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Motivation and 
Demonstration
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Thesis Motivation

★ A Model-Data Hybrid-Driven Hierarchical Control Method for Quadruped
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A Quadruped Control & Learning FWK

Unitree Aliengo Unitree A1 Mini Cheetah Parallel Simulation Demo
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MPC Controller Performance
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RL Training Results - Part 1

Reward

Entropy Loss

❖ Computing Device

RL Training:         NVIDIA GTX 1060

MPC Controller:   Intel Core i7-7850H

RAM:                     16 G
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RL Training Results - Part 2

Weight Policy 
Training
Linear velocity: [-2, 2]
Angular velocity: [-1.5, 1.5]
Simulation: 500 Hz
MPC: 50 Hz

Actors: 16
Algorithm: PPO 
Policy: 3 layer MLP
Action clip: [-1, 1]
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Performance Comparison - Part 1

Linear velocity: [-2, 2]

Angular velocity: [-2.5, 2.5]

Simulation: 500 Hz

MPC: 50 Hz

Model inference time: ~0.001 s

Policy update time: ~0.0015 s
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Performance Comparison - Part 2
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Sim2Real Transfer - Part 1
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Sim2Real Transfer - Part 2
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Model Predictive 
Control Framework



Controller Overview

14Di Carlo, Jared, et al. "Dynamic locomotion in the mit cheetah 3 through convex model-predictive control." 2018 IEEE/RSJ international conference on 
intelligent robots and systems (IROS). IEEE, 2018.

❖ Operator Input: 
➢ velocity in xy plane and yaw turn rate.



Rigid-body Dynamics
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❖ Approximations:

1. Small value of roll and pitch
2. Robot is not pointed vertically (cos(θ) ≠ 0)
3. The                  term is small for bodies with 

small angular velocities

❖ Rigid body dynamics:

where



State Space Model
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❖ Calculate state derivatives:

     where n = 4

❖ Add additional gravity state:



Stance Leg Control
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❖ Stance Leg Force Control:

 f  is the vector of forces calculated from the 
MPC controller in the world coordinate frame.

❖ Zero Order Hold Discretization



❖ Constraints

➢ Equality constraints: set all forces from feet off 
the ground to zero, enforcing the desired gait.

➢ Inequality constraints:
■ max z-force
■ friction cone

❖ Convex Model Predictive Control Problem

MPC Formulation

18Di Carlo, Jared, et al. "Dynamic locomotion in the mit cheetah 3 through convex model-predictive control." 2018 IEEE/RSJ international conference on 
intelligent robots and systems (IROS). IEEE, 2018.



QP Formulation
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❖ Rewrite the objective function

❖ Convert to convex QP

where

❖ Batch Formulation

Therefore,

      where                     and



MPC Solver Implementation
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QP Solver Language Binding Run Time Total Time Choice

CVXOPT Python N/A 100 ms N/A ❌

OSQP Python N/A 10 ms 15 ms ❌

OSQP-Eigen C++ pybind11 1.33 ms 28 ms ❌

qpOASES C pybind11 < 1 ms < 2 ms ✔

Refer to
MIT’s

Implmnt

Refer to
Yuxiang’s 

Implmnt

Di Carlo, Jared, et al. "Dynamic locomotion in the mit cheetah 3 through convex model-predictive control." 2018 IROS. IEEE, 2018.
Yang, Yuxiang, et al. "Fast and efficient locomotion via learned gait transitions." Conference on Robot Learning. PMLR, 2022.



Swing Leg Control
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❖ PD Feedback Control:

It plans a trajectory using a cubic Bezier 
spline, then uses position feedback control for 
tracking.

❖ Foot Placement – Raibert heuristic

Raibert M H. Legged robots that balance[M]. MIT press, 1986.



Single Leg Kinematics
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❖ Homogeneous Transformation Matrix

❖ Forward Kinematics ❖ Velocity Jacobian Matrix



Ground Slope Estimation

23

❖ Use measurements of each footstep 
location:

❖ To approximate the local slope of the 
walking surface:

❖ Coefficients a are obtained through 
least squares:

where

Gehring, Christian, et al. "Dynamic trotting on slopes for quadrupedal robots." 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IROS). IEEE, 2015.



Finite State Machine
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Deep RL Training 
Framework



RL Framework

26

Simulator:           NVIDIA Isaac Gym

RL Algorithm:    PPO (A-C Style)

Policy Network:  3-Layer MLP

Device:                 NVIDIA GTX 1060

Parallelism:

➢                                  (trade off between 
efficiency and performance)

➢ Reset based on a time out breaks the 
infinite horizon assumption of PPO



RL Algorithm

27Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).

❖ Proximal Policy Optimization
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Policy & Observation & Action

❖ MLP (Multilayer Perceptron)

➢ Input Dim:    48

➢ Output Dim:  12

➢ Hidden Unit:  [256, 128, 64]

➢ Activation:     
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Observation and Reward Design

Linear XY Linear Z Angular XY Angular Z

…

Makoviychuk, Viktor, et al. "Isaac gym: High performance gpu-based physics simulation for robot learning." 
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Parallel RL Training - Part 1

❏ Global network maintain                 and 

❏ Each worker have a copy of                 and 

❏ Each worker interact the environment n steps 
to gain experience and calc gradients

❏ Global network update                 and                
after receiving all gradients from workers

Mnih V, Badia A P, Mirza M, et al. Asynchronous methods for deep reinforcement learning[C]//International conference on machine learning. PMLR, 2016: 
1928-1937.
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Parallel RL Training - Part 2

★ Isaac Gym + MPC Experience Collection

Makoviychuk, Viktor, et al. "Isaac gym: High performance gpu-based physics simulation for robot learning." 

● Traditional RL Experience Collection



Conclusions and Future Work
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★ Proposed and implemented a hierarchical control architecture for quadruped 

◆ Periodic gait such as walking and trotting can be done with simple tuning

◆ Sim2Real transfer on real Aliengo robot

➔ Controller Performance：

◆ 3 m/s      Vx
◆ 2 m/s      Vy
◆ 5 rad/s    ω
◆ 0.04 rad  max orientation deviation
◆ 1 ms       policy inference

➔ Cons：

◆ Insufficient network training steps

◆ Only open loop gaits are using

◆ No external sensors like camera



Thanks for Listening
Yulun Zhuang
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Parallel MPC 
Control Demo

Quadruped Ctrl and Learn 
FWK based on IsaacGym

Simulation: 1000 Hz
Control: 500 Hz
MPC: 50 Hz
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Locomotion Gaits

01 02

03 04

Trot Walk

GallopPace


