
Putting Software Testing Terminology to the Test
Samuel J. Crawford∗, W. Spencer Smith∗, Jacques Carette∗

∗Department of Computing and Software
McMaster University
Hamilton, Canada

{crawfs1, smiths, carette}@mcmaster.ca

Abstract—Testing is a pervasive software development ac-
tivity which is often complicated and expensive (if not simply
overlooked). This is in part due to an unstable knowledge
base: there is no standard, consistent, and “complete” tax-
onomy for software testing, inhibiting precise communication.
Discrepancies and ambiguities are widespread throughout the
literature, and sometimes exist between different parts of the
same document! We systematically investigate the current state
of software terminology. We 1) identify established standards
and prominent testing resources, 2) capture relevant testing
terms from these sources, along with their definitions and
relationships (both explicit and implied), and 3) build graphs
to visualize and analyze this data. Over five hundred test
approaches were uncovered, as well as some methods for
describing “implied” test approaches. We also build a tool to
generate graphs of the relations between test approaches and
track ambiguities captured by this tool and manually through
the research process. Our results show ten terms are given
as synonyms to two (or more) disjoint test approaches and
fourteen pairs of test approaches may be synonyms and/or have
a child-parent relationship. There is also confusion surrounding
functional, recovery, scalability, and performance testing, along
with over fifty more “minor” discrepancies. Overall, there is
a need for testing terminology to be standardized to make
the discussion, analysis, and implementation of various test
approaches more coherent. We provide some preliminary advice
on how to accomplish this.

Index Terms—Software testing, terminology, taxonomy, lit-
erature review, test approaches

I. Background

Testing software is complicated, expensive, and often
overlooked. In our own project, we wanted to automate
the generation of tests. As we did not want to do this in
an ad hoc manner, we wanted to get a good grasp on the
target domain, testing.

The goal was to uncover the various approaches towards
testing, as well as which prerequisites (e.g., input files,
oracles) are needed for each. A search for a systematic,
rigorous, and “complete” taxonomy for software testing
revealed that the existing ones are inadequate:

• [1] focuses on parts of the testing process (e.g., test
goal, testable entity),

• [2] prioritizes organizing testing approaches over
defining them,

• [3] provides a foundation for classification but not
how it applies to software testing terminology.

Identify applicable funding agency here. If none, delete this.

Thus we set about closing this gap. We first define
the scope of what kinds of “software testing” are of
interest (Section II) and examine the existing literature
(Section III). This reinforced the need for a proper
taxonomy! Despite the amount of well understood and
organized knowledge (Section IV), there are still many dis-
crepancies and ambiguities in the literature, either within
the same source or between various sources (Section V).
We provide some potential solutions covering some of these
discrepancies (Section VI).

II. Scope
Since our motivation is restricted to testing of code, only

the “testing” component of Verification and Validation
(V&V) is considered. For example, design reviews (see
[4, p. 132]) and documentation reviews (see [p. 132]) are
out of scope, as they focus on the V&V of design and
documentation respectively. Likewise, ergonomics testing
and proximity-based testing (see [5]) are out of scope as
they fundamentally involve hardware. Security audits that
focus on “an organization’s … processes and infrastruc-
ture” [5], are also out of scope, but security audits that
“aim to ensure that all of the products installed on a site
are secure when checked against the known vulnerabilities
for those products” [6, p. 28] are not.

Sometimes, wider decisions must be made on whether a
whole category of testing is in scope or not. For example,
while all the examples of domain-specific testing given
by [7, p. 26] are focused on hardware, this might not be
representative of all types (e.g., ML model testing seems
domain-specific).

Furthermore, only some aspects of testing approaches
are relevant. This mainly manifests as a testing approach
that applies to both the V&V itself and the code. For
example:

1) Error seeding is the “process of intentionally adding
known faults to those already in a computer pro-
gram”, done to both “monitor[] the rate of detection
and removal”, which is a part of V&V of the
V&V itself, “and estimat[e] the number of faults
remaining” [4, p. 165], which helps verify the actual
code.

2) Fault injection testing, where “faults are artificially
introduced into the SUT”, can be used to evaluate
the effectiveness of a test suite [8, p. 5-18], which

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

is a part of V&V of the V&V itself, or “to test the
robustness of the system in the event of internal and
external failures” [9, p. 42], which helps verify the
actual code.

3) “Mutation [t]esting was originally conceived as a
technique to evaluate test suites in which a mutant
is a slightly modified version of the SUT” [8, p. 5-
15], which is in the realm of V&V of the V&V itself.
However, it “can also be categorized as a structure-
based technique” and can be used to assist fuzz and
metamorphic testing [8, p. 5-15].

III. Methodology
A. Source Order

As there is no single authoritative source on software
testing terminology, we need to look at many. Unfortu-
nately, this brings to light a variety of discrepancies. Start-
ing from some set of sources, we then use “snowballing”
to gather further sources.

0) Trusted textbooks [10]–[12]
• Ad hoc and arbitrary; not systematic
• Colored maroon,

1) Established standards (such as IEEE, ISO/IEC, and
SWEBOK)

• Standards organizations [4], [9], [13]–[20] colored
green

• “Meta-level” commentaries or collections of ter-
minology (often based on these standards) [5],
[7], [8], [21] colored blue,

2) Other resources: less-formal classifications of termi-
nology (such as [22]), sources investigated to “fill
in” missing definitions (see Undefined Terms), and
testing-related resources that emerged for unrelated
reasons

• Colored black, along with any “surface-level”
analysis that followed straightforwardly.

B. Procedure
All sources were analyzed in their entirety, except

for some in Undefined Terms, to systematically extract
terminology. Heuristics were used to guide this process,
by investigating…

• glossaries and lists of terms,
• testing-related terms

e.g., terms that included “test(ing)”, “validation”,
“verification”, “review(s)”, or “audit(s)”,

• terms that had emerged as part of already-discovered
testing approaches, especially those that were am-
biguous or prompted further discussion
e.g., terms that included “performance”, “recovery”,
“component”, “bottom-up”, “boundary”, or “config-
uration”, and

• terms that implied testing approaches (see Derived
Test Approaches).

When terms had multiple definitions, either the clearest
and most concise version was kept, or they were merged
to paint a more complete picture. If any discrepancies or
ambiguities arose, they were reasonably investigated and
always documented. If a testing approach was mentioned
but not defined, it was still added to the glossary to
indicate it should be investigated further (see Undefined
Terms). A similar methodology was used for tracking
software qualities, albeit in a separate document (see
Derived Test Approaches).

During the first pass of data collection, all software-
testing-focused terms were included. Some of them are
less applicable to test case automation (such as ??) or too
broad (such as Attacks), so they will be omitted over the
course of analysis.

C. Undefined Terms
This search process led to some testing approaches being

mentioned without definition; [9] and [7] in particular
introduced many. Once “standard” sources had been
exhausted, we devised a strategy to look for sources
that explicitly defined these terms, consistent with our
snowballing approach. This uncovered new approaches,
both in and out of scope (such as EMSEC testing, HTML
testing, and aspects of loop testing and orthogonal array
testing).

The following terms (and their respective related terms)
were explored, bringing the number of testing approaches
from 432 to 515 and the number of undefined terms from
153 to 171 (the assumption can be made that about 78%
of added terms also included a definition):

• Assertion Checking: [23]–[25]
• Loop Testing1: [31]–[34]
• EMSEC Testing: [19], [35]
• Asynchronous Testing: [36]
• Performance(-related) Testing: [37]
• Web Application Testing: [38], [39]

– HTML Testing: [6], [40], [41]
– DOM Testing: [42]

• Sandwich Testing: [43], [44]
• Orthogonal Array Testing2: [47], [48]
• Backup Testing: [49]

IV. Observations
A. Categories of Testing Approaches

Different sources categorize software testing approaches
in different ways. Reference [9] provides a classfication for
different kinds of tests (see Table I). Since this seems to be
widely used (“test level” and “test type” in particular) and
is useful when focusing on a particular subset of testing,
this terminology is used for now. A deeper rationale for

1 [20] and [26] were used as reference for terms but not fully
investigated, [27] and [28] were added as potentially in scope, and
[29] and [30] were added as out-of-scope examples.

2 [45] and [46] were added as out-of-scope examples.

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

TABLE I
IEEE Testing Terminology

Term Definition Examples

Approach
A “high-level test implementation choice, typically made as part of the test strategy
design activity” that includes “test level, test type, test technique, test practice and
the form of static testing to be used” [9, p. 10]; described by a test strategy [4,
p. 472] and is also used to “pick the particular test case values” [4, p. 465]

black or white box, minimum and
maximum boundary value testing [4,
p. 465]

(Design)a

Technique

A “defined” and “systematic” [4, p. 464] “procedure used to create or select a test
model, identify test coverage items, and derive corresponding test cases” [9, p. 11]
(similar in [4, p. 467]) “that … generate evidence that test item requirements have
been met or that defects are present in a test item” [17, p. vii]; “a variety … is typically
required to suitably cover any system” [9, p. 33] and is “often selected based on team
skills and familiarity, on the format of the test basis”, and on expectations [9, p. 23]

equivalence partitioning, boundary
value analysis, branch testing [9, p. 11]

Levelb
(sometimes
“Phase”c

or “Stage”d)

A stage of testing “typically associated with the achievement of particular objectives
and used to treat particular risks”, each performed in sequence [9, p. 12], [17,
p. 6] with their “own documentation and resources” [4, p. 469]; more generally,
“designat[es] … the coverage and detail” [4, p. 249]

unit/component testing, integration
testing, system testing [9, p. 12], [17,
p. 6], [4, p. 467]

Practice
A “conceptual framework that can be applied to … [a] test process to facilitate
testing” [9, p. 14], [4, p. 471]; more generally, a “specific type of activity that
contributes to the execution of a process” [4, p. 331]

scripted testing, exploratory testing,
automated testing [9, p. 20]

Type “Testing that is focused on specific quality characteristics” [9, p. 15], [17, p. 7], [4,
p. 473]

security testing, usability testing, per-
formance testing [9, p. 15], [4, p. 473]

a“Design technique” is sometimes abbreviated to “technique” [9, p. 11], [5].
b“Test level” can also refer to the scope of a test process; for example, “across the whole organization” or only “to specific projects” [9,

p. 24].
c“Test phase” can be a synonym for “test level” [4, p. 469], [13, p. 9] but can also refer to the “period of time in the software life cycle”

when testing occurs [4, p. 470], usually after the implementation phase [4, pp. 420, 509], [50, p. 56].
d [8, pp. 5-6 to 5-7], [5], [51, pp. 9, 13].

a proposed classification will be given during the analysis
stage.

Related testing approaches may be grouped into a
“class” or “family” to group those with “commonalities
and well-identified variabilities that can be instantiated”,
where “the commonalities are large and the variabilities
smaller”. Examples of these are the classes of combinatorial
[17, p. 15] and data flow testing [p. 3] and the family of
performance-related testing [37, p. 1187]3, and may also
be implied for security testing, a test type that consists
of “a number of techniques4” [17, p. 40].

It also seems that these categories are orthogonal. For
example, “a test type can be performed at a single test
level or across several test levels” [9, p. 15], [17, p. 7].
Due to this, a specific test approach can be derived by
combining test approaches from different categories; for
some examples of this.

B. Derived Test Approaches

In addition to methods of categorizing test approaches,
the literature also provides multiple methods to derive new
ones. Since the field of software is ever-evolving, being able

3The original source describes “performance testing … as a family
of performance-related testing techniques”, but it makes more sense
to consider “performance-related testing” as the “family” with
“performance testing” being one of the variabilities.

4This may or may not be distinct from the notion of “test
technique” described in IEEE Testing Terminology.

to adapt to new developments, as well as being able to
talk about and understand them, is crucial.

1) Coverage-driven Techniques: Test techniques are
able to “identify test coverage items … and derive cor-
responding test cases” [9, p. 11] (similar in [4, p. 467])
in a “systematic” way [4, p. 464]. This means that a
given coverage metric implies a test approach aimed to
maximize it; for example, “path testing” is testing that
“aims to execute all entry-to-exit control flow paths in a
SUT’s control flow graph” [8, p. 5013], thus maximizing
the path coverage (see also [43, Fig. 1]).

2) Quality-driven Types: Since test types are “focused
on specific quality characteristics” [9, p. 15], [17, p. 7],
[4, p. 473], they can derived from software qualities:
“capabilit[ies] of software product[s] to satisfy stated and
implied needs when used under specified conditions” [4,
p. 424]. This is supported by reliability and performance
testing, which are both examples of test types [9], [17]
that are based on their underlying qualities [52, p. 18].

After discussing this further, it was decided that track-
ing software qualities, in addition to testing approaches,
would be worthwhile. This was done by capturing their
definitions and any rationale for why it might be useful to
consider an explicitly separate “test type” in a separate
document, so this information could be captured without
introducing clutter. Over time, software qualities were
“upgraded” to test types when mentioned (or implied)
by a source.

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

iPad Pro 12.9" 6

3) Requirements-driven Approaches: While not as uni-
versally applicable, some types of requirements have as-
sociated types of testing (e.g., functional, non-functional,
security). This may mean that categories of requirements
also imply related testing approaches (such as “technical
testing”). Even assuming this is the case, some types of
requirements do not apply to the code itself, and as such
are out of scope:

• Nontechnical Requirement: a “requirement affecting
product and service acquisition or development that
is not a property of the product or service” [4, p. 293]

• Physical Requirement: a “requirement that specifies
a physical characteristic that a system or system
component must possess” [4, p. 322]

4) Attacks: Since attacks are given as a test practice
[9, p. 34], different kinds of software attacks, such as code
injection and password cracking, can also be used as test
approaches.

V. Discrepancies and Ambiguities
After gathering all this data, we found many discrepan-

cies and ambiguities. We first report on the more major
issues, classified under the rubrics of Synonyms, Parent
Relations, Categories of Testing Approaches, Functional
Testing, Recovery Testing, and Scalability Testing. We
then close with some Minor Discrepancies.

A. Synonyms
The same approach often has many names. For example,

specification-based testing is also called:
1) Black-Box Testing [9, p. 9], [17, p. 8], [4, p. 431], [8,

p. 5-10], [5], [7, p. 46] (without hyphen), [53, p. 344],
[12, p. 399]

2) Closed-Box Testing [9, p. 9], [4, p. 431]
3) Functional Testing [4, p. 196], [39, p. 44], [12, p. 399]

(implied by [17, p. 129], [4, p. 431])
4) Domain Testing [8, p. 5-10]
5) Input Domain-Based Testing (implied by [21, p. 4-

8])
While some of these synonyms may express mild varia-

tions, their core meaning is nevertheless the same. Here we
use the terms “specification-based” and “structure-based
testing” as they articulate the source of the information
for designing test cases, but a team or project also using
gray-box testing may prefer the terms “black-box” and
“white-box testing” for consistency. Thus, synonyms do
not inherently signify a discrepancy. Unfortunately, there
are many instances of incorrect or ambiguous synonyms,
such as the following:

1) Reference [41] gives “white-”, “grey-”, and “black-
box testing” as synonyms for “module”, “integra-
tion”, and “system testing”, respectively, but this
mapping is incorrect; black-box testing can be
performed on a module, for example. This makes
the claim that “red-box testing” is a synonym for
“acceptance testing” [p. 18] lose credibility.

2) “Program testing” is given as a synonym of “compo-
nent testing” [39, p. 46], although it probably should
be a synonym of “system testing” instead.

3) Reference [39] seems to imply that “mutation test-
ing” is a synonym of “back-to-back testing”, but
these are two quite distinct techniques.

4) “Conformance testing” is implied to be a synonym
of “compliance testing” by [39], which only makes
sense because of the vague definition of “compliance
testing”: “testing to determine the compliance of the
component or system” [p. 43].

There are also cases in which a term is given a synonym
to two (or more) disjoint, unrelated terms, which would
be a source of ambiguity to teams using these terms. The
following are four out of ten examples that have arisen:

1) Invalid Testing:
• Error Tolerance Testing [39, p. 45]
• Negative Testing [5], implied by [17, p. 10]

2) Soak Testing:
• Endurance Testing [17, p. 39]
• Reliability Testing [6, Tab. 1, p. 26], [51, Tab. 2]

Endurance testing is given as a kind of reliability
testing by [7, p. 55], but the two are not described
as synonyms.

3) User Scenario Testing:
• Scenario Testing [5]
• Use Case Testing [39, p. 48]

“Scenario testing” and “use case testing” are given
as synonyms by [5] and [39, pp. 47-49], but listed
separately by [9, p. 22] and [17, p. 20]; the latter
gives use case testing as a “common form of scenario
testing”. Since the actor in a use case “can be a user
or another system” [17, p. 20], “use case testing”
may instead be a child of “user scenario testing”
(see Table II).

4) Link Testing:
• Branch Testing (implied by [17, p. 24])
• Component Integration Testing [39, p. 45]
• Integration Testing (implied by [51, p. 13])

There are pairs of synonyms where one is described
as a sub-approach of the other, abusing the meaning
of “synonym” and causing confusion. The seven (out of
fourteen) pairs where each relation has a concrete source
are given in Table II.

B. Parent Relations

Parent relations are not immune to difficulties, includ-
ing self-referential definitions. Performance and usability
testing are both given as sub-approaches of themselves
[51, Tab. 2], [6, Tab. 1], while performance testing is
not described as a sub-approach of usability testing. This
would have been more meaningful information to capture.

TABLE II
Pairs of test approaches with both child-parent and synonym relations.

“Child” → “Parent” Child-Parent Source(s) Synonym Source(s)

All Transitions Testing → State Transition Testing [17, p. 19] [39, p. 15]
Co-existence Testing → Compatibility Testing [9, p. 3], [16], [17, Tab. A.1] [17, p. 37]

Fault Tolerance Testing → Robustness Testinga [7, p. 56] [5]
Functional Testing → Specification-based Testing [17, p. 38] [4, p. 196], [12, p. 399], [39, p. 44]

Orthogonal Array Testing → Pairwise Testing [47, p. 1055] [8, p. 5-11], [48, p. 473]
Performance Testing → Performance-related Testing [9, p. 22], [17, p. 38] [37, p. 1187]

Use Case Testing → Scenario Testing [17, p. 20] [5], [39, pp. 47-49]

aFault tolerance testing may also be a sub-approach of reliability testing [4, p. 375], [8, p. 7-10], which is distinct from robustness testing
[7, p. 53].

C. Categories of Testing Approaches

While the IEEE categorization of testing approaches is
useful, it is not without its faults. The boundaries be-
tween items within a category may be unclear: “although
each technique is defined independently of all others, in
practice [sic] some can be used in combination with other
techniques” [17, p. 8]. For example, “the test coverage
items derived by applying equivalence partitioning can be
used to identify the input parameters of test cases derived
for scenario testing” [p. 8]. Even the categories themselves
are not consistently defined, and some approaches are
categorized differently by different sources:

1) Experience-based testing is categorized as both a
test design technique and a test practice on the same
page—twice [9, Fig. 2, p. 34]!

2) The following test approaches are categorized as test
techniques by [17, p. 38] and as test types by the
sources provided:

a) Capacity testing [9, p. 22], [13, p. 2],
b) Endurance testing [13, p. 2],
c) Load testing [4, p. 253], [5], [9, pp. 5, 20, 22],
d) Performance testing [9, pp. 7, 22, 26-27], [17,

p. 7], and
e) Stress testing [4, p. 442], [9, pp. 9, 22].

3) “Installability testing” is given as a test type [9,
p. 22], [17, p. 38] but is sometimes called a test level
as “installation testing” [11, p. 445].

4) Model-based testing is categorized as both a test
practice [9, p. 22], [17, p. viii] and a test technique
[39, p. 4].

5) Data-driven testing is categorized as both a test
practice [9, p. 22] and a test technique [39, p. 43].

6) Although ad hoc testing is sometimes classified as
a “technique” [8, p. 5-14], it is one in which “no
recognized test design technique is used” [39, p. 42].

There are also instances of inconsistencies between
parent and child test approach categorizations. This may
indicate they aren’t necessarily the same, or that more
thought must be given to this method of classification.

D. Functional Testing
“Functional testing” seems to be described in many

ways, alongside other, likely related, terms:
• Specification-based Testing is defined as “testing in

which the principal test basis is the external inputs
and outputs of the test item” [9, p. 9], which agrees
with a definition of “functional testing”: “testing
that … focuses solely on the outputs generated in
response to selected inputs and execution conditions”
[4, p. 196]. Notably, [4] lists both as synonyms
of “black-box testing” (pp. 431, 196, respectively).
But they are sometimes defined as separate terms:
“specification-based testing” as “testing based on an
analysis of the specification of the component or
system” (including “black-box testing” as a synonym)
and “functional testing” as “testing performed to
evaluate if a component or system satisfies func-
tional requirements” (specifying no synonyms) [5];
the latter references [4, p. 196] (“testing conducted
to evaluate the compliance of a system or component
with specified functional requirements”) which has
“black-box testing” as a synonym, and mirrors [9,
p. 21] (testing “used to check the implementation
of functional requirements”). Overall, specification-
based testing [9, pp. 2-4, 6-9, 22] and black-box testing
([8, p. 5-10]; [2, p. 3]) are test design techniques used
to “derive corresponding test cases” [9, p. 11] (from
given “selected inputs and execution conditions” [4,
p. 196]).

• Correctness Testing [8, p. 5-7] says “test cases can be
designed to check that the functional specifications
are correctly implemented, which is variously referred
to in the literature as conformance testing, correctness
testing or functional testing”; this mirrors previous
definitions of “functional testing” ([9, p. 21]; [4,
p. 196]) but groups it with “correctness testing”. Since
“correctness” is a software quality ([4, p. 104]; [8,
p. 3-13]) which is what defines a “test type” [9, p. 15],
it seems consistent to label “functional testing” as a
“test type” [9, pp. 15, 20, 22]. This is listed separately
from “functionality testing” by [7, p. 53].

• Conformance Testing [8, p. 5-7] insures “that the
functional specifications are correctly implemented”,
and can be called “conformance testing” or “func-
tional testing”. “Conformance testing” is later de-
fined as used “to verify that the SUT conforms to
standards, rules, specifications, requirements, design,
processes, or practices” [8, p. 5-7]. This definition
seems to be a superset of testing methods mentioned
earlier as the latter includes “standards”, “rules”, “re-
quirements”, “design”, “processes”, and “practices” as
well as “specifications”!
A complicating factor is that “compliance testing” is
also (plausibly!) given as a synonym of “conformance
testing” [39, p. 43]. However, “conformance testing”
can also be defined as testing that evaluates the
degree to which “results … fall within the limits that
define acceptable variation for a quality requirement”
[4, p. 93], which seems to describe something different.

• Functional Suitability Testing: Procedure testing is
called a “type of functional suitability testing” [9,
p. 7], but no definition of that term is given. “Func-
tional suitability” is the “capability of a product
to provide functions that meet stated and implied
needs of intended users when it is used under spec-
ified conditions”, including meeting “the functional
specification” [16]. This seems to align with the
definition of “functional testing” as related to “black-
box/specification-based testing”. “Functional suitabil-
ity” has three child terms: “functional completeness”
(the “capability of a product to provide a set of
functions that covers all the specified tasks and
intended users’ objectives”), “functional correctness”
(the “capability of a product to provide accurate re-
sults when used by intended users”), and “functional
appropriateness” (the “capability of a product to
provide functions that facilitate the accomplishment
of specified tasks and objectives”) [16]. Notably,
“functional correctness”, which includes precision and
accuracy ([16]; [5]), seems to align with the qual-
ity/ies that would be tested by “correctness” testing.

• Functionality Testing, “Functionality” is defined as
the “capabilities of the various … features provided
by a product” [4, p. 196] and is said to be a synonym
of “functional suitability” [5], although it seems like it
should really be its “parent”. Its associated test type is
implied to be a sub-approach of build verification test-
ing [5] and made distinct from “functional testing”;
interestingly, security is described as a sub-approach
of both non-functional and functionality testing [51,
Tab. 2]. This is listed separately from “correctness
testing” by [7, p. 53].

E. Recovery Testing
“Recovery testing” is “testing … aimed at verifying

software restart capabilities after a system crash or other
disaster” [8, p. 5-9] including “recover[ing] the data di-

rectly affected and re-establish[ing] the desired state of the
system” [16] (similar in [8, p. 7-10]) so that the system
“can perform required functions” [4, p. 370]. It is also
called “recoverability testing” [39, p. 47] and potentially
“restart & recovery (testing)” [51, Fig. 5]. The following
terms, along with “recovery testing” itself [9, p. 22] are
all classified as test types, and the relations between them
can be found in Figure 1.

• Recoverability Testing: Testing “how well a system or
software can recover data during an interruption or
failure” [8, p. 7-10] (similar in [16]) and “re-establish
the desired state of the system” [16]. Synonym for
“recovery testing” in [39, p. 47].

• Disaster/Recovery Testing serves to evaluate if a sys-
tem can “return to normal operation after a hardware
or software failure” [4, p. 140] or if “operation of the
test item can be transferred to a different operating
site and … be transferred back again once the failure
has been resolved” [17, p. 37]. These two definitions
seem to describe different aspects of the system, where
the first is intrinsic to the hardware/software and the
second might not be.

• Backup and Recovery Testing “measures the degree
to which system state can be restored from backup
within specified parameters of time, cost, complete-
ness, and accuracy in the event of failure” [13, p. 2].
This may be what is meant by “recovery testing” in
the context of performance-related testing and seems
to correspond to the definition of “disaster/recovery
testing” in [4, p. 140].

• Backup/Recovery Testing: Testing that determines
the ability “to restor[e] from back-up memory in the
event of failure, without transfer[ing] to a different op-
erating site or back-up system” [17, p. 37]. This seems
to correspond to the definition of “disaster/recovery
testing” in [17, p. 37]. It is also given as a sub-type
of “disaster/recovery testing”, even though that tests
if “operation of the test item can be transferred to a
different operating site” [p. 37].

• Failover/Recovery Testing: Testing that determines
the ability “to mov[e] to a back-up system in the
event of failure, without transfer[ing] to a different
operating site” [17, p. 37]. This is given as a sub-type
of “disaster/recovery testing”, even though that tests
if “operation of the test item can be transferred to a
different operating site” [p. 37].

• Failover Testing: Testing that “validates the SUT’s
ability to manage heavy loads or unexpected failure
to continue typical operations” [8, p. 5-9] by entering a
“backup operational mode in which [these responsibil-
ities] … are assumed by a secondary system” [5]. While
not explicitly related to recovery, “failover/recovery
testing” also describes the idea of “failover”, and [7,
p. 56] uses the term “failover and recovery testing”,
which could be a synonym of both of these terms.

F. Scalability Testing
There were three ambiguities around the term “scalabil-

ity testing”. The relations between these test approaches
(and other relevant ones) are shown in Figure 3.

1) Reference [17, p. 39] gives “scalability testing” as a
synonym of “capacity testing” while other sources
differentiate between the two [7, p. 53], [49, pp. 22-
23]

2) Reference [17, p. 39] includes the external modifica-
tion of the system as part of “scalability”, while [16]
implies that it is limited to the system itself

3) SWEBOK V4’s definition of “scalability testing” [8,
p. 5-9] is really a definition of usability testing!

G. Minor Discrepancies
We now outline “minor” discrepancies/ambiguities

found in the literature, grouped by the “categories” of
sources outlined in Source Order. These discrepancies can
then be grouped into degrees of severity as follows. (Note
that only certain discrepancies with “high” or “medium”
severity are listed for brevity.)

• High: Semantic differences between test approaches
• Medium: Differences in supporting information about

test approaches
• Low: Typos, redundant information, or referencing

issues
The numbers of these groups of discrepancies are shown

in Table III, where a given row corresponds to the number
of discrepancies either within/between one or more sources
within that category and/or between a source of that
category and one of a “more trusted” source (i.e., a source
from a category higher up in the table).

TABLE III
Minor Discrepancies

Category

Severity
High Medium Low Total

Established Standards 2 6 3 11
“Meta-level” Collections 9 5 8 22

Trusted Textbooks 1 0 0 1
Other 3 2 6 11
Total 15 13 17 45

1) In Standards:
• “Compatibility testing” is defined as “testing that

measures the degree to which a test item can function
satisfactorily alongside other independent products
in a shared environment (co-existence), and where
necessary, exchanges information with other systems
or components (interoperability)” [9, p. 3]. This
definition is nonatomic as it combines the ideas
of “co-existence” and “interoperability”. The term
“interoperability testing” is not defined, but is used
three times [9, pp. 22, 43] (although the third usage

seems like it should be “portability testing”). This im-
plies that “co-existence testing” and “interoperability
testing” should be defined as their own terms, which
is supported by definitions of “co-existence” and “in-
teroperability” often being separate [4, pp. 73, 237],
[5], the definition of “interoperability testing” from
[4, p. 238], and the decomposition of “compatibility”
into “co-existence” and “interoperability” by [16]!

– The “interoperability” element of “compatibility
testing” is explicitly excluded by [17, p. 37], (in-
correctly) implying that “compatibility testing”
and “co-existence testing” are synonyms.

– The definition of “compatibility testing” in [39,
p. 43] unhelpfully says “See interoperability test-
ing”, adding another layer of confusion to the
direction of their relationship.

• Retesting and regression testing seem to be separated
from the rest of the testing approaches [9, p. 23],
but it is not clearly detailed why; [54, p. 3] consider
regression testing to be a test level.

• A component is an “entity with discrete structure
… within a system considered at a particular level of
analysis” [14] and “the terms module, component, and
unit [sic] are often used interchangeably or defined
to be subelements of one another in different ways
depending upon the context” with no standardized
relationship [4, p. 82]. This means unit/compo-
nent/module testing can refer to the testing of both a
module and a specific function in a module. However,
“component” is sometimes defined differently than
“module”: “components differ from classical modules
for being re-used in different contexts independently
of their development” [55, p. 107], so distinguishing
the two may be necessary.

2) In “Meta-Level” Sources:
• SWEBOK V4 defines “privacy testing” as testing that

“assess[es] the security and privacy of users’ personal
data to prevent local attacks” [8, p. 5-10]; this seems
to overlap (both in scope and name) with the defini-
tion of “security testing” in [9]: testing “conducted
to evaluate the degree to which a test item, [sic]
and associated data and information, are protected
so that” only “authorized persons or systems” can
use them as intended.

• Various sources say that alpha testing is performed
by different people, including “only by users within
the organization developing the software” [4, p. 17],
by “a small, selected group of potential users” [8, p. 5-
8], or “in the developer’s test environment by roles
outside the development organization” [5].

• “ML model testing” and “ML functional perfor-
mance” are defined in terms of “ML functional per-
formance criteria”, which is defined in terms of “ML
functional performance metrics”, which is defined
as “a set of measures that relate to the functional

correctness of an ML system” [5]. The use of “per-
formance” (or “correctness”) in these definitions is at
best ambiguous and at worst incorrect.

• There is disagreement on the structure of tours; they
can either be quite general [9, p. 34] or “organized
around a special focus” [5].

• Performance and security testing are given as sub-
types of reliability testing by [16] but these are all
listed separately by [7, p. 53].

• The distinctions between development testing [4,
p. 136], developmental testing [7, p. 30], and developer
testing [7, p. 39], [51, p. 11] are unclear and seem
miniscule.

3) In Other Sources:
• Reference [39] also says that the goal of negative

testing is “showing that a component or system does
not work” which is not true; if robustness is an
important quality for the system, then testing the
system “in a way for which it was not intended to
be used” [5] (i.e., negative testing) is one way to help
test this!

• “Visual browser validation” is described as both
static and dynamic in the same table [51, Tab. 2],
even though they are implied to be orthogonal clas-
sifications: “test types can be static or dynamic”
[p. 12, emphasis added].

• Reference [51] makes a distinction between “transac-
tion verification” and “transaction testing” and uses
the phrase “transaction flows” [Fig. 5], but doesn’t
explain them.

VI. Recommendations
We provide different recommendations for resolving

various discrepancies (see Discrepancies and Ambiguities).
This was done with the goal of organizing them more
logically and making them:

1) Atomic (e.g., disaster/recovery testing seems to have
two disjoint definitions)

2) Straightforward (e.g., backup and recovery testing’s
definition implies the idea of performance, but its
name does not; failover/recovery testing, failover and
recovery testing, and failover testing are all given
separately)

3) Consistent (e.g., backup/recovery testing and
failover/recovery testing explicitly exclude an aspect
included in its parent disaster/recovery testing)

A. Recovery Testing
The following terms should be used in place of the

current terminology to more clearly distinguish between
different recovery-related test approaches. The result of
the proposed terminology, along with their relations, is
demonstrated in Figures 1 and 2.

• Recoverability Testing: “Testing … aimed at verifying
software restart capabilities after a system crash or
other disaster” [8, p. 5-9] including “recover[ing] the

Availability
Testing

Reliability
Testing

Backup
and

Recovery
Testing

Backup/Recovery
Testing

Disaster/Recovery
Testing

Fault
Tolerance
Testing

Recoverability
Testing

Failover
Testing

Failover/Recovery
Testing

Failure
Tolerance
Testing

Performance
Testing

Performance-related
Testing

Recovery
Testing

Usability
Testing

Fig. 1. Relations between “recovery
testing” terms.

Availability
Testing

Reliability
Testing

Failover
Testing

Failure
Tolerance
Testing

Fault
Tolerance
Testing

Performance
Testing

Performance-related
Testing

Recoverability
Testing

Usability
Testing

Recovery
Performance
Testing

Legend
Child Parent

Child
Implied
Parent

Synonym Synonym

Implied
Synonym

Implied
Synonym

From Standards
Organization

From Collection
or Taxonomy

Fig. 2. Proposed relations
between rationalized “recov-
ery testing” terms.

data directly affected and re-establish[ing] the desired
state of the system” [16] (similar in [8, p. 7-10]) so
that the system “can perform required functions” [4,
p. 370]. “Recovery testing” will be a synonym, as
in [39, p. 47], since it is the more prevalent term
throughout various sources, although “recoverability
testing” is preferred to indicate that this explicitly
focuses on the ability to recover, not the performance
of recovering.

• Failover Testing: Testing that “validates the SUT’s
ability to manage heavy loads or unexpected failure
to continue typical operations” [8, p. 5-9] by entering
a “backup operational mode in which [these respon-
sibilities] … are assumed by a secondary system” [5].
This will replace “failover/recovery testing”, since it is
more clear, and since this is one way that a system can
recover from failure, it will be a subset of “recovery
testing”.

• Transfer Recovery Testing: Testing to evaluate if, in
the case of a failure, “operation of the test item
can be transferred to a different operating site and
… be transferred back again once the failure has
been resolved” [17, p. 37]. This replaces the second
definition of “disaster/recovery testing”, since the first
is just a description of “recovery testing”, and could
potentially be considered as a kind of failover testing.
This may not be intrinsic to the hardware/software
(e.g., may be the responsibility of humans/processes).

• Backup Recovery Testing: Testing that determines
the ability “to restor[e] from back-up memory in the
event of failure” [17, p. 37]. The qualification that this
occurs “without transfer[ing] to a different operating

site or back-up system” [p. 37] could be made explicit,
but this is implied since it is separate from transfer
recovery testing and failover testing, respectively.

• Recovery Performance Testing: Testing “how well
a system or software can recover … [from] an in-
terruption or failure” [8, p. 7-10] (similar in [16])
“within specified parameters of time, cost, complete-
ness, and accuracy” [13, p. 2]. The distinction between
the performance-related elements of recovery testing
seemed to be meaningful, but was not captured
consistently by the literature. This will be a subset of
“performance-related testing” as “recovery testing” is
in [9, p. 22]. This could also be extended into testing
the performance of specific elements of recovery (e.g.,
failover performance testing), but this be too fine-
grained and may better be captured as an orthogo-
nally derived test approach.

B. Scalability Testing

The ambiguity around scalability testing found in the
literature is resolved and/or explained by other sources!
[17, p. 39] gives “scalability testing” as a synonym of
“capacity testing”, defined as the testing of a system’s
ability to “perform under conditions that may need to be
supported in the future” which “may include assessing
what level of additional resources (e.g. memory, disk
capacity, network bandwidth) will be required to support
anticipated future loads”. This focus on “the future” is
supported by [5], which defines “scalability” as “the degree
to which a component or system can be adjusted for
changing capacity”. In contrast, capacity testing focuses
on the system’s present state, evaluating the “capability
of a product to meet requirements for the maximum
limits of a product parameter”, such as the number of
concurrent users, transaction throughput, or database size
[16]. Because of this nuance, it makes more sense to
consider these terms separate and not synonyms, as done
by [7, p. 53] and [49, pp. 22-23].

Unfortunately, only focusing on future capacity require-
ments still leaves room for ambiguity. While the previous
definition of “scalability testing” includes the external
modification of the system, [16] describes it as testing the
“capability of a product to handle growing or shrinking
workloads or to adapt its capacity to handle variability”,
implying that this is done by the system itself. The
potential reason for this is implied by SWEBOK V4’s
claim that one objective of elasticity testing is “to evaluate
scalability” [8, p. 5-9]: [16]’s notion of “scalability” likely
refers more accurately to “elasticity”! This also makes
sense in the context of other definitions provided by
SWEBOK V4 [8]:

• Scalability: “the software’s ability to increase and
scale up on its nonfunctional requirements, such as
load, number of transactions, and volume of data”
[p. 5-5]. Based on this definition, scalability testing

Capacity
Testing

Performance
Efficiency
Testing

Performance
Testing

Scalability
Testing

Efficiency
Testing

Elasticity
Testing

Memory
Management
Testing

Resource
Utilization
Testing

Stress
Testing

Load
Testing

Transaction
Flow
Testing

Volume
Testing

Fig. 3. Relations between “scala-
bility
testing” terms.

Capacity
Testing

Performance
Efficiency
Testing

Performance
Testing

Efficiency
Testing

Elasticity
Testing

Memory
Management
Testing

Resource
Utilization
Testing

Stress
Testing

Load
Testing

Scalability
Testing

Transaction
Flow
Testing

Volume
Testing

Legend
Child Parent

Child
Implied
Parent

Synonym Synonym

Implied
Synonym

Implied
Synonym

From Standards
Organization

From Collection
or Taxonomy

Fig. 4. Proposed relations
between rationalized
“scalability testing” terms.

is then a subtype of load testing and volume testing,
as well as potentially transaction flow testing.

• Elasticity Testing5: testing that “assesses the ability
of the SUT … to rapidly expand or shrink compute,
memory, and storage resources without compromising
the capacity to meet peak utilization” [p. 5-9]. Based
on this definition, elasticity testing is then a subtype
of memory management testing (with both being a
subtype of resource utilization testing) and stress
testing.

This distinction is also consistent with how the terms are
used in industry: [56] says that scalability is the ability to
“increase … performance or efficiency as demand increases
over time”, while elasticity allows a system to “tackle
changes in the workload [that] occur for a short period”.

To make things even more confusing, SWEBOK V4
says “scalability testing evaluates the capability to use
and learn the system and the user documentation” and
“focuses on the system’s effectiveness in supporting user
tasks and the ability to recover from user errors” [8, p. 5-
9]. This seems to define “usability testing” with elements
of functional and recovery testing, which is completely
separate from the definitions of “scalability”, “capacity”,
and “elasticity testing”! This definition should simply
be disregarded, since it is inconsistent with the rest of
the literature. The removal of the previous two synonym
relations is demonstrated in Figures 3 and 4.

C. Performance(-related) Testing
“Performance testing” is defined as testing “conducted

to evaluate the degree to which a test item accomplishes
its designated functions” [4, p. 320], [9, p. 7] (similar in [17,

5While this definition seems correct, it only cites a single source
that doesn’t contain the words “elasticity” or “elastic”!

Legend

Availability
Testing

Reliability
Testing

Capacity
Testing

Load
Testing

Performance
Efficiency

Testing

Performance
Testing

Performance-related
Testing

Concurrency
Testing

Efficiency
Testing

Elasticity
Testing

Memory
Management

Testing

Resource
Utilization

Testing

Stress
Testing

Endurance
Testing

Soak
Testing

Failover
Testing

Failure
Tolerance

Testing

Fault
Tolerance

Testing

Power
Testing

Recoverability
Testing

Usability
Testing

Recovery
Performance

Testing

Response-Time
Testing

Scalability
Testing

Transaction
Flow

Testing

Volume
Testing

Child Parent

Synonym Synonym

Term
Synonym
to Both

Term

Child
Implied
Parent

Implied
Synonym

Implied
Synonym

From Standards
Organization

From Collection
or Taxonomy

Fig. 5. Proposed relations between rationalized “performance-related testing” terms.

pp. 38-39], [37, p. 1187]). It does this by “measuring the
performance metrics” [37, p. 1187] (similar in [5]) (such as
the “system’s capacity for growth” [6, p. 23]), “detecting
the functional problems appearing under certain execution
conditions” [37, p. 1187], and “detecting violations of
non-functional requirements under expected and stress
conditions” [37, p. 1187] (similar in [8, p. 5-9]). It is
performed either …

1) … “within given constraints of time and other re-
sources” [4, p. 320], [9, p. 7] (similar in [37, p. 1187]),
or

2) … “under a ‘typical’ load” [17, p. 39].

It is listed as a subset of performance-related testing,
which is defined as testing “to determine whether a
test item performs as required when it is placed under
various types and sizes of ‘load’ ” [17, p. 38], along
with other approaches like load and capacity testing [9,
p. 22]. In contrast, [8, p. 5-9] gives “capacity and re-
sponse time” as examples of “performance characteristics”
that performance testing would seek to “assess”, which
seems to imply that these are sub-approaches to perfor-
mance testing instead. This is consistent with how some

sources treat “performance testing” and “performance-
related testing” as synonyms [8, p. 5-9], [37, p. 1187],
as noted in Synonyms. This makes sense because of how
general the concept of “performance” is; most definitions
of “performance testing” seem to treat it as a category of
tests.

However, it seems more consistent to infer that the defi-
nition of “performance-related testing” is the more general
one often assigned to “performance testing” performed
“within given constraints of time and other resources” [4,
p. 320], [9, p. 7] (similar in [37, p. 1187]), and “performance
testing” is a sub-approach of this performed “under a
‘typical’ load” [17, p. 39]. This has other implications for
relations between these types of testing; for example, “load
testing” usually occurs “between anticipated conditions of
low, typical, and peak usage” [4, p. 253], [5], [9, p. 5], [17,
p. 39], so it is a child of “performance-related testing” and
a parent of “performance testing”.

Finally, the “self-loops” mentioned in Parent Relations
provide no new information and can be removed. These
changes (along with those from Recovery Testing and
Scalability Testing made implicitly) result in the relations

shown in Figure 5.

Acknowledgment

References

[1] G. Tebes, L. Olsina, D. Peppino, and P. Becker, “TestTDO: A
Top-Domain Software Testing Ontology,” Curitiba, Brazil, May
2020, pp. 364–377.

[2] E. Souza, R. Falbo, and N. Vijaykumar, “ROoST: Reference
Ontology on Software Testing,” Applied Ontology, vol. 12, pp.
1–32, Mar. 2017.

[3] M. Unterkalmsteiner, R. Feldt, and T. Gorschek, “A Taxonomy
for Requirements Engineering and Software Test Alignment,”
ACM Transactions on Software Engineering and Methodology,
vol. 23, no. 2, pp. 1–38, Mar. 2014, arXiv:2307.12477 [cs].
[Online]. Available: http://arxiv.org/abs/2307.12477

[4] ISO/IEC and IEEE, “ISO/IEC/IEEE International
Standard - Systems and software engineering–Vocabulary,”
ISO/IEC/IEEE 24765:2017(E), Sep. 2017.

[5] M. Hamburg and G. Mogyorodi, editors, “ISTQB Glossary,
v4.3,” 2024. [Online]. Available: https://glossary.istqb.org/en_
US/search

[6] P. Gerrard, “Risk-based E-business Testing - Part 2: Test
Techniques and Tools,” Systeme Evolutif, London, UK, Tech.
Rep., 2000. [Online]. Available: wenku.uml.com.cn/document/
test/EBTestingPart2.pdf

[7] D. G. Firesmith, “A Taxonomy of Testing Types,” Pittsburgh,
PA, USA, 2015. [Online]. Available: https://apps.dtic.mil/sti/
pdfs/AD1147163.pdf

[8] H. Washizaki, Ed., Guide to the Software Engineering Body
of Knowledge, Version 4.0, Jan. 2024. [Online]. Available:
https://waseda.app.box.com/v/SWEBOK4-book

[9] ISO/IEC and IEEE, “ISO/IEC/IEEE International Standard
- Systems and software engineering –Software testing –Part 1:
General concepts,” ISO/IEC/IEEE 29119-1:2022(E), Jan. 2022.

[10] R. Patton, Software Testing, 2nd ed. Indianapolis, IN, USA:
Sams Publishing, 2006.

[11] J. Peters and W. Pedrycz, Software Engineering: An Engineer-
ing Approach, ser. Worldwide series in computer science. John
Wiley & Sons, Ltd., 2000.

[12] H. van Vliet, Software Engineering: Principles and Practice,
2nd ed. Chichester, England: John Wiley & Sons, Ltd., 2000.

[13] ISO/IEC and IEEE, “ISO/IEC/IEEE International Standard
- Systems and software engineering –Software testing –Part 1:
General concepts,” ISO/IEC/IEEE 29119-1:2013, Sep. 2013.

[14] ISO/IEC, “ISO/IEC 25019:2023 - Systems and software
engineering –Systems and software Quality Requirements
and Evaluation (SQuaRE) –Quality-in-use model,” ISO/IEC
25019:2023, Nov. 2023. [Online]. Available: https://www.iso.
org/obp/ui/en/#iso:std:iso-iec:25019:ed-1:v1:en

[15] IEEE, “IEEE Standard for System and Software Verification
and Validation,” IEEE Std 1012-2012 (Revision of IEEE Std
1012-2004), 2012.

[16] ISO/IEC, “ISO/IEC 25010:2023 - Systems and software
engineering –Systems and software Quality Requirements and
Evaluation (SQuaRE) –Product quality model,” ISO/IEC
25010:2023, Nov. 2023. [Online]. Available: https://www.iso.
org/obp/ui/#iso:std:iso-iec:25010:ed-2:v1:en

[17] ISO/IEC and IEEE, “ISO/IEC/IEEE International Standard
- Software and systems engineering –Software testing –Part 4:
Test techniques,” ISO/IEC/IEEE 29119-4:2021(E), Oct. 2021.

[18] ISO/IEC, “ISO/IEC TS 20540:2018 - Information technology
– Security techniques –Testing cryptographic modules in
their operational environment,” ISO/IEC TS 20540:2018, May
2018. [Online]. Available: https://www.iso.org/obp/ui#iso:std:
iso-iec:ts:20540:ed-1:v1:en

[19] ISO, “ISO 21384-2:2021 - Unmanned aircraft systems
–Part 2: UAS components,” ISO 21384-2:2021, Dec. 2021.
[Online]. Available: https://www.iso.org/obp/ui#iso:std:iso:
21384:-2:ed-1:v1:en

[20] ——, “ISO 13849-1:2015 - Safety of machinery –Safety-related
parts of control systems –Part 1: General principles for
design,” ISO 13849-1:2015, Dec. 2015. [Online]. Available:
https://www.iso.org/obp/ui#iso:std:iso:13849:-1:ed-3:v1:en

[21] P. Bourque and R. E. Fairley, Eds., Guide to the Software
Engineering Body of Knowledge, Version 3.0. Washington,

http://arxiv.org/abs/2307.12477
https://glossary.istqb.org/en_US/search
https://glossary.istqb.org/en_US/search
wenku.uml.com.cn/document/test/EBTestingPart2.pdf
wenku.uml.com.cn/document/test/EBTestingPart2.pdf
https://apps.dtic.mil/sti/pdfs/AD1147163.pdf
https://apps.dtic.mil/sti/pdfs/AD1147163.pdf
https://waseda.app.box.com/v/SWEBOK4-book
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:25019:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:25019:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-2:v1:en
https://www.iso.org/obp/ui#iso:std:iso-iec:ts:20540:ed-1:v1:en
https://www.iso.org/obp/ui#iso:std:iso-iec:ts:20540:ed-1:v1:en
https://www.iso.org/obp/ui#iso:std:iso:21384:-2:ed-1:v1:en
https://www.iso.org/obp/ui#iso:std:iso:21384:-2:ed-1:v1:en
https://www.iso.org/obp/ui#iso:std:iso:13849:-1:ed-3:v1:en

DC, USA: IEEE Computer Society Press, 2014. [Online].
Available: www.swebok.org

[22] I. Kuļešovs, V. Arnicane, G. Arnicans, and J. Borzovs, “Inven-
tory of Testing Ideas and Structuring of Testing Terms,” vol. 1,
pp. 210–227, Jan. 2013.

[23] S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel,
“Differential Assertion Checking,” in Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2013. New York, NY, USA: Association
for Computing Machinery, Aug. 2013, pp. 345–355. [Online].
Available: https://dl.acm.org/doi/10.1145/2491411.2491452

[24] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll, “Beyond
Assertions: Advanced Specification and Verification with JML
and ESC/Java2,” in Formal Methods for Components and
Objects, F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-
P. de Roever, Eds. Berlin, Heidelberg: Springer, 2006, pp.
342–363.

[25] J. Berdine, C. Calcagno, and P. W. O’Hearn, “Smallfoot:
Modular Automatic Assertion Checking with Separation Logic,”
in Formal Methods for Components and Objects, F. S. de Boer,
M. M. Bonsangue, S. Graf, and W.-P. de Roever, Eds. Berlin,
Heidelberg: Springer, 2006, pp. 115–137.

[26] ISO, “ISO 28881:2022 - Machine tools –Safety –Electrical
discharge machines,” ISO 28881:2022, Apr. 2022. [Online].
Available: https://www.iso.org/obp/ui#iso:std:iso:28881:ed-2:
v1:en

[27] D. Trudnowski, B. Pierre, F. Wilches-Bernal, D. Schoenwald,
R. Elliott, J. Neely, R. Byrne, and D. Kosterev, “Initial closed-
loop testing results for the pacific DC intertie wide area damping
controller,” in 2017 IEEE Power & Energy Society General
Meeting, 2017, pp. 1–5.

[28] B. J. Pierre, F. Wilches-Bernal, D. A. Schoenwald, R. T. Elliott,
J. C. Neely, R. H. Byrne, and D. J. Trudnowski, “Open-loop
testing results for the pacific DC intertie wide area damping
controller,” in 2017 IEEE Manchester PowerTech, 2017, pp. 1–6.

[29] W. Goralski, “xDSL loop qualification and testing,” IEEE
Communications Magazine, vol. 37, no. 5, pp. 79–83, 1999.

[30] M. Dominguez-Pumar, J. M. Olm, L. Kowalski, and V. Jimenez,
“Open loop testing for optimizing the closed loop operation
of chemical systems,” Computers & Chemical Engineering,
vol. 135, p. 106737, 2020. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0098135419312736

[31] M. Dhok and M. K. Ramanathan, “Directed Test Generation
to Detect Loop Inefficiencies,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2016. New York, NY,
USA: Association for Computing Machinery, Nov. 2016, pp.
895–907. [Online]. Available: https://dl.acm.org/doi/10.1145/
2950290.2950360

[32] P. Godefroid and D. Luchaup, “Automatic Partial Loop
Summarization in Dynamic Test Generation,” in Proceedings
of the 2011 International Symposium on Software Testing and
Analysis, ser. ISSTA ’11. New York, NY, USA: Association
for Computing Machinery, Jul. 2011, pp. 23–33. [Online].
Available: https://dl.acm.org/doi/10.1145/2001420.2001424

[33] S. Preuße, H.-C. Lapp, and H.-M. Hanisch, “Closed-
loop System Modeling, Validation, and Verification,” in
Proceedings of 2012 IEEE 17th International Conference on
Emerging Technologies & Factory Automation (ETFA 2012).
Krakow, Poland: IEEE, 2012, pp. 1–8. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/6489679

[34] P. Forsyth, T. Maguire, and R. Kuffel, “Real Time Digital
Simulation for Control and Protection System Testing,” in 2004
IEEE 35th Annual Power Electronics Specialists Conference
(IEEE Cat. No.04CH37551), vol. 1. Aachen, Germany: IEEE,
2004, pp. 329–335.

[35] C. Zhou, Q. Yu, and L. Wang, “Investigation of the Risk of
Electromagnetic Security on Computer Systems,” International
Journal of Computer and Electrical Engineering, vol. 4, no. 1,
p. 92, Feb. 2012, publisher: IACSIT Press. [Online]. Available:
http://ijcee.org/papers/457-JE504.pdf

[36] C. Jard, T. Jéron, L. Tanguy, and C. Viho, “Remote testing can
be as powerful as local testing,” in Formal Methods for Protocol
Engineering and Distributed Systems: Forte XII / PSTV

XIX’99, ser. IFIP Advances in Information and Communication
Technology, J. Wu, S. T. Chanson, and Q. Gao, Eds., vol. 28.
Beijing, China: Springer, Oct. 1999, pp. 25–40. [Online].
Available: https://doi.org/10.1007/978-0-387-35578-8_2

[37] M. H. Moghadam, “Machine Learning-Assisted Performance
Testing,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2019. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 1187–1189. [Online].
Available: https://doi.org/10.1145/3338906.3342484

[38] S. Doğan, A. Betin-Can, and V. Garousi, “Web application
testing: A systematic literature review,” Journal of Systems
and Software, vol. 91, pp. 174–201, 2014. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0164121214000223

[39] B. Kam, “Web Applications Testing,” Queen’s University,
Kingston, ON, Canada, Technical Report 2008-550, Oct.
2008. [Online]. Available: https://research.cs.queensu.ca/
TechReports/Reports/2008-550.pdf

[40] S. R. Choudhary, H. Versee, and A. Orso, “A Cross-browser
Web Application Testing Tool,” in 2010 IEEE International
Conference on Software Maintenance. Timisoara, Romania:
IEEE, Sep. 2010, pp. 1–6, iSSN: 1063-6773. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/5609728

[41] H. Sneed and S. Göschl, “A Case Study of Testing a Distributed
Internet-System,” Software Focus, vol. 1, pp. 15–22, Sep. 2000.
[Online]. Available: https://www.researchgate.net/publication/
220116945_Testing_software_for_Internet_application

[42] M. Bajammal and A. Mesbah, “Web Canvas Testing
Through Visual Inference,” in 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation
(ICST). Västerås, Sweden: IEEE, 2018, pp. 193–203.
[Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=8367048

[43] S. Sharma, K. Panwar, and R. Garg, “Decision Making
Approach for Ranking of Software Testing Techniques Using
Euclidean Distance Based Approach,” International Journal of
Advanced Research in Engineering and Technology, vol. 12,
no. 2, pp. 599–608, Feb. 2021. [Online]. Available: https:
//iaeme.com/Home/issue/IJARET?Volume=12&Issue=2

[44] R. S. Sangwan and P. A. LaPlante, “Test-Driven Development
in Large Projects,” IT Professional, vol. 8, no. 5, pp.
25–29, Oct. 2006. [Online]. Available: https://ieeexplore.ieee.
org/stamp/stamp.jsp?tp=&arnumber=1717338

[45] H. Yu, C. Y. Chung, and K. P. Wong, “Robust
Transmission Network Expansion Planning Method With
Taguchi’s Orthogonal Array Testing,” IEEE Transactions on
Power Systems, vol. 26, no. 3, pp. 1573–1580, Aug. 2011.
[Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=5620950

[46] K.-L. Tsui, “An Overview of Taguchi Method and Newly
Developed Statistical Methods for Robust Design,” IIE
Transactions, vol. 24, no. 5, pp. 44–57, May 2007, publisher:
Taylor & Francis. [Online]. Available: https://doi.org/10.1080/
07408179208964244

[47] R. Mandl, “Orthogonal Latin squares: an application of
experiment design to compiler testing,” Communications of
the ACM, vol. 28, no. 10, pp. 1054–1058, Oct. 1985. [Online].
Available: https://doi.org/10.1145/4372.4375

[48] P. Valcheva, “Orthogonal Arrays and Software Testing,” in
3rd International Conference on Application of Information
and Communication Technology and Statistics in Economy
and Education, D. G. Velev, Ed., vol. 200. Sofia, Bulgaria:
University of National and World Economy, Dec. 2013, pp.
467–473. [Online]. Available: https://icaictsee-2013.unwe.bg/
proceedings/ICAICTSEE-2013.pdf

[49] M. Bas, “Data Backup and Archiving,” Bachelor Thesis, Czech
University of Life Sciences Prague, Praha-Suchdol, Czechia,
Mar. 2024. [Online]. Available: https://theses.cz/id/60licg/
zaverecna_prace_Archive.pdf

[50] W. E. Perry, Effective Methods for Software Testing, 3rd ed.
Indianapolis, IN, USA: Wiley Publishing, Inc., 2006.

www.swebok.org
https://dl.acm.org/doi/10.1145/2491411.2491452
https://www.iso.org/obp/ui#iso:std:iso:28881:ed-2:v1:en
https://www.iso.org/obp/ui#iso:std:iso:28881:ed-2:v1:en
https://www.sciencedirect.com/science/article/pii/S0098135419312736
https://www.sciencedirect.com/science/article/pii/S0098135419312736
https://dl.acm.org/doi/10.1145/2950290.2950360
https://dl.acm.org/doi/10.1145/2950290.2950360
https://dl.acm.org/doi/10.1145/2001420.2001424
https://ieeexplore.ieee.org/abstract/document/6489679
http://ijcee.org/papers/457-JE504.pdf
https://doi.org/10.1007/978-0-387-35578-8_2
https://doi.org/10.1145/3338906.3342484
https://www.sciencedirect.com/science/article/pii/S0164121214000223
https://www.sciencedirect.com/science/article/pii/S0164121214000223
https://research.cs.queensu.ca/TechReports/Reports/2008-550.pdf
https://research.cs.queensu.ca/TechReports/Reports/2008-550.pdf
https://ieeexplore.ieee.org/abstract/document/5609728
https://www.researchgate.net/publication/220116945_Testing_software_for_Internet_application
https://www.researchgate.net/publication/220116945_Testing_software_for_Internet_application
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8367048
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8367048
https://iaeme.com/Home/issue/IJARET?Volume=12&Issue=2
https://iaeme.com/Home/issue/IJARET?Volume=12&Issue=2
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1717338
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1717338
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5620950
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5620950
https://doi.org/10.1080/07408179208964244
https://doi.org/10.1080/07408179208964244
https://doi.org/10.1145/4372.4375
https://icaictsee-2013.unwe.bg/proceedings/ICAICTSEE-2013.pdf
https://icaictsee-2013.unwe.bg/proceedings/ICAICTSEE-2013.pdf
https://theses.cz/id/60licg/zaverecna_prace_Archive.pdf
https://theses.cz/id/60licg/zaverecna_prace_Archive.pdf

[51] P. Gerrard, “Risk-based E-business Testing - Part 1: Risks and
Test Strategy,” Systeme Evolutif, London, UK, Tech. Rep.,
2000. [Online]. Available: https://www.agileconnection.com/
sites/default/files/article/file/2013/XUS129342file1_0.pdf

[52] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous
& Practical Approach, 2nd ed. Boston, MA, USA: PWS
Publishing Company, 1997.

[53] K. Sakamoto, K. Tomohiro, D. Hamura, H. Washizaki,
and Y. Fukazawa, “POGen: A Test Code Generator Based
on Template Variable Coverage in Gray-Box Integration
Testing for Web Applications,” in Fundamental Approaches
to Software Engineering, V. Cortellessa and D. Varró, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, Mar. 2013,
pp. 343–358. [Online]. Available: https://link.springer.com/
chapter/10.1007/978-3-642-37057-1_25

[54] E. F. Barbosa, E. Y. Nakagawa, and J. C. Maldonado, “Towards
the Establishment of an Ontology of Software Testing,” vol. 6,
San Francisco, CA, USA, Jan. 2006, pp. 522–525.

[55] L. Baresi and M. Pezzè, “An Introduction to Software Testing,”
Electronic Notes in Theoretical Computer Science, vol. 148,
no. 1, pp. 89–111, Feb. 2006. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1571066106000442

[56] P. Pandey, “Scalability vs Elasticity,” Feb.
2023. [Online]. Available: https://www.linkedin.com/pulse/
scalability-vs-elasticity-pranav-pandey/

https://www.agileconnection.com/sites/default/files/article/file/2013/XUS129342file1_0.pdf
https://www.agileconnection.com/sites/default/files/article/file/2013/XUS129342file1_0.pdf
https://link.springer.com/chapter/10.1007/978-3-642-37057-1_25
https://link.springer.com/chapter/10.1007/978-3-642-37057-1_25
https://www.sciencedirect.com/science/article/pii/S1571066106000442
https://www.sciencedirect.com/science/article/pii/S1571066106000442
https://www.linkedin.com/pulse/scalability-vs-elasticity-pranav-pandey/
https://www.linkedin.com/pulse/scalability-vs-elasticity-pranav-pandey/

	Background
	Scope
	Methodology
	Source Order
	Procedure
	Undefined Terms

	Observations
	Categories of Testing Approaches
	Derived Test Approaches
	Coverage-driven Techniques
	Quality-driven Types
	Requirements-driven Approaches
	Attacks

	Discrepancies and Ambiguities
	Synonyms
	Parent Relations
	Categories of Testing Approaches
	Functional Testing
	Recovery Testing
	Scalability Testing
	Minor Discrepancies
	In Standards
	In ``Meta-Level'' Sources
	In Other Sources

	Recommendations
	Recovery Testing
	Scalability Testing
	Performance(-related) Testing

	References

