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Noise in FHE

FHE Noise Dilemma
• Without noise the scheme would be insecure. But with too

much noise eventually we will not be able to decrypt
correctly. 

• To know whether decryption is still correct, we need to
know exactly how much noise the ciphertext has, but if we
know it exactly the scheme is no longer secure. 
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Different Ways of Dealing With Noise

The different schemes have different methods of removing the randomness 
during decryption to recover the message.

➢ In BGV the randomness gets multiplied by the plaintext modulus. During 
decryption a reduction modulo the plaintext modulus is performed that 
removes the randomness under certain conditions. 

➢ In BFV the message is scaled so that the noise in comparison is small and 
can under certain conditions be deterministically rounded off during 
decryption. 
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Different Ways of Dealing With Noise

The different schemes have different methods of removing the randomness 
during decryption to recover the message.

➢ In BGV the randomness gets multiplied by the plaintext modulus. During 
decryption a reduction modulo the plaintext modulus is performed that 
removes the randomness under certain conditions. 

➢ In BFV the message is scaled so that the noise in comparison is small and 
can under certain conditions be deterministically rounded off during 
decryption. 

All those conditions 
require careful 

bounds on the noise 
and its growth and 

take a toll on 
efficiency.
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Approximate Homomorphic Encryption
At Asiacrypt 2017 Cheon, Kim, Kim and Song proposed a different way of dealing 
with the noise: 

Let it be. 

➢ They proposed HEAAN (Homomorphic Encryption for Arithmetic on 
Approximate Numbers) today more commonly called CKKS after its authors. 

➢It is based on the BGV scheme, but the message space is different: the 
messages are no longer integers modulo t, but in the real or complex numbers. 

➢Therefore, there is no plaintext modulus by which the randomness could be 
multiplied, and thus modulus reduction does not remove the randomness. 
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Approximate Homomorphic Encryption
➢The authors show that the randomness does not grow as fast as in other 
schemes and therefore mostly is very small. 

➢They hence do not remove it at all, but just consider it a part of the message. 

➢Encryption has become approximate: the decryption of the encryption of a 
message will only be approximately the original message, and not exactly. 

➢The authors argue that most real-world data is approximate in nature, and that 
therefore exact decryption is not required.
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CKKS – Encryption and Decryption

Secret Key Encryption

Decryption

plaintext secret key public element

The error is now part of the plaintext.
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Li and Micciancio Attack on CKKS
➢CKKS has been proven IND-CPA secure. IND-CPA is the standard 
notion of security used in FHE. 

➢There has been the suspicion for some time that for approximate 
schemes as CKKS IND-CPA security might not fully cover all the things 
a passive adversary can do. 

➢This suspicions has been confirmed by a passive key-recovery 
attack on CKKS presented by Li and Micciancio at Eurocrypt 2021.
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Li and Micciancio Attack on CKKS
Let ct be a secret-key encryption of 0. 

Then the decryption is simply the error term e. Subtracting the decryption from 
the first component of the ciphertext gives a product between a known 
polynomial and the secret key. 

If the error e is subtracted from the first ciphertext component, as remains. a 
has an inverse with high probability which can be found efficiently. This returns 
the secret key.
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Li and Micciancio Attack on CKKS

➢ For “exact” schemes, this attack should not work: decryption 
simply returns the message, which is already known to the attacker. 

➢ Only in approximate homomorphic encryption does decryption 
return more information than just the message: the attacker 
additionally learns the error term if they know both the original 
message and the approximate decrypted result. 

➢ This is not captured by the IND-CPA notion.  

➢Therefore, Li and Micciancio propose IND-CPA-D, which enhances 
the IND-CPA game with a (very restricted) decryption oracle.
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IND-CPA Security

The IND-CPA Game The Adversary

- Generates the keys sk,pk, 
(evk).
- Chooses a secret bit b.

Sends Pk, (evk).

- Sees pk, (evk).
- Picks messages m0 and 
m1.

Sends m0 and m1.
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IND-CPA Security

The IND-CPA Game The Adversary

- Encrypts mb as ct = 
Enc(pk, mb).

- Sees ct.
- May pick new messages 

m0 and m1.

Sends m0 and m1.

Sends ct. 
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IND-CPA Security

The Adversary

- Returns yes if b’ = b.
- Returns no else.

- Eventually makes a 
guess b’ for the secret 
bit b.

Sends b’..

The IND-CPA Game

The adversary wins the IND-CPA game, if the game returns yes. A scheme is said to be 
IND-CPA secure if over repeated iterations of this game the adversary’s probability of 
winning is only negligibly bigger than ½.
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(q)-IND-CPA-D Security

The q-IND-CPA-D Game The Adversary

- Evaluates C on ct1,…,ctn 

and obtains result ct.

- Can pick ciphertexts 
ct1,…,ctn from the state.

- Can choose circuit C.

Sends ct1,…,ctn, and C.

Sends ct. 
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(q)-IND-CPA-D Security

The q-IND-CPA-D Game The Adversary

- Decrypts ct
- Can pick ciphertext 

from state such that m0 
= m1.

Sends ct.

Sends m0/1 + e. 
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Approaches for Achieving (q)-IND-CPA-D 
security
➢The attack is made possible because if we know what the correct message 
would be, seeing an approximate encryption gives us the complete 
error/encryption randomness.

➢Knowing the encryption randomness breaks the security of the underlying 
problem. 

➢To secure CKKS we therefore need to hide the encryption randomness, even if 
the attacker knows a correct and an approximate decryption. 

➢There are two possible techniques:

     1. Adding extra randomness to hide the original one (noise flooding).

     2. Remove the randomness during decryption (exact CKKS). 
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Our Contributions
We define an exact version of CKKS.

➢We show how to round off the error to return an exact decryption result with 
high probability.

➢We show how to do this without having a large impact on the efficiency of 
CKKS.

➢To do this, we provide a tight analysis of the growth of the randomness of 
CKKS. We additionally present an estimator that allows to track this growth for 
any circuit. 

➢ We use those results to prove that our version of CKKS provably achieves IND-
CPA-D security. 
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Our Contributions

Message bits untouched
 by the error

Message bits polluted
 by the error
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Our Contributions

Message bits untouched
 by the error

We can achieve this by scaling the message down so that all the error bits are “after 
the comma” and then rounding it up to the nearest integer.
➢ We need tight bounds on the error, so that we round off neither too many nor too 

few bits.
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Contributions in More Detail
- Tight Noise Analysis for CKKS - 
➢The original encryption randomness is changed when ciphertexts are 
multiplied, added, rotated,… 

➢Very soon the behaviour of this encryption randomness gets very complex. 

➢Knowing the distribution and therefore the likely magnitude of the encryption 
randomness is important outside of this work too, since it influences the setting 
of the parameters and thereby the efficiency of the scheme. 

➢We provide tight bounds on the noise for all basic operations and show how to 
combine them into estimates for larger circuits as for example bootstrapping. 
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How do we bound the error?
➢ It can be shown that the distribution of the error can be approximated by a 
normal distribution (assuming independence).

➢ Then the infinity norm of the error can be bounded using the standard 
deviation of this distribution. 

➢ We therefore calculate the standard deviation of the error distribution for all 
basic operations and show how to combine this into estimates on the standard 
deviation for large circuits.
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Contributions in More Detail
- Tight Noise Analysis for CKKS - 
This leads to beautiful formulas…
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Contributions in More Detail
- Tight Noise Analysis for CKKS - 
…and tight estimates.

These are the estimates 
for approximating the 
sigmoid function by a 
Chebysheff interpolation 
and evaluating this on 
ciphertexts.
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Contributions in More Detail
- The Estimator - 
We use these theoretical estimations to provide an estimator for the Lattigo 
library.

➢For any function the estimates of the basic operations are combined into 
estimates of the larger function, with no loss in tightness.

➢This allows to get a good idea of the development of the error for any function 
and therefore an efficient setting of the parameters without having to run the 
computations a couple of times in advance or having to combine complex 
theoretical formulas by hand.
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Contributions in More Detail
- (δ,r)-exact CKKS - 

This is what 
we would like 

in an ideal 
world.
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Contributions in More Detail
- (δ,r)-exact CKKS - 

➢This condition is necessary, since even a small error may change all the 
bits in a ciphertext when it is rounded off, if it is close to the cutting off 
point.

➢This is not predictable and is a problem in other schemes too.
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Contributions in More Detail
- (δ,r)-exact CKKS - 

➢This condition is necessary, since even a small error may change all the 
bits in a ciphertext when it is rounded off, if it is close to the cutting off 
point.

➢This is not predictable and is a problem in other schemes too.

To give an example, assume 
we have the value 0.99999. 

This is very close to the 
nearest integer, yet rounding 

to 1.00000 changes all the bits 
in the message
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Contributions in More Detail
- (δ,r)-exact CKKS - 
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Contributions in More Detail
- (δ,r)-exact CKKS - 

Scale down to push the 
error on the “right side of 

the comma”.
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Contributions in More Detail
- (δ,r)-exact CKKS - 

Round the bits after the 
comma off.
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Contributions in More Detail
- (δ,r)-exact CKKS - 

Scale back to original size.
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Contributions in More Detail
- (δ,r)-exact CKKS - This is the probability 

of the theoretical 
bounds we develop on 
the noise failing. The 

tighter the bounds, the 
higher this probability 

is.
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Contributions in More Detail
- (δ,r)-exact CKKS - 

We prove the theorem by a game based proof, where we reduce in two steps 
first to r-exact CKKS and then to “normal” CKKS. 
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Contributions in More Detail
- (δ,r)-exact CKKS - 

60



Open Questions

➢Investigate the condition of correctability. 

• How large is the class of correctable circuits? 
• Can any circuit be made correctable? 
• If so, at what cost? 

➢Is it possible to make the proof go through without the 
condition of correctability?
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Thank you for your attention!

Any Questions?

https://eprint.iacr.org/2024/853

Lea.nurnberger@ntnu.no

62


	Slide 1: Practical q-IND-CPA-D-security for Approximate Homomorphic Encryption
	Slide 2: Overview
	Slide 3: Overview
	Slide 4: Noise in FHE
	Slide 5: Noise in FHE
	Slide 6: Noise in FHE
	Slide 7: Noise in FHE
	Slide 8: Noise in FHE
	Slide 9: Noise in FHE
	Slide 10: Noise in FHE
	Slide 11: Different Ways of Dealing With Noise
	Slide 12: Different Ways of Dealing With Noise
	Slide 13: Different Ways of Dealing With Noise
	Slide 14: Different Ways of Dealing With Noise
	Slide 15: Overview
	Slide 16: Approximate Homomorphic Encryption
	Slide 17: Approximate Homomorphic Encryption
	Slide 18: CKKS – Encryption and Decryption
	Slide 19: Overview
	Slide 20: Li and Micciancio Attack on CKKS
	Slide 21: Li and Micciancio Attack on CKKS
	Slide 22: Li and Micciancio Attack on CKKS
	Slide 23: Overview
	Slide 24: IND-CPA Security
	Slide 25: IND-CPA Security
	Slide 26: IND-CPA Security
	Slide 27: (q)-IND-CPA-D Security
	Slide 28: (q)-IND-CPA-D Security
	Slide 29: (q)-IND-CPA-D Security
	Slide 30: Overview
	Slide 31: Approaches for Achieving (q)-IND-CPA-D security
	Slide 32: Approaches for Achieving (q)-IND-CPA-D security
	Slide 33: Our Contributions
	Slide 34: Our Contributions
	Slide 35: Our Contributions
	Slide 36: Contributions in More Detail - Tight Noise Analysis for CKKS - 
	Slide 37: How do we bound the error?
	Slide 38: Contributions in More Detail - Tight Noise Analysis for CKKS - 
	Slide 39: Contributions in More Detail - Tight Noise Analysis for CKKS - 
	Slide 40: Contributions in More Detail - Tight Noise Analysis for CKKS - 
	Slide 41: Contributions in More Detail - Tight Noise Analysis for CKKS - 
	Slide 42: Contributions in More Detail - The Estimator - 
	Slide 43: Contributions in More Detail - (δ,r)-exact CKKS - 
	Slide 44: Contributions in More Detail - (δ,r)-exact CKKS - 
	Slide 45: Contributions in More Detail - (δ,r)-exact CKKS - 
	Slide 46: Contributions in More Detail - (δ,r)-exact CKKS - 
	Slide 47: Contributions in More Detail - (δ,r)-exact CKKS - 
	Slide 48: Contributions in More Detail - (δ,r)-exact CKKS - 
	Slide 49: Contributions in More Detail - (δ,r)-exact CKKS - 
	Slide 50: Contributions in More Detail - (δ,r)-exact CKKS - 
	Slide 51: Contributions in More Detail - (δ,r)-exact CKKS - 
	Slide 52: Contributions in More Detail - (δ,r)-exact CKKS - 
	Slide 53: Contributions in More Detail - (δ,r)-exact CKKS - 
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Contributions in More Detail - (δ,r)-exact CKKS - 
	Slide 61: Open Questions
	Slide 62

