
Captain Codeman Web-Development Server-Side Cloud Tools About

Build a Docker Container from a pnpm
monorepo

How to containerize a SvelteKit app

Contents

Containerizing a SvelteKit Mono Repo

Multi-Stage Dockerfile

Build Stage

Runtime Stage

Conclusion

Introduction

Are you developing applications with SvelteKit? Have you modularized your app in a

mono-repo using pnpm? Do you deploy a containerized runtime using Docker?

If so, congratulations - you’ve made great technology choices! But if you’re struggling to

put all the pieces together or just want to confirm that your Docker Image is as efficient

and optimized as it could be, this may be for you.

Example repo with code

Containerizing a SvelteKit Mono Repo

Creating a Docker Image of a SvelteKit mono-repo isn’t a case of copying everything in

our project folder into it. While it may work, and run, it’s not going to be very efficient

and you’ll end up with a Docker image that could easily be Gigabytes larger than it

needs to be. The goal is for the image to contain as little as possible - just what is

required for runtime execution. A lean minimal container image will not only be quicker

to deploy but will also be more secure as it has fewer dependencies installed.

When developing we inevitably use many more packages to compile and build our

project than are required to run it. As an example, an out-of-the-box SvelteKit project

may contain these `devDependencies` (when set to use the node adapter):

@sveltejs/adapter-node

@sveltejs/kit

@sveltejs/vite-plugin-svelte

svelte

svelte-check

tslib

typescript

vite

None of these need to be installed to execute the built version of the app - they either

play a part in building it, or the pieces of the packages we use in our app are included in

the built output. As we develop larger apps, the dependencies we use often grow and

one of the eternal challenges is keeping control on how many packages we pull in. But

it’s not unusual to end up with packages for UI components, charting, date handling and

many others.

There are also runtime `dependencies` that our app will need. These are packages

that the server uses and while we could build some of them into our app code, it’s more

efficient and often necessary, to install them on the server. Sometimes they will have

their own run-time installed dependencies, such as libraries for image processing or AI,

or trying to re-package them into our app is problematic for technical reasons - they

simply aren’t designed to be used like that.

We need these packages, defined in `dependencies`, to be installed in the docker

image, but we don’t want the `devDependencies` to be installed.

Multi-Stage Dockerfile

To achieve this we can use a “multi-stage” Dockerfile. This builds the final Docker Image

in stages, and the final stage can use some of the outputs produced in earlier stages,

but without including all of the dependencies that were needed to create them.

Here’s the Dockerfile we’re going to use. But before you copy-and-paste this, there are

some other pieces needed to make this work, so keep reading …

FROMFROM node:22-bookworm-slim node:22-bookworm-slim ASAS build build
ENVENV PNPM_HOME= PNPM_HOME="/pnpm""/pnpm"
ENVENV PATH= PATH="$PNPM_HOME:$PATH""$PNPM_HOME:$PATH"
RUNRUN corepack enable corepack enable

WORKDIRWORKDIR /app /app
COPYCOPY

RUNRUN --mount--mount==type=cache,id=pnpm,target=/pnpm/storetype=cache,id=pnpm,target=/pnpm/store \\
 pnpm install --frozen-lockfile pnpm install --frozen-lockfile
RUNRUN pnpm run -r build pnpm run -r build
RUNRUN pnpm deploy --filter=web --prod out pnpm deploy --filter=web --prod out

FROMFROM gcr.io/distroless/nodejs22-debian12 gcr.io/distroless/nodejs22-debian12
WORKDIRWORKDIR /app /app
ENVENV NODE_ENV=production NODE_ENV=production
ENVENV ORIGIN=http://localhost:8080 ORIGIN=http://localhost:8080

COPYCOPY --from--from==buildbuild /app/out/ . /app/out/ .
EXPOSEEXPOSE 8080 8080
CMDCMD [["server.js""server.js"]]

We’ll go through what each line does to explain it.

Build Stage

The “build” part of our multi-stage Dockerfile is going to use the latest slim version of

the node image. Unless you use something that needs the extra dependencies (e.g. the

full C build toolchain) it only uses a couple of hundred Mb vs more than a Gb:

FROMFROM node:22-bookworm-slim node:22-bookworm-slim ASAS build build

Next, we configure and enable `pnpm`. Note that we no longer need to install pnpm

using npm - support is built in to recent node versions and activated using `corepack

enable`:

FROMFROM node:22-bookworm-slim node:22-bookworm-slim ASAS build build
ENVENV PNPM_HOME= PNPM_HOME="/pnpm""/pnpm"
ENVENV PATH= PATH="$PNPM_HOME:$PATH""$PNPM_HOME:$PATH"
RUNRUN corepack enable corepack enable

We’ll create a workspace to put our project files and copy them in:

WORKDIRWORKDIR /app /app
COPYCOPY

NOTE: this shouldn’t copy everything that is inside our project folder. We don’t want to

copy the (hidden) git repository files or the `node_modules` folder that may have

versions of packages built for a different architecture, so we use a `.dockerignore`

file to exclude these:

.git.git

.gitignore.gitignore
node_modulesnode_modules

At this point, our image will have the basics of a dev environment - a linux distro, with

the node runtime, and the project source files. Just as when you first checkout a project

from a source repo, we need to install the dependencies. We will use the cache mounts

feature to have Docker cache any downloads to speed up repeated runs, otherwise it’s a

fairly straightforward `pnpm install` making sure to use the dependencies specified

in the lockfile:

RUNRUN --mount--mount==type=cache,id=pnpm,target=/pnpm/storetype=cache,id=pnpm,target=/pnpm/store \\
 pnpm install --frozen-lockfile pnpm install --frozen-lockfile

With the dependencies installed, we can build our app! Note that we’re using the `-r`

(recursive) option that will execute the `build` script in all packages inside our mono

repo workspace. `pnpm` automatically handles the dependencies to build things in the

correct order, and it doesn’t matter if we have multiple packages, even multiple SvelteKit

instances for apps and component libraries, they are all built:

RUNRUN pnpm run -r build pnpm run -r build

And now the “magical” part. The pnpm deploy command transforms the app as if it was

optimized for publishing to a node package repository. All dev dependecies are pruned,

including other packages in our mono-repo, with just the runtime dependencies

included in the `node_modules` folder. We use the `--filter` option to specify the

package without our mono-repo (this is the name of the app in its `package.json`

file), and the `--prod` and `out` specify the type and location of the output.

RUNRUN pnpm deploy --filter=web --prod out pnpm deploy --filter=web --prod out

As before, there is some extra configuration needed to make this work, this time to make

sure it includes everything our app needs to execute. SvelteKit, like most frameworks,

needs more than the `node_modules` runtime dependencies … it needs the built app

output, normally output to a `build` folder. Unless we configure our app to know which

files are needed for runtime, `pnpm deploy` won’t know to include them.

We specify the files to include by adding a `files` section to the apps

`package.json`, just as we would if we wanted to publish the outputs to npmjs.com:

{{
"name""name":: "web""web",,
"version""version":: "0.0.1""0.0.1",,
"files""files":: [[

"build""build",,
"server.js""server.js"

]],,

For this example, I’m also including `server.js`, which I’ll explain later.

At this point, we have a built output. To get a better idea of exactly what it’s done, you

can execute the built and deploy commands in your project folder and examine the

`out` folder. Note it has no source code, just the `build` and `node_modules`

folders, with the latter containing just the runtime dependencies.

pnpmpnpm run -r build run -r build
pnpmpnpm deploy --filter deploy --filter==web --prod outweb --prod out

Runtime Stage

At this point we have a Docker Image that we could deploy and execute. But it would be

a waste to do this. The Image it was based off has way more dependencies than we

really need, which makes it bigger than it needs to be and can represent a larger attack

surface. Also, it has all the build tools and `devDependencies` that simply aren’t

required (please, don’t run `vite` in production …)

So instead, we will use a distroless image for the runtime base. A distroless image

contains only your application and its runtime dependencies. They do not contain

package managers, shells or any other programs you would expect to find in a standard

Linux distribution. Fewer dependencies make for both a smaller image and a more

secure image, with a reduced attack surface. It’s a win-win no brainer to use.

FROMFROM gcr.io/distroless/nodejs22-debian12 gcr.io/distroless/nodejs22-debian12

As before, we will create an area for our app to live:

WORKDIRWORKDIR /app /app

And we’ll be sure to set `NODE_ENV=production` so node and any packages know

how to behave.

ENVENV NODE_ENV=production NODE_ENV=production

Because SvelteKit doesn’t know what URL the Docker Image will be serving, we need to

configure it. This can be done by setting an `ORIGIN` environment variable, or other

variables to allow the host to be determined from the request headers. For this

example we’ll use the simplest option.

ENVENV ORIGIN=http://localhost:8080 ORIGIN=http://localhost:8080

Finally, we’ll copy just the `out` folder from the previous build stage to our app folder.

This image now contains the bare minimum to execute our app and for this example

comes out at about 200Mb in size.

COPYCOPY --from--from==buildbuild /app/out/ . /app/out/ .

We can then expose the port and execute the app. The entrypoint of the node distroless

image is set to “node”, so it expects the name of a .js file to execute. This is the

`server.js` file I mentioned earlier.

EXPOSEEXPOSE 8080 8080
CMDCMD [["server.js""server.js"]]

Using a custom server as the entrypoint to a Node Adapter SvelteKit app allows you

greater control. You may need to setup a proxy to support Firebase signInWithRedirect

or want to add a healthcheck endpoint or http compression to your server.

Here’s an example of the latter (note, `http-compression` is an example of

something that would be added to the runtime `dependencies` for the app):

importimport httphttp fromfrom 'http''http'
importimport compressioncompression fromfrom 'http-compression''http-compression'
importimport {{ handler handler }} fromfrom './build/handler.js''./build/handler.js'

constconst compress compress == compressioncompression(())

consoleconsole..loglog(('listening on port 8080 ...''listening on port 8080 ...'))

httphttp
 ..createServercreateServer((((reqreq,, res res)) =>=> {{
 compresscompress((reqreq,, res res,, (()) =>=> {{
 handlerhandler((reqreq,, res res,, errerr =>=> {{
 ifif ((errerr)) {{
 res res..writeHeadwriteHead((500500))
 res res..endend((errerr..toStringtoString(())))
 }} elseelse {{
 res res..writeHeadwriteHead((404404))
 res res..endend(())
 }}
 }}))
 }}))
 }}))
 ..listenlisten((80808080))

Conclusion

I hope you found this useful. It seems more complex than it really is because we’ve gone

through it line-by-line but as long as you remember the `.gitignore` and `files` in

`package.json`, it’s easy to apply to multiple projects and ensures the Docker Images

they output will always be optimized.

There are additional enhancements that can be made such as using environment

variables to specify the `PORT` to run on, and if you have multiple applications in your

mono-repo project that will each need their own Docker Image (e.g. a client facing site,

a tenant console, an admin site etc…) then you can add `ARG`s to the Dockerfile to

allow the same one to be used for all of them.

web-development sveltekit docker pnpm

You may also like …

Project Structure for

Using Redux with

Polymer 2.0

ES6 imports vs HTML imports
... fight!

Deploy a SvelteKit App

to GitHub Pages

The easy way

Re-creating the

SvelteKit Session

Store

Not identical but close
enough

Angular2 Route

Security

Restricting access based on
auth state or roles

Dependency Injection

in Go (Golang)

Do you really need "Spring"?

SvelteKit Hydration

Gotcha

Avoiding accidentally large
payloads

© 2017 Captain Codeman, Inc. All rights reserved.

Enable self-help for end users

ManageEngine Open

https://www.captaincodeman.com/
https://www.captaincodeman.com/category/web-development
https://www.captaincodeman.com/category/server-side
https://www.captaincodeman.com/category/cloud
https://www.captaincodeman.com/category/tools
https://www.captaincodeman.com/about
https://www.captaincodeman.com/category/web-development
https://www.captaincodeman.com/tag/sveltekit
https://www.captaincodeman.com/tag/docker
https://www.captaincodeman.com/tag/pnpm
https://www.captaincodeman.com/project-structure-for-using-redux-with-polymer-20
https://www.captaincodeman.com/project-structure-for-using-redux-with-polymer-20
https://www.captaincodeman.com/deploy-a-sveltekit-app-to-github-pages
https://www.captaincodeman.com/deploy-a-sveltekit-app-to-github-pages
https://www.captaincodeman.com/re-creating-the-sveltekit-session-store
https://www.captaincodeman.com/re-creating-the-sveltekit-session-store
https://www.captaincodeman.com/angular2-route-security
https://www.captaincodeman.com/angular2-route-security
https://www.captaincodeman.com/dependency-injection-in-go-golang
https://www.captaincodeman.com/dependency-injection-in-go-golang
https://www.captaincodeman.com/sveltekit-hydration-gotcha
https://www.captaincodeman.com/sveltekit-hydration-gotcha
https://www.twitter.com/CaptainCodeman
https://www.github.com/CaptainCodeman
https://kit.svelte.dev/
https://pnpm.io/
https://www.docker.com/
https://github.com/CaptainCodeman/sveltekit-pnpm-docker
https://docs.docker.com/build/guide/mounts/
https://pnpm.io/pnpm-workspace_yaml
https://pnpm.io/cli/deploy
https://www.npmjs.com/
https://github.com/GoogleContainerTools/distroless
https://nodejs.org/en/learn/getting-started/nodejs-the-difference-between-development-and-production
https://kit.svelte.dev/docs/adapter-node#environment-variables-origin-protocolheader-hostheader-and-port-header
https://kit.svelte.dev/docs/adapter-node#custom-server
https://www.captaincodeman.com/firebase-signinwithredirect-localhost-and-sveltekit

