
Typical prod-ready RAG LLM solution
challenges

PS Before diving deeper: even though it's a cook book,  
I intentionally left a place for investigations.

RAG Storage Options:  
types and options.

Tackling Hallucinations: Practical
approaches in LLM development.

Building a Production-Ready LLM:
key components and structure.

LLM Testing Strategies:  
cost and approaches.

Cookbook.

Aleksei Kolesnikov
Staff Software Engineer

Building a Production-Ready LLM:
Pain Points and Industry answers

Understanding these challenges allows to separate
concerns effectively and propose tailored solutions.

 Diverse User Channels - Managing integration
across multiple communication channels

 Safety and Protection - Ensuring that both input and
output are free from harmful content

 LLM Architecture - Developing a scalable and
testable architecture that can efficiently handle
varying loads

 Memory Management in LLMs - Organizing volatile
and persistent memory

 Testing LLM Solutions - Determining key areas for
testing and the costs.

Modern LLM applications share many fundamental similarities.

It is crucial to leverage existing Industry Standards and
Frameworks and avoid unnecessary duplication of efforts
wherever it is possible.

WebChat SMS WhatsApp Teams

Gateway

Persisted Memory

Protection

Processing

In order to build a good LLM RAG Solution you need to separate it
onto building blocks: Gateway, Protection, Processing, and Memory

Volatile memory

Memory

1.1 Gateway
An LLM Gateway is an optional component of your
solution that serves to consolidate various user channels.

This integration allows for efficient management using
other existing building blocks.

Several effective frameworks and SDKs are available 
to assist in this regard:

Each service comes with its own set of advantages and disadvantages
 Azure Bot Service offers a comprehensive framework and ready-to-use bots
 Twilio Autopilot provides machine learning capabilities and native support  

for the SMS channel
 AWS ChatOps and Dialogflow offer seamless integration within  

the AWS and GCP ecosystems, respectively.

Azure Bot Service AWS ChatOps DialogFlow by Google Twilio Autopilot

1.2 Protection
A critical moment of any Prod-Ready LLM solution 
is ensuring consistent and safe interactions that protect
both the end-users and your business.

Azure Content
Moderator

Sightengine

Content Moderation

Perspective API

by Jigsaw

Content Moderator

User Input

User Input

User Input

LLM Output

LLM Output

End User End User

Disclaimer: regardless of the effectiveness of your RAG solution,
generating harmful content can lead to legal consequences and
damage your reputation.

DPD and McDonalds cases are very informative.

1.3 Processing.  
Semantic Kernel & LangChain
This is your “Cooking Kitchen”.

Its goal - bridges the gap between technical
implementation and business functionality which
simplifies further solution analysis.

Disclaimer: looks like a typical Layering Architecture features with
horizontal and vertical slices.

This design enables the replacement or selective use of modules.

It also facilitate each module testing.

Semantic Kernel Planner

Plugins

Triggers Actions Kernel FunctionLLM Models

Connectors

Memory Modules

1.3 Processing.

LLM Agents using SK or LangChain

 What happens if you need to manage various channels like SMS,
Web Chat, or Audio differently

 What if addressing a request involves tackling distinct issues?

Divide and conquer your problems.

LLMs perform more effectively when dealing with highly specific,
isolated issues.

Info Agent Problem Investigation

Agent

Gateway

SMS Agent

Processing Agent
Survey Composer Agent

Resolution Agent

From a technical standpoint, this might involve configuring multiple
SemanticKernels differently and organizing them within a pipeline if needed.

2. RAG Storage. Memory Options
A typical RAG solution may have one or set of various components.

Solutions like KernelMemory aim to simplify
the different memory types management  
by abstracting the underlying complexities.

There are plenty of other solutions which
support vectors.

I compared them in another post.

SK KernelMemory

LLM Solution

Session & Context

Persistent Memory Volatile Memory

User StateChat HistoryWith Ontology Without Ontology

Vector Storage

A RAG solution typically involves vector storage such as Qdrant, Milvus,
PostgreSql with pgvector, or AI Search, and chat history.

However, it's crucial to recognize that along with data without ontology there
are more sophisticated data structures available.

In sectors like Life Sciences, complex data analysis and mapping are often
necessary, leading to the use of data with ontology.

Using LLM

How the Entire 'Kitchen'
Operates: the Interplay among

different Plugins

 After introducing new SemanticKernel Plugin
 After changes in connectors and models
 After changes in memory
 New Language and Market specifics.

 Answer Format
 Input and output validation
 After Context changes.

Unit Tests

Plugins behavior

Using Regex Using Vector Similarity

Taking into account all previously discussed we can
formulate what is necessary to test and how.

An interesting point to consider is the volume of tokens these tests could
consume. With 20 plugins and 100 tests, you could easily use up to 300,000
tokens per run.

It might be surprising to find out that just the unit tests for local builds and
PR requests could cost for relatively small team up to $100 per day!

Functions behavior

3. Testing Strategies

4. Tackling Hallucinations.

Practical approaches

Hallucination isn't unique to LLMs.

It reflects the workings of the human brain. Therefore, strategies that are
effective in real-life scenarios can also be applicable for LLMs.

All pieces of the puzzle take place.

And how to handle the hallucinations of the system?

Conduct automatic tests to verify that
your application performs reliably within
expected business scenarios.

Ensure to attach only significant volatile 
and persistent memory segments

 The size of persistent memory chunk
should be ~1000 tokens as
recommended by Meta

 Include only necessary messages from
Chat History

 Add Session & User State when needed
 Apply summarization technique to the

chat history and document chunks.

Use Content Manager in PROD.

Employ modern technique(s) such as

 Chain of Thoughts (CoT)
 Single-shot or Few-shot
 System to Attention (S2A)
 FLARE
 Tree-of-thoughts (ToT)
 Everything-of-thoughts (XoT).

Divide the complex task into steps and
assign each step to specific agents.

Structure these agents work into a pipeline.

