a Repository (12) to obtain an Aggregate instance, and then execute some
command operation on it:

@Transactional

public void commitBacklogItemToSprint (
String aTenantId, String aBacklogItemId, String aSprintId) {
TenantId tenantId = new TenantId(aTenantId) ;

BacklogItem backlogItem =
backlogItemRepository.backlogItemOfId (
tenantId, new BacklogItemId(aBacklogItemId)) ;

Sprint sprint = sprintRepository.sprintOfId(
tenantId, new SprintId(aSprintId)) ;

backlogItem.commitTo (sprint) ;

If our Application Services become much more complex than this, it is prob-
ably an indication that domain logic is leaking into the Application Services,
and that the model is becoming anemic. So it’s a best practice to keep these
model clients very thin. When a new Aggregate must be created, an Applica-
tion Service would use a Factory (11) or the Aggregate’s constructor to instan-
tiate it and then use the corresponding Repository to persist it. An Application
Service may also use a Domain Service to fulfill some domain-specific task
designed as a stateless operation.

When the domain model is designed to publish Domain Events (8), the
Application Layer may register subscribers to any number of Events. Doing so
enables the Events to be stored, forwarded, and otherwise dealt with as one
of the application’s duties. This frees the domain model to be aware of only
its own core concerns and enables the Domain Event Publisher (8) to remain
lightweight and liberated from messaging infrastructure dependencies.

Since the domain model possessing all business logic is discussed at great
length in the other chapters, it is not repeated here. Nonetheless, there are
some challenges associated with the domain and the use of traditional Lay-
ers. Using Layers may require the Domain Layer to make some limited use of
Infrastructure. ’m not saying that core domain objects would do this, as we
should absolutely avoid that altogether. However, adhering to the definition of
Layers may require implementations of some interfaces in the Domain Layer
that depend on technologies provided by Infrastructure.

For example, Repository interfaces require implementations that use com-
ponents, such as persistence mechanisms, housed in Infrastructure. What if we

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

just implemented the Repository interfaces in Infrastructure? Since the Infra-
structure Layer is below the Domain Layer, the references from Infrastruc-
ture upward to Domain would violate the rules of Layers Architecture. Still,
avoiding that does not mean that the primary domain objects would couple to
Infrastructure. To avoid that we might use implementation Modules (9) to hide
technical classes:

com.saasovation.agilepm.domain.model .product.impl

As indicated in Modules (9), MongoProductRepository could be housed
in that package. This is not the only way to address this challenge, however.
We might decide instead to implement such interfaces in the Application Layer,
which would uphold the rules of Layers. Figure 4.2 provides a glimpse of this
approach. But doing that may seem a bit distasteful.

There is a better way, as discussed in the section entitled “Dependency
Inversion Principle.”

In a traditional Layers Architecture the Infrastructure is at the bottom.
Things like persistence and messaging mechanisms reside there. Messages may
include those sent by enterprise messaging middleware systems or more basic
e-mails (SMTP) or text messages (SMS). Think of all the technical components
and frameworks that provide low-level services for the application. Those are
usually considered to be part of Infrastructure. The higher-level Layers couple
to the lower-level components to reuse the technical facilities provided. That
being the case, again we want to reject any notion of coupling core domain
model objects to Infrastructure.

User Interface Layer

| Implements Domain Layer

Application Layer interfaces

Domain Layer

Figure 4.2 The Application Layer could house some technical implementations of
interfaces defined by the Domain Layer.

www.EBookswWorld.ir

LAYERS

The SaaSOvation teams noted that having the Infrastructure
Layer at the bottom posed some disadvantages. For one it
made implementing technical aspects required by the Domain
Layer kind of bitter-tasting since the rules of Layers had to be
violated. And actually their code was difficult to test. How could
they overcome this disadvantage?

Could we whip up something a bit sweeter if we adjusted the order of
Layers?

Dependency Inversion Principle

There is a way to improve on the traditional Layers Architecture by adjusting
the way dependencies work. The Dependency Inversion Principle (DIP) was
postulated by Robert C. Martin and described in [Martin, DIP]. The formal
definition states:

High-level modules should not depend on low-level modules. Both should depend
on abstractions.

Abstractions should not depend upon details. Details should depend upon
abstractions.

The essence of this definition is communicating that a component that
provides low-level services (Infrastructure, for this discussion) should depend
on interfaces defined by high-level components (for this discussion, User
Interface, Application, and Domain). While there are several ways to express
an architecture that uses DIP, we could boil it down to the structure shown
in Figure 4.3.

Does DIP Really Support All Those Layers?

Some would conclude that DIP has only two layers, one at the top and one at the
bottom. The one at the top would implement interface abstractions defined in the
layer at the bottom. Adjusting Figure 4.3 to fit this, the Infrastructure Layer would
be the one at the top, and the User Interface Layer, Application Layer, and Domain
Layer would constitute one at the bottom. You may or may not prefer this view of
a DIP architecture. Don’t worry; the Hexagonal [Cockburn] or Ports and Adapters
Architecture is where this is all headed.

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

Infrastructure Layer

User Interface Layer

Application Layer

\

Domain Layer

Figure 4.3 The possible Layers when the Dependency Inversion Principle is used. We
move the Infrastructure Layer above all others, enabling it to implement interfaces for
all Layers below.

From the architecture of Figure 4.3, we would have a Repository imple-
mented in Infrastructure for an interface defined in Domain:

package com.saasovation.agilepm.infrastructure.persistence;
import com.saasovation.agilepm.domain.model.product.*;

public class HibernateBacklogItemRepository
implements BacklogItemRepository {

@Override
@SuppressWarnings ("unchecked")
public Collection<BacklogItem> allBacklogItemsComittedTo (
Tenant aTenant, SprintId aSprintId) {
Query query =
this.session() .createQuery (
"from -BacklogItem as _obj_ "
+ "where _obj_.tenant = ? and _obj_.sprintId = ?");

query.setParameter (0, aTenant) ;
query.setParameter (1, aSprintId);

return (Collection<BacklogItem>) query.list();

www.EBookswWorld.ir

HEXAGONAL OR PORTS AND ADAPTERS

Focusing on the Domain Layer, using DIP enables both the Domain and
Infrastructure to depend on abstractions (interfaces) defined by the domain
model. Since the Application Layer is the direct client of the Domain, it
depends on Domain interfaces and indirectly accesses Repository and any
technical Domain Service implementation classes provided by Infrastructure.
It may use any one of a few ways to acquire the implementations, including
Dependency Injection, Service Factory, and Plug In [Fowler, P of EAA]. The
examples throughout the book use Dependency Injection provided by Spring
Framework and sometimes the Service Factory via class DomainRegistry.
In fact, DomainRegistry uses Spring to look up references to beans that
implement interfaces defined by the domain model, including Repositories and
Domain Services.

Interestingly enough, when we think about the influence that DIP has on
this architecture, we might conclude that there are actually no longer any
layers at all. Both high-level and low-level concerns are dependent only on
abstractions, which seems to topple the stack. What if we actually thought of
turning this architecture on its ear and adding a bit more symmetry? Let’s next
see how that would work.

Hexagonal or Ports and Adapters

With the Hexagonal Architecture? Alistair Cockburn codified a style to pro-
duce symmetry [Cockburn]. It advances this goal by allowing many disparate
clients to interact with the system on equal footing. Need a new client? Not a
problem. Just add an Adapter to transform any given client’s input into that
understood by the internal application’s API. At the same time, output mech-
anisms employed by the system, such as graphics, persistence, and messaging,
may also be diverse and swappable. That’s possible because an Adapter is cre-
ated to transform application results into a form accepted by a specific output
mechanism.

As we discuss it, you may agree that this architecture has potential for
timelessness.

2. We refer to this architecture by the name Hexagonal, even though its name seems
to have changed to Ports and Adapters. Despite its changed name, the community
still refers to it as Hexagonal. The Onion Architecture has also surfaced. How-
ever, it appears to many that Onion is just an (unfortunate) alternate name for
Hexagonal. We can safely assume that they are the same and stick with the [Cock-
burn] definition.

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

These days many teams that say they are using a Layers Architecture are
actually using Hexagonal instead. This is due, in part, to the number of proj-
ects that now use some form of Dependency Injection. It’s not that Dependency
Injection is automatically Hexagonal. It’s just that it encourages a way of pro-
ducing an architecture that leans naturally toward the development of a Ports
and Adapters style. In any case, a more thorough understanding will clarify
this point.

We usually think of the place where clients interact with the system as its
“front end.” Likewise, we consider the place where the application retrieves
persisted data, stores new persistent data, or sends output as its “back end.”
But Hexagonal promotes a different way of looking at the areas of a system,
as indicated by Figure 4.4. There are two primary areas, the outside and the
inside. The outside enables disparate clients to submit input and also provides
mechanisms to retrieve persisted data, store the application’s output (for exam-
ple, a database), or send it elsewhere along its way (for example, messaging).

Adapter A
Adapter B

Application
Adapter E

\c/@ | Adapter D I 4)8
Adapter F 9I\/J
Domain Model oG
ap er]

W

Figure 4.4 The Hexagonal Architecture is also known as Ports and Adapters. There
are Adapters for each of the outside types. The outside reaches the inside through the
application’s API.

QU

www.EBookswWorld.ir

HEXAGONAL OR PORTS AND ADAPTERS

Cowboy Logic

AJ: “My horses sure do like their new hexagonal corral.
It gives ‘'em more corners to run to when I’'m carryin’
a saddle.”

In Figure 4.4 each client type has its own Adapter [Gamma et al.], which
transforms input protocols into input that is compatible with the application’s
API—the inside. Each of the hexagon’s sides represents a different kind of Port,
for either input or output. Three of the clients’ requests arrive via the same
kind of input Port (Adapters A, B, and C), and one uses a different kind of Port
(Adapter D). Perhaps the three use HTTP (browser, REST, SOAP, and so on)
and the one uses AMQP (for example, RabbitMQ). There is not a strict defini-
tion of what a Port means, making it a flexible concept. In whatever way Ports
are partitioned, client requests arrive and the respective Adapter transforms
their input. It then invokes an operation on the application or sends the appli-
cation an event. Control is thus transferred to the inside.

We Probably Are Not Implementing the Ports Ourselves

We actually normally don’t implement the Ports ourselves. Think of a Port as HTTP
and the Adapter as a Java Servlet or JAX-RS annotated class that receives method
invocations from a container (JEE) or framework (RESTEasy or Jersey). Or we
might create a message listener for NServiceBus or RabbitMQ. In that case the Port
is more or less the messaging mechanism, and the Adapter is the message listener,
because it is the responsibility of the message listener to grab data from the message
and translate it into parameters suitable to pass into the Application’s API (the client
of the domain model).

Design the Application Inside per Functional Requirements

When using Hexagonal, we design the application with our use cases in mind, not the
number of supported clients. Any number and type of clients may request through
various Ports, but each Adapter delegates to the application using the same API.

The application receives requests by way of its public API. The application
boundary, or inner hexagon, is also the use case (or user story) boundary.
In other words, we should create use cases based on application functional
requirements, not on the number of diverse clients or output mechanisms.
When the application receives a request via its APL, it uses the domain model to
fulfill all requests involving the execution of business logic. Thus, the applica-
tion’s API is published as a set of Application Services. Here again, Application
Services are the direct client of the domain model, just as when using Layers.

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

The following represents a RESTful resource published using JAX-RS.
A request arrives through the HTTP input Port, and the handler acts as an
Adapter, delegating to an Application Service:

@Path("/tenants/{tenantId}/products")
public class ProductResource extends Resource {

private ProductService productService;
@GET
@Path (" {productId}")
@Produces ({ "application/vnd.saasovation.projectovation+xml" })
public Product getProduct (
@PathParam("tenantId") String aTenantId,

@PathParam("productId") String aProductId,
@Context Request aRequest) {

Product product = productService.product (aTenantId, aProductId);
if (product == null) {

throw new WebApplicationException (
Response.Status.NOT_FOUND) ;

return product; // serialized to XML using MessageBodyWriter

The various JAX-RS annotations provide a significant part of the Adapter,
parsing the resource path and turning its parameters into String instances.
The ProductService instance is injected and used by this request to dele-
gate to the application inside. The Product is serialized to XML and placed
in a Response, which is then sent through the HTTP output Port.

JAX-RS Isn’t the Focus Here

This is just one way to use the application and domain model inside. In essence,
JAX-RS is not important. We could instead use Restfulie, or create a Node.js server
running the restify module. Further still, Adapters designed to handle input from
other Ports would delegate to the same API, as you will see.

What about the other side of the application, to the right? Consider Repos-
itory implementations as persistence Adapters, providing access to previously
stored Aggregate instances and storage for new ones. As depicted in the dia-
gram (Adapters E, F, and G), we might have Repository implementations
for relational databases, document stores, distributed cache, and in-memory

www.EBookswWorld.ir

HEXAGONAL OR PORTS AND ADAPTERS

stores. If the application sends Domain Event messages to the outside, it would
use a different Adapter (H) for messaging. The output messaging Adapter is
the opposite of the input Adapter that supports AMQP and thus goes out a
different Port from the one used for persistence.

A big advantage with Hexagonal is that Adapters are easily developed for
test purposes. The entire application and domain model can be designed and
tested before clients and storage mechanisms exist. Tests could be created to
exercise ProductService well before any decision is made to support HTTP/
REST, SOAP, or messaging Ports. Any number of test clients can be developed
before the user interface wireframes have been completed. Long before a per-
sistence mechanism is selected for the project, in-memory Repositories can be
employed to mimic persistence for the sake of testing. See Repositories (12) for
details on developing in-memory implementations. Significant progress can be
made on the core without the need for supplementary technical components.

If using true Layers, consider the advantages of toppling the structure and
developing based on Ports and Adapters instead. When designed properly, the
hexagon inside—the application and domain model—will not leak to the out-
side parts. This promotes a clean application boundary inside in which use
cases are implemented. Outside any number of client Adapters can support
numerous automated tests and real-world clients, as well as storage, messag-
ing, and other output mechanisms.

When the SaaSOvation teams considered the advan-
tages of using the Hexagonal Architecture, they decided
to make the switch from Layers. It wasn’t difficult, actu-
ally. It just required adopting a slightly different mindset in
using the familiar Spring Framework.

Because the Hexagonal Architecture is versatile, it could well be the foun-
dation that supports other architectures required by the system. For instance,
we might factor in Service-Oriented, REST, or an Event-Driven Architecture;
employ CQRS; use a Data Fabric or Grid-Based Distributed Cache; or tack
on Map-Reduce distributed and parallel processing, most of which are dis-
cussed later in this chapter. The Hexagonal style forms the strong foundation

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

for supporting any and all of those additional architectural options. There
are other ways, but for the remainder of this chapter assume that Ports and
Adapters is used to assist with developing around each of the remaining topics
discussed.

Service-Oriented

The Service-Oriented Architecture, or SOA, has different meanings to differ-
ent people. This can make discussions about it somewhat challenging. It’s best
to try to find some common ground, or at least define the ground for this
discussion. Consider some principles of SOA as defined by Thomas Erl [Erl].
Besides the fact that services are always interoperable, they also possess the
eight design principles presented in Table 4.1.

Table 4.1 Design Principles of Services

Service Design Principle Description

1. Service Contract Services express their purpose and capabilities by
means of a contract in one or more description
documents.

2. Service Loose Coupling Services minimize dependency and only have an
awareness of each other.

3. Service Abstraction Services publish only their contract and hide internal
logic from clients.

4. Service Reusability Services can be reused by others in order to build
more coarse-grained services.

5. Service Autonomy Services control their underlying environment and
resources to remain independent, which allows them
to remain consistent and reliable.

6. Service Statelessness Services place the responsibility of state management
on consumers, where this does not conflict with
what is controlled for Service Autonomy.

7. Service Discoverability Services are described with metadata to allow dis-
covery and to make their Service Contract under-
stood, allowing them to be (re)usable assets.

8. Service Composability Services may be composed within more coarse-
grained services no matter the size and complexity of
the composition they fall within.

www.EBookswWorld.ir

SERVICE-ORIENTED

Services Registry

T-Services

REST
Adapter

T-Services

SOAP
Adapter . .
Application
Adapter E
T-Services Adapter F

4 Messaging Domain Model
\V4 Adapter Adapter G

i ula

QU

Messaging
Adapter

Figure 4.5 A Hexagonal Architecture supporting SOA, with REST, SOAP, and
messaging services

We can combine these principles with a Hexagonal Architecture, with the
service boundary at the far left and the domain model at the heart. The basic
architecture is presented in Figure 4.5, where consumers reach services using
REST, SOAP, and messaging. Note that one Hexagonal-based system supports
multiple technical service endpoints. This has a bearing on how DDD is used
within an SOA.

Since opinions vary widely on what SOA is and what value it provides,
it wouldn’t be surprising if you disagree with what’s presented here. Mar-
tin Fowler labels this situation “service-oriented ambiguity” [Fowler, SOA].
Therefore, I won’t make a valiant attempt to disambiguate SOA here. I will,
however, provide a perspective on one way DDD fits into the set of priorities
declared in the SOA Manifesto.?

3. The SOA Manifesto itself has received considerable negative criticism, but we may
still glean some value from it.

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

First, considering the pragmatic viewpoints expressed by one of the Mani-
festo contributors [Tilkov, Manifesto] gives an important context. Comment-
ing on the Manifesto, he brings us at least a step or two closer to understanding
what SOA services can be:

[The Manifesto] gives me the option to view a service as either a set of SOAP/
WSDL interfaces or a collection of RESTful resources. . . . This is not [an]
attempt at a definition—it’s an attempt to find out what values and principles we
could find that we all can agree on.

Stefan’s comments are noteworthy. Finding agreement always helps, and we
can probably agree that a business service can be provided by any number of
technical services.

The technical services could be RESTful resources, SOAP interfaces, or mes-
sage types. The business service emphasizes business strategy, a way to bring
business and technology together. However, defining a single business service
does not equate to defining a single Subdomain (2) or Bounded Context. No
doubt as we perform both problem space and solution space assessments, we
will find that a business service comprises a number of each. Thus, Figure 4.5
shows the architecture of only a single Bounded Context, one that may provide
a set of technical services realized through a number of RESTful resources,
SOAP interfaces, or message types—just a part of the overall business service.
In the SOA solutions space we would expect to see many Bounded Contexts,
whether any individual one uses a Hexagonal Architecture or another. Neither
SOA nor DDD need specify how each set of technical services is designed and
deployed, there being a wide variety of options.

Still, when using DDD our goal is to create a Bounded Context with a com-
plete, linguistically well-defined domain model. As discussed in Bounded Con-
texts (2), we don’t want architecture to influence the size of the domain model.
That could happen if one or a few of the technical service endpoints, such as
a single REST resource, a single SOAP interface, or a system message type,
were to be used to dictate the size of a Bounded Context. Doing so would
force many, very small Bounded Contexts and domain models, perhaps each
consisting of only one Entity acting as the Root of a single, small Aggregate.
This could result in hundreds of such miniature Bounded Contexts in a single
enterprise.

While that approach may be viewed as having technical advantages, it does
not necessarily realize the goals of strategic DDD. It works against a clean,
well-modeled domain based on a complete and comprehensive Ubiquitous
Language (1), actually fragmenting the Language. And, according to the SOA
Manifesto, unnaturally fragmenting Bounded Contexts is not necessarily the
spirit of SOA:

www.EBookswWorld.ir

REPRESENTATIONAL STATE TRANSFER—REST

1. Business value over technical strategy
2. Strategic goals over project-specific benefits

Assuming we can accept these as worthy values, they align very well with stra-
tegic DDD. As explained in Bounded Contexts (2), the technical component
architecture drivers are less important when partitioning models.

The SaaSOvation teams had to learn a
difficult and important lesson, that listen-
ing to the linguistic drivers aligns better
with DDD. Each of their three Bounded
Contexts reflects the goals of SOA—
both for the business and in the techni-
cal services.

The three sample models discussed in Bounded Contexts (2), Context Maps
(3), and Integrating Bounded Contexts (13) individually represent the single lin-
guistically well-defined domain model. Each domain model is surrounded by a
set of open services that implement an SOA that meets the business objectives.

Representational State Transfer—REST
Contributed by Stefan Tilkov

REST has become one of the most used, and abused, architecture buzzwords
of the last few years. As usual, different people think about different things
when they use the acronym. To some, REST means sending XML over HTTP
connections without using SOAP; some equate it with using HTTP and JSON;
others believe that to do REST you need to send method arguments as URI
query parameters. All of these interpretations are wrong, but luckily—and
vastly different from many other concepts such as “components” or “SOA”—
there is an authoritative source for what REST means: the dissertation by Roy
T. Fielding, which coined the term and defines it very clearly.

REST as an Architectural Style

The first thing to understand when trying to “get” REST is the concept of archi-
tectural styles. An architectural style is to architecture what a design pattern is

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

to a specific design. It is an abstraction of those aspects that are common to
different concrete implementations, enabling discussion of their relevant ben-
efits without getting lost in technical detail. There are many different styles of
distributed systems architecture, including client-server and distributed objects.
The first few chapters of Fielding’s thesis explain some of them, including the
constraints they mandate for an architecture that adheres to each of them. The
concept of architectural styles and constraints imposed by them might strike
you as somewhat theoretical, and you’d be right. They form the theoretical
foundation of a (then) new architectural style that Fielding introduces. This is
REST, which is the architectural style that the Web’s architecture is supposed
to adhere to.

Of course the Web—as embodied by its most important standards, URI,
HTTP, and HTML—predates Fielding’s PhD work. But he had been one of
the main forces in standardization of HTTP 1.1, and a huge influence on many
design decisions that led to the Web as we know it.* Seen this way, REST is a
theoretical extrapolation, created after the fact, of the Web’s architecture itself.

So why do we now equate “REST” with a specific way of building systems
or, even more restricting, a way to build Web services? The reason for this is,
as it turns out, that like any other technology, the Web protocols can be used in
many different ways. Some of them match the goals of the original designers;
some of them don’t. One often-used analogy highlights this using the RDBMS
world familiar to many. You can use an RDBMS in line with its architectural
concepts—that is, define tables with columns, foreign key relationships, views,
constraints, and so on—or you can create a single table with two columns,
one called “key,” one called “value,” and simply store serialized objects in the
value column. Of course, you'd still be using an RDBMS, but many of its ben-
efits will not be available to you (meaningful queries, joins, sorting and group-
ing, and so forth).

In a very similar fashion, the Web protocols can be used in line with the
original ideas that made them what they are—with an architecture that con-
forms to the REST architectural style—or be used in a way that fails to follow
it. And similar to our RDBMS example, we ignore the underlying architec-
tural style to our peril. Thus, a different kind of distributed systems architec-
ture might be appropriate if we don’t end up exploiting any of the benefits of
using HTTP in a “RESTful” way, just as a NoSQL/key-value store is the better
choice for storing whole values that are associated with a single unique key.

4. He also happens to be the author of the very first widely used HTTP library, one
of the original developers of the Apache HTTP server, and founder of the Apache
Software Foundation.

www.EBookswWorld.ir

REPRESENTATIONAL STATE TRANSFER—REST

Key Aspects of a RESTful HTTP Server

So what are the key aspects of a distribution architecture that uses “RESTful
HTTP”? Let’s look at the server side first. Note that it’s entirely irrelevant
whether we are talking about a server that’s used by a human using a Web
browser (a “Web application”) or used by some other agent, such as a client
written in your programming language of choice (a “Web service”).

First of all, as the name implies, resources are a key concept. How s0? As a
system designer, you decide what are the meaningful “things” that you want to
expose as accessible from the outside, and you assign each a distinct identity.
In general, each resource has one URI, and more importantly, each URI should
point to one resource—the “things” you expose to the outside need to be indi-
vidually addressable. For example, you might decide that each customer, each
product, each product listing, each search result, and maybe each change to
the product catalog should be resources in their own right. Resources have
representations, renditions of their state, in one or more formats. It’s through
representations—an XML or JSON document, an HTML form’s post data, or
some binary format—that clients interact with resources.

The next key aspect is the idea of stateless communication, using self-
descriptive messages. Such is an HTTP request that carries all the information
the server needs to handle it. Of course, the server can (and usually will) use its
own persistent state to help, but it’s important that the client and server don’t
rely on individual requests to set up an implicit context (a session). This enables
access to each resource independently of other requests, an aspect that helps in
achieving massive scalability.

If you view resources as objects—and it’s not at all unreasonable to do so—
it’s valid to ask what kind of interface they should have. The answer is another
very important aspect that differentiates REST from any other architectural
style for distributed systems. The set of methods that you can invoke is fixed.
Every object supports the same interface. In RESTful HTTP, the methods are
the HTTP verbs—most importantly, GET, PUT, POST, DELETE—that can be
applied to resources.

Even though it might appear so at first sight, these methods do not trans-
late to CRUD operations. It is very common to create resources that do not
represent any persistent entity but instead encapsulate behavior that is invoked
once an appropriate verb is used on them. Each of the HTTP methods has a
very clear definition in the HTTP specification. For example, the GET method
is to be used only for “safe” operations: (1) it can perform actions that reflect
an effect a client might not have requested; (2) it always reads data; (3) it can
potentially be cached (if the server indicates that this is the case by means of
appropriate response headers).

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

HTTP’s GET method has been called “the most optimized piece of distrib-
uted systems plumbing in the world” by none other than Don Box, one of the
main figures behind SOAP-style Web services. His words highlight that a lot of
the Web’s performance and scalability that we take for granted is due to HTTP
optimizations for this particular, very common case.

Some HTTP methods are idempotent, meaning that they can be safely
called again without problems in case of an error or unclear outcome. This is
true for GET, PUT, and DELETE.

Finally, a RESTful server enables a client to discover a path through the appli-
cation’s possible state transitions by means of hypermedia. This is called Hyper-
media as the Engine of Application State (HATEOAS) in Fielding’s dissertation.
Put more simply, the individual resources don’t stand on their own. They are
connected, linked to each other. This should not come as a surprise. After all,
this is where the Web got its name. For the server, this means that it will embed
links in its answers, enabling the client to interact with connected resources.

Key Aspects of a RESTful HTTP Client

A RESTful HTTP client moves from one resource to the next either by fol-
lowing links contained in resource representations or by being redirected to
resources as a result of sending data for processing to the server. Server and cli-
ent cooperate to influence the client’s distribution behavior dynamically. As a
URI contains all information necessary for dereferencing an address—includ-
ing host name and port—a client following the hypermedia principle might
end up talking to a resource hosted by a different application, a different host,
or even a different company.

In an ideal REST setup, a client will start with a single well-known URI
and continue following hypermedia controls from then on. This is exactly the
model used by the browser when rendering and displaying HTML, including
links and forms, to the user. Then, it uses the user’s input to interact with a
multitude of Web applications, without up-front knowledge about their inter-
face or implementations.

Granted, a browser is not a self-sufficient agent. It requires a human to make
the actual decisions. But a programmatic client can adopt many of the same
principles, even when some logic is hard-coded. It will follow links instead of
assuming specific URI structures, or even colocation of resources in one server,
and it will make use of its knowledge of one or more media types.

REST and DDD

Tempting though it may be, it is not advisable to directly expose a domain
model via RESTful HTTP. This approach often leads to system interfaces that

www.EBookswWorld.ir

REPRESENTATIONAL STATE TRANSFER—REST

are more brittle than they need to be, as each change in the domain model is
directly reflected in the system interface. There are two alternative approaches
for combining DDD and RESTful HTTP.

The first approach is to create a separate Bounded Context for the system’s
interface layer and use appropriate strategies to access the actual Core Domain
from the system’s interface model. This can be deemed a classic approach, as
it views the system’s interface as a cohesive whole that is simply exposed using
resource abstractions instead of services or remote interfaces.

Consider a concrete example of this approach. We build a system that man-
ages a workgroup, including its tasks, schedules/appointments, subgroups, and
all of the processes needed to handle these. We would design a pure domain
model, untainted by the infrastructure details, that captures the Ubiquitous
Language and implements the necessary business logic. To publish an interface
to this carefully crafted domain model, we provide a remote interface as a set
of RESTful resources. These resources reflect the use cases the client needs,
which is very likely different from the pure domain model. Yet each resource
is built from, for example, one or more Aggregates belonging to the Core
Domain.

Of course, we could simply use the domain objects as parameters to JAX-RS
resource methods—Ilet’s say /:user/:task would map to a method get-
Task() that returns a Task object. That’s seemingly simple, but it comes with
one major problem. Any change to the Task object structure is immediately
reflected in the remote interface, possibly breaking many clients, even though
we might only have changed something that’s entirely irrelevant to the outside
world. Not good.

So the first approach is preferred, that of decoupling the Core Domain from
the system’s interface model. Doing so enables us to make changes to the Core
Domain and then decide in each individual case whether that change must be
reflected in the system’s interface model and, if so, the best mapping to use.
Note that with this approach, the classes designed for the system’s interface
model are usually driven by those of the Core Domain, but are certainly driven
by the use cases. Note: Even in this case we could define a custom media type.

Another approach is appropriate when more emphasis is placed on standard
media types. If specific media types are developed to support not only a single
system interface but a category of similar client-server interactions, a domain
model can be created to represent each standard media type. Such a domain
model might even be reused across clients and servers, although some REST
and SOA proponents view this as an anti-pattern. Note: Such an approach is
essentially a Shared Kernel (3) or Published Language (3) in DDD terms.

This reflects more of an outside-in, crosscutting approach. In the workgroup
and task management domain mentioned previously, there are many common

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

formats. Let’s consider the ical format as an example. This is a generic format
that can be used by many different applications. In this case we would start
by selecting a media type (ical) and then creating a domain model for this for-
mat. This model could then be used by any system that needs to understand
this format—our server application, for example, but also others (such as an
Android client). Naturally, with this approach a server might need to deal with
many different media types, and the same media type might be used by multi-
ple servers.

Which of these two approaches is chosen depends to a large degree on the
goals of the system designer in terms of reusability. The more specialized the
solution, the more useful the first approach turns out to be. The more generally
useful the solution is, with the extreme end of the spectrum being standard-
ization by an official standards body, the more sense it makes to go with the
second, media-type-centric approach.

Why REST?

In my experience, a system designed conforming to REST principles fulfills the
promise of loose coupling. In general, it’s very easy to add new resources and
links to them in existing resource representations. It’s also easy to add support
for new formats where needed, leading to a much less brittle set of system con-
nections. A REST-based system is much easier to understand, as it’s split into
smaller chunks—the resources—each of which exposes a separately testable,
debuggable, and usable entry point. The design of HTTP and the maturity of
the tooling with support for features such as URI rewriting and caching make
RESTful HTTP a great choice for architectures that need to be both loosely
coupled and highly scalable.

Command-Query Responsibility Segregation, or CQRS

It can be difficult to query from Repositories all the data users need to view.
This is especially so when user experience design creates views of data that
cuts across a number of Aggregate types and instances. The more sophisticated
your domain, the more this situation tends to occur.

Using only Repositories to solve this can be less than desirable. We could
require clients to use multiple Repositories to get all the necessary Aggregate
instances, then assemble just what’s needed into a Data Transfer Object (DTO)
[Fowler, P of EAA]. Or we could design specialized finders on various Reposi-
tories to gather the disjointed data using a single query. If these solutions seem

www.EBookswWorld.ir

CoMMAND-QUERY RESPONSIBILITY SEGREGATION, OR CQRS

unsuitable, perhaps we should instead compromise on user experience design,
making views rigidly adhere to the model’s Aggregate boundaries. Most would
agree that in the long run a mechanical and spartan user interface won’t suffice.

Is there an altogether different way to map domain data to views? The
answer lies in the oddly named architecture pattern CQRS [Dahan, CQRS;
Nijof, CQRS]. It is the result of pushing a stringent object (or component)
design principle, command-query separation (CQS), up to an architecture
pattern.

This principle, devised by Bertrand Meyer, asserts the following:

Every method should be either a command that performs an action, or a query
that returns data to the caller, but not both. In other words, asking a question
should not change the answer. More formally, methods should return a value
only if they are referentially transparent and hence possess no side effects. [Wiki-
pedia, CQS]

At an object level this means:

1. If a method modifies the state of the object, it is a command, and its
method must not return a value. In Java and C# the method must be
declared void.

2. If a method returns some value, it is a query, and it must not directly or
indirectly cause the modification of the state of the object. In Java and C#
the method must be declared with the type of the value it returns.

That’s pretty straightforward guidance, and there is a practical and theoretical
basis for adhering to it. Yet, as an architecture pattern when using DDD, why
and how is it applied?

Visualize a domain model, such as one of those discussed under Bounded
Contexts (2). We’d normally see Aggregates with both command and query
methods. We’d also see Repositories that have a number of finder methods that
filter on certain properties. With CQRS we are going to disregard these “nor-
malities” and design a different way to query display data.

Now think of segregating all of the pure query responsibilities traditionally
found in a model from all responsibilities that execute pure commands on the
same model. Aggregates would have no query methods (getters), only com-
mand methods. Repositories would be stripped down to an add () or save()
method (supporting both creation and updating saves) and only a single query
method, such as fromId(). The single query method takes the unique iden-
tity of an Aggregate and returns it. A Repository could not be used to find an
Aggregate by any other means, such as by filtering on some additional prop-
erties. With all of that removed from the traditional model, we designate it

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

a command model. We still need a way to display data to the user. For that
we create a second model, one that is tuned for optimized queries. That’s our
query model.

Isn’t This Accidental Complexity?

Your impression may be that this proposed style is a lot of work and that we are
merely replacing one set of problems with another set of problems, and adding a lot
more code to do it.

Don’t be too quick to dismiss this style, however. Under some circumstances the
added complexity is justifiable. Remember, CQRS is meant to solve a specific view
sophistication problem, not to tack on as a cool new style that will strengthen your
résumé.

Known by Other Names

Note that some areas/components of CQRS may be known by other names. What
I call the query model is also known as the read model, and the command model is
also called the write model.

As a result, the traditional domain model would be split in two. The com-
mand model is persisted in one store and the query model in another. We end
up with a set of components like the one in Figure 4.6. Some more details will
clarify this pattern.

Examining Areas of CQRS

Let’s step through each of the major areas of this pattern. We can start with
the client and query support and move through to the command model and
how updates to the query model are done.

a Query / Query
Processor Event (all) | 7| Model
Subscriber] _/
Command /\
7| Processors
(Application Command _/
pplicati Model >
Services) ° Command
Model
Store

Figure 4.6 With CQRS, commands from clients travel one way to the command
model. Queries are run against a separate data source optimized for presentation and
delivered as user interface or reports.

www.EBookswWorld.ir

CoMMAND-QUERY RESPONSIBILITY SEGREGATION, OR CQRS

Client and Query Processor

The client (at the far left in the diagram) may be a Web browser or a custom
desktop user interface. It uses a set of query processors running on a server.
The diagram doesn’t show architecturally significant divisions between tiers
on the server(s). Whatever tiers exist, the query processor represents a simple
component that only knows how to execute basic queries on a database, such
as a SQL store.

There are no complex layers here. At most this component runs a query
against the query store database and maybe serializes the query result into
some format for transport (maybe a DTO, but maybe not), if that’s necessary.
If the client runs Java or C#, it could query the database directly. However, that
might require a large number of database client licenses, one per connection.
Employing a query processor that uses pooled connections is the best choice.

If the client can consume a database result set (for example, JDBC vari-
ety), serialization is unnecessary but may be desirable anyway. There are two
schools of thought here. One asserts that ultimate simplicity requires that the
result set, or a very basic wire-compatible serialization of it (XML or JSON),
must be consumed by the client. Others assert that DTOs should be built and
consumed by the client. This may be a matter of taste, but we might agree that
anytime we add DTOs and DTO Assemblers [Fowler, P of EAA] there is added
complexity, and if not truly needed, these would be accidental complexity.
Each team determines which approach works best for their project.

Query Model (or Read Model)

The query model is a denormalized data model. It is not meant to deliver
domain behavior, only data for display (and possibly reporting). If this data
model is a SQL database, each table would hold the data for a single kind
of client view (display). The table can have many columns, even a superset of
those needed by any given user interface display view. Table views can be cre-
ated from tables, each of which is used as a logical subset of the whole.

Create Support for as Many Views as Needed

It’s worth noting that CQRS-based views can be both cheap and disposable (for
development and in maintenance). This is especially so if you use a simple form of
Event Sourcing (see the section “Event Sourcing” later in the chapter and Appendix
A) and save all Events into a persistent store, which can be republished at any time to
create new persistent view data. Doing so, any single view could be rewritten from
scratch in isolation or the entire query model be switched to completely different
persistence technology. This makes it easy to create and maintain views that contin-
uously address ongoing Ul needs. This can lead to more intuitive user experiences
that avoid the table paradigm but are instead much richer.

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

For example, a table could be designed with enough data to display user
interfaces for normal users, managers, and administrators. If a correspond-
ing database table view was created for each of those user types, the data for
each security role would be divided appropriately. This builds security into the
viewable data per user type. A normal user view component would select all
columns from the normal user table view. A manager’s view component would
select all columns from the manager’s table view. That way normal users would
not be able to see what managers can see.

Preferably, a select statement requires only a primary key for the view being
used. Here the query processor selects all columns from the normal user table
view of a product:

SELECT * FROM vw_usr_product WHERE id = ?

As a side note, the table view naming convention seen here is not necessar-
ily recommended. It just makes obvious what the sample select is doing. The
primary key corresponds to the unique identity of some Aggregate type or a
combined set of Aggregate types merged into a single table. In this example the
id primary key column is the unique identity of a Product in the command
model. The data model design should follow, as much as possible, the pattern
of one table per user interface view type, with as many table views as necessary
to reflect application security roles. But, be practical.

Be Practical

If there are 25 traders at a high-frequency trading desk and each one is trading secu-
rities that most of the others cannot view due to SEC compliance, would we need 25
table views? Using a trader filter would be more appropriate. Otherwise, there may
be too many views to maintain to be truly practical.

In practice this may be difficult to achieve, and queries may have to join
multiple tables or table views as necessarily for practical use. Joins across
views/tables may be necessary or at least more practical to achieve necessary
filtering. This may tend to be the case, especially when there are many user
roles at play in your domain.

Don’t Database Table Views Cause Overhead?

A basic database table view has no overhead when performing updates on the back-
ing table. The view just corresponds to a query, which in this case does not even
require a join. Only materialized views incur update overhead since the view’s data
must be copied into one place so it is ready for selects. Use care when designing
tables and views so that query model updates perform optimally.

www.EBookswWorld.ir

CoMMAND-QUERY RESPONSIBILITY SEGREGATION, OR CQRS

Client Drives Command Processing

User interface clients submit commands to the server (or indirectly execute an
Application Service method) as the means of executing behavior on Aggregates,
which are in the command model. The submitted command contains the name
of the behavior to execute and the parameters necessary to carry it out. The
command packet is a serialized method invocation. Since the command model
has carefully designed contracts and behaviors, matching the commands to the
contracts is a straightforward mapping.

To accomplish this the user interface must collect the data necessary to
correctly parameterize the command. This implies that much thought must
be given to user experience design. It must lead users toward the proper goal
of submitting an explicit command. An inductive, task-driven user interface
design works best [Inductive UI]. It filters out all inapplicable options, focusing
on precision command execution. That said, it is possible to design a deductive
user interface that generates an explicit command.

Command Processors

A command submission is received by a Command Handler/processor, which
can have a few different styles. We consider those styles here, along with some
advantages and disadvantages.

We can use a categorized style with several Command Handlers in one
Application Service. This style creates an Application Service interface and
implementation for a category of commands. Each Application Service could
have multiple methods, one method declared for each type of command with
parameters that fits the category. The primary advantage here is simplicity.
This kind of handler is well understood, easy to create, and easy to maintain.

We can create a dedicated style handler. Each one would be a single class
with one method. The method contract facilitates a specific command with
parameters. This has clear advantages: There is a single responsibility per
handler/processor; each handler may be redeployed independently of others;
handler types can be scaled out to manage high volumes of certain kinds of
commands.

This leads to the messaging style of Command Handler. Each command
is sent as an asynchronous message and delivered to a handler designed with
the dedicated style. This not only enables each command processor component
to receive specifically typed messages, but processors of a given type can be
added to deal with command processing load. This approach should not be
used by default, as it has a more complex design. Instead, start off with either
of the other two styles as synchronous command processors. Switch to asyn-
chronous only if scalability demands require it. That said, some will conclude

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

that an asynchronous approach providing temporal decoupling leads to more
resilient systems. That viewpoint will often lead to a bias toward implementing
the messaging style of Command Handlers.

Whatever kind of handler is used, decouple each one from all others. Do not
allow any one handler to depend on (make use of) any others. This will allow
any type of handler to be redeployed independently without impacting others.

Command Handlers generally do only a few things. If one has a creation
aspect, it instantiates a new Aggregate instance and adds the new instance to
its Repository. Most often it gets an Aggregate instance from its Repository
and executes a command method behavior on it:

@Transactional

public void commitBacklogItemToSprint (
String aTenantId, String aBacklogItemId, String aSprintId) ({
TenantId tenantId = new TenantId(aTenantId) ;

BacklogItem backlogItem =
backlogItemRepository.backlogItemOfId (
tenantId, new BacklogItemId(aBacklogItemId)) ;

Sprint sprint = sprintRepository.sprintOfId(
tenantId, new SprintId(aSprintId)) ;

backlogItem.commitTo (sprint) ;

When the Command Handler completes, a single Aggregate instance has
been updated and a Domain Event has been published by the command model.
This is essential to ensuring that the query model is updated. Note too that,
as discussed in Domain Events (8) and Aggregates (10), the published Event
may also be used to cause the synchronization of other Aggregate instances
effected by this one command, but the modification of the additional Aggre-
gate instances would be eventually consistent with the one committed by this
transaction.

Command Model (or Write Model) Executes Bebavior

As each command method on the command model is executed, it completes
by publishing an Event as described in Domain Events (8). Using the running
example, the BacklogItem would complete its command method as follows:

public class BacklogItem extends ConcurrencySafeEntity ({

public void commitTo (Sprint aSprint) {

www.EBookswWorld.ir

CoMMAND-QUERY RESPONSIBILITY SEGREGATION, OR CQRS

DomainEventPublisher

.instance()

.publish (new BacklogItemCommitted (
this.tenant(),
this.backlogItemId(),
this.sprintId()));

What’s Behind the Publisher Component?

This particular DomainEventPublisher is a lightweight component based on the
Observer pattern [Gamma et al.]. See Domain Events (8) for details on how Events
get published broadly.

This is the linchpin for updating the query model with the most recent
changes to the command model. If using Event Sourcing, the Events are also
necessary for persisting the state of the Aggregate that has just been modified
(BacklogItem in this example). However, it is not a necessity to use Event
Sourcing with CQRS. Unless Event logging is a requirement specified by the
business, the command model can be persisted using an object-relational map-
per (ORM) to a relational database or some other approach. Either way, a
Domain Event must still be published to ensure that the query model is updated.

When Commands Don’t Result in Event Publishing

There are circumstances when command dispatching does not lead to Events being
published. For example, if a command was delivered by “at-least-once” messag-
ing and the application ensures idempotent operations, the redelivered message is
silently dropped.

Also consider the case where the application validates incoming commands. All
authorized clients know about validation rules and will always pass them. However,
all unauthorized clients—such as those of attackers—submitting invalid commands
will fail and can be silently dropped without endangering authorized users.

Event Subscriber Updates the Query Model

A special subscriber registers to receive all Domain Events published by the
command model. The subscriber uses each Domain Event to update the query
model to reflect the most recent changes to the command model. This implies
that each Event must be rich enough to supply all the data necessary to produce
the correct state in the query model.

Should the updates be performed synchronously or asynchronously? It
depends on the normal load on the system, and possibly also on where the
query model database is stored. Data consistency constraints and performance
requirements will influence the decision.

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

To update synchronously, the query model and command model would nor-
mally share the same database (or schema), and we would update the two mod-
els in the same transaction. That keeps both models completely consistent. Yet,
this will require more processing time for the multiple table updates, which
may not meet the service-level agreement (SLA). If the system is normally
under heavy load and the query model update process is lengthy, use asyn-
chronous updates instead. This may lead to challenges of eventual consistency,
where the user interface will not immediately reflect the most recent changes
in the command model. The lag time is unpredictable, but it is a trade-off that
may be necessary to meet other SLAs.

What happens when a new user interface view is created but its data must
be created? Design the table and any table views as described previously. Pop-
ulate the new table with current state using one of a few techniques. If the
command model is persisted using Event Sourcing, or if there is a full historical
Event Store, replay the historical Events to produce the updates. This is possi-
ble only if the right kinds of Events already exist in the store. If they don’t, the
table may have to be populated as future commands enter the system. There
may be another option.

If the command model is persisted using an ORM, use the backing com-
mand model store to populate the new query model table. This may employ
a common data warehousing (or report database) generation technique, such
as extract, transform, load (ETL). Extract the data from the command model
store, transform it as needed by the user interface, and load it into the query
model store.

Dealing with an Eventually Consistent Query Model

If the query model is designed to be eventually consistent—query model
updates are performed asynchronously following writes to the command model
store—there will be resulting idiosyncrasies in the user interface to deal with.
For example, after a user submits a command, will the next user interface view
have the fully updated and consistent data reflected from the query model? It
may depend on system load and other factors. But we had better assume not
and design for the worst case, where the user interface is never consistent.

One option is to design the user interface to temporarily display the data
that was successfully submitted as parameters of the command just executed.
This is a bit of a trick, but it enables the user to immediately see what will
eventually be reflected in the query model. It may be the only way to ensure
that the user interface does not display completely stale data just after a com-
mand is successfully executed.

www.EBookswWorld.ir

EVENT-DRIVEN ARCHITECTURE

What if that is not practical for a given user interface? Even if it is, there are
also times when any one user executes a command and all other users viewing
related data will absolutely see stale data. How can this challenge be met?

One technique suggested by [Dahan, CQRS] always explicitly displays on
the user interface the date and time of the data from the query model that
a user is currently viewing. To do so, each record in the query model needs
to maintain the date and time of the latest update. This is a trivial step, gen-
erally supported by a database trigger. With the date and time of the latest
update, the user interface can now inform the user how old the data is. If the
user determines that the data is too stale to use, he or she can at that time
request fresher data. Admittedly this approach is lauded by some as an effec-
tive pattern and heavily criticized by others as a hack or artifice. Certainly
these opposing viewpoints indicate the need to perform user acceptance tests
before this approach is employed in our own systems.

Yet, it’s possible that the delayed view data synchronization is not a crit-
ical problem at all. It may also be overcome by other means, such as Comet
(aka Ajax Push), or another form of latent update, such as some variation of
Observer [Gamma et al.] or Distributed Cache/Grid (for example, Coherence
or GemFire) event subscriptions. Addressing delays may even be as easy as
informing users that their request has been accepted and a result will require
some processing time. Carefully determine whether the eventual consistency
lag time poses a problem. If so, yow’ll have to find the best way to address it in
a given environment.

As with every pattern, CQRS introduces a number of competing forces. We
must exercise a great deal of care and choose wisely. Certainly if a user inter-
face is not overly complex or regularly cut across several different Aggregates
in a single view, employing CQRS would serve to introduce accidental com-
plexity rather than necessary complexity. CQRS is the right choice when it
removes a risk that has a high probability of causing failure if ignored.

Event-Driven Architecture

Event-driven architecture (EDA) is a software architecture promoting the pro-
duction, detection, consumption of, and reaction to events. [Wikipedia, EDA]

The Hexagonal Architecture shown in Figure 4.4 can represent the notion of
one system participating in an EDA by means of incoming and outgoing mes-
sages. An EDA doesn’t have to use Hexagonal, but it’s a decent way to present
the concepts here. On a greenfield project it would be well worth it to consider
using Hexagonal as the overarching style.

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

Examining Figure 4.4, say that the triangular client and the corresponding
triangular output mechanism represent the messaging mechanism used by the
Bounded Context. Input events enter on a Port separate from the one used by
the other three clients. Output events likewise travel via a different Port. As pro-
posed previously, the separate Ports could represent the message transport over
AMQP, as used by RabbitMQ, rather than the more common HTTP that the
other clients use. Whichever actual messaging mechanism may be in use, we will
assume that events enter and exit the system by means of the symbolic triangles.

There may be a number of different kinds of events that enter and exit a
hexagon. We are interested specifically in Domain Events. The application may
also subscribe to system, enterprise, or other types of events as well. Perhaps
those deal with system health and monitoring, logging, dynamic provisioning,
and the like. Yet, it is the Domain Events that convey the happenings requiring
our modeling attention.

We can replicate the system in the Hexagonal Architecture view as many
times as necessary to represent the complement of systems in the enterprise
that support the Event-Driven way. That’s been done in Figure 4.7. Again, it’s
not that every system will be based on Hexagonal. The diagram just demon-
strates how Event-Driven could be supported if multiple systems were Hex-
agonal at their foundation. Otherwise, feel free to replace the hexagons with
Layers, or another style.

The Domain Events published by one such system through the output Port
would be delivered to subscribers represented in the others through their input
Port. The various Domain Events received have a specific meaning in each receiving

Incoming events Hexagonal Architecture

\ /
4 %‘
V/ V.
Incoming events\ i OutgoiHQS/ents
\VAN
\/

Figure 4.7 Three systems using an Event-Driven Architecture with an overarching
Hexagonal style. The EDA style decouples all but the systems’ dependency on the
messaging mechanism itself and the Event types they subscribe to.

www.EBookswWorld.ir

EVENT-DRIVEN ARCHITECTURE

Bounded Context, or possibly no meaning at all.” If the Event type is of interest in
a specific Context, its properties are adapted to the application’s API and used to
execute an operation there. The command operation executed on the application’s
API is then reflected into the domain model according to its protocol.

It’s possible that a specific Domain Event received represents only one part
of a multitask process. Until all anticipated Domain Events arrive, the mul-
titask process is not considered completed. But how does the process begin?
How is it distributed across the enterprise? And how do we handle tack prog-
ress through to process completion? The answers are discussed subsequently in
the section on long-running processes. But first some initial groundwork is in
order. Message-based systems often reflect a Pipes and Filters style.

Pipes and Filters

In one of its simplest forms, Pipes and Filters are available using a shell/console
command line:

$ cat phone_numbers.txt | grep 303 | wc -1
3
$

Here a Linux command line is used to find how many contacts are in the fancy
personal information manager, phone_numbers.txt, who have Colorado-
based phone numbers. Admittedly this is not a very reliable way to implement
that use case, but it does demonstrate how Pipes and Filters work:

1. The cat utility outputs the contents of phone_numbers.txt to what is
called the standard output stream. Normally this stream is connected to
the console. But when the | symbol is used, the output is piped to the input
of the next utility.

2. Next, grep reads its input from the standard input stream, which was
the result of cat. The argument to grep tells it to match lines that con-
tain the text 303. Each line that it finds is output to its standard output
stream. As with cat, grep’s output stream is now piped to the input of
the next utility.

3. Finally, wc reads its standard input stream, which was piped from grep’s
standard output. The command-line argument to wc is -1, telling it to
count the number of lines it reads. It outputs the result, which in this case

5. If using message filters or routing keys, subscribers can avoid receiving Events that
are meaningless to them.

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

is 3, because three lines were output by grep. Note that now the stan-
dard output is displayed to the console since this time there is no Pipe to
an additional command.

This can be approximated using a Windows console, but with less piping:

C:\fancy_pim> type phone_numbers.txt | find /c "303"
3
C:\fancy_pim>

Consider what happens with each of the utilities. Each receives a dataset,
processes it, and outputs a different dataset. The dataset that is output changes
from the input because each utility acts as a Filter. By the end of the filtering
process the output is completely different from the input. The input started out
as a text file with individual lines of contact information and ended up being
the text digit representing the number 3.

Using the basic principles from this example, how might we apply them to
an Event-Driven Architecture? In fact, we can find some useful overlap. The
following discussion is based on the Pipes and Filters messaging pattern found
in [Hohpe, Woolf]. Understand, however, that a messaging Pipes and Filters
approach is not exactly like the command-line version, and it is not intended
to be. For example, an EDA Filter doesn’t need to actually filter anything. A
Filter in an EDA may be used to perform some processing while leaving the mes-
sage data intact. Yet Pipes and Filters in an EDA is similar enough to the com-
mand-line type that the previous example helped lay some groundwork for what
follows. If you are a more advanced reader, feel free to “filter” what follows.

Table 4.2 presents some of the basic characteristics of a message-based Pipes
and Filters process.

Table 4.2 Basic Characteristics of a Message-Based Pipes and Filters Process

Characteristic Description

Pipes are message Filters receive messages on an inbound Pipe and send mes-

channels sages on an outbound Pipe. The Pipe is actually a message
channel.

Ports connect Filters Filters connect to inbound and outbound Pipes through a
to Pipes Port. Ports make Hexagonal (Ports and Adapters) a fitting
overarching style.

Filters are processors Filters may process messages without actually filtering.

Separate processors Each Filter processor is a separate component, and proper
component granularity is achieved by careful design.

www.EBookswWorld.ir

EVENT-DRIVEN ARCHITECTURE

Table 4.2 Basic Characteristics of a Message-Based Pipes and Filters Process
(Continued)

Characteristic Description

Loosely coupled Each Filter processor is composed into the process inde-
pendent of all others. Filter processor composition may be
defined by configuration.

Interchangeable The order in which a processor receives messages may be
rearranged per use case requirements, again using config-
ured composition.

Filters may While the command-line Filters read from and write to

multi-Pipe only one Pipe, messaging Filters may read from and/or
write to multiple Pipes, which implies parallel or concur-
rent processing.

Use same-type Filters The busiest and possibly slowest Filters may be deployed in
in parallel multiples to increase throughput.

Now, what if we were to think of each of the utilities cat, grep, and wc (or
type and find) as components in an Event-Driven Architecture? What if we
even implemented components to act as message senders and receivers to pro-
cess telephone numbers in a similar way? (Again, I am not trying to illustrate a
one-to-one command-line replacement, just a simple messaging example with
the same basic goals.)

Here’s how a messaging Pipes and Filters approach could work, with steps
illustrated in Figure 4.8:

1. We could start off with a component named PhoneNumbersPublisher
that reads all the lines in phone_numbers.txt and then creates and
sends an Event message that includes all of the text lines. The Event is
named A11PhoneNumbersListed. Once it is sent, the pipeline begins.

2. A message handler component named PhoneNumberFinder is config-
ured to subscribe to Al1PhoneNumbersListed and receives it. This
message handler is the first Filter in the pipeline. The Filter is configured
to search for the text 303. This component processes the Event by search-
ing each line for the 303 text sequence. It then creates a new Event named
PhoneNumbersMatched, placing the full lines of matching results in
the Event. The Event message is sent, continuing the pipeline.

3. A message handler component named MatchedPhoneNumberCounter
is configured to subscribe to PhoneNumbersMatched and receives it. This
message handler is the second Filter in the pipeline. Its sole responsibility

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

PhoneNumbersPublisher &)8

sends

<<event>>

AllPhoneNumbersListed

received by

PhoneNumberFinder

sends

<<event>>

PhoneNumbersMatched

received by

MatchedPhoneNumberCounter

sends

<<event>>

MatchedPhoneNumbersCounted

received by

logs
PhoneNumberExecutive ‘>8

Figure 4.8 A pipeline is formed by sending Events that the Filters process.

is to count the phone numbers in the Event and then forward the results
in a new Event. In this case it counts three total lines containing phone
numbers. The Filter completes by creating the MatchedPhoneNumbers-
Counted Event, setting the count property to 3. The Event message is
sent, continuing the pipeline.

4. Finally, a message handler component subscribed to MatchedPhone-
NumbersCounted receives it. This component is named PhoneNumber-
Executive. Its single responsibility is to log the result, including the
count Event property and the date and time it was received, to a file. In
this case it writes

3 phone numbers matched on July 15, 2012 at 11:15 PM

The pipeline for this specific process is now completed.®

6. For simplicity I don’t discuss Ports, Adapters, and the application API of the
Hexagonal Architecture.

www.EBookswWorld.ir

EVENT-DRIVEN ARCHITECTURE

This kind of pipeline is somewhat flexible. If we wanted to add any new Fil-
ters to the pipeline, we’d create new Events that each existing Filter subscribes
to and publishes. Basically we’d have to carefully change the sequential order
of the pipeline via configuration. Of course, it’s not as easy to change this pro-
cess as with the command-line approach. Typically, however, we won’t change
Domain Event pipelines all that frequently. While this particular distributed
process is not very useful in itself, it does demonstrate how Pipes and Filters
might work in a messaging, Event-Driven Architecture.

So, would we actually expect that we’d see Pipes and Filters exploited to
solve a problem like this? Well, ideally not. (In fact, if you find this example
annoying, it’s probably because you already know better. That’s fine, but there
are plenty of others who are helped by it.) This is meant only as a synthetic
example, one that highlights the concepts. In a real enterprise we would use
this pattern to break down a large problem into smaller steps that would make
distributed processing easier to understand and manage. It would also allow
multiple systems to care only for what they do well.

In an actual DDD scenario, Domain Events reflect names meaningful to
the business. Step 1 could publish a Domain Event based on the behavioral
outcome of an Aggregate in one Bounded Context. Steps 2 through 4 could
occur in one or more different Bounded Contexts that receive the initial Event
and then publish one of the subsequent ones. Those three steps could create or
modify Aggregates in their respective Contexts. It does depend on the domain,
but those are common outcomes of handling Domain Events in a Pipes and
Filters Architecture.

As explained in Domain Events (8), these are not just paper-thin technical
notifications. They explicitly model business process activity occurrences that
are useful for domain-wide subscribers to know about, and they pack unique
identity and as many knowledge-conveying properties as necessary to clearly
get their point across. Yet this synchronous, step-by-step style can be extended
to accomplish more than one thing at the same time.

Long-Running Processes, aka Sagas

The synthetic Pipes and Filters example can be extended to demonstrate another
Event-Driven, distributed, parallel processing pattern, namely, Long-Running
Processes. A Long-Running Process is sometimes called a Saga, but depending
on your background that name may collide with a preexisting pattern. An early
description of Sagas is presented in [Garcia-Molina & Salem]. In an attempt to
avoid confusion and ambiguity, I have chosen to use the name Long-Running
Process, and sometimes I use the name Process for brevity.

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

Cowboy Logic

LB: “Dallas and Dynasty, now those are what | call
sagas!”

AJ: “For all you German readers, y’all know Dynasty as
Der Denver Clan.”

Extending the previous example, we could create parallel pipelines by adding
just one new Filter, TotalPhoneNumbersCounter, as an additional sub-
scriber to AllPhoneNumbersListed. It receives the Event AllPhone-
NumbersListed virtually in parallel with the PhoneNumberFinder. The
new Filter has a very simple goal, counting all existing contacts. This time,
however, PhoneNumberExecutive both starts the Long-Running Process
and tracks it through completion. The executive may or may not reuse the
PhoneNumbersPublisher, but the important thing is what’s new about it.
The executive, implemented as an Application Service or Command Handler,
tracks the progress of the Long-Running Process and understands when it is
completed and what to do when that happens. Refer to Figure 4.9 as we step
through the sample Long-Running Process.

reads logs

PhoneNumberExecutive
received by received by

sends

<<event>> <<event>>

AllPhoneNumbersCounted AllPhoneNumbersListed

sends

received by ‘ ‘ received by

TotalPhoneNumbersCounter PhoneNumberFinder

Figure 4.9

sends

<<event>>

PhoneNumbersMatched

i/received by

sends <<event>>

MatchedPhoneNumbersCounted

MatchedPhoneNumberCounter

The single Long-Running Process executive initiates the parallel processing and tracks

it to completion. The wider arrows indicate where the parallelism begins when two Filters receive

the same Event.

www.EBookswWorld.ir

EVENT-DRIVEN ARCHITECTURE v

A4 v
Different Ways to Design a Long-Running Process

Here are three approaches to designing a Long-Running Process, although
there may be more:

* Design the process as a composite task, which is tracked by an exec-
utive component that records the steps and completeness of the task
using a persistent object. This is the approach discussed most thor-
oughly here.

* Design the process as a set of partner Aggregates that collaborate in a
set of activities. One or more Aggregate instances act as the executive
and maintain the overall state of the process. This is the approach pro-
moted by Amazon’s Pat Helland [Helland].

¢ Design a stateless process in that each message handler component
that receives an Event-carrying message must enrich the received
Event with more task progress information as it sends the next mes-
sage. The state of the overall process is maintained only in the body of
each message sent from collaborator to collaborator.

A A

Since the initial Event is now subscribed to by two components, both Filters
receive the same Event virtually simultaneously. The original Filter goes about
as it always has, matching the specific 303 text pattern. The new Filter only
counts all lines, and when it has completed, it sends the Event A11Phone-
NumbersCounted. The Event includes the count of total contacts. If there
are, for example, 15 total phone numbers, the Event count property is set
to 15.

Now it is the responsibility of PhoneNumberExecutive to subscribe
to two Events, both MatchedPhoneNumbersCounted and AllPhone-
NumbersCounted. The parallel processing is not considered completed until
both of these Domain Events are received. When completion is reached, the
results of the parallel processing are merged into a single result. The executive
now logs

3 of 15 phone numbers matched on July 15, 2012 at 11:27 PM

The log output is enhanced with the total count of phone numbers in addi-
tion to the previous matching, date, and time information. Although the tasks
performed to yield results were really simple, they were performed in parallel.
And if at least some of the subscriber components were deployed to different
computing nodes, the parallel processing was also distributed.

There is a problem with this Long-Running Process, however. The
PhoneNumberExecutive currently has no way of knowing that it has

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

received the two completion Domain Events associated with the specific, cor-
responding parallel processes. If many such processes were started in parallel,
and completion Events for each were received out of order, how would the
executive know which parallel process was ending? For our synthetic example,
logging with mismatched events is hardly tragic. But when dealing with corpo-
rate business domains, an improperly aligned Long-Running Process could be
disastrous.

The first step in the solution to this troublesome situation is to assign a
unique Process identity that is carried by each of the associated Domain Events.
This could be the same identity assigned to the originating Domain Event that
causes the Long-Running Process to begin (for example, A11PhoneNumbers-
Listed). We could use a universally unique identifier (UUID) allocated spe-
cifically to the Process. See Entities (5) and Domain Events (8) for a discussion
of providing unique identity. The PhoneNumberExecutive would now write
output to the log only upon receiving completion Events with equal identities.
However, we can’t expect the executive to wait around until all the completion
Events are received. It, too, is an Event subscriber that comes and goes with the
receipt and handling of each delivery.

A\ 4 v
Executive and Tracker?

Some find that merging the concepts of executive and tracker into a single
object—an Aggregate—to be the simplest approach. Implementing such an
Aggregate as a part of the domain model that naturally tracks just a part of
the overall Process can be a liberating technique. For one, we avoid devel-
oping a separate tracker as state machine, in addition to the Aggregates that
must also exist. In fact, the most basic Long-Running Processes are best
implemented just that way.

In a Hexagonal Architecture, a Port-Adapter message handler would sim-
ply dispatch to an Application Service (or Command Handler), which would
load the target Aggregate and delegate to its appropriate command method.
Since the Aggregate would in turn fire a Domain Event, the Event would be
published in part as an indication that the Aggregate has completed its role
in the Process.

This approach closely follows that promoted by Pat Helland, which he refers
to as partner activities [Helland], and is the second approach described in
the sidebar “Different Ways to Design a Long-Running Process.” Ideally,
however, discussing a separate executive and tracker is a more effective
way to teach the overall technique, and a more intuitive way to learn it.

A A

www.EBookswWorld.ir

EVENT-DRIVEN ARCHITECTURE

reads logs

PhoneNumberExecutive
received by received by

checks and
updates

<<event>> <<event>>
AllPhoneNumbersCounted <<saga state>> MatchedPhoneNumbersCounted
PhoneNumberStateTracker

+hasTimedOut()
+isCompleted()
+totalMatchedPhoneNumbers()
+totalPhoneNumberCount()

Figure 4.10 A PhoneNumberStateTracker serves as a Long-Running Process state object
to track progress. The tracker is implemented as an Aggregate.

In an actual domain each instance of a Process executive creates a new
Aggregate-like state object for tracking its eventual completion. The state
object is created when the Process begins, associating the same unique identity
that each related Domain Event must carry. It may also be useful for it to hold
a timestamp of when the Process began (the reasons are discussed later in the
chapter). The Process state tracker object is illustrated in Figure 4.10.

As each pipeline in the parallel processing completes, the executive receives
a corresponding completion Event. The executive retrieves the state tracking
instance by matching the unique Process identity carried by the received Event
and sets a property that represents the step just completed.

The Process state instance usually has a method such as isCompleted().
As each step is completed and recorded on this state tracker, the executive
checks isCompleted(). This method checks for the recorded completion of
all required parallel processes. When the method answers true, the executive
has the option to publish a final Domain Event if required by the business.
This Event could be required if the completing Process is just a branch in a
larger parallel process, for example.

A given messaging mechanism may lack features that guarantee single deliv-
ery of each Event.” If it is possible for the messaging mechanism to deliver a
Domain Event message two or more times, we can use the Process state object
to de-duplicate. Does this require special features to be provided by the mes-
saging mechanism? Consider how it can be handled without them.

7. This does not mean guaranteed delivery, but guaranteed single delivery, or once
and only once.

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

When each completion Event is received, the executive checks the state
object for an existing record of completion for that specific Event. If the
completion indicator is already set, the Event is considered a duplicate and is
ignored, yet acknowledged.® Another option is to design the state object to be
idempotent. That way, if duplicate messages are received by the executive, the
state object absorbs the duplicate occurrence recordings equally. While only
the second option designs the state tracker itself as idempotent, both of these
approaches support idempotent messaging. See Domain Events (8) for further
discussion of Event de-duplication.

Some Process completion tracking may be time-sensitive. We can deal with
Process time-outs passively or actively. Recall that the Process state tracker
can hold a timestamp of its inception. Add to this a total allowable time con-
stant (or configuration) value and the executive can manage time-sensitive
Long-Running Processes.

A passive time-out check is performed each time a parallel processing com-
pletion Event is received by the executive. The executive retrieves the state
tracker and asks it if a time-out has occurred. A method such as hasTimed-
Out() can serve that purpose. If the passive time-out check indicates that the
allowable time threshold has been exceeded, the Process state tracker can be
marked as abandoned. It’s also possible to publish a corresponding failure
Domain Event. Note that a disadvantage of the passive time-out check is that
the Process could remain active well past its threshold if one or more com-
pletion Events are for some reason never received by the executive. This may
be unacceptable if a larger parallel process is dependent on certain success or
failure of this Process.

An active Process time-out check can be managed using an external timer.
For example, a JMX TimerMBean instance is one way to get a Java-managed
timer. The timer is set for the maximum time-out threshold just as the Process
begins. When the timer fires, the listener accesses the Process state tracker. If
the state is not already completed (always checked in case the timer fires just as
an asynchronous Event completes the Process), it is then marked as abandoned,
and a corresponding failure Event is published. If the state tracker is marked as
completed prior to the timer firing, the timer can then be terminated. One dis-
advantage of the active time-out check is that it requires more system resources,
which may burden a high-traffic environment. Also, a race condition between
the timer and the arriving completion Event could incorrectly cause failure.

8. When the messaging mechanism finally receives acknowledgment of receipt, the
message will not be delivered again.

www.EBookswWorld.ir

EVENT-DRIVEN ARCHITECTURE

Long-Running Processes are often associated with distributed parallel pro-
cessing but have nothing to do with distributed transactions. They require a
mindset that embraces eventual consistency. We must enter any effort to design
a Long-Running Process soberly, with the expectation that when infrastruc-
ture or the tasks themselves fail, well-designed error recovery is essential. Every
system participating in a single instance of a Long-Running Process must be
considered inconsistent with all other participants until the executive receives
the final completion notification. True, some Long-Running Processes may be
capable of succeeding with only partial completion, or they may delay for even
a number of days before full completion. But if the Process runs aground and
the participating systems are left in inconsistent states, compensation may be
necessary. If compensation is mandatory, it could surpass the complexity of
designing the success path. Perhaps business procedures could allow for fail-
ures and offer workflow solutions instead.

The SaaSOvation teams employ an Event-Driven Architec-
ture across Bounded Contexts, and the ProjectOvation team
will use the simplest form of a Long-Running Process to
manage the creation of Discussions assigned to Product
instances. The overarching style is Hexagonal to manage the
outside messaging and publishing of Domain Events around
the enterprise.

Not to be overlooked is that the Long-Running Process executive can pub-
lish one, two, or more Events to initiate the parallel processing. There may
also be not only two, but three or more subscribers to any initiating Event
or Events. In other words, a Long-Running Process may lead to many sepa-
rate business process activities executing simultaneously. Thus, our synthetic
example is limited in complexity only for the sake of communicating the basic
concepts of a Long-Running Process.

Long-Running Processes are often useful when integration with legacy sys-
tems can have high latency. Even if latency and legacy are not the chief con-
cerns, we still benefit from the distribution and parallelism with elegance,
which can lead to highly scalable, highly available business systems.

Some messaging mechanisms have built-in support for Long-Running Pro-
cesses, which can greatly expedite adoption. One such is [NServiceBus], which
specifically calls them Sagas. Another Saga implementation is provided with
[MassTransit].

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

Event Sourcing

Sometimes the business cares about tracking changes that occur to the objects
in a domain model. There are varying levels of change tracking interest, and
ways to support each level. Typically businesses have chosen to track only when
some entity is created and last modified, and by whom. It’s a relatively simple
and straightforward approach to change tracking. This, however, doesn’t pro-
vide any information about the individual changes in the model.

With an increased desire for even more change tracking, the business
demands more metadata. It begins to care also about the individual operations
that were executed over time. Maybe it even wants to understand how long
certain operations took to execute. Those desires lead to the need to main-
tain an audit log or journal of the finer-grained use case metrics. But an audit
log or journal has its limitations. It can convey some information about what
has happened in the system, perhaps even allowing for some debugging. But it
doesn’t allow us to examine the state of individual domain objects before and
after specific kinds of changes. What if we could stretch more out of change
tracking?

As developers we have all experienced finer-grained change tracking in one
form or another. The most common example is with the use of a source code
repository, such as CVS, Subversion, Git, or Mercurial. What all of these vari-
ations of source revision management systems have in common is that they all
know how to track changes that occur on a source file. The change tracking
provided by this genre of tool enables us to go all the way back in time, to view
a source code artifact from its very first revision, and then to proceed revision
by revision, all the way to the very latest. When committing all source files to
revision control, it can track changes of the whole development life cycle.

Now, if we think about applying this concept to a single Entity, then to
an Aggregate, then to every Aggregate in the model, we can understand the
power of change tracking objects and the value it can produce in our systems.
With that in mind, we want to develop a means to know what occurred in the
model to cause the creation of any given Aggregate instance, and also what
has happened to that given Aggregate instance throughout time, operation by
operation. Given the history of everything that’s happened, we could even sup-
port temporal models. This level of change tracking is at the heart of a pattern
named Event Sourcing.’ Figure 4.11 shows a high-level view of this pattern.

There are varying definitions of Event Sourcing, so some clarification is fit-
ting. We are discussing the use where every operational command executed

9. A discussion of Event Sourcing generally requires an understanding of CQRS,
which is treated in the earlier section on that topic.

www.EBookswWorld.ir

EVENT-DRIVEN ARCHITECTURE

executes

j command on publishes | received by i .
Client Aggregate Event | EventsPersisterSubscriber
Event
stores
applied to Event
Event Store
finds aggregate instance using read by

Repository IEI

Figure 4.11 A high-level view of Event Sourcing, where Aggregates publish Events
that are stored and used to track the model’s state changes. The Repository reads
Events from the Store and applies them to reconstitute the Aggregate’s state.

on any given Aggregate instance in the domain model will publish at least one
Domain Event that describes the execution outcome. Each of the events is saved
to an Event Store (8) in the order in which it occurred. When each Aggregate
is retrieved from its Repository, the instance is reconstituted by playing back
the Events in the order in which they previously occurred.! In other words,
first the very earliest Event is played back, and the Aggregate applies the Event
to itself, modifying its state. Next, the second-oldest Event is played back in
the same manner. This continues until all Events, from the oldest to the most
recent, are completely played back and applied. At that point the Aggregate
exists in the state it had upon the most recent execution of some command
behavior.

A Moving Target?

The definition of Event Sourcing has undergone some scrutiny and refinement, and
at the time of writing it is still not completely settled. As with most leading-edge
techniques, refinement is necessary. What is described here captures the essence of
the pattern as applied using DDD and probably to a large degree reflects how in gen-
eral it will be used moving forward.

Over a long period of changes to any and all Aggregate instances, doesn’t
the playback of hundreds, thousands, or even millions of Events cause serious
latency and overhead in processing the model? At least for some of the higher-
traffic models that would most certainly be the case.

To avoid this bottleneck we can apply an optimization that uses Aggre-
gate state snapshots. A process is developed to produce, in the background, a

10. The Aggregate state is a conflation of previous Events, but only by applying them
in the same order in which they occurred.

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

snapshot of the Aggregate’s in-memory state at a specific point in Event Store
history. To do this, the Aggregate is loaded into memory using all previous
Events to the current point in time. The Aggregate state is then serialized, and
the serialized snapshot image is then saved to the Event Store. From that point
forward the Aggregate is first instantiated using the most recent snapshot, and
then all Events newer than that snapshot are played back on the Aggregate as
described previously.

Snapshots are not created randomly. Rather, they can be created at points
where a predefined number of newer Events have occurred. The team would
determine a number based on domain heuristics or other observations. For
example, we might find that Aggregate retrieval performs optimally when hav-
ing no more than 50 or 100 or so Events between snapshots.

Event Sourcing leans heavily in the direction of technical solution. We can
produce domain models that publish Domain Events without the need to sup-
port Event Sourcing. As a persistence mechanism, Event Sourcing replaces and
is far different from using an ORM tool. Because Events are often persisted
in an Event Store as binary representations, they cannot (optimally) be used
for queries. In fact, Repositories designed for an Event Sourcing model require
only a single get/find operation, and that method takes as a parameter only the
Aggregate unique identity. Further, by design Aggregates don’t have any query
methods (getters). As a result, we need another way to query, which gener-
ally leads to employing CQRS (discussed previously) hand-in-glove with Event
Sourcing.!!

Since Event Sourcing leads us down the path of thinking differently about
the way domain models are designed, we need to justify our use. At its most
basic, Event history can reveal solutions to bugs in the system. Debugging with
the use of explicit history of everything that has ever happened to the model
has a big advantage. Event Sourcing can lead to high-throughput domain mod-
els, scaling to extremely large numbers of transactions per second. Appending
to a single database table, for example, is extremely fast. Further, it enables
the CQRS query model to be scaled out, because updates to that data source
are performed in the background after the Event Store is updated with new
Events. This can additionally allow for replicating the query model to more
data source instances in support of growing numbers of clients.

But technical advantages don’t always sell techniques to the business. Thus,
consider just a few of the business advantages of using Event Sourcing that are
afforded due to the technical implementation:

11. Although we can use CQRS without using Event Sourcing, the opposite is not usu-
ally practical.

www.EBookswWorld.ir

DaTA FaBRIC AND GRID-BASED DISTRIBUTED COMPUTING

e Patch the Event Store with new or modified Events that fix problems. This
may have business implications, but if it is legal in a given situation, the
patch can save the system from serious issues that occurred because of
bugs in the model. Since the patches have a built-in audit trail, the use of
patches may decrease any legal implications by making them explicit and
traceable.

¢ Besides patching, we can also undo and redo changes in the model by
replaying varying sets of Events. This may have technical implications
and business implications and may not be possible to support in all cases.

e With an accurate history of everything that has occurred in the domain
model, the business can consider “what if?” questions. That is, by playing
back stored Events on a set of Aggregates that have experimental enhance-
ments, the business can get accurate answers to hypothetical questions.
Would the business benefit if it could simulate conceptual scenarios using
real historical data? Very likely, yes. It’s an alternative way to approach
business intelligence.

Would the business benefit from one or more of these technical and nontechni-
cal advantages?

Appendix A provides rich details on implementing Aggregates with Event
Sourcing and discusses how views may be projected for CQRS. For further
details see [Dahan, CQRS] and [Nijof, CQRS].

Data Fabric and Grid-Based Distributed Computing
Contributed by Wes Williams

As software systems become more and more complex and sophisticated, with
expanding user bases and requirements centered around “big data,” traditional
database solutions can become performance bottlenecks. Organizations that
face the realities of information systems of colossal size have no alternative
but to seek solutions that are equal to the computing challenges. Data Fab-
rics—also sometimes called Grid Computing'>—offer performance and elastic
scalability capabilities that such business situations demand.

12. This is not to say that Fabrics and Grids are identical concepts, but for those look-
ing at this architecture in a general way these labels often mean the same thing.
Certainly marketing and sales often limit them to the same meaning. In any case,
this section uses the term Data Fabric since it generally represents a richer set of
capabilities than Grid Computing.

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

Cowboy Logic

AJ: “Would you like some information in exchange for a
drink?”

LB: “Sorry, J. We only accept cache here.”

One good thing about Data Fabrics is that they support domain models in a
natural way, nearly eliminating any impedance mismatch. In fact, their distrib-
uted caches easily accommodate the persistence of domain objects in general
and act as Aggregate Stores specifically.!> Simply stated, an Aggregate stored
in a Fabric’s map-based cache!* is the value part of a key-value pair. The key is
formed from the globally unique identity of the Aggregate, and the Aggregate
state itself is serialized to some binary or textual representation serving as the
value:

String key = product.productId().id();
byte[] value = Serializer.serialize (product) ;

// region (GemFire) or cache (Coherence)
region.put (key, value) ;

Thus, a positive consequence of using a Data Fabric with features closely
aligned with the technical aspects of a domain model is the possibility of short-
ened development cycles.!

The examples provided in this section demonstrate how a Data Fabric can
host a domain model in cache and enable system functionalities at distributed
scale. In doing so, we’ll explore ways to support the CQRS architecture pat-
tern and Event-Driven Architecture using Long-Running Processes.

Data Replication

Thinking of an in-memory data cache, we may immediately consider the real
possibility of losing all or part of our system’s state if the cache fails in some

13. Martin Fowler has recently promoted the term Aggregate Store, although the con-
cept has existed for some time.

14. In GemFire this is called a region, but it’s the same concept that Coherence calls a
cache. I use cache for consistency.

15. Some NoSQL stores likewise act as natural “Aggregate Stores,” simplifying tech-
nical aspects of implementing DDD.

www.EBookswWorld.ir

DaTA FaBRIC AND GRID-BASED DISTRIBUTED COMPUTING

way. It’s a real concern, but far from troublesome when redundancy is built
into the Fabric.

Consider the memory cache provided by a Fabric when using a cache-per-
Aggregate strategy. In that case the Repository of a given Aggregate type is
backed by a dedicated cache. A cache supporting only a single node would be
quite vulnerable to failures at a single point. However, a Fabric providing mul-
tinode caches with replication would be quite reliable. You can choose the level
of redundancy based on the probability of the number of nodes that may fail at
any given time, which becomes very narrow as more nodes are included. You
also have the latitude to trade redundancy for performance since, of course,
performance can be impacted by the number of node replications required for
an Aggregate to be fully committed.

Here’s an example of how cache (or region, again depending on the concrete
Fabric) redundancy may work. One node acts as the primary cache/region, and
any number of others are secondary. If a primary store fails, a fail-over occurs
and one of the secondaries becomes the new primary. When the former pri-
mary recovers, all data stored on the new primary gets replicated to the recov-
ered node and it becomes a secondary.

An additional advantage of fail-over nodes is that they ensure guaranteed
delivery of events published from the Fabric. Thus, updates to Aggregates and
any Fabric events published as a result are never lost. Obviously, cache redun-
dancy and replication are essential features for storing business-critical domain
model objects.

Event-Driven Fabrics and Domain Events

A primary feature of a Fabric is the support of an Event-Driven style, with
guaranteed delivery. Most Fabrics have built-in eventing of a technical nature,
that is, the automatic notification of events that inform about cache-level and
entry-level occurrences. Those should not be confused with Domain Events.
For example, a cache-level event informs of happenings such as cache reini-
tialization, and an entry-level event informs about occurrences such as entry
creation and updates.

Still, with a Fabric supporting an open architecture there should be a way to sup-
port publishing Domain Events directly out of Aggregates. Your Domain Events
may have to subclass a specific framework event type, such as EntryEvent (for
example, GemFire), but that’s a small price to pay for the power they afford.

How might you actually use Domain Events in a Fabric? As discussed in
Domain Events (8), your Aggregates would use a simple DomainEvent-
Publisher component. In the cache of a Fabric this publisher may simply put

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

the published Events into a specific cache/region. Cached Events would then be
delivered to subscribers (listeners), either synchronously or asynchronously. So
as not to waste precious memory in this dedicated Event cache/region, as each
Event is fully acknowledged by all subscribers, its entry would be removed
from the map. Of course, each Event is only fully acknowledged once it has
been published by one or more subscribers to a message queue or bus and/or
used to freshen a CQRS query model.

Since Domain Event subscribers may also use the Events to carry out the
synchronization of other dependent Aggregates, eventual consistency is guar-
anteed by means of the architecture.

Continuous Queries

Some Fabrics support a kind of event notification known as Continuous Query.
This enables a client to register a query with the Fabric that will ensure that the
client receives notification of changes in the cache that satisfy the query. One
use of the Continuous Query is by user interface components, which enables
these to listen for changes that could impact the current view.

Do you see what’s coming? CQRS has a strong fit with the Continuous
Query feature, assuming that the query model is maintained in the Fabric.
Rather than requiring the view to chase after view table updates, the notifi-
cations delivered as registered Continuous Queries are resolved, allowing the
views to update just in time. Here’s an example of a client registering for Gem-
Fire Continuous Query events:

CgAttributesFactory factory = new CgAttributesFactory () ;
CgListener listener = new BacklogItemWatchListener () ;
factory.addCgListener (listener) ;

String continuousQueryName = "BacklogIltemWatcher";

String query = "select * from /queryModelBacklogItem gmbli "
+ "where gmbli.status = 'Committed'";

CagQuery backlogltemWatcher = queryService.newCq(
continuousQueryName, query, factory.create());

The Data Fabric will now deliver CQRS query model updates based on Aggre-
gate modifications to the client callback object provided by the CqlListener,
along with metadata that was added, updated, or destroyed when the matching
criteria are met.

www.EBookswWorld.ir

DaTA FaBRIC AND GRID-BASED DISTRIBUTED COMPUTING

Distributed Processing

A powerful use of a Data Fabric is to distribute processing across the Fabric’s
replicated caches and return the aggregated results to the client. This enables
the Fabric to fulfill Event-Driven, distributed parallel processing, perhaps using
Long-Running Processes.

To illustrate this feature, we’ll have to mention some concrete approaches
in GemFire and Coherence. Your Process executive could be implemented as
a GemFire Function or a Coherence Entry Processor. Both can serve as Com-
mand [Gamma et al.] handlers that execute in parallel across distributed, rep-
licated cache. (You might instead choose to think of this concept as a Domain
Service, but what it does may not be domain-centric.) For consistency let’s call
this feature a Function. A Function can optionally accept a filter to constrain
the execution against matching Aggregate instances.

Let’s look at a sample Function that implements a Long-Running Process
for the previously presented Phone Number Count Process. This Process will
be executed in parallel across the replicated cache using a GemFire Function:

public class PhoneNumberCountSaga extends FunctionAdapter {
@Override
public void execute (FunctionContext context) {
Cache cache = CacheFactory.getAnyInstance() ;
QueryService queryService = cache.getQueryService();

String phoneNumberFilterQuery = (String) context.getArguments() ;

// Pseudo code

// - Execute Function to obtain MatchedPhoneNumbersCounted.
// - Send answer to the aggregator by invoking the

// aggregator.sendResult (MatchedPhoneNumbersCounted) .
// - Execute Function to obtain AllPhoneNumbersCounted.

// - Send answer to the aggregator by invoking the

// aggregator.sendResult (Al1PhoneNumbersCounted) .

// - The aggregator automatically accumulates the answers
// from each distributed Function call and returns the

// single aggregated answer to the client.

Here is sample code for a client that will execute a Long-Running Process in
parallel against distributed replicated cache:

PhoneNumberCountProcess phoneNumberCountProcess =
new PhoneNumberCountProcess|() ;

www.EBookswWorld.ir

Chapter 4 ARCHITECTURE

String phoneNumberFilterQuery =
"select phoneNumber from /phoneNumberRegion pnr "
+ "where pnr.areaCode = '303'";

Execution execution =
FunctionService.onRegion (phoneNumberRegion)
.withFilter (0)
.withArgs (phoneNumberFilterQuery)
.withCollector (new PhoneNumberCountResultCollector()) ;

PhoneNumberCountResultCollector resultCollector =
execution.execute (phoneNumberCountProcess) ;

List allPhoneNumberCountResults = (List) resultsCollector.getResult();

Of course, the process could be much more complex or far simpler than this
one. This also demonstrates that a Process is not of necessity an Event-Driven
concept, but one that can work with other concurrent, distributed processing
approaches. For a full discussion of Fabric-based distributed and parallel pro-
cessing, see [GemFire Functions].

a1

Wrap-Up

We’ve reviewed several architectural styles and architecture patterns that can
be used with DDD. This is not an exhaustive list because there are just too
many possibilities, which emphasizes the versatility of DDD. For example, we
haven’t considered how to apply DDD when Map-Reduce is at play. That’s a
topic for a future discussion.

e We’ve discussed the traditional Layers Architecture and how it can be
improved on by using the Dependency Inversion Principle.

® You’ve learned about the strengths of the possibly timeless Hexago-
nal Architecture, which provides an overarching style for application
architectures.

e We’ve emphasized how DDD should be used in an SOA environment,
with REST, and using a Data Fabric or a Grid-Based Distributed Cache.

www.EBookswWorld.ir

Wrapr-Up

® You got an overview of CQRS and how it can simplify some aspects of
the application.

e We’ve taken a look at the various aspects of how Event-Driven works,
including Pipes and Filters, Long-Running Processes, and even a glimpse
at Event Sourcing.

We next move on to a series of chapters on DDD tactical modeling. Those
chapters will help you see the finer-grained modeling options at your disposal,
and how to best put them to work.

www.EBookswWorld.ir

This page intentionally left blank

www.EBookswWorld.ir

Chapter 5

Entities

I’'m Chevy Chase . . . and you're not.
—Chevy Chase

There is a tendency for developers to focus on data rather than the domain.
This can happen with those new to DDD, because of the prevailing approaches
to software development that place importance on the database. Instead of
designing domain concepts with rich behaviors, we might think primarily about
the attributes (columns) and associations (foreign keys) of the data. Doing so
reflects the data model into object counterparts, which leads to almost every
concept in our “domain model” being coded as an Entity abounding with get-
ter and setter methods. It’s easy to find tools that will generate all that for us.
Although there may be nothing wrong with property accessors, that’s not the
only behavior DDD Entities should have.

It’s a trap that was sprung on SaaSOvation developers. Learn from their
lessons in Entity design.

Road Map to This Chapter
» Consider why Entities have their proper place when we need to model unique
things.
* See how unique identities may be generated for Entities.
* Look in on a design session as a team captures its Ubiquitous Language
(1) in Entity design.
e Learn how you can express Entity roles and responsibilities.

* See examples of how Entities can be validated and how to persist them to
storage.

Why We Use Entities

We design a domain concept as an Entity when we care about its individu-
ality, when distinguishing it from all other objects in a system is a manda-
tory constraint. An Entity is a unique thing and is capable of being changed

171

www.EBooksWorld.ir

Chapter 5 ENTITIES

continuously over a long period of time. Changes may be so extensive that the
object might seem much different from what it once was. Yet, it is the same
object by identity.

As the object changes, we may be interested in tracking when, how, and
by whom changes were made. Or we might be satisfied that its current form
implies enough about its previous state transitions that explicit change tracking
is unnecessary. Even if we don’t decide to track every detail of its change his-
tory, we could still reason on and discuss the sequences of valid changes that
could occur to these objects over their entire lifetime. It is the unique identity
and mutability characteristics that set Entities apart from Value Objects (6).

There are times when an Entity is not the appropriate modeling tool to
reach for. Misappropriated use happens far more often than many are aware.
Often a concept should be modeled as a Value. If this is a disagreeable notion,
it might be that DDD doesn’t fit your business needs. It is quite possible that
a CRUD-based system would be more fitting. If so, that decision should save
your project both time and money. The problem is that pursuing CRUD-based
alternatives doesn’t always save those precious resources.

Businesses regularly put too much effort into developing glorified database
table editors. Without the correct tool selection, CRUD-based solutions treated
elaborately are too expensive. When CRUD makes sense, languages and frame-
works such as Groovy and Grails, Ruby on Rails, and the like make the most
sense. If the choice is correct, it should save time and money.

Cowboy Logic
AJ: “What kinda CRUD did | just land in?”
LB: “That’s a cow pie, J!”

AJ: “I know what pie is. You got your apple pie and your
cherry pie. This ain’t no pie.”

LB: “Like they say, ‘Never kick a cow pie on a hot day.’
It’s a good thing you didn’t kick it.”

On the other hand, if we apply CRUD to the wrong systems—more complex
ones that deserve the precision of DDD—we may regret it. When complex-
ity grows, we experience the limitation of poor tool selection. CRUD systems
can’t produce a refined business model by only capturing data.

If DDD is a justifiable investment in the business’s bottom line, we use Enti-
ties as intended.

When an object is distinguished by its identity, rather than its attributes, make
this primary to its definition in the model. Keep the class definition simple and

www.EBookswWorld.ir

UNIQUE IDENTITY

focused on life cycle continuity and identity. Define a means of distinguishing
each object regardless of its form or history. . . . The model must define what it
means to be the same thing. [Evans, p. 92]

This chapter teaches how to place the proper emphasis on Entities and
shows you various Entity design techniques.

Unique Identity

In the early stages of designing an Entity, we purposely focus only on those
primary attributes and behaviors that are central to its unique identity, as well
as those useful for querying it, and we purposely ignore all other attributes and
behaviors until we settle on the primary ones.

Rather than focusing on the attributes or even the behavior, strip the Entity
object’s definition down to the most intrinsic characteristics, particularly those
that identify it or are commonly used to find or match it. Add only behavior
that is essential to the concept and attributes that are required by that behavior.
[Evans, p. 93]

So that’s what we’ll do first. Having a range of available options for imple-
menting identity is really important, as are those for ensuring that the unique-
ness is preserved throughout time.

An Entity’s unique identity may or may not also be practical for finding
or matching. Using the unique identity for matching usually depends on how
human-readable it is. For example, if the application makes searching for a
person’s name available to users, it is very unlikely that the name is used as the
Person Entity unique identity. People very frequently have nonunique names.
On the other hand, if the application makes searching for a company’s tax ID
possible, the tax ID may well be the primary unique identifier for the Company
Entity. Governments issue unique tax identities.

Value Objects can serve as holders of unique identity. They are immutable,
which ensures identity stability, and any behavior specific to the kind of iden-
tity is centralized. Having a focal point for identity behavior, however sim-
ple, keeps the know-how from leaking into other parts of the model and into
clients.

Consider some common identity creation strategies, from the apparently
simplest and most basic to those with increasing complexity:

e The user provides one or more original unique values as input to the
application. The application must ensure that they are unique.

www.EBookswWorld.ir

Chapter 5 ENTITIES

e The application internally generates an identity using an algorithm that
ensures uniqueness. We can get a library or framework to do this for us,
but it can be done by the application.

e The application relies on a persistence store, such as a database, to gener-
ate a unique identity.

¢ Another Bounded Context (2) (system or application) has already deter-
mined the unique identity. It is input or selected by the user from a set of
choices.

Let’s consider the individual strategies, along with particular challenges
related to each. There are almost always side effects when considering the
range of technical solutions. One such side effect occurs when we use rela-
tional databases for object persistence, which leak into our domain models.
We round out identity creation concerns by addressing the impact of the timing
of identity generation, the relational database’s referential identity on domain
objects, and how object-relational mapping (ORM) plays into this situation.
We’ll also consider some practical guidance on keeping unique identities stable.

User Provides Identity

It appears to be a straightforward approach to have a user manually enter the
details of unique identity. The user types a recognizable value or symbol into
an input field or selects from a set of available characteristics, and the Entity is
created. True, it is a simple enough approach. But there can be complications.

One complication is relying on users to produce quality identities. The iden-
tity may be unique but incorrect. Most times identities must be immutable,
so users shouldn’t change them. This is not always the case, and there may be
advantages to enabling users to correct identity values. Here’s an example. If
we use the titles of Forum and Discussion as unique identities, what would
happen if the user spelled the title incorrectly, or later decided that the title
was not as fitting as it could have been, as shown in Figure 5.1?7 What’s the
cost of change? Although user-provided identity may seem like a well-budgeted
approach, it may not be. Can users be relied upon to produce both unique and
correct, long-lasting identities?

Preventing this problem starts with design discussions. Teams need to con-
sider fail-proof approaches to enable users to define unique identity. Work-
flow-based identity approval is not conducive to high-throughput domains but
works best when human-readable identity is a must. If it takes extra time and
effort to create and approve an identity that will be used pervasively throughout

www.EBookswWorld.ir

UNIQUE IDENTITY v

New Forum X New Discussion X
Forum Title: Discussion Title:
Uneck Identity & User Inpt ids and stuff

OK Cancel OK Cancel I
" "’

Figure 5.1 The forum title is misspelled and the discussion title is less than desirable.

the business for years to come, and supporting a workflow is possible, adding a
few extra cycles to ensure the quality of the identity is a good investment.

We always have the option to include user-entered values as Entity prop-
erties available for matching, but not to use them for unique identity. Simple
properties are more easily modified as part of the normal operational state
of the Entity that changes over time. In that case we will need to use another
means to obtain unique identity.

Application Generates Identity

There are highly reliable ways to autogenerate unique identities, although care
must be taken when the application is clustered or otherwise distributed across
multiple computing nodes. There are identity creation patterns that can, to a
much greater degree of certainty, produce a completely unique identity. The
universally unique identifier (UUID), or globally unique identifier (GUID), is
one such approach. A common variation follows, where the result of each step
is concatenated into a single textual representation:

1. Time in milliseconds on the computing node
2. IP address of the computing code

3. Object identity of the factory object instance within the virtual machine

(Java)

4. Random number generated by the same generator within the virtual
machine (Java)

This produces a 128-bit unique value. It is most often expressed as a 32-byte
or 36-byte hexadecimal encoded text string. The text format is 36 bytes when
you use the common hyphen segment separators in the format £36ab2lc-
67dc-5274-c642-1de2£f4d5e72a. Without the hyphens it is 32 bytes. Either
way, the identity is big and is not considered human-readable.

www.EBookswWorld.ir

Chapter 5 ENTITIES

In the Java world, this formula has been replaced by a standard UUID gen-
erator available since Java 1.5. It’s provided by class java.util.uuID. This
implementation supports four different generator algorithms based on the
Leach-Salz variant. Using the Java standard API, we can easily generate a pseu-
do-random unique identity:

String rawId = java.util.UUID.randomUUID() .toString() ;

It uses type 4, employing a cryptographically strong pseudo-random-number
generator, which is based on the java.security.SecureRandom generator.
Type 3 employs a name encryption approach, which uses java.security
.MessageDigest. We can get a name-based UUID like this:

String rawId = java.util.UUID.nameUUIDFromBytes (
"Some text".getBytes()).toString();

We can also blend the pseudo-random-number generation with encryption:

SecureRandom randomGenerator = new SecureRandom() ;

int randomNumber = randomGenerator.nextInt();

String randomDigits = new Integer (randomNumber) .toString() ;
MessageDigest encryptor = MessageDigest.getInstance("SHA-1");

byte[] rawIdBytes = encryptor.digest (randomDigits.getBytes());

Now we are left only with the task of converting the rawIdBytes array to
a hexadecimal text representation. We could get that conversion for free. After
generating the random number and converting it to a String, we pass that
text to the UUID nameUUIDFromBytes () Factory [Gamma et al.] method.

There are other identity generation facilities, such as java.rmi.server
.UID and java.rmi.dgc.VMID, but these seem inferior to java.util.UUID
and are not discussed here.

UUID is a relatively fast identity to generate, requiring no interaction with
the outside, such as a persistence mechanism. Even if a specific kind of Entity is
created many times per second, the UUID generator can keep up the pace. For
higher-performance domains we can cache any number of UUID instances,
refilling the cache in the background. If cached UUID instances are lost due
to server restart, there are no gaps in identities because they are all based on
random, manufactured values. Refilling the cache on server restart has no neg-
ative consequences of abandoned values.

www.EBookswWorld.ir

UNIQUE IDENTITY

With such a large identity, its use could in rare cases be rendered imprac-
tical because of the memory overhead. In such cases an 8-byte long identity
generated by the persistence mechanism would improve matters. A smaller,
4-byte integer, with two billion or so unique values, may even suffice. These
approaches are discussed next.

Considering the following, understandably we don’t normally want to dis-
play a UUID on our user interface views:

f36ab2lc-67dc-5274-c642-1de2f4d5e72a

A full UUID is usually appropriate when it can be hidden from users and
human-readable reference techniques can be used. For example, we can design
hypermedia resources with URIs that can be e-mailed or sent around using
other user-to-user messaging. The text relationship part of the link can be used
to disguise the mysterious-looking UUID, just as the text in <a>text
disguises technical links in HTML.

Depending on the level of trust you have in the uniqueness of individual seg-
ments of the hexadecimal text UUID, you may decide to use just one or a few
segments of the whole. The shortened identities are more trustworthy when
used only as the local identity of Entities within the Aggregate (10) bound-
ary. Local identity means that Entities held inside an Aggregate need only have
uniqueness among other Entities held inside the same Aggregate. On the other
hand, the Entity serving as an Aggregate Root requires global unique identity.

Our own identity generator could use one or more specific UUID segments.
Consider a contrived example: APM-P-08-14-2012-F36AB21C. This 25-character
identity represents a Product (P) from the Agile Project Management Context
(APM) that was created on August 14, 2012. The extra text F36AB21C is the first
segment of a generated UUID, which uniquely sets it apart from other Product
Entities created on the same day. It has the benefit of human readability with
a high probability for global uniqueness. Users aren’t the only ones to benefit.
When identities such as this one are passed between Bounded Contexts, devel-
opers immediately know where they originated. For SaaSOvation this approach
could be practical since Aggregates are further segregated by tenancy.

Maintaining this kind of identity in a String would probably not be a
good choice. A custom identity Value Object would work better:

String rawId = "APM-P-08-14-2012-F36AB21C"; // would be generated
ProductId productId = new ProductId(rawlId) ;

Date productCreationDate = productId.creationDate() ;

www.EBookswWorld.ir

Chapter 5 ENTITIES

A client can ask for identity details, such as the date the product was cre-
ated, and it’s conveniently provided. Clients need not understand the raw iden-
tity format. Now the Product Aggregate Root can expose its creation date
without indicating to clients how it is obtained:

public class Product extends Entity {
private ProductId productId;

public Date creationDate() {
return this.productId().creationDate() ;

}

You may find identity generation in third-party libraries and frameworks.
The Apache Commons project has a Commons Id (sandbox) component,
which supplies five different identity generators.

Some persistence stores, such as NoSQL Riak and MongoDB, can generate
identities for you. Normally to save a value in Riak, you use HTTP PUT, which
takes a key:

PUT /riak/bucket/key

[object serialization]

You may instead use POST without providing a key, forcing Riak to generate a
unique identity. Still, we do need to think about early versus late identity gener-
ation, as discussed later in this chapter.

What will serve as a Factory for your application-generated identities? For
Aggregate Root identity generation, I like to use its Repository (12):

public class HibernateProductRepository
implements ProductRepository {

public ProductId nextIdentity () {
return new ProductId(
java.util.UUID.randomUUID() .toString () .toUpperCase()) ;

This seems like a natural location for identity generation.

www.EBookswWorld.ir

UNIQUE IDENTITY

Persistence Mechanism Generates Identity

Delegating the generation of unique identity to a persistence mechanism has
some unique advantages. If we call on the database for a sequence or incre-
menting value, it will always be unique.

Depending on the range needed, the database can generate a unique
2-byte, 4-byte, or 8-byte value. In Java, a 2-byte short integer would allow
for up to 32,767 unique identities; a 4-byte normal integer would afford
2,147,483,647 unique values; and an 8-byte long integer would provide up to
9,223,372,036,854,775,807 distinct identities. Even zero-filled text represen-
tations of these ranges are narrow, at five, ten, and 19 characters respectively.
These can also be employed to create composite identities.

One possible downside is performance. It can take significantly longer to go
to the database to get each value than to generate identities in the application.
Much depends on database load and application demand. One way around this
is to cache sequence/increment values in the application, such as in a Repos-
itory. This can work well, but we generally count on losing a good number
of unused values when server nodes must be restarted. If the gaps caused by
lost cache are unacceptable, or if you have planned for only a relatively small
number of values (2-byte short integer), caching preallocated values may not be
a practical or necessary option. It may be possible to harvest and recover lost
identities, but that may be more trouble than it is worth.

Preallocation and caching are not an issue if the model can suffice with late
identity generation. Here’s how it’s done with Hibernate and an Oracle sequence:

<id name="id" type="long" column="product_id">
<generator class="sequence">
<param name="sequence">product_seqg</param>
</generator>
</id>

Here’s an example of the same approach, but using a MySQL auto-incre-
ment column:

<id name="id" type="long" column="product_id">
<generator class="native"/>
</id>

This does perform well, and it is quite easy to configure in a Hibernate map-
ping definition. The problem could be the timing of generation, which is dis-
cussed a bit later. The remainder of this subsection covers the early identity
generation requirement.

www.EBookswWorld.ir

Chapter 5 ENTITIES

Order May Matter

Sometimes it matters when the identity generation and assignment occur for an
Entity.

Early identity generation and assignment happen before the Entity is persisted.

Late identity generation and assignment happen when the Entity is persisted.

Here a Repository supports early generation, serving the next available Ora-
cle sequence using a query:

public ProductId nextIdentity () {

Long rawProductId = (Long)
this.session()
.createSQLQuery (

"select product_seqg.nextval as product_id from dual")
.addScalar ("product_id", Hibernate.LONG)
.uniqueResult () ;

return new ProductId(rawProductId) ;

Since Oracle returns sequence values that Hibernate maps as BigDecimal
instances, we must inform Hibernate that we want the product_id result
converted to a Long.

What do we do about databases, such as MySQL, that don’t support
sequences? MySQL supports auto-incrementing columns. Normally the
auto-increment does not occur until a row is newly inserted. Still, there is a
way to make a MySQL auto-increment work like an Oracle sequence:

mysgl> CREATE TABLE product_seqg (nextval INT NOT NULL) ;
Query OK, 0 rows affected (0.14 sec)

mysgl> INSERT INTO product_seqg VALUES (0);
Query OK, 1 row affected (0.03 sec)

mysqgl> UPDATE product_seq SET nextval=LAST_INSERT_ID(nextval + 1);
Query OK, 1 row affected (0.03 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysgl> SELECT LAST_INSERT ID();

o — +
| LAST_INSERT ID() |
Fom e +
| 1]
o +

1 row in set (0.06 sec)

www.EBookswWorld.ir

UNIQUE IDENTITY

mysgl> SELECT * FROM product_seq;

T +
| nextval |
T +
| 1
T +

1 row in set (0.00 sec)

We’ve created a table in a MySQL database named product_seq. Next,
we insert a single row into the table, initializing its one and only column,
nextval, to 0. Those first two steps establish the sequence emulator for the
Product Entity. The next two statements demonstrate a single sequence value
generation. We update the one and only row by incrementing the nextval
column by 1. The update statement uses a MySQL function, LAST INSERT_
ID(), to increment the column’s INT value. The expression parameter is first
executed, then the result is assigned to the nextval column. The result of the
expression parameter nextval + 1 remains stable in the LAST INSERT
ID() function, such that when the subsequence SELECT LAST_INSERT_ID()
statement is evaluated, the value of nextwval that results from that exact exe-
cution is returned in the result set. Last, as a test, we can SELECT * FROM
product_seq to prove that the current value of nextval is the same
returned with the function result.

Hibernate 3.2.3 uses org.hibernate.id.enhanced.SequenceStyle-
Generator to facilitate portable sequences, but that supports only late identity
generation (when the Entity is inserted). To support early sequence generation
in a Repository we will have to create a custom Hibernate or JDBC query.
Here is a reimplementation of the ProductRepository method next-
Identity() for MySQL:

public ProductId nextIdentity () {
long rawId = -1L;
try {
PreparedStatement ps =
this.connection() .prepareStatement (
"update product_seqg "
+ "set next_val=LAST_ INSERT ID(next_val + 1)");

ResultSet rs = ps.executeQuery() ;

try {
rs.next () ;
rawIld = rs.getLong(l);
} finally {
try {
rs.close();

www.EBookswWorld.ir

Chapter 5 ENTITIES

} catch(Throwable t) {
// ignore

} catch (Throwable t) {
throw new IllegalStateException(
"Cannot generate next identity", t);

return new ProductId(rawId) ;

Using JDBC, there is no need to execute a second query on the database to
get the results of function LAST_INSERT_ID(). The update query does it all.
We get the 1ong value from the ResultSet, using it to create the ProductId.

The last trick is to get a JDBC connection from Hibernate. This can be a bit
of a pain, but it’s possible:

private Connection connection() {
SessionFactoryImplementor sfi =
(SessionFactoryImplementor) sessionFactory;
ConnectionProvider cp = sfi.getConnectionProvider () ;
return cp.getConnection() ;

Without a Connection object we can’t get a ResultSet by executing
a PreparedStatement. Without that it’s not possible to use a portable
sequence.

Using portable sequences from Oracle, MySQL, and other databases, we
have the means to generate more compact, guaranteed unique identities that
support pre-insert creation.

Another Bounded Context Assigns Identity

When another Bounded Context assigns identity, we need to integrate to find,
match, and assign each identity. DDD integrations are explained in Context
Maps (3) and Integrating Bounded Contexts (13).

Making an exact match is the most desirable. Users need to provide one
or more attributes, such as an account number, username, e-mail address, or
other unique symbol, to pinpoint the intended result.

Often, matching involves fuzzy input, resulting in multiple search results,
along with some human user selection. Figure 5.2 illustrates this. The user
enters the “like search” (wildcard) criterion for the sought-after Entity. We

www.EBookswWorld.ir

UNIQUE IDENTITY

Find Product X

Product Name:

Bright Day*

Bright Day Sunscreen SPF 50 22350
Bright Day Sunscreen SPF 30 22330
Bright Day Sunglasses 22399

OK Cancel

Figure 5.2 The search results from matching an external system to find an identity.
The selection user interface may or may not display the identity. This example does
display it.

access the API of the external Bounded Context, which resolves the search to
zero, one, or multiple similarly described objects. The user then selects the spe-
cific result from among the multiple options. The identity of the selected choice
is used as the local identity. Some additional state (properties) from the foreign
Entity may also be copied into the local Entity.

This has synchronization implications. What happens if externally refer-
enced objects transition in ways that affect local Entities? How will we know
that the associated object changed? This problem can be solved using an Event-
Driven Architecture (4) with Domain Events (8). Our local Bounded Context
subscribes to Domain Events published by external systems. When a relevant
notification is received, our local system transitions its own Aggregate Entities
to reflect the state of those in external systems. Sometimes synchronization
must be initiated by the local Bounded Context with changes being pushed to
the originating external system.

This is rarely easy to do, but it leads to more autonomous systems. When
autonomy is achieved, it can actually narrow searches to local objects. This is
not a matter of caching foreign objects locally. Rather, it involves translating
foreign concepts into those of the local Bounded Context, as explained in Con-
text Mapping (3).

This is the most complex of identity creation strategies. The maintenance of
the local Entity is dependent not only on transitions caused by local domain
behaviors but possibly also on those that occur in one or more external sys-
tems. Use this approach as conservatively as possible.

www.EBookswWorld.ir

Chapter 5 ENTITIES

When the Timing of Identity Generation Matters

Identity generation can occur either early, as part of the object’s construction,
or late, as part of its persistence. Sometimes it’s important to time identity gen-
eration early, and other times not. If it matters, we need to understand what’s
involved.

Consider possibly the simplest case, that we can tolerate the late allocation
of identity when a new Entity is persisted, that is, a new row is inserted in the
database. This is demonstrated in the diagram in Figure 5.3. The client just
instantiates a new Product and adds it to the ProductRepository. When
the Product instance is newly created, the client doesn’t need its identity. And
it’s a good thing, too, because the identity won’t exist then. It’s only after the
instance is persisted that the identity is available.

Why might timing matter? Consider a scenario where the client subscribes
to outgoing Domain Events. An Event occurs when a new Product instan-
tiation completes. The client saves the published Event to an Event Store (8).
Eventually those stored Events are published as notifications that reach sub-
scribers outside the Bounded Context. Using the approach of Figure 5.3, the
Domain Event is received before the client has the opportunity to add the new
Product to the ProductRepository. Thus, the Domain Event would not
contain the valid identity of the new Product. For the Domain Event to be
correctly initialized, the identity generation must be completed early. Figure 5.4
demonstrates that approach. The client queries for the next identity from the
ProductRepository, passing it to the Product constructor.

|Client| | ProductRepository | | Database
L | Product |

|
|
new [] |
|

add(aProduct)

INSERT

setProductld()

Figure 5.3 The simplest way to allocate a unique identity is to have the data store
generate it the first time the object is persisted.

www.EBookswWorld.ir

UNIQUE IDENTITY

| ProductRepository | | Database
I

1 nextldentity()

[
|
|
|
|
L I
|
|
|
|
|

nhew

add(aProduct)

INSERT

| T |
I I I I

Figure 5.4 Here unique identity is queried from the Repository and assigned
during instantiation. The complexities of identity generation are hidden behind the
Repository implementation.

There is another problem that can occur when identity generation is delayed
until the Entity is persisted. It occurs when two or more new Entities must
be added to a java.util.Set, but their identity has not yet been assigned,
making them equal to the other new ones (for example, null, or 0, or -1). If
the Entity’s equals () method compares identities, those newly added to the
Set will appear to be the same object. Only the first object added will be con-
tained, and all others will be excluded. This causes a dubious bug whose root
cause is at first difficult to understand and fix.

To avoid this bug we must do one of two things. Either we change the design
to allocate and assign identity early, or we refactor the equals () method to
compare attributes other than the domain identity. If choosing the equals()
method approach, it must be implemented as if the Entity is a Value Object.
In that case, the same object’s hashCode () method must harmonize with the
equals () method:

public class User extends Entity {

@Override

public boolean equals (Object anObject) {
boolean equalObjects = false;
if (anObject != null &&
this.getClass() == anObject.getClass()) {
User typedObject = (User) anObject;
equalObjects =
this.tenantId() .equals (typedObject.tenantId()) &&

www.EBookswWorld.ir

Chapter 5 ENTITIES

this.username () .equals (typedObject.username())) ;
}
return equalObjects;

}

@Override
public int hashCode() {
int hashCode =
+ (151513 * 229)
+ this.tenantId() .hashCode/()
+ this.username () .hashCode() ;

return hashCode;

In the case of a multitenancy environment, the TenantId instance is also
considered part of unique identity. No two User objects under different
Tenant subscribers must be considered equal.

More to the point, when faced with this add-to-Set situation, I prefer early
allocation and assignment to the Value equality test approach. It is more desir-
able for Entities to have equals() and hashCode () methods that are based
on the object’s unique identity rather than other attributes.

Surrogate Identity

Some ORM tools, such as Hibernate, want to deal with object identity on their
own terms. Hibernate prefers the database’s native type, such as a numeric
sequence, as the primary identity of each Entity. If the domain requires another
kind of identity, it causes an undesirable conflict for Hibernate. To cure this,
we need to use two identities. One of the identities is designed for the domain
model and adheres to the requirements of the domain. The other is for Hiber-
nate and is known as a surrogate identity.

Creating a surrogate identity is straightforward. Create an attribute on the
Entity to hold the type of the surrogate. Generally a long or int does it. Also
create a column in the database entity table to hold the unique identity, and
place a primary key constraint on it. Then include in the Entity’s Hibernate
mapping definition an <id> element. Remember, in this case it has nothing to
do with the domain-specific identity. It is being created only for the sake of the
ORM, Hibernate.

It’s best to hide the surrogate attribute from the outside world. Because the
surrogate is not part of the domain model, visibility constitutes persistence

www.EBookswWorld.ir

UNIQUE IDENTITY

leakage. Although some leakage may be unavoidable, we can take some steps
to tuck it away from model developers and clients.
One safeguard employs a Layer Supertype [Fowler, P of EAA]:

public abstract class IdentifiedDomainObject
implements Serializable ({

private long id = -1;

public IdentifiedDomainObject () {
super () ;

}

protected long id() {
return this.id;

}

protected void setId(long anId) {
this.id = anId;
}

This Layer Supertype is IdentifiedDomainObject, an abstract base
class that hides the surrogate primary key from the view of clients using
protected accessor methods. Clients will never have to wonder if the meth-
ods are for their use since they are not visible outside the Module (9) of the
Entity that extends the base class. We could even declare private scope.
Hibernate has no problems using method or field reflection with any level of
visibility, public to private. Additional Layer Supertypes may add value,
such as for supporting optimistic concurrency, as seen in Aggregates (10).

We need to map the surrogate id attribute to the database column through
the Hibernate definition. Here class User has its id attribute mapped to the
database table column named id:

<hibernate-mapping default-cascade="all">
<class
name="com.saasovation.identityaccess.domain.model.identity.User"
table="tbl_user" lazy="true">

<id
name="3id"
type="long"
column="1id"
unsaved-value="-1">

www.EBookswWorld.ir

188

Chapter 5 ENTITIES

<generator class="native"/>
</id>
</class>
</hibernate-mapping>

Here is the MySQL table definition to store the User objects:

CREATE TABLE ‘tbl_user’ (
*id' int(11) NOT NULL auto_increment,
‘enablement_enabled’ tinyint (1) NOT NULL,
“enablement_end_date® datetime,
“enablement_start_date® datetime,
‘password’ varchar (32) NOT NULL,
“tenant_id_id' wvarchar (36) NOT NULL,
‘username’ varchar (25) NOT NULL,
KEY ‘k_tenant_id_id' (tenant_id_id"),
UNIQUE KEY ‘k_tenant_id_username” (tenant_id_id', ‘username’),
PRIMARY KEY ('id")

) ENGINE=InnoDB;

The first column, id, is the surrogate identity. The last column statement
in the definition declares id as the table’s primary key. We can distinguish the
surrogate and the domain’s identity. There are two columns, tenant_id_id
and username, that provide unique identity for the domain. They are com-
bined to form one unique key named k_tenant_id_username.

There is no need for the domain identity to play the role of database pri-
mary key. We allow the surrogate id to serve as the database primary key,
which keeps Hibernate happy.

Surrogate database primary keys can be used throughout the data model
as foreign keys in other tables, providing referential integrity. This may be a
requirement for data management in your enterprise (for example, for audits)
or for tools support. The referential integrity is important for Hibernate, too,
when wiring tables together to implement the various any-to-any (such as 1:M)
mappings. They also support table joins to optimize queries when reading
Aggregates out of the database.

Identity Stability

In most cases unique identity must be protected from modification, remaining
stable throughout the lifetime of the Entity to which it is assigned.

Trivial measures may be taken to prevent identity modification. We can hide
identity setters from clients. We might also create guards in setters to prevent

www.EBookswWorld.ir

UNIQUE IDENTITY

even the Entity itself from changing the state of the identity if it already exists.
Guards are coded as assertions in Entity setters. Here’s an example of an iden-
tity setter:

public class User extends Entity {

protected void setUsername (String aUsername) {
if (this.username != null) {
throw new IllegalStateException (
"The username may not be changed.");

if (aUsername == null) {
throw new IllegalArgumentException (
"The username may not be set to null.");
}

this.username = aUsername;

In this example, the username attribute, being the domain identity of the
User Entity, is mutable only once, and only internally. The setter, method
setUsername (), provides self-encapsulation that is hidden from clients. When
an Entity public behavior self-delegates to the setter, the method checks the
username attribute to see if it is already non-null. If it is already non-null,
indicating an unchangeable invariant state, the I1legalStateException
is thrown. The exception indicates that username must be maintained as a
modify-once state.

Whiteboard Time

e Consider some true Entities from your current domain and write their
names.

What are their unique identities, both domain and surrogate? Would any of the iden-
tities have been better served by a different kind of identity generation, or the timing
of the identity assignment?

¢ Indicate next to each Entity whether you should have used a different

identity assignment approach—user, application, persistence, or other
Bounded Context—and why (even if you can’t change it now).

www.EBookswWorld.ir

Chapter 5 ENTITIES

¢ Note next to each Entity whether it needs early identity generation or can
suffice with late identity generation, and explain why.

Consider the stability of each identity, which is one area you can improve on if
necessary.

This setter does not get in the way of Hibernate when it needs to recon-
stitute object state from persistence. Since the object is first constructed with
its default, zero-argument constructor, the username attribute is initially
null. This enables re-initialization to occur cleanly, and the setter will enable
the one-time Hibernate-initiated assignment to take place. This is completely
bypassed when instructing Hibernate to use field (attribute) access for per-
sistence and rehydration purposes, rather than accessors.

A test affirms that the modify-once guard properly protects the state of
User identity:

public class UserTest extends IdentityTest {

public void testUsernameImmutable() throws Exception {
try {
User user = this.userFixture();
user.setUsername ("testusername") ;
fail ("The username must be immutable after+’
initialization.");
} catch (IllegalStateException e) {
// expected, fall through
}

This exemplary test demonstrates how the model works. Upon successful
completion it proves that method setUsername () guards existing, non-null
identity from being altered. (We discuss guards and Entity tests more thor-
oughly as part of validation.)

www.EBookswWorld.ir

DiscovERING ENTITIES AND THEIR INTRINSIC CHARACTERISTICS v

Discovering Entities and Their Intrinsic Characteristics

Now let’s look at some lessons learned by the SaaSOvation teams . . .

At first the CollabOvation team got caught

in the trap of doing a lot of entity-relation-

ship (ER) modeling in Java code. They put

too much focus on database, tables, and
columns, and how those were reflected

in objects. That led to a largely Anemic
Domain Model [Fowler, Anemic] composed |
of a lot of getters and setters. They should |
have been thinking more about DDD. By the

time they needed to factor out the security tangle, as described in Bounded Con-
texts (2), they had learned to focus more on modeling the Ubiquitous Language.
That led to good results. In this section we will see how the newer Identity and Access
Context team gained from the lessons learned.

The Ubiquitous Language in a cleanly separated Bounded Context gives us
the concepts and terms we need to design our domain model. The Language
doesn’t suddenly appear. It must be developed through careful discussion with
domain experts and by mining requirements. Some terminology uncovered
will be nouns that name things, adjectives that describe them, and verbs that
indicate what the things do. It would be a mistake to think that the objects
distill to only a set of nouns that name classes and verbs that name prominent
operations, that we can capture deep insight by considering nothing else. Lim-
iting ourselves in that way could stifle the fluency and richness that the model
deserves. Investing in liberal amounts of discussion and reviews of specifica-
tions will help develop a Language that reflects considerable thought, effort,
agreement, and compromise. In the end the team speaks the Language in com-
plete sentences, and the model clearly reflects the spoken Language.

If it is important for these special domain scenarios to outlive team discus-
sions, capture them in a lightweight document. In an early form, your Ubig-
uitous Language can take the shape of a glossary and a set of simple usage
scenarios. Yet, it would be a further mistake to think of the Language as the
glossary and scenarios only. In the end the Language is modeled by your code,
and it may be difficult or impossible to keep documentation in sync.

www.EBookswWorld.ir

Chapter 5 ENTITIES

Uncovering Entities and Properties

Let’s take up a very basic example. In the Identity and Access Context the
SaaSOvation team knows that it needs to model a User. True, this modeling
example is not taken from the Core Domain (2), but we do transition to that
example later. At this time I want to clear away added complexity inherent
with the Core Domain and just focus on a more basic Entity. It has enough
modeling challenge to serve as an effective teaching tool.

Here’s what the team knew about a User in terse soft-
ware requirements (not use cases or user stories) that
roughly reflected statements from the Ubiquitous Lan-
guage. They did need refinement:

¢ Users exist in association with and under the control
of a tenancy.
* Users of a system must be authenticated.

e Users possess personal information, including a
name and contact information.

* User personal information may be changed by the users themselves or by a
manager.

» User security credentials (passwords) may be changed.

The team had to read and listen carefully. As soon as they saw/heard different
forms of the word change used, they were pretty sure that they were dealing with at
least one Entity. True enough, “change” could also mean “replace the Value” instead
of “change the Entity.” Was there anything else that sealed the team’s choice of which
building block to use? There was. The key term was authenticated, which was a
strong indication to the team that some kind of search resolution needed to be pro-
vided. If you have a bunch of things, and one of the things needs to be found out of
many, you need unique identity to distinguish the one from all others. A search will
need to resolve from many users in association with a tenant down to a single one.

But what about the statement regarding tenancy controlling users? Doesn’t
that imply that the real Entity here is Tenant, not User? This opens up a
discussion about Aggregates (10), which we save for that chapter. In short, the
answer is “yes and no.” Yes, there is a Tenant Entity, and no, this doesn’t
mean there is not a User Entity. They are both Entities. To understand why
Tenant and User are the Roots (10) of two different Aggregates, see that
chapter. And yes, both User and Tenant are ultimately types of Aggregates,
but the team avoids those concerns at first.

www.EBookswWorld.ir

DiscovERING ENTITIES AND THEIR INTRINSIC CHARACTERISTICS

The justification here is that each User must be uniquely identified, clearly
distinguished from all others. A User must also support change over time, so
it is clearly an Entity. At this time, it doesn’t matter how we model the personal
information inside the User.

The team needed to give some attention to clarifying the meaning of the first
requirement:

* Users exist in association with and under the control of a tenancy.

At first the team could just add a note or change the wording of the statement in
some way that would show that tenants own users, but they don’t collect and contain
them. The team needed to be careful because they didn’t want to get down into the
technical and tactical modeling weeds. The statements needed to make sense to the
whole team. They settled on this:

* Tenants allow for the registration of many users by invitation.
¢ Tenants may be active or be deactivated.

¢ Users of a system must be authenticated but can be authenticated only if the
tenant is active.

Well, that was a surprise! Following further discussion, the team cut cleanly
through the issues of word craft and at the same time gave the requirements much
more meaning. They found that the original statement about users under tenancy
control was incomplete. The fact is that users are registered within a tenancy, and by
invitation only. It was also important to state that tenants may be active or inactive,
and that users can be authenticated only when their tenancy is active. This complete
restating of one requirement, the addition of another, and the clarification of a third
revealed a far more accurate definition of what actually happens.

The effort did away with any possible implications about what manages the life
cycle of users but made it clear that whatever owns users, some users may be
unavailable under specific circumstances. Those were the important scenarios to
capture at that time.

It seemed at this point that they had the beginnings of a glossary of the terms of a
Ubiquitous Language. Still, they didn’t have enough information to flesh out the defini-
tions. The team will wait a while longer to make entries in the glossary.

They had a couple of known Entities, as shown in Figure 5.5. It was important
to know next how they would be uniquely identified, and what additional properties
might be needed to find them among many possible objects of the same type.

<<entity>> <<entity>>

Tenant User

Figure 5.5 Two Entities, Tenant and User, following early discovery

www.EBookswWorld.ir

Chapter 5 ENTITIES

The team decided that they would use a full UUID to identify each Tenant
uniquely, a case where the application generates the identity. The large text value
was easily justified, not only for guaranteed uniqueness, but also because it added
a good measure of security to each subscriber. It would be difficult for anyone to
randomly reproduce a UUID as first-level access to proprietary data. They also saw
the need to explicitly segregate the Entities that belonged under each Tenant from
those that belonged to every other. A requirement like this is stated to address addi-
tional security issues that tenant subscribers—competitive businesses—have with
hosted applications and services. Thus, every Entity in all systems would be “striped”
with this unique identity, and every query would require the unique identity to find any
Entity, no matter what.

The unique tenant identity is not an Entity. It is a Value of some kind. The question
is, Should this identity have a specialized type, or can it remain a simple String?

There seemed to be no need to model Side-Effect-Free Functions (6) on the
identity. It’s just a hexadecimal text representation of a large number. But the identity
would be used broadly. It would be set on all other Entities in every Context. In this
case strong typing could be advantageous. By defining a TenantId Value Object,
the team could more confidently ensure that all subscriber-owned Entities were
striped with the correct identity. Figure 5.6 shows how this is modeled, with both the
Tenant and the User Entities.

The Tenant must be named. The name can be a simple String attribute
because it has no special behavior. The name helps resolve queries. A help desk
worker would need to find the Tenant by name before he or she could provide assis-
tance. It’s a necessary attribute and an “intrinsic characteristic.” The name may also
be constrained as unique among all other subscribers, but that’s not important now.

Other attributes may be associated with each subscriber, such as a support con-
tract and call activation PIN, billing and payment information, and maybe a business
location along with customer contacts. But those are business concerns, not part of

<<value object>>

Tenantld
<<entity>> <<entity>>
Tenant User
name: String username: String
,"' password: String

-

password encrypted |

Figure 5.6 After an Entity is discovered and named, uncover the attributes/
properties that uniquely identify it and enable it to be found.

www.EBookswWorld.ir

DiscovERING ENTITIES AND THEIR INTRINSIC CHARACTERISTICS

security. Attempting to stretch the Identity and Access Context too far would be a
defeating effort.

Support will be managed by a different Context. After finding the tenant by name,
the software can use its unique TenantId. It would then be used to access the Sup-
port Context, for example, or the Billing Context, or the Customer Relationship Man-
agement Context. Support contracts, business location, and customer contacts have
little to nothing to do with security. Still, associating the name of the subscriber with
the Tenant will help support personnel quickly provide needed support. The name
belongs.

Having completed what appears to be the essence of Tenant, the team turned
their attention to the User Entity for a while. What would serve as its unique identity?
Most identity systems support a unique username. It doesn’t matter much what com-
prises the username, as long as it is unique within the tenant. (Usernames need not
be unique across tenant lines.) It will be left to the discretion of users to determine
their own usernames. If the subscribing business has certain policy criteria for user-
names, or if the names will be determined by a federated security integration, it will be
left to the registering user to comply. The team simply declared a username attribute
on class User.

One requirement states that a security credential exists. It indicates that this is a
password. The team picked up on the terminology and declared a password attri-
bute on class User. They concluded that the password would never be stored as
clear text. A note was made that the password must be encrypted. Since they will
need a way to encrypt each password before it is associated with the User, it seemed
as if this called for some kind of Domain Service (7). The team created a place-
holder in the glossary of the Ubiquitous Language, which could now be started. The
glossary would be limited, but useful:

* Tenant: A named organizational subscriber of identity and access services, as
well as other online services. Facilitates user registration through invitation.

e User: A registered security principal within a tenancy, complete with per-
sonal name and contact information. The User has a unique username and an
encrypted password.

¢ Encryption Service: Provides a means to encrypt passwords and other data
that cannot be stored and used as clear text.

One question remained: Should the password be considered a part of the unique
identity of a User? After all, it is used to find a User. If so, we'd probably want to
combine the two attributes into a Whole Value, naming it something like Security-
Principal. That would make this concept much more explicit. It is an interesting
idea, but it overlooks an important requirement: Passwords can be changed. There
may also be times when services will need to find a User without being provided with
a password. This is not for authentication. (Consider the scenario where we need to
check to see if a User is playing a security Role. We can’t require a password to find
a User every time we need to check for access permissions.) It’s not identity. We can
still include both the username and the password in a single authentication query.

www.EBookswWorld.ir

Chapter 5 ENTITIES

The idea of creating a SecurityPrincipal Value type produced a desirable
modeling proposition. It was noted for later consideration. There were also some
other concepts that went unexplored, such as how registration invitations would be
provided, and the details on personal name and contact information. The team would
catch those in the next quick iteration.

Digging for Essential Behavior

After essential attributes were identified, the team could look into indispens-
able behavior . . .

After looking back at the basic requirements the team was given, they now sought the
behavior of Tenant and User:

¢ Tenants may be active or be deactivated.

When we think of activating and deactivating a Tenant, we probably visu-
alize a Boolean toggle. As true as that may be, how it is implemented is unim-
portant here. If we were to place active in the attributes compartment of
Tenant in the class diagram, would that necessarily tell the reader anything
useful? In Tenant.java, would the following attribute declaration reveal
intentions?

public class Tenant extends Entity {

private boolean active;

Probably not entirely. And at first we want to focus only on attributes/prop-
erties that provide identity and enable matching on queries. We add support
details like that later.

The team could have decided in favor of
declaring method setActive (boolean),
though that wouldn’t really address the
terminology of the requirement. It’s not
that public setter methods are never
appropriate, but they should be used
only when the Language allows for them

www.EBookswWorld.ir

DiscovERING ENTITIES AND THEIR INTRINSIC CHARACTERISTICS

and usually only when you won’t have to use multiple setters to fulfill a single request.
The multiple setters make the intention ambiguous. They also complicate publishing
a single, meaningful Domain Event as an outcome to what should actually be a single
logical command.

To address the Language, the team noted that domain experts talk about activat-
ing and deactivating. To incorporate that terminology they’d assign operations such
as activate() and deactivate() instead.

The following source is an Intention Revealing Interface [Evans] and complies
with the team’s growing Ubiquitous Language:

public class Tenant extends Entity {

public void activate() {
// TODO: implement
}

public void deactivate() {
// TODO: implement
}

To animate their ideas, the team first developed a test to see how it feels to use the
new behaviors:

public class TenantTest ... {
public void testActivateDeactivate() throws Exception {
Tenant tenant = this.tenantFixture() ;

assertTrue (tenant.isActive()) ;

tenant.deactivate() ;
assertFalse(tenant.isActive());

tenant.activate() ;
assertTrue (tenant.isActive()) ;

After this test the team felt confident in the quality of the interface. Writing the test
made them realize that another method, isActive (), was needed. They settled on
these three new methods, as seen in Figure 5.7. The Ubiquitous Language glossary
grew as well:

¢ Activate tenant: Facilitate the activation of a tenant using this operation, and
the current state may be confirmed.

* Deactivate tenant: Facilitate the deactivation of a tenant using this operation.
Users may not be authenticated when the tenant is deactivated.

www.EBookswWorld.ir

Chapter 5 ENTITIES

<<entity>>
Tenant

<<value object>>
name: String Tenantld

activate()
deactivate()
isActive()

registerUser()

Figure 5.7 Indispensable behavior is assigned to Tenant during the first rapid
iteration. Some behaviors are omitted due to complexity but can be added soon.

* Authentication Service: Coordinates the authentication of users, first ensuring
that their owning tenant is active.

The last glossary entry added here indicates the discovery of another Domain
Service. Before attempting to match the User instance, something must first check
Tenant for isActive (). That understanding was gained when also considering this
requirement:

e Users of a system must be authenticated but can be authenticated only if the
tenant is active.

Since there is more to authentication than merely finding a User that matches
a specific username and password, a higher-level coordinator is needed. Domain
Services are good at that. Details can be added later. For now it's important that the
team captured the AuthenticationService by name and added it to the Ubiqui-
tous Language. The test-first approach sure paid off.

The team also considered the following requirement:

¢ Tenants allow for the registration of many users by invitation.

When they started analyzing this carefully, they understood it to be a bit more
complex than they wanted to deal with in the first, rapid iteration. There seemed to
be some kind of Invitation object involved. But the requirement didn’t tell them
enough to be understood clearly. The behavior to manage invitations wasn’t clear
either. So the team postponed modeling this until they could solicit more input from
early domain experts and early customers. They did define the registerUser()
method, however. It is essential to the creation of User instances (see “Construction”
later in the chapter).

With that they ventured back into class User:

e Users possess personal information, including a name and contact information.

e User personal information may be changed by the users themselves or by a
manager.

» User security credentials (passwords) may be changed.

www.EBookswWorld.ir

DiscovERING ENTITIES AND THEIR INTRINSIC CHARACTERISTICS

User along with Fundamental Identity, two commonly combined security pat-
terns, were applied.! From the use of the term personal, it is clear that a personal
concept accompanies the User. The team worked out the composition and behavior
based on the preceding statements.

Person is modeled as a separate class to avoid placing too much responsibil-
ity on the User. The word personal led the team to add Person to the Ubiquitous
Language:

* Person: Contains and manages personal data about a User, including name
and contact information.

Is the Person an Entity or a Value Object? Again here the word change is key. It
seems unnecessary to replace the entire Person object just because the individual’s
work telephone number may change. The team made it an Entity, as indicated in Fig-
ure 5.8, which holds two Values, the ContactInformation and Name. These were
currently fuzzy concepts and would stand to be refactored in time.

Managing changes to the personal name and contact information of a user
resulted in some further deliberation. Should clients be given access to the Person
object inside the User? One developer questioned whether a User would always be
a person. What if it were an external system? This was not the current situation and
might be rushing ahead on unknown future requirements, but the concern had merit.
If clients were given access to the shape of User, with navigation into the Person in
order to execute behavior, that could require client refactoring later.

If, instead, they modeled the personal behavior on User, making it more general-
ized for a security principal, they would probably avoid some of the ripple later. After
they wrote some exemplary tests to explore the notion, it seemed like the right thing
to do. They modeled User as shown in Figure 5.8.

<<value object>>

Tenantld

<<entity>>
<<entity>> / Person
User / \
username: String <<value object>> <<value object>>
password: String Contactlnformation Name
changePassword () el
changePersonalName()
password encrypted

changePersonalContactinformation()

Figure 5.8 The foundational behavior of User drives out more associations. Without
being overly specific, the team modeled a few more objects along with the operations.

1. See my published patterns: http://vaughnvernon.co/.

www.EBookswWorld.ir

http://vaughnvernon.co/

Chapter 5 ENTITIES

There were other considerations. Should the team expose Person at all, or hide
it from all clients? For now they decided to leave Person exposed for the purpose of
querying information. The accessor could later be redesigned to serve a Principal
interface, and pPerson and System would each be a specialized Principal. The
team would be able to refactor this as they gained deeper understanding.

Maintaining their cadence, the team quickly recognized the Ubiquitous Language
highlighted by the final requirement currently under consideration:

» User security credentials (passwords) may be changed.

The User has a changePassword() behavior. This reflects the term used in
requirements and satisfies domain experts. Access to even the encrypted password
is never granted to clients. Once the password is set on User, it is never exposed
beyond the Aggregate boundary. Anything seeking authentication has but one
approach, using the AuthenticationService.

The team also decided that all behaviors that could cause modification, when suc-
cessful, were to publish a specific Domain Event outcome. This, too, was more detail
than the team wanted to address early on. But they did recognize the need for Events.
Events would accomplish at least two things. First, they would enable change track-
ing through the life cycle of all objects (discussed later). Second, they would enable
outside subscribers to synchronize with the changes, giving outsiders the potential
for autonomy.

Those topics are discussed in Events (8) and Integrating Bounded Contexts (13).

Roles and Responsibilities

An aspect of modeling is to discover the roles and responsibilities of objects.
Role and responsibility analysis is applicable to domain objects in general.
Here we look specifically at the roles and responsibilities of Entities.

We need some context for the term role. One use, when discussing the Iden-
tity and Access Context, is that a Role is an Entity and Aggregate Root that
addresses a broad system security concern. Clients can ask if a user is in, or
plays, a security role. That’s completely different from what I am now dis-
cussing. What I am discussing in this section is how roles can be played by the
objects in your model.

Domain Objects Playing Multiple Roles

In object-oriented programming, generally interfaces determine the roles of
an implementing class. When designed correctly, a class has one role for each
interface that it implements. If the class has no explicitly declared roles—it
doesn’t implement any explicit interfaces—by default it has the role of its class.
That is, the class has the implicit interface of its public methods. Class User in

www.EBookswWorld.ir

DiscovERING ENTITIES AND THEIR INTRINSIC CHARACTERISTICS

the preceding examples implements no explicit interfaces, yet it plays one role,
a User.

We could make one object play the role of both User and Person. Not that
this is being suggested, but for now assume that we consider this a good idea.
If we did, there would be no reason to aggregate a separate Person object as
a referenced association of the User object. Instead, there would be just one
object, one that plays two roles.

Why might we do this? Usually it’s because we see both similarities and
differences in two or more objects. The overlapping characteristics can be
addressed by blending multiple interfaces on a single object. For example, we
could have one object be both a User and a Person, naming the implementa-
tion class HumanUser:

public interface User {

}

public interface Person {

}

public class HumanUser implements User, Person {

}

Does this make sense? Possibly, but it may also complicate things. If both
interfaces are complex, it could be difficult to implement both in one object.
Also, a User may be a system, which would increase the necessary interfaces
to three. Designing the single object to play the roles of User, Person, and
System would be even harder. Maybe we could simplify this by creating a
general-purpose Principal:

public interface User {

}

public interface Principal {

}

public class UserPrincipal implements User, Principal {

}

www.EBookswWorld.ir

Chapter 5 ENTITIES

With this design we are attempting to determine the actual principal type at
runtime (late binding). A person principal and a system principal have different
implementations. Systems don’t need the same kind of contact information as
a person has. Still, we might try anyway, designing a forwarding delegation
implementation. To do that we’d check for the existence of one type or the
other at runtime and delegate to the existing object:

public interface User {

public interface Principal {
public Name principalName () ;

public class PersonPrincipal implements Principal {

public class SystemPrincipal implements Principal {

public class UserPrincipal implements User, Principal {
private Principal personPrincipal;
private Principal systemPrincipal;

public Name principalName () {

if (personPrincipal != null) {
return personPrincipal.principalName () ;
} else if (systemPrincipal != null) {
return systemPrincipal.principalName () ;
} else {

throw new IllegalStateException (
"The principal is unknown.");

This design produces various problems. For one, it suffers from what is
called object schizophrenia.”> Behavior is delegated by a technique known

2. It describes an object with multiple personalities, which is not medically the defi-
nition of schizophrenia. The actual problem behind the confusing name is object
identity confusion.

www.EBookswWorld.ir

DiscovERING ENTITIES AND THEIR INTRINSIC CHARACTERISTICS

as forwarding or dispatching. Neither personPrincipal nor system-
Principal carries the identity of Entity UserPrincipal, on which the
behavior was originally executed. Object schizophrenia describes the situa-
tion where the objects delegated to don’t know the identity of their originating
object. There is confusion inside the delegates as to who they really are. It’s not
that every delegate method in the two concrete classes would be required to
take on the base object’s identity, but some could need it. We could pass in a
reference to the UserPrincipal. But that complicates the design and actually
requires the Principal interface to change. That’s not good. As [Gamma et
al.] states, “Delegation is a good design choice only when it simplifies more
than it complicates.”

We won’t try to solve this modeling challenge here. It’s used only to illus-
trate the challenges sometimes encountered when using object roles and to
emphasize that it’s a modeling style we need to be careful with. With the right
tools, such as Qi4j [Oberg], we could improve things.

It might help the situation to make role interfaces finer grained, as Udi
Dahan [Dahan, Roles] promotes. Here are two requirements that enable us to
create fine-grained interfaces:

® Add new orders to a customer.

e Make a customer preferred (the condition for meeting this level is not
stated).

Class Customer implements two fine-grained role interfaces: TAddOrders-
ToCustomer and IMakeCustomerPreferred. Each defines only a single
operation, as seen in Figure 5.9. We might even implement other interfaces,
such as Tvalidator.

As discussed in Aggregates (10), we wouldn’t normally collect a large num-
ber of objects, such as all its orders, on a Customer. So let’s view this as a

<<role>> <<role>>
|IAddOrdersToCustomer IMakeCustomerPreferred
AddOrder(anOrder:Order) MakePreferred ()

T T

[}
[}
<<entity>> 1

Customer

Figure 5.9 Using C#NET naming conventions, the Customer Entity implements
two object roles, TAddOrdersToCustomer and IMakeCustomerPreferred.

www.EBookswWorld.ir

Chapter 5 ENTITIES

synthetic example, used solely as a means to illustrate how object roles are
used.

The I interface name prefix is a style widely used in .NET programming.
Besides following the .NET approach in general, some think it enhances read-
ability: “I add orders to customer” and “I make customer preferred.” Without
the I prefix, the resulting verb-based names may be less desirable: AddOrders-
ToCustomer and MakeCustomerPreferred. We may be more used to
naming interfaces as nouns or adjectives, and that standard could certainly be
applied here instead.

Consider some advantages this style promotes. The role of an Entity can
change from use case to use case. When a client needs to add a new Order
instance to a Customer, the role is different from when they want to make the
Customer preferred. There’s also a technical advantage. Different use cases
may require specialized fetching strategies:

IMakeCustomerPreferred customer =
session.Get<IMakeCustomerPreferred> (customerId) ;
customer .MakePreferred() ;

IAddOrdersToCustomer customer =
session.Get<IAddOrdersToCustomer> (customerId) ;
customer .AddOrder (order) ;

The persistence mechanism interrogates the parameterization type name T
of the Get<T>() method. It uses the type to look up an associated fetching
strategy that is registered with the infrastructure. If the interface happens to
have no special fetching strategy, the default is used. By executing the fetching
strategy, the identified Customer object is loaded in the shape needed by the
specific use case.

We may see technical merit as role marker interfaces lend a hand to enabling
behind-the-scenes hooks. Other use-case-specific behavior can be associated
with any given role, such as validation, enabling the execution of a specific
validator as the Entity modifications are being persisted.

Fine-grained interfaces make it easier for the implementing class, such as
Customer, to implement the behavior on itself. There is no need to delegate the
implementation to separate classes, which helps prevent object schizophrenia.

It’s fair to ask whether there is a distinct domain modeling advantage to
separating Customer behaviors by role. Compare the previous Customer to
the one in Figure 5.10; is one better than the other? Would it be easier for

www.EBookswWorld.ir

DiscovERING ENTITIES AND THEIR INTRINSIC CHARACTERISTICS

<<entity>>

Customer

AddOrder(anOrder:Order)
MakePreferred()

Figure 5.10 Here Customer is modeled with the operations that were previously on
different interfaces now collapsed onto the single interface of the Entity class.

a client to mistakenly invoke the AddOrder() method when it should actu-
ally invoke MakePreferred()? Probably not. But we should not judge the
approach on this alone.

Perhaps the most practical use of role interfaces is also the simplest. We can
leverage interfaces to hide implementation details that we don’t want leaking
out of the model to clients. Design an interface to expose exactly what we
want to allow clients to use, and nothing more. The implementation class can
be far more complex than the interface. It might have all kinds of supporting
properties with getters and setters, and implementation behavior that clients
will never get a glimpse of. For example, perhaps a tool or framework forces
the creation of public methods that we don’t want clients to use. Even so, the
domain model interface is not influenced by necessarily nasty technical imple-
mentation details. This has a definite domain modeling advantage.

Along with any design choice, ensure that the Ubiquitous Language holds
sway over any technical preferences. With DDD, it’s a model of the business
domain that matters most.

Construction

When we newly instantiate an Entity, we want to use a constructor that cap-
tures enough state to fully identify it and enable clients to find it. When early
identity generation is used, a correctly designed constructor takes as a param-
eter at least the unique identity. If the Entity is queried by other means, such
as with a name or description, we would also include all such as constructor
parameters.

Sometimes an Entity maintains one or more invariants. An invariant is a
state that must stay transactionally consistent throughout the Entity life cycle.
Invariants are a concern of Aggregates, but since the Aggregate Root is always
an Entity, it is mentioned here. If an Entity has an invariant that is satisfied by
the non-null state of a contained object, or calculated using some other state,
that state must be provided by one or more constructor parameters.

www.EBookswWorld.ir

Chapter 5 ENTITIES

Every User object must contain a tenantId, username, password, and
person. In other words, following successful construction, references to these
declared instance variables may never be null. The User constructor and its
instance variable setters ensure this:

public class User extends Entity {

protected User (TenantId aTenantId, String aUsername,
String aPassword, Person aPerson) {
this();
this.setPassword (aPassword) ;
this.setPerson (aPerson) ;
this.setTenantId(aTenantId) ;
this.setUsername (aUsername) ;
this.initialize();

protected void setPassword(String aPassword) {
if (aPassword == null) {
throw new IllegalArgumentException (
"The password may not be set to null.");
}
this.password = aPassword;

protected void setPerson(Person aPerson) {
if (aPerson == null) {
throw new IllegalArgumentException (
"The person may not be set to null.");
}

this.person = aPerson;

protected void setTenantId(TenantId aTenantId) {
if (aTenantId == null) {
throw new IllegalArgumentException (
"The tenantId may not be set to null."

}
this.tenantId = aTenantId;

protected void setUsername (String aUsername) {
if (this.username != null) {
throw new IllegalStateException (
"The username may not be changed.");
}
if (aUsername == null) {
throw new IllegalArgumentException (
"The username may not be set to null."

www.EBookswWorld.ir

DiscovERING ENTITIES AND THEIR INTRINSIC CHARACTERISTICS

this.username = aUsername;

The design of class User demonstrates the power of self-encapsulation. The
constructor delegates instance variable assignment to its own internal attri-
bute/property setters, which provide self-encapsulation for the variables. The
self-encapsulation enables each setter to determine the appropriate contractual
conditions for setting a portion of state. Each of the setters individually asserts
a non-null constraint on behalf of the Entity, which enforces the instance
contract. The assertions are called guards (see “Validation”). As indicated
earlier in the “Identity Stability” section, the self-encapsulation techniques of
these setter methods can be more complex as needed.

Use a Factory for complex Entity instantiations. This is covered in more
detail in Factories (11). In the preceding example, did you notice that the User
constructor has protected visibility? The Tenant Entity serves as a Factory for
User instances, and only classes in the same Module can see the User con-
structor. That way no object other than a Tenant may create User instances:

public class Tenant extends Entity ({

public User registerUser (
String aUsername,
String aPassword,
Person aPerson) {

aPerson.setTenantId(this.tenantId()) ;

User user =
new User (
this.tenantId(),
aUsername,
aPassword,
aPerson) ;

return user;

Here method registerUser() is the Factory. The Factory simplifies con-
struction of the User default state and ensures that the TenantId for both
the User and Person Entities is always correct. This all happens under the
control of a Factory method that addresses the Ubiquitous Language.

www.EBookswWorld.ir

Chapter 5 ENTITIES

Validation

The primary reasons to use validation in the model are to check the correctness
of any one attribute/property, any whole object, or any composition of objects.
We look at three levels of validation in the model. Although there are lots of
ways to perform validation, including specialized frameworks/libraries, those
are not examined here. Instead, general-purpose approaches are presented, but
these can lead to more elaborate approaches.

Validation accomplishes different things. Just because all of the attributes/
properties of a domain object are individually valid, that does not mean that
the object as a whole is valid. Maybe the combination of two correct attributes
invalidates the whole object. Just because a single object as a whole is valid,
that does not mean that a composition of objects is valid. Perhaps the combina-
tion of two Entities, each of which has individual valid states, actually makes
the composition invalid. Therefore, we may need to use one or more levels of
validation to address all possible issues.

Validating Attributes/Properties

How can we protect a single attribute or property—see Value Objects (6)
for the difference between the two—from being set to an invalid value? As
discussed elsewhere in this chapter and book, I highly recommend the use of
self-encapsulation. Self-encapsulation facilitates the first solution.

To quote Martin Fowler, “Self encapsulation is designing your classes so
that all access to data, even from within the same class, goes through accessor
methods” [Fowler, Self Encap]. Using this technique provides several advan-
tages. It allows for the abstraction of an object’s instance (and class/static) vari-
ables. It provides a way to easily derive attributes/properties from any number
of others the object holds. And not least for this specific discussion, it lends
support for a simple form of validation.

Actually, T don’t necessarily like calling the use of self-encapsulation to
protect correct object state by the name validation. That name puts off some
developers, because validation is a separate concern and should be the respon-
sibility of a validation class, not a domain object. I agree. Still, I am talking
about something a bit different. What I’m discussing is assertions that follow a
design-by-contract approach.

By definition, design by contract enables us to specify the preconditions,
postconditions, and invariants of the components we design. This is advocated
by Bertrand Meyer and was thoroughly expressed in his Eiffel programming
language. There is some support for the Java and C# languages and a book on
the subject, Design Patterns and Contracts |Jezequel et al.]. Here we look only
at preconditions, by applying guards, as a form of validation:

www.EBookswWorld.ir

DiscovERING ENTITIES AND THEIR INTRINSIC CHARACTERISTICS

public final class EmailAddress {
private String address;

public EmailAddress (String anAddress) {
super () ;
this.setAddress (anAddress) ;

}

private void setAddress (String anAddress) {
if (anAddress == null) {
throw new IllegalArgumentException (
"The address may not be set to null.");
}
if (anAddress.length() == 0) {
throw new IllegalArgumentException (
"The email address is required.");
}
if (anAddress.length() > 100) {
throw new IllegalArgumentException (
"Email address must be 100 characters or less.");
}
if (!java.util.regex.Pattern.matches (
"NAwH ([=+. I\ \w+) *@\\w+ ([=. I\ \w+) *\\ .\ \w+ ([-.]\ \w+) *",
anAddress)) {
throw new IllegalArgumentException (
"Email address and/or its format is invalid.");

this.address = anAddress;

There are four preconditions to the method contract of setAddress (). All
of the precondition guards assert a condition of the argument anAddress:

¢ The parameter may not be null.
¢ The parameter must not be an empty string.

¢ The parameter must be 100 characters in length or less (but not zero
characters).

¢ The parameter must match the basic format of an e-mail address.

If all of these preconditions pass, the address property is set to the value of
anAddress. If one is not met, an I1legalArgumentException is thrown.

Class EmailAddress is not an Entity. It is a Value Object. We use it here
for a few reasons. First, it is a good example of implementing various degrees of

www.EBookswWorld.ir

Chapter 5 ENTITIES

precondition guards, from null checks down to value formatting (more on this
next). Second, this Value is held by the Person Entity as one of its properties,
indirectly through the ContactInformation Value. So, actually, this is part
of an Entity in the same way that a simple attribute declared on an Entity class
is also part of it. We use the exact same kinds of precondition guards when
implementing setters for simple attributes. When a Whole Value is assigned to
an Entity property, there is no way to guard against setting insane state unless
the smaller attributes within the Value are guarded.

Cowboy Logic

LB: “l thought | had a valid argument with the missus,
but then she suddenly threw an illegal argument
exception at me.”

Some developers refer to these kinds of precondition checks as defensive pro-
gramming. It certainly is defensive programming to guard against completely
invalid values entering your model. Some may not agree with the increasing
degree of specificity that such guards have. Some defensive programmers agree
with checking for nulls, and maybe even checking for empty strings, but may
shy away from checking for conditions such as string lengths, numeric ranges,
value formats, and the like. Some think, for example, that leaving value size
checks to the database is best. They consider things like maximum string
lengths to be a concern of something other than model objects. Yet, these pre-
conditions may be viewed as justifiable sanity checks.

There may be occasions when it is unnecessary to check for string lengths. It
could make sense when using a database whose maximum NVARCHAR column
size can never be reached. The text columns of Microsoft SQL Server can be
declared using the max keyword:

CREATE TABLE PERSON (

CONTACT_INFORMATION_EMAIL_ADDRESS_ADDRESS
NVARCHAR (max) NOT NULL,
) ON PRIMARY
GO

It’s not that we’d ever want an e-mail address to be 1,073,741,822 characters
wide. It’s just that we want to declare a column width that we will never need
to worry about exceeding.

www.EBookswWorld.ir

DiscovERING ENTITIES AND THEIR INTRINSIC CHARACTERISTICS

This may not be possible with some databases. With MySQL, there is a
maximum row width of 65,535 bytes. Again, that’s row width, not column
width. If we declare even one column with the maximum VARCHAR column
type width of 65,535, there is no space left for one additional column in the
table. Depending on the number of VARCHAR columns in a given table, we
will need to restrict each column width to some practical limit that will allow
for all of the columns to fit. In cases like this we could declare character col-
umns as TEXT, since TEXT and BLOB columns are stored in separate segments.
Hence, depending on the database, there may be ways to work around column
width limits and reduce the need for string length checks in the model.

If there is a potential to overflow a column, a simple string length check in
the model is warranted. How impractical would it be to translate the following
into a meaningful domain error?

ORA-01401: inserted value too large for column

We couldn’t even determine which column was overflowed. It may be best to
avoid this problem altogether by checking text widths in setter preconditions.
Besides, the length check need not be only about a database column constraint.
In the end, it is the domain itself that may constrain a text length for very justi-
fiable reasons, such as constraints on legacy systems we integrate with.

We may also have to consider guarding high-low range checks, and pos-
sibly others. Even a simple formatting check, like the e-mail address format,
makes sense if we want to prevent a completely insane value from being asso-
ciated with an Entity. Certainly if basic values of a single Entity are sane, it
will be easier to perform coarse-grained validation on whole objects and object
compositions.

Validating Whole Objects

Even though we may have an Entity with completely valid attributes/proper-
ties, it does not necessarily mean the entire Entity is valid. To validate a whole
Entity, we need to have access to the state of the entire object—all of its attri-
butes/properties. We also need a Specification [Evans & Fowler, Spec] or Strat-
egy [Gamma et al.] for the validation.

In his Checks pattern language, Ward Cunningham [Cunningham, Checks]
addresses several approaches to validation. A useful one for whole objects is
Deferred Validation. Ward says that this is “a class of checking that should
be deferred until the last possible moment.” It is deferred because it is a kind
of very detailed validation, one that we would run over at least one complex
object, or even a composition of objects. For that reason we discuss Deferred
Validation later also as a means to address larger compositions of objects. In

www.EBookswWorld.ir

Chapter 5 ENTITIES

this subsection I limit validations to what Ward calls “the checks of simpler
activities.”

Because the entire state of the Entity must be available to the validation,
some may see this as a good time to embed validation processing logic right
in the Entity. Be cautious here. Many times the validation of a domain object
changes more often than the domain object itself. Embedding validation inside
an Entity also gives it too many responsibilities. It already has the responsibil-
ity to address domain behavior as it maintains its state.

A validation component has the responsibility to determine whether or not
the Entity state is valid. When designing a separate validation class with Java,
place it in the same Module (package) as the Entity. Assuming the use of Java,
declare attribute/property read accessors with at least protected/package scope,
and public is fine. Private scope will not allow the validation class to read the
necessary state. If the validation class is not placed in the same Module as the
Entity, all attribute/property accessors must be public, which is undesirable in
many cases.

The validation class can implement the Specification pattern or the Strategy
pattern. If it detects an invalid state, it informs the client or otherwise makes
a record of the results that can be reviewed later (for example, after batch pro-
cessing). It is important for the validation process to collect a full set of results
rather than throw an exception at the first sign of trouble. Consider this reus-
able, abstract validator and concrete subclass:

public abstract class Validator {
private ValidationNotificationHandler notificationHandler;

public Validator(ValidationNotificationHandler aHandler) {
super () ;
this.setNotificationHandler (aHandler) ;

}
public abstract void validate();

protected ValidationNotificationHandler notificationHandler () {
return this.notificationHandler;

}

private void setNotificationHandler (
ValidationNotificationHandler aHandler) {
this.notificationHandler = aHandler;

www.EBookswWorld.ir

DiscovERING ENTITIES AND THEIR INTRINSIC CHARACTERISTICS

public class WarbleValidator extends Validator {
private Warble warble;

public Validator (
Warble aWarble,
ValidationNotificationHandler aHandler) {
super (aHandler) ;
this.setWarble (aWarble) ;
}

public void validate() {
if (this.hasWarpedWarbleCondition(this.warble())) {
this.notificationHandler () .handleError (
"The warble is warped.");
}
if (this.hasWackyWarbleState(this.warble())) {
this.notificationHandler () .handleError (
"The warble has a wacky state.");

The Warblevalidator is instantiated with a ValidationNotifi-
cationHandler. Whenever an invalid condition is encountered, the val-
idationNotificationHandler is asked to handle the condition. The
ValidationNotificationHandler is a general-purpose implementa-
tion with a handleError() method that takes a String notification mes-
sage. We may instead create specialized implementations that have a different
method for each kind of invalid condition:

class WarbleValidator extends Validator {

public void validate() {
if (this.hasWarpedWarbleCondition(this.warble())) {
this.notificationHandler () .handleWarpedWarble ()

7

if (this.hasWackyWarbleState(this.warble())) {
this.notificationHandler () .handleWackyWarbleState() ;

www.EBookswWorld.ir

Chapter 5 ENTITIES

This has the advantage of not coupling error messages, or message property
keys, or anything specific to notification, to the validation process. Even bet-
ter, place the notification handling inside the check method:

class WarblevValidator extends Validator {

public Validator (
Warble aWarble,
ValidationNotificationHandler aHandler) {
super (aHandler) ;
this.setWarble (aWarble) ;
}

public void validate() {
this.checkForWarpedWarbleCondition() ;
this.checkForWackyWarbleState() ;

}

protected checkForWarpedWarbleCondition() {
if (this.warble()...) {
this.warbleNotificationHandler () .handleWarpedWarble () ;

}

protected WarbleValidationNotificationHandler
warbleNotificationHandler () {
return (WarbleValidationNotificationHandler)
this.notificationHandler () ;

In this example we use a Warble-specific ValidationNotificationHan-
dler. It comes in as a standard type but is cast to the specific type when used
internally. It is up to the model to work out the contract between itself and
clients to supply the correct type.

How do clients ensure that Entity validation occurs? And where does vali-
dation processing begin?

One way places a validate() method on all Entities that require valida-
tion and may do so using a Layer Supertype:

public abstract class Entity
extends IdentifiedDomainObject {

public Entity () {
super () ;

www.EBookswWorld.ir

DiscovERING ENTITIES AND THEIR INTRINSIC CHARACTERISTICS

public void validate(
ValidationNotificationHandler aHandler) {

Any Entity subclass can safely have its validate() method invoked. If
the concrete Entity supports specialized validation, it is executed. If not sup-
ported, the behavior is a no-op. If only some Entities validate, it may be best to
declare validate() only on those that need it.

However, should Entities actually validate themselves? Having its own
validate() method doesn’t mean the Entity itself performs validation. Yet, it
does allow the Entity to determine what validates it, relieving clients from that
concern:

public class Warble extends Entity {

@Override

public void validate(ValidationNotificationHandler aHandler) {
(new WarblevValidator (this, aHandler)) .validate();

}

Each specialized validator subclass performs any number of fine-grained
validations, as needed. The Entity needs to know nothing about how it is val-
idated, only that it can be validated. The separate Validator subclass also
allows the validation process to change at a different pace from the Entity and
enables complex validations to be thoroughly tested.

Validating Object Compositions

We can use Deferred Validation for what Ward Cunningham says are the “more
complex actions requiring all of the checks of simpler activities and then some.”
Here we determine not only that an individual Entity is valid, but that a cluster
or composition of Entities are all valid together, including one or more Aggre-
gate instances. To do so we could instantiate the concrete Validator subclass
with the appropriate number of instances. But it may be best to manage that
kind of validation using a Domain Service. The Domain Service can use Repos-
itories to read the Aggregate instances it needs to validate. It can then run each
instance through its paces, separately or in combination with others.

Decide whether validation is appropriate at all times. On occasion an Aggre-
gate or a set of Aggregates is in a temporary, intermediate state. Perhaps we

www.EBookswWorld.ir

Chapter 5 ENTITIES

could model a status on an Aggregate to indicate this, preventing validation
at inappropriate times. When the conditions are ripe for validation, the model
could inform clients by publishing a Domain Event:

public class SomeApplicationService ... {

public void doWarbleUseCaseTask(...) {
Warble warble =
this.warbleRepository.warbleOfId (aWarbleId) ;

DomainEventPublisher
.instance()
.subscribe (new DomainEventSubscriber<WarbleTransitioned> () {
public void handleEvent (DomainEvent aDomainEvent) {
ValidationNotificationHandler handler = ...;
warble.validate (handler) ;

}
public Class<WarbleTransitioned>
subscribedToEventType () {
return WarbleTransitioned.class;

1)

warble.performSomeMajorTransitioningBehavior () ;

When received by the client, WarbleTransitioned indicates that valida-
tion is now appropriate. Until that time the client refrains from validating.

Change Tracking

By the definition of Entity, it is not necessary to track the changes that occur
on state over its lifetime. We have to support only its continuously changing
state. However, sometimes domain experts care about important occurrences
in the model as time passes. When that’s the case, tracking specific changes to
Entities can help.

The most practical way to achieve accurate and useful change tracking is
with Domain Events and an Event Store. We create a unique Event type for
every important state-altering command executed against every Aggregate that
domain experts care about. The combination of the Event name and its proper-
ties makes the record of change explicit. The Events are published as the com-
mand methods complete. A subscriber registers to receive every Event produced
by the model. When received, the