

Deep RL for MPC of Quadruped Locomotion

By Yulun Zhuang SUSTech Professor Wei Zhang

Content

Thesis Motivation and Demo Quadruped Locomotion Control and Learning Framework Compatible with Multi-Type Robots

RL Training FWK

Deep RL through Parallelism Training Combine RL Policy and MPC Controller

Model Predictive Control FWK MIT Cheetah Software in Python Easy to Use MPC Controller

Mobility across Slopes and Steps

Experiments and Results Inconsistent update timesteps Inconsistent loss functions Unavailable sim-to-real transfer

Motivation and Demonstration

Thesis Motivation

A Model-Data Hybrid-Driven Hierarchical Control Method for Quadruped

A Quadruped Control & Learning FWK

Unitree Aliengo

Mini Cheetah

Parallel Simulation Demo

MPC Controller Performance

RL Training Results - Part 1

Computing Device

RL Training:	NVIDIA GTX 1060
MPC Controller :	Intel Core i7-7850H
RAM:	16 G

Envs	Batch Size	GPU Occupancy
1	24	35%
4	96	28%
8	192	20%
16	384	15%
32	768	8%
64	1536	6%
512	12288	1%

RL Training Results - Part 2

Weight Policy Training

Linear velocity:	[-2, 2]
Angular velocity:	[-1.5, 1.5]
Simulation:	500 Hz
MPC:	50 Hz
A ctors.	16
Actors.	
Policy:	3 laver ML
	5 1 17

Action clip:

Р [-1, 1]

Performance Comparison - Part 1

Linear velocity:	[-2, 2]
Angular velocity:	[-2.5, 2.5]
Simulation:	500 Hz
MPC:	50 Hz

Model inference time:	~0.001 s
Policy update time:	~0.0015 s

Performance Comparison - Part 2

Sim2Real Transfer - Part 1

Sim2Real Transfer - Part 2

Model Predictive Control Framework

Controller Overview

✤ Operator Input:

velocity in xy plane and yaw turn rate.

Di Carlo, Jared, et al. "Dynamic locomotion in the mit cheetah 3 through convex model-predictive control." 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2018.

Rigid-body Dynamics

Rigid body dynamics:

$$egin{aligned} \ddot{\mathbf{p}} &= rac{\sum_{i=1}^n \mathbf{f}_i}{m} - \mathbf{g} \ rac{\mathrm{d}}{\mathrm{d}t}(\mathbf{I}oldsymbol{\omega}) &= \sum_{i=1}^n \mathbf{r}_i imes \mathbf{f}_i \ \dot{\mathbf{R}} &= [oldsymbol{\omega}]_{ imes} \mathbf{R} \end{aligned}$$

where

$$\mathbf{R} = \mathbf{R}_z(\psi) \mathbf{R}_y(heta) \mathbf{R}_x(\phi) \ rac{\mathrm{d}}{\mathrm{d}t}(\mathbf{I}oldsymbol{\omega}) = \mathbf{I}\dot{oldsymbol{\omega}} + oldsymbol{\omega} imes (\mathbf{I}oldsymbol{\omega}) pprox \mathbf{I}\dot{oldsymbol{\omega}}$$

✤ Approximations:

- 1. Small value of roll and pitch
- 2. Robot is not pointed vertically $(\cos(\theta) \neq 0)$
- 3. The $\omega \times (\mathbf{I}\omega)$ term is small for bodies with small angular velocities

State Space Model

✤ Calculate state derivatives:

✤ Add additional gravity state:

$$\frac{d}{dt}\hat{\Theta} = R_{z}(\psi)\hat{\Theta} \\
\frac{d}{dt}\hat{p} = \hat{p} \\
\frac{d}{dt}\hat{p} = \hat{p} \\
\frac{d}{dt}\hat{\omega} = \hat{\mathbf{I}}^{-1}\sum_{i=1}^{n}\mathbf{r}_{i} \times \mathbf{f}_{i} = \hat{\mathbf{I}}^{-1}([\mathbf{r}_{1}]_{\times}\mathbf{f}_{1} + \dots + [\mathbf{r}_{n}]_{\times}\mathbf{f}_{n}) \\
\frac{d}{dt}\hat{\omega} = \hat{\mathbf{I}}^{-1}\sum_{i=1}^{n}\mathbf{r}_{i} \times \mathbf{f}_{i} = \hat{\mathbf{I}}^{-1}([\mathbf{r}_{1}]_{\times}\mathbf{f}_{1} + \dots + [\mathbf{r}_{n}]_{\times}\mathbf{f}_{n}) \\
\frac{d}{dt}\hat{\psi} = \frac{\sum_{i=1}^{n}\mathbf{f}_{i}}{m} - \mathbf{g} = \frac{\mathbf{f}_{1} + \dots + \mathbf{f}_{n}}{m} - \mathbf{g} \\
\text{where } n = 4$$

$$\frac{\dot{\mathbf{x}}(t) = \mathbf{A}_{c}(\psi)\mathbf{x}(t) + \mathbf{B}_{c}(\mathbf{r}_{1}, \dots, \mathbf{r}_{n}, \psi)\mathbf{u}(t)}{\text{where } \mathbf{A}_{c} \in \mathbb{R}^{13 \times 13} \text{ and } \mathbf{B}_{c} \in \mathbb{R}^{13 \times 3n}.$$

Stance Leg Control

Stance Leg Force Control:

 $oldsymbol{ au}_i = \mathbf{J}_i^ op \mathbf{R}_i^ op \mathbf{f}_i$

f is the vector of forces calculated from the **MPC** controller in the world coordinate frame.

Zero Order Hold Discretization

$$\mathbf{x}_{k+1} = \mathbf{A}_d \mathbf{x}_k + \mathbf{B}_d \mathbf{u}_k$$
$$\mathbf{A}_d = e^{\mathbf{A}T}$$
$$\mathbf{B}_d = \int_0^T e^{\mathbf{A}\tau} d\tau \mathbf{B}$$

MPC Formulation

Convex Model Predictive Control Problem

$$\min_{\mathbf{x},\mathbf{u}} \sum_{i=0}^{k-1} ||\mathbf{x}_{i+1} - \mathbf{x}_{i+1,\text{ref}}||_{\mathbf{Q}_i} + ||\mathbf{u}_i||_{\mathbf{R}_i}$$

subject to $\mathbf{x}_{i+1} = \mathbf{A}_i \mathbf{x}_i + \mathbf{B}_i \mathbf{u}_i, i = 0 \dots k - 1$
 $\underline{\mathbf{c}}_i \leq \mathbf{C}_i \mathbf{u}_i \leq \overline{\mathbf{c}}_i, i = 0 \dots k - 1$
 $\mathbf{D}_i \mathbf{u}_i = 0, i = 0 \dots k - 1$

Trot Gait FL FR RL 0 5 10 Horizon

Constraints

- Equality constraints: set all forces from feet off the ground to zero, enforcing the desired gait.
- > Inequality constraints: $f_{\min} \leq f_z \leq f_{\max}$
 - max z-force $-\mu f_z \le \pm f_x \le \mu f_z$
 - friction cone

$$-\mu f_z \le \pm f_y \le \mu f_z$$

Di Carlo, Jared, et al. "Dynamic locomotion in the mit cheetah 3 through convex model-predictive control." 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2018.

QP Formulation

✤ Batch Formulation

$$\mathbf{x}_{\mathbf{k}} = \mathbf{A}^{k} \mathbf{x}_{0} + \sum_{i=0}^{k-1} \mathbf{A}^{k-1-i} \mathbf{B} \mathbf{u}_{i}$$

$$\begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{k} \end{bmatrix} = \begin{bmatrix} \mathbf{A}^{1} \\ \mathbf{A}^{2} \\ \vdots \\ \mathbf{A}^{k} \end{bmatrix} \mathbf{x}_{0} + \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{B} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{AB} & \mathbf{B} & \mathbf{0} & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}^{k-1} \mathbf{B} & \mathbf{A}^{k-1} \mathbf{B} & \mathbf{0} & \cdots & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{0} \\ \mathbf{u}_{1} \\ \vdots \\ \mathbf{u}_{k-1} \end{bmatrix}$$

Therefore,

 $\mathbf{X} = \mathbf{A}_{qp} \mathbf{x}_0 + \mathbf{B}_{qp} \mathbf{U}$ where $\mathbf{X} \in \mathbb{R}^{13k}$ and $\mathbf{U} \in \mathbb{R}^{3nk}$

- ✤ Rewrite the objective function $J(\mathbf{U}) = ||\mathbf{A}_{qp}\mathbf{x}_0 + \mathbf{B}_{qp}\mathbf{U} \mathbf{x}_{ref}||_{\mathbf{L}} + ||\mathbf{U}||_{\mathbf{K}}$
- Convert to convex QP

 $\begin{array}{ll} \min_{\mathbf{U}} & \frac{1}{2}\mathbf{U}^{\mathsf{T}}\mathbf{H}\mathbf{U} + \mathbf{U}^{\mathsf{T}}\mathbf{g} \\ \text{s. t.} & \underline{\mathbf{c}} \leq \mathbf{C}\mathbf{U} \leq \overline{\mathbf{c}} \end{array}$

where $\mathbf{H} = 2(\mathbf{B}_{qp}^{\mathsf{T}}\mathbf{L}\mathbf{B}_{qp} + \mathbf{K})$ $\mathbf{g} = 2\mathbf{B}_{qp}^{\mathsf{T}}\mathbf{L}(\mathbf{A}_{qp}\mathbf{x}_0 - \mathbf{y})$

MPC Solver Implementation

Di Carlo, Jared, et al. "Dynamic locomotion in the mit cheetah 3 through convex model-predictive control." *2018 IROS*. IEEE, 2018. Yang, Yuxiang, et al. "Fast and efficient locomotion via learned gait transitions." Conference on Robot Learning. PMLR, 2022.

Swing Leg Control

✤ PD Feedback Control:

$$\boldsymbol{\tau}_{i} = \mathbf{J}_{i}^{T} \left[\mathbf{K}_{p} \left({}^{H} \mathbf{p}_{i,ref} - {}^{H} \mathbf{p}_{i} \right) + \mathbf{K}_{d} \left({}^{H} \mathbf{v}_{i,ref} - {}^{H} \mathbf{v}_{i} \right) \right]$$

It plans a trajectory using a **cubic Bezier spline**, then uses position feedback control for tracking.

Foot Placement – Raibert heuristic

 $p_{\text{land}} = p_{\text{ref}} + v_{\text{CoM}} T_{\text{stance}} / 2$

Single Leg Kinematics

Homogeneous Transformation Matrix

$$\mathbf{H} = Rot_{x,\theta_1} Trans_{y,l_1} Rot_{y,\theta_2} Trans_{z,l_2} Rot_{y,\theta_3} Trans_{z,l_3} \\ = \begin{bmatrix} c_{23} & 0 & s_{23} & l_3s_{23} + l_2s_2 \\ -s_{23}s_1 & -c_1 & c_{23}s_1 & l_1c_1 + l_3s_1c_{23} + l_2c_2s_1 \\ s_{23}c_1 & -s_1 & -c_{23}c_1 & l_1s_1 - l_3c_1c_{23} - l_2c_2c_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward Kinematics

$$\mathbf{p} = \begin{bmatrix} l_3 s_{23} + l_2 s_2 \\ l_1 c_1 + l_3 s_1 c_{23} + l_2 c_2 s_1 \\ l_1 s_1 - l_3 c_1 c_{23} - l_2 c_2 c_1 \end{bmatrix}$$

• Velocity Jacobian Matrix
$$\mathbf{v} = \dot{\mathbf{p}} = J\dot{\boldsymbol{\theta}}$$

$$J = \begin{bmatrix} 0 & l_3c_{23} + l_2c_2 & l_3c_{23} \\ -l_1s_1 + l_3c_1c_{23} + l_2c_2c_1 & -l_3s_1s_{23} - l_2s_2s_1 & -l_3s_1s_{23} \\ l_1c_1 + l_3s_1c_{23}l_2c_2s_1 & l_3c_1s_{23} + l_2s_2c_1 & l_3c_1s_{23} \end{bmatrix}$$

11

 θ_2

 ι_3

Ground Slope Estimation

Use measurements of each footstep location:

$$\boldsymbol{p}_i = (p_i^x, p_i^y, p_i^z)$$

To approximate the local slope of the walking surface:

$$z(x,y) = a_0 + a_1 x + a_2 y$$

Coefficients *a* are obtained through least squares:

$$oldsymbol{a} = egin{pmatrix} oldsymbol{W}^Toldsymbol{W}^Toldsymbol{p}^z \ oldsymbol{W} = egin{bmatrix} oldsymbol{1} & oldsymbol{p}^x & oldsymbol{p}^y \end{bmatrix}_{4 imes 3}$$

where $p^x = (p_1^x, p_2^x, p_3^x, p_4^x)$

Gehring, Christian, et al. "Dynamic trotting on slopes for quadrupedal robots." 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015.

Finite State Machine

Deep RL Training Framework

Simulator: NVIDIA Isaac Gym

RL Algorithm: PPO (A-C Style)

Policy Network: 3-Layer MLP

Device: NVIDIA GTX 1060

Parallelism:

- > $B = n_{\text{robots}} n_{\text{steps}}$ (trade off between efficiency and performance)
- Reset based on a time out breaks the infinite horizon assumption of PPO

RL Algorithm

Proximal Policy Optimization

Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).

Policy & Observation & Action

- ✤ MLP (Multilayer Perceptron)
 - ➤ Input Dim: 48
 - ➤ Output Dim: 12
 - ➢ Hidden Unit: [256, 128, 64]
 - > Activation:

Observation Space	Dimensions
COM position	3
COM velocity	3
COM Euler angle	3
COM angular velocity	3
DOF position	12
DOF velocity	12
Actions	12
Total	48

Action Space	Dimensions
Position weights	3
Velocity weights	3
Euler Angle weights	3
Angular Velocity weights	3
Total	12
ut Layer Hidden Layers	Output La
It Layer Hidden Layers	Output L

Observation and Reward Design

Observat	ion space	Degrees of freedom
Base velocity	positional	3
base velocity	angular	3
Body-relative	gravity	3
Target X, Y, ya	w velocities	3
DOF states	position	12
DOF states	velocity	12
Actions		12
Total number of	of observations	48

Reward	Definition	Weight
Linear velocity tracking	$\phi(\mathbf{v}_{b,xy}^* - \mathbf{v}_{b,xy})$	1dt
Angular velocity tracking	$\phi(oldsymbol{\omega}^{*}_{b,z}-oldsymbol{\omega}_{b,z})$	0.5dt
Linear velocity penalty	$-\mathbf{v}_{b,z}^2$	4dt
Angular velocity penalty	$- oldsymbol{\omega}_{b,xy} ^2$	0.05dt
Joint motion	$- \Vert \ddot{\mathbf{q}}_j \Vert^2 - \Vert \dot{\mathbf{q}}_j \Vert^2$	0.001 dt
Joint torques	$- oldsymbol{ au}_j ^2$	0.00002dt
Action rate	$- {f q}_{j}^{*} ^{2}$	0.25dt
Collisions	$-n_{collision}$	0.001 dt

Parallel RL Training - Part 1

- **Global network maintain** $\pi(a|s;\theta)$ and $V_{\pi}(s;\omega)$
- **\Box** Each worker have a copy of $\pi(a|s;\theta)$ and $V_{\pi}(s;\omega)$
- □ Each worker interact the environment *n* steps to gain experience and calc gradients
- Global network update $\pi(a|s;\theta)$ and $V_{\pi}(s;\omega)$ after receiving **all** gradients from workers

Mnih V, Badia A P, Mirza M, et al. Asynchronous methods for deep reinforcement learning[C]//International conference on machine learning. PMLR, 2016: 1928-1937.

Parallel RL Training - Part 2

Conclusions and Future Work

★ Proposed and implemented a hierarchical control architecture for quadruped

- Periodic gait such as walking and trotting can be done with simple tuning
- Sim2Real transfer on real Aliengo robot
- → Controller Performance:
 - ◆ 3 m/s Vx
 - ◆ 2 m/s Vy
 - 5 rad/s ω
 - 0.04 rad max orientation deviation
 - 1 ms policy inference

Cons:

- Insufficient network training steps
- Only open loop gaits are using
- No external sensors like camera

Thanks for Listening

Yulun Zhuang

Quadruped Ctrl and Learn FWK based on IsaacGym

Data-driven Reference Model-driven Trajectory Model Weights Joint PD Reaction. Predictive NN Policy Force Controller Controller Joint Torque Action Reward State Sensor Robot **RL** Algorithm Processing Data **Dynamics** States nulato

Parallel MPC Control Demo

Simulation:1000 HzControl:500 HzMPC:50 Hz

Locomotion Gaits

