. 4 0
146 ===y CHAPTER SIX Instruction Enc
=

ding and Timing

ffective address. Th

d added to 1hc_ e : e

d be sigﬂ"”‘tel11 cslte(gizlf; in the encoding, so d:spé?):OSh. The

a inati f the MOV instryc.
ts the AX register as the deSitha[ﬁEeOSIB byte is inc?urdltacd

e Valuf'e ifilﬁzssthe value 100b, which means

tion. The r/m f1e

i i effective address.
G ﬂnc'i Yﬂl?leglg/gi%h _ 00001011b) and can be broken down
The next byte 15

i s that the index register will not be
' S eld is 00, which mean 2 .

as follows. Thfe sdﬁ:eﬁ;crhe ndex field value of 0010 s:}ugtz 1hfi }2([251; :iﬁstgg as
mu'.“phed et F'. [ly. the base field value of 011 . icate X
th‘llt]dCX ‘rl?il?ﬁ;.cdl:satgé base and selects th% 1)3(5 Sl‘legmer for memory access.
register wi ed A STEBX+ECK+S]. |
Thcvrcsul'tam Cff?dwfea(ig;:;stii by[this series of l‘f'ﬂes _1S therefore . MOV
AX E\tflg)rl{rglggogs-[gBX][ECX*l][S]. You can verify this by assembling the
inst;uction and looking at the resulting listing.

encoding and shoul.
displacement field 15 always the

Example 2: Assume that an 80486 is running in 8086-emulation mode and
determine the encoding for the instruction

MOV [ESI*4][ESP],EAX.

Since the processor is in real mode, the defaults will be 16-b'it effective
addresses and 16-bit operands. This instruction uses a 32_-b1t effective address
and is moving 32 bits of data. Therefore both the address size (67h) and operand
size (66h) override prefixes will be required.

The form of the instruction is MOV mem,reg. The instruction listing gives
the encoding for this form as 100010dw. The direction of data flow is to memory
from a register, so d=0. The operand size is 32 bits, so w=1. The opcode byte is
therefore 89h. ;

The next byte to encode will be the addressing mode byte. The mod field
must be set to 00b to indicate that no displacement field is present. The r/m field
must be set to 100b to indicate that the SIB byte is being used to generate the
effective address. (This is required because, among other reasons, the effective
address uses scaling.) The reg field is used to specify the source operand, EAX,
and is set to 000b. The addressing mode byte is 00000100b=04h.

_ The base register for the effective address will be ESP. (Even though ESI is
glfsh 1t cannot be the base because it is scaled.) This sets the base field to 100b.
The index register is scaled by 4, which indicates that scale=10b. Finally, the
md@; ifllelf@ lslset 10 110b to select ESI. The SIB byte is then 10110100b=B4£1

ot e Icion OV ESEJESPLEAX o 7.
the resulting listing o Y assembling the instruction and looking at

r b i 3
80386, Y entering the bytes ingo 5 debugger that supports the

Instructio
n Ex H =
e o ecution Time
at

s
€ amounts of :?;H and the fast, and the best programmers
€ crafting their routines to remove one

Assembly code is ¢
will spend inordin

_

—

Instruction Execution Time

should be concentrated i lhens::lcﬁf):sy ﬂffew more clocks, Optimization efforts
such as loops, sorts, and searches Otthe code that are Executed repeatedly
The execution ti ; :

i Appendix A. Then:iemfi(;r Zach Instruction ig given in the instruction reference

h particular § & Tepresent the numpey of clock cycl i
execute each particular form of ap Instruction. The duray yeles required to
is determined from the syster lock spead b . 4 uration of each clock period
1 clock = 1000/(system spe Y this formula;

B ed in MH
Determining the execution i z) nanoseconds (nS)

e an influence execution
. ' ; atoceur outside of the system (includin
mterrugtts, exc%)}lons, memory rc?fresh, and so on) will also affect the r(eal-worlg
e}apse time. Chis secuoq explains the adjustments that must be made to the
timings sh(_)wn in Appendm Ao arrive at a better estimate of execution time
Many instructions have multiple ti !

: ; _ . mings. For example, the timing for condi-
tional jumps \fv111 vary depending on whether control is transferred (the jump is
taken) or the jump falls through (not taken). Other instructions will list different

times for execution in real mode and in protected mode. The timing for these
two conditions is listed separately in the instruction reference in Appendix A.

If an effective address has to be calculated, this may also add to execution
time. The 8086 and 8088 (and to a lesser extent the more advanced Processors)
will all show increased execution time when accessing memory operands. Exe-
cution time for repeating instructions (such as the shift and rotate instructions)
can vary as a function of the repeat factor. And finally, the alignment of data
operands will affect the time required to fetch them. The effect of all these fac-
tors on timing is explained in detail later in this section.

Instruction Timing Assumptions and Penalties

The timings for individual instructions, for all the processors, assume the follow-
ing conditions. Additional assumptions for particular processors are provided
later in this section.

m The instruction is prefetched and waiting in the instruction queue.

m Control transfer statement timings include any additional clocks
needed to reinitialize the instruction queue.

m All memory operands are aligned. (See the processor-specific assump-
tions below.)

m Bus cycles do not require wait states.

B No other processors contend for bus access.

m Internal components of the processor do not contend for bus access.

i I i ion.
m No exceptions are detected during execution of the Instructi

iming

:on. the instruction to be executed hy
on, : :
i program ratlti 1 enerally valid during normal prg,
During n0f21C ched. This assu{n[; e e ClOFkS- g
already been PT A serics Of ;pstructio G tan oSk
gram execution: ; = 7
to execute, f)weve:l:I e 2
more instrucnoqs ca : ;
Wait states increas
receipt of that data.
the instruction qu
tion can take :
As shown, €T nop B
sary as well. Most PE conﬁgu(r)i ity
.that there are no local.bus D
is valid. The Jisted timings can e L0 | |
ing execution. It must also b;a a iy peeets pons i dtcied drn
‘ he i I ex ! gfo
i struction. FO e, th o
execution of the instruc e
id i 1 error excep i
not be valid if the dwﬂlgnents of the processor may C?mpete. fo‘r e .to e
T C?;lpﬂ” of the processor (the execution unit) is ;xe;utlpg an
it exa;n}f]zé;eslzes memory, another part of thg processor (the bus inter-
| o ! . ce versa.
instruction t to wait to fetch an mstruc‘ugn and vi ‘
face unit) will have that cannot be predicted with certainty, an average
Due to 31[] tea%;ggmately 5.10 percent longer to execute than would be
a

en @ processor request for data and the
 necessarily add 0 EXCCHEREE, nless
S0 (ze J_since bus access and instruction execy.
depletets

ultaneously: t the external environment are neceg-

mptions abou ingle processor, and the assumptiop
ns use as delaying processor access to the bus
for external interrupts that occur dur-

no exceptions are detected during

Prg'gri[:d‘;i)lflthe timings. This error can be significant for programumers working
indica :

. eal.time environments where the timing and response speed of the processor
1a\r:;ecaritical In that case, special hardware must be used to determine the exact

execution time.

8086 and 8088 On the 8086 and 8088, the timings presented are subject to
the following additional assumption:

m Memory operands are aligned. On the 8086, a four-clock penalty is
assigned for each reference to a 16-bit operand located at an odd mem-
ory address. Since all 8088 accesses are 8-bit, no alignment is required,
but four additional clocks must be added for each access to a word
memory operand.

The 80286 On the 80286, the timings presented are subject to the following
additional assumptions.

® Memory operands are aligned. A two-clock penalty is assigned for
accessing a 16-bit memory operand at an odd physical address.

m Effective address calculations do not use the base + index + displace-

ment form. If the base + index + displacement form is used add a one-
clock penalty.

® No task switch is required. Th
Nof _ . The clock pe i itch
IS given later in this section, e

R

Instruction Execution Time

The 80386 On the 80386, the

' : ¢ , followi i
imings listed in the instructiog ¥ referel:]gc:lssumpllons apply when using the

m Memory operands are aligned.

80386DX: A two- i

b < atrV: Ctlloc'k penalty is assigned for accessin g a 32-bit mem-
Physical address that js not evenly divisible by 4.

803865X: A two-clock penalty

operand at an odd physical ad

80386SX: A two-clock penalt
operand at an even physical

80386SX: A four-clock penalty i i
y is assigned i -bi 3
ory operand at an odd physical zzlcidrcfsr.le R I

1S assigned for accessing a 16-bit memory
dress.

Y 1s assigned for accessin

32-bi
address, o

Effective address calculations do not use two general register compo-

nents. One_ register, scaling and a displacement can be used with the
indicated timing, If the effective address calculation

1 uses two general
register components, add a one-clock penalty. :

m No task switch is required. The clock penalty required for a task switch
is described in detail later in this section.

m Some timings are dependent on the subsequent instruction. The clock
penalty required is described in detail later in this section.

The 8(!486 On the 80486, assumptions must be made about the state of each
of the internal components of the processor in order to specify timings. These

additional assumptions and the penalties incurred when they are invalid are
listed below.

B Both data and instruction accesses “hit” in the cache. The 80486 timings
assume that memory fetches of both data and instructions can be found
in the cache. Intel claims a combined instruction and data cache hit rate
of over 90 percent. If a cache miss occurs, the 80486 will be required to
use an external bus cycle to transfer the required code or data into the
cache. The additional clocks required for a cache miss are noted in the
instruction reference in Appendix A. The cache miss penalty bytes are
based on the 80486 using the fastest bus it can support. The processor
32-bit burst speed is defined as r-b-w, where r, b, and w are defined as:

r The number of clocks in the first cycle of a burst read or the num-
ber of clocks per data cycle in a nonburst read.

b The number of clocks for the second and subsequent cycles in a
burst read.

w The number of clocks for a write.

The fastest bus supported is 2-1-2 with zero wait states. The cache miss
clocks assume this bus. For slower buses, r-2 clocks should be added for
the first doubleword accessed.

nsecutive data items and miss the
uPl"j C(i)rst access on 4 16-byte (Pafagraph)
1

g Instructio™® lha:crc;d" start Ul may be required, which will add up
ache & : : 2
;‘:sc\indar)’-\ c[l-lcsltlo the cache miss Penally ess to the line is allowed. If 5
tor+30€ (-) filled before subse U‘;‘g ?Vclfﬂ;a a cache fill is already iy
The cncllerall i (s Ci:)cr refetch, the read must wait_for the
r r?)(;rgg- due write must also wait for @ cacheihing to fill com.
Eache to fill A. gre accessed-

or each access to an unaligned oper-
memory accesses for each instruc-
¢ in Appendix A.

Jly before ! e
P]eldy l ned. F

¢ alig
ands ar he number of

ion referenc
umed tobe in the cache. If not, adq
: instruction of a jump. If

ssing the target INStL . i
me | a:c:ompfl’ewly contained in ‘the f1rs§ double-
lruchon'ls no sl ocks. If the target mstfuct'lon is not
da mm:j”ir:\utrl[:e first 16-byte burst (due to misalignment),

3#b clocks.

er

s Memory 0P
and, add three cloclfs. w
tion 1 fisted in the instr .
«ctpuction 18 ass
@ The target of ajum
r clocks t0 all
the target 105
word read, ad _
completely containe

‘ of rt
add a maximut B. A TLB miss will add 13, 21, or 28

s S theulll : 3
m Page translations hit” n € < hether the accesse d and/or dirty bits

i ending on .
clock§:lo thz;;m:)ﬂrgbﬁi of ths page entries needs to be set in memory.
in neither, one,

p y 1 Iltry iS in hc data Cacl'
lh\ls [+ lah aSSumeS [hat nellher page [al)]e € t

p g il ron he add €SS Ia[lslat 10N
andl jat a pa € fau]l d(!es ot occu (0) res t

i instruction for use of the cache. A
alidate cycles contend with the ms. .
3 I:r?e{irjl??:nglty is imposed for each invalidate cycle that contends
with the CPU for the internal cache/external bus.
u Effective address calculations use a base and no .index reg_ister. If the
effective address calculation uses both a base and index register, a one-

clock penalty may be added to the timing.

B A base register used in an effective address calculation is not the desti-
nation of the preceding instruction. A one-clock penalty is imposed for
back-to-back operations on the same register. Note that specialized on-
chip hardware is used to ensure that the PUSH and POP instructions do
not incur this penalty.

W A displacement field and immediate field are not used in the same
instruction. If used together, an additional one clock may be required.

W There are no write-buffer delays. If there is no write-buffer delay but all

the write buffers are full, then a w clock penalty is added. Intel docu-
mentation specifies that this case rarely occurs.

The Effective Address Calculation
The effective address calcy]
and is used. On the 8086 and
clocks to the instruction’s execution
the effective address. Table 6.15 sp,
and the number of clocks required t

Effective Address
Components
Displacement [disp]
Base or Index [BX]
[BP]
(Sl
(DI
Base + disp [BX + disp]
Index + disp [BP + disp]
[SI + disp]
[DI + disp]
Base + Index [BX + SI)
[BP + DI)
[BX + DI]
[BP + SI]
Base + Index + disp [BX + S| + disp)
[BP + DI + disp]
[BX + DI + disp]
[BP + S| + disp]
Segment Override sreg:ll
Base + scale = index [reg32 + scale « reg32]
(32-bit mode)

the processor,

Other Timing Factors

ation must be
8088, this ¢
time

/ 1 i
nstruction Execution Time P 151
—

perforfncd Wwhenever a memory oper-
glculatlgn adds a specified number of
epending on the components used in

OWs the possible addressing combinations
0 calculate the resulting effective address.

mﬂ!ﬂ Additional Clocks Required for Effective Address Calculation
s

Additional Clocks Required

86/88 286 386 486

6 %} [} @
5 g @ 7}
9 @ %} [}
7 @ (%) @
8 g @ [}
11 1] 1]
12 1 7 7
2

g & 1 1

* One clock may be added to the 82486 execution time depending on the state of the processor.

On the 80286 and later processors, the effective address calculation is per-
formed by dedicated hardware and generally does not add to the execution
time. The exception to this rule is that [base+index+displacement] addressing
adds one clock to the 80286 and 80386 timings listed in Appendix A. The addi-
tional clock may be required on the 80486, depending on the internal state of

There are several additional factors that influence the timing of an instruction.
These factors generally represent different modes of operation and must be
taken into account when determining timings.

Control Transfer Instructions The timings shown for the control transfer
instructions, including JMP, CALL, and INT, include any additional clocks
required to reinitialize the instruction queue starting at the target of the transfer.
In addition, the time required to fetch the target instruction is also included.

LTR

o7 LTR

sk Register (PM)

Upempd i‘i'u,‘cifl'(?d by op and marks the |

- reoister from the
sk registel ask switch 1s performed.

busy. No t

LTR loads the ta
Task State Segment (TSS)

-rating-system software,

The LTR instruction is typically used 1n OpE
cconman JRESES
E:E:; Em LG AR c
i S | Z A P
. 0 D | T Sl ; A

LTR reg16/memlé

(00001111 || 00000000 | [mod [OL1 [wm || disp [
= ||| e }

disp=0- or 2-byte displacement (16-bit address mode)
0- or 4-byte displacement (32-bit address mode)

i Operands [x |88 (86 286|386 486 |
iigw “ BT E { PM:17 (PM:23 | PM:20]
| memier] T I‘PM:19 | P27 ‘PM:2O T

0adeq

MOV

MOV

IeLaienl MOV op;.op;

MOV transfers a byte, word, or doubleword from op; to op;.

The MOV instruction is the workhorse of the 80x86 family for transferring data
between registers and memory. And while all programmers should be familiar with
the different instruction forms, the assembler will usually generate the most efficient
form for the move.

Note that if the MOV instruction is to be valid, both operands must be the same
size. The instruction MOV BX,AL, for example, is both logically and syntactically
incorrect.

The CS, IP, and FLAGS registers cannot be accessed with this instruction. Special
forms are provided for the special registers available on the advanced processors.

When a 16-bit segment register is specified as the source operand, the MOV instruc-
tion behaves differently depending on whether 16- or 32-bit operand size is in effect.
If the operand size is 32-bits and the destination (op;) is a register, the segment reg-
ister is copied into the low-order 16 bits of the destination register and the high-order
16 bits of the destination register are undefined. If the operand size is 16-bits, the
segment register is copied into the low-order 16 bits of the destination register and
the high-order 16 bits of the destination register are unchanged. If the destination is
a memory operand, the segment register is written to memory as a 16-bit quantity,
regardless of the current operand size; bits 16-31 of the destination should be cleared
if necessary.

ALGORITHM 0p;=0p,

1. When the MOV sreg,reg form is used on the 8088 and 8086, interrupts will be
cleared until the following instruction has executed. This property was designed
to allow the stack segment (SS) and stack pointer (SP) registers to be set without
an interrupt occurring between the two instructions. If such an interrupt did
occur, the SS:SP register pair would most likely point to an invalid stack and
cause the system to crash. Early versions of the 8088 and 8086 chips did not
implement this function correctly. The 80286 and later processors disable
interrupts only when sreg=SS.

2. On some versions of the 80386, breakpoints specified by the debug registers
DRO0-DR3 may produce spurious breakpoints after a MOV from CR3, TR, or
TR7 is executed. The contents of DRO-DR3 are not affected. This condition will
persist until the processor executes the next jump instruction. The breakpoint
instruction (opcode CCh) and the single-step trap are not affected.

475

)

¢ MOV

476 '.-‘- MOV
et "R3, TR6, or TR7, b ;
1 i situation, before :\'IOYmg froﬂ‘.lhC ul‘d’ ~ e;(ecu[ed ’th;eakpomts
e n:g'ﬁ. rg:sg;b]ed After the MOV, a jump sho aticn
o ;
i ;I:;):kpomls should be re-enabled. : . oo
- anagf executes the MOV to/fTom special lcng[ﬁl’S'(71, DRn, TRp) MOV reg/mem,reg/mem
3. The 80336 u.\wf W MOD field. The MOD field shouId.be setto 1], -
resllas OrI[L:(S)Ldocﬁ‘mcnlation error indicated that the MOD fleld value wgs - p— | - ;
butan carly 80- v versions of the 80486 detect a MOD=#11b as an illegal opcoge [R00Q10HE | o6 | /|| dhp
adon’t care. Early v he value of MOD. Assemblers (hyy d=0, opj=mod+r/m op,=reg

L

 |ater versions to 1gnore Li¢ ¥e

it l{doer these instructions will fail on some 80486s. 0 o =
i, : . w=0 operands are 8-bit

ACLES DR4 and l-‘ 52 111Slr3:10t10ns were aliased to 1 operands are 16-bit (16-bit operand mode)

d DR7. respectively. Early versions of the 80486 generate 324bit (32:bit operand made)

Later versions of the 80486 execute the disp=0- or 2-byte displacement (16-bit address mode)
0- or 4-byte displacement (32-bit address mode)

This was changed
generate MODz11b

4. On the 80386, the M
MOV to/from DR6 and | »
an invalid opcode for this encoding.

aliased instructions.
5. Ifaprefetchis pending whena MOV TRS,reg32 instruction is executed with the DT operands x |88 86 '286 | 386 |486 |
control bits (bits 0:and 1) set for a cache ric?d, wnl}el, C;f Sus}'l’ e ?-CO gt of regreg |0 |2 |2 2 T2 ‘ 1 1‘
80 ssor may hang. To avoid this, use the following code sequence: R e] T Gl |
the 80438 proces O S : reg,mem 1 |B8:EA 8+EA |3 4 1 ‘
JMP Label :Flush the prefetch queue and W:12+EA | ‘ ‘ s
: begin the first prefetch at Label mem,reg 1 B:0+EA 94+EA 5 : 2 [1 |
ALIGN 16 ;start on a 16-byte boundary | W:13+EA o] |
Label: NOP ;Lets 2nd prefetch begin
IN AL,port ;Ensures both prefetches complete :
MOV TR5,EAX ;EAX contains the new TR5 value | M_OV mg"mf"“
NOP ;These NOPs ensure no new prefetch l
NOP . started until MOV TR5 completes . | 1otw | reg]| immed
. i g 3 ‘ w=0 operands are 8-bit
6. O_n the A-CO step of the 80486, if the MOV CRO,reg32 instruction is used to 1 operands are 16-bit (16-bit operand mode)
dlsable‘the cache, a line in the cache may be corrupted. Since this instruction is 32:bit (32:bit operand mode)
not typically used by applications, this problem should not occur. The code ' immed=1- or 2-byte immediate data (16-bit address mode)
shown below will avoid the problem. Note that the NMI and faults/traps should Sl i EC e data 2t address mode)
not occur during this code sequence. Tving |
TIMING Operands X | 88 86 286 386 486
PUSHFD 2
CLI ‘ reg,immed LO 4 4 2 2 1
MOV BL,CS:Label %
MoV CR@, EAX ‘
[MOV reg/mem,immed
| Eeissn ==

Label: POPFD

{ 1100011w ! I mod‘ 000 ! r/m H immed J

w=0 operands are 8-bit
ted | 1 operands are 16-bit (16-bit operand mode)
No flags are affec 32bit (32.bit operand mode)

immed=1- or 2-byte immediate data (16-bit address mode)
1- or 4-byte immediate data (32-bit address mode)

| tion is provided for this purpose and the opcode occupies only a single byte.

Note: This encoding is not normally used to move immediate data into a register. The MOV reg,immed instruc-

)

477

