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DYNAMIC CHOICES OF HYPERBOLIC CONSUMERS

BY CHRISTOPHER HARRIS AND DAVID LAIBSON1

Laboratory and field studies of time preference find that discount rates are much
greater in the short-run than in the long-run. Hyperbolic discount functions capture this
property. This paper solves the decision problem of a hyperbolic consumer who faces
stochastic income and a borrowing constraint. The paper uses the bounded variation
calculus to derive the Hyperbolic Euler Relation, a natural generalization of the standard
Exponential Euler Relation. The Hyperbolic Euler Relation implies that consumers act as
if they have endogenous rates of time preference that rise and fall with the future

Žmarginal propensity to consume e.g., discount rates that endogenously range from 5% to
.41% for the example discussed in the paper .

KEYWORDS: Hyperbolic discounting, time preference, dynamic inconsistency, consump-
tion, savings, buffer stock, Euler Relation, dynamic games, bounded-variation calculus,
altruistic growth.

1. INTRODUCTION

LABORATORY AND FIELD STUDIES of time preference find that discount rates are
much greater in the short-run than in the long-run.2 To model this phenomena,
psychologists have adopted discount functions from the class of generalized
hyperbolas,3 and economists have used the discrete-time quasi-hyperbolic dis-
count function: 1, �� , �� 2, . . . , �� t, . . . .4 When ��1, this quasi-hyperbolic

Ž .function captures the qualitative property that discount rates decline weakly
Ž .with horizon length. The short-run discount rate, �ln �� , is greater than the

Ž .long-run discount rate, �ln � .
Our paper shows how these preferences affect the savings decisions of a

consumer who faces stochastic income and a borrowing constraint. We adopt
the standard incomplete markets assumptions of the buffer stock consumption

1 We have benefited from the insights of seminar participants at the AEA, Boston University,
Columbia, ESRC, Rochester, Toulouse, and Wharton. We are grateful for the comments of Robert
Barro, Chris Carroll, Angus Deaton, Benjamin Friedman, Drew Fudenberg, Christian Gollier, John
Leahy, Greg Mankiw, Andrei Shleifer, Richard Zeckhauser, a co-editor, and three anonymous
Econometrica referees. Laibson acknowledges financial support from the National Science Founda-

Ž . Žtion SBR-9510985 , the MacArthur Foundation, and the National Institute on Aging R01-AG-
.16605 .

2 Ž . Ž .See Ainslie 1992 and Loewenstein and Thaler 1989 .
3 Ž .�Ž� �� .Events � periods away are discounted with factor 1��� , with � , ��0. See Ainslie

Ž . Ž .1992 and Loewenstein and Prelec 1992 .
4 Ž . Ž .This function was first used by Phelps and Pollak 1968 and Zeckhauser and Fels 1968 to

Ž .discount intergenerational utility flows. Laibson 1997a adopted the structure to approximate
Ž .hyperbolic discounting of intra-personal utility flows. Applications include Barro 1999 , Laibson,

Ž . Ž . Ž .Repetto, and Tobacman 1998, 1999 , and O’Donoghue and Rabin 1999 . Akerlof 1991 used a
Ž .similar model in which ��1. Strotz 1956 was the first economist to analyze nonexponential
Ž .discount functions. Thaler and Shefrin 1981 present a model of self-control in which an internal

‘‘planner’’ and ‘‘doer’’ interact, representing the conflict between long- and short-run interests.

935



C. HARRIS AND D. LAIBSON936

literature.5 We deviate from the standard buffer stock model only by assuming
that the discount function is qualitatively hyperbolic.

Ž .In the standard exponential discounting model i.e., ��1 above the equilib-
rium path satisfies the well known Exponential Euler Relation

� Ž Ž .. � Ž Ž ..U C x �E R �U C x ,t t t�1

where U is an instantaneous utility function, C is the consumption function, x is
cash-on-hand, R is the interest rate, and � is the exponential discount factor.
We show that this relationship has a natural generalization in the hyperbolic
economy. This generalization is easy to interpret when the consumption func-

Ž .tion is Lipschitz continuous a property that holds in a neighborhood of ��1 .
In this case,

� Ž Ž .. � � Ž . Ž � Ž .. � � Ž Ž ..U C x �E R C x ��� 1�C x � U C x .t t t�1 t�1 t�1

Ž .We call this the Strong Hyperbolic Euler Relation. The difference between the
Exponential Euler Relation and the Hyperbolic Euler Relation is that the latter
replaces the constant exponential discount factor, � , by the bracketed term
above,

� � Ž . Ž � Ž .. �C x ��� 1�C x � .t�1 t�1

We call this the effective discount factor; it is a weighted average of the
short-run discount factor �� , and the long-run discount factor � . The respective

�Ž .weights are C x , the marginal propensity to consume out of liquid wealth x,t�1
Ž �Ž ..and 1�C x . The effective discount factor is stochastic and endogenous tot�1

the model.
Since ��1, the effective discount factor is negatively related to the future

Ž .marginal propensity to consume MPC . To gain intuition for this effect,
consider a consumer at time 0 who is thinking about saving a marginal dollar for
the future. We assume that this consumer acts strategically in an intrapersonal
game where the players are temporally situated ‘‘selves.’’ The consumer at time
zero�‘self 0’�expects future selves to overconsume relative to the consump-
tion rate that self 0 prefers those future selves to implement. Hence, on the
equilibrium path, self 0 values marginal saving more than marginal consumption
at any future time period. From self 0’s perspective, therefore, it matters how a
marginal unit of wealth at time period 1 will be divided between savings and
consumption by self 1. Self 1’s MPC determines this division. Since self 0 values
marginal saving more than marginal consumption at time period 1, self 0 values
the future less the higher the expected MPC at time period 1.6

5 Ž . Ž .For example, see Deaton 1991 and Carroll 1992, 1997 .
6 Impatience and the MPC are not linked in the exponential model if impatience is defined as

� Ž Ž ..U C xt�1
.� Ž Ž ..E RU C xt t�1

� � ŽIf patience were instead defined as E 1��	 ln c � r where � is the coefficient of relative riskt t�1
.aversion , then the exponential model would predict that patience covaries positi�ely with the MPC;

in the hyperbolic world this positive covariation is mitigated.
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The effective discount factor in the Hyperbolic Euler Relation varies signifi-
cantly over time. Consumers who expect to have low levels of future cash-on-hand

�Ž . 7will expect C x to be close to one, implying that the effective discountt�1
factor will approximately equal �� . Assuming that periods are annual with a
standard calibration of �� .7 and �� .95, the effective discount rate would be

Ž . 8�ln .7� .95 � .41. By contrast, consumers with high levels of future cash-on-
�Ž . 9hand will expect C x to be close to zero, implying that the effectivet�1

discount factor will approximately equal � . In this case, the effective discount
Ž .rate will be �ln .95 � .05.

The Hyperbolic Euler Relation explains numerous consumption anomalies.
For example, the model’s implied variation in effective impatience predicts the
observed pattern of widespread credit card borrowing among young and
middle-aged households while also being able to match the high level of
observed preretirement wealth accumulation. Standard exponential models do
not explain these joint phenomena. In addition, the Hyperbolic Euler Relation
explains comovement between income and consumption, missing precaution-

Ž .ary savings effects, pro-savings incentives like 401 k ’s, disproportionately low
holdings of liquid assets, and the anomalous drop in consumption around
retirement.10

The current paper derives the Hyperbolic Euler Relation in two complemen-
tary ways. First, we present a heuristic derivation, which relies on an ad hoc
assumption of smoothness of the consumption function. This assumption is not
valid since hyperbolic consumption functions may be downward discontinuous.

Second, we present the first rigorous derivation of the Hyperbolic Euler
Relation and provide a general characterization of the hyperbolic problem. This
analysis does not rely on smoothness restrictions. Instead, we apply the
bounded-variation calculus, a subfield of analysis that has been little-used in
economics. This general framework enables us to prove three sets of results.
First, we show that pure-strategy, stationary, Markov equilibria exist in hyper-
bolic problems with unbounded wealth and a class of unbounded instantaneous
utility functions.11 Second, we show that the Strong Hyperbolic Euler Relation

7 Low levels of cash-on-hand imply that the agent is liquidity constrained. Hence, low levels of
Ž .cash-on-hand imply a high MPC. See Harris and Laibson 2000 for simulated hyperbolic consump-

tion functions in buffer stock models.
8 These parameter values generate simulated wealth and debt profiles that match observed data.

Ž . Ž .See Laibson 1997a and Laibson, Repetto, and Tobacman 2000 for a discussion of calibration
issues.

9 When the agent is not liquidity constrained, marginal consumption is approximately equal to the
annuity value of marginal increments of wealth. Hence, the local slope of the consumption function
is close to the real interest rate.

10 Ž . Ž .See Laibson 1997b , Laibson, Repetto, and Tobacman 1998, 2000 , and Angeletos, Laibson,
Ž .Repetto, Tobacman, and Weinberg 2000 .

11 Ž .Our approach differs from that of Bernheim and Ray 1989 , who assume bounded instanta-
neous utility and wealth. Our results can be adapted to admit their assumptions on intertemporal
separability and nonadditive production. Our approach yields higher-order smoothness for the value
and policy functions and crucially our approach works in the multidimensional case. Our approach

Ž .also differs from Harris 1990 , who proves the existence of mixed-strategy equilibria.
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derived heuristically at the beginning of the paper has a natural generalization
that arises when the consumption function is not Lipschitz continuous; we call
this generalization the Weak Hyperbolic Euler Relation. Third, we show that
the Strong Hyperbolic Euler Relation is satisfied when the hyperbolic model is
parameterized in a neighborhood of the exponential model.12 In such neighbor-
hoods the equilibrium consumption function is Lipschitz continuous.13

The rest of the paper demonstrates these claims. Section 2 describes our basic
model. Section 3 presents a heuristic derivation of the Hyperbolic Euler Rela-
tion. Section 4 discusses regularity assumptions for our formal derivations.
Section 5 defines functions of locally bounded variation. Section 6 characterizes
the relationship between equilibrium value functions and equilibrium Markov
policy functions. Section 7 summarizes the technical results needed for the
formal derivation of the Weak Hyperbolic Euler Relation. Section 8 derives the
Weak Hyperbolic Euler Relation. Section 9 summarizes the technical results
needed for the formal derivation of the Strong Hyperbolic Euler Relation.
Section 10 describes conditions under which the Weak Hyperbolic Euler Rela-
tion reduces to the Strong Hyperbolic Euler Relation.

2. MODEL

Our modeling assumptions divide naturally into four parts: the standard
assumptions from the buffer-stock literature; the assumptions that make our
model qualitatively hyperbolic; our equilibrium concept; and the technical
assumptions that allow us to derive the Hyperbolic Euler Relation. We discuss
the first three sets of assumptions in this section. Discussion of the technical
assumptions is deferred to Section 4 below.

2.1. Buffer-Stock Assumptions

During period t, the consumer has cash-on-hand x �0. She chooses at
� �consumption level c 	 0, x , which rules out borrowing. Whatever the con-t t

� �sumer does not spend is saved, s �x �c 	 0, x . The gross return on hert t t t
savings is fixed, R�0, and next period she receives labor income y �0.t�1

Ž .Cash-on-hand during period t�1 is therefore x �R x �c �y . Labort�1 t t t�1
income is independently and identically distributed over time with density f.

12 Such neighborhoods are empirically relevant: simulations with CRRA of 3, �� .95, .7���1,
Ž .and R�1.04, yield Lipschitz continuous concave monotonic consumption functions. Harris and

Ž .Laibson 1999 present sufficient conditions for concavity and monotonicity.
13 Numerous papers have evaluated the smoothness of policy and value functions in deterministic

Ž . Ž .dynamic optimization problems: e.g., Araujo 1991 , Benveniste and Scheinkman 1979 , Clarke et al.
Ž . Ž .1998 , and Montrucchio 1987 . Our approach differs because our model is a stochastic game. Our

Ž .work is most closely related to that of Blume, Easley, and O’Hara 1982 who link the stochastic
properties of their model to smoothness of the policy and value functions. Like the other papers
cited above, they analyze a class of dynamic optimization problems and not a dynamic game.
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The consumer cannot sell her uncertain stream of future labor income
payments, because of moral hazard and adverse selection, or because of prohibi-
tions against indenturing. In other words, there is no asset market for labor.

2.2. Hyperbolic Preferences

We model an individual as a sequence of autonomous temporal selves. These
selves are indexed by the respective periods, t�0, 1, 2, . . . , in which they control
the consumption choice. Self t receives payoff



iŽ . Ž . Ž .1 E U c �� � U c ,Ýt t t�i

i�1

� . � .where ��0, ��0, and U : 0, �
 � �
, �
 .

2.3. Equilibrium

We analyze the set of perfect equilibria in stationary Markov strategies of the
Ž .intrapersonal game with players or selves indexed by the nonnegative integers.

Because income is i.i.d., the only state variable is cash-on-hand x . We thereforet
restrict attention to consumption strategies C that depend only on x .t

3. HEURISTIC DERIVATION OF THE STRONG HYPERBOLIC EULER RELATION

Suppose that C is an equilibrium consumption function. Adopt the perspec-
tive of self t. Since all future selves use the consumption function C, and since
self t uses the same discount factor � from period t�1 onwards, her continua-
tion-value function V solves the recursive equation

Ž . Ž . Ž Ž .. Ž Ž Ž .. .2 V x �U C x �E � V R x �C x �y .t�1 t�1 t�1 t�1 t�1 t�2

Ž .Note that V x is the expectation, conditional on x , of the presentt�1 t�1
discounted value of the utility stream which starts in period t�1.

Self t uses discount factor �� at time t. Her current-value function W
therefore solves the equation

Ž . Ž . Ž Ž .. Ž Ž Ž .. .3 W x �U C x �E � � V R x �C x �y .t t t t t t�1

Moreover

Ž . Ž . Ž . Ž Ž . .4 C x 	 argmax U c �E � � V R x �c �y ,t t t t�1
� �c	 0, x t

since consumption is chosen by the current self.
Ž .The first-order condition associated with 4 implies that

Ž . � Ž Ž .. � Ž Ž Ž .. .5 U C x �E R� � V R x �C x �y ,t t t t t�1

Ž .with equality if C x �x . The first-order condition and envelope theoremt t
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together imply that the shadow value of cash-on-hand equals the marginal utility
of consumption:

Ž . � Ž . � Ž Ž ..6 W x �U C x .t t

Finally, note that V and W are linked by the equation

Ž . Ž . Ž . Ž . Ž Ž ..7 � V x �W x � 1�� U C x .t�1 t�1 t�1

These expressions can be combined to yield the Strong Hyperbolic Euler
Relation. Indeed, we have

� Ž Ž .. � Ž Ž Ž .. .U C x �E R� � V R x �C x �yt t t t t�1

Ž Ž ..this is just the first-order condition 5

� � Ž . Ž . � Ž Ž .. � Ž .��E R� W x � 1�� U C x C xt t�1 t�1 t�1

Ž Ž ..by differentiation and substitution of Equation 7

� � Ž Ž .. Ž . � Ž Ž .. � Ž .��E R� U C x � 1�� U C x C xt t�1 t�1 t�1

Ž Ž .from 6 , since self t�1 also equates the shadow value of cash-on-hand and the
.marginal utility of consumption . Rearranging yields

Ž . � Ž Ž .. � � Ž . Ž � Ž .. � � Ž Ž ..8 U C x �E R C x ��� 1�C x � U C x ,t t t�1 t�1 t�1

with equality if c �x . This is the SHER.t t

4. BASIC ASSUMPTIONS

In the present section we formulate the technical assumptions on which the
remainder of our analysis will be based. They run as follows:

� . � .U1: U has domain 0, �
 and range �
, �
 .

Ž .U2: U is twice continuously differentiable on 0, �
 .

� Ž .U3: U �0 on 0, �
 .

U4: There exist 0��
���
 such that
� Ž .�cU c

Ž .�
 
� for all c	 0, �
 .� Ž .U c

Ž . � .F1: f has domain 0, �
 and range 0, �
 .

F2: f is twice continuously differentiable.

Ž . � �F3: There exist 0�y�y��
 such that f y �0 for all y� y, y .
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1��� 4D1: Max � , �R �1.

� �D2: �	 0, 1 .

Assumption U2 is a straightforward smoothness requirement on U, Assump-
tion U3 ensures that the marginal utility of consumption is strictly positive, and
Assumption U4 ensures that the coefficient of relative risk aversion is bounded
away from 0 and �
. These assumptions could be summarized by saying that U
belongs to the class of utility functions of bounded relative risk aversion, or
BRRA for short. They include the possibility that the coefficient of relative risk
aversion is constant as a special case. Assumption F2 is a straightforward
smoothness requirement on f. Assumption F3 ensures that all income realiza-
tions are bounded away from 0 and �
. Assumption D1 ensures that neither
labor income nor investment income can generate unbounded expected dis-
counted utility. Assumption D2 ensures that the current self either acts expo-

Ž . Ž � ..nentially ��1 or underweights the future �	 0, 1 .

5. FUNCTIONS OF LOCALLY BOUNDED VARIATION

In what follows, we shall make extensive use of the concept of a function of
locally bounded variation.

DEFINITION 1: Let J be a subinterval of �. Then the function g : J�� is of
locally bounded �ariation iff there exist increasing functions g : J�� and�
g : J�� such that g�g �g .� � �

If g : J�� is a function of locally bounded variation and J is open, then the
Ž . Ž .function g defined by the formula g z �g z� is the left-continuous regu-L L

Ž . Ž .larization of g ; the function g defined by the formula g z �g z� is theR R
right-continuous regularization of g ; the function 	g�g �g is the jumpR L
function of g ; the measure g� with distribution function g is the first derivativeR

� Ž .of g ; the measure g �Ý 	g z � , where � is the unit mass concentratedd z 	 � z z
Ž . � � � �at z, is the discontinuous or atomic part of g ; and the measure g �g �g isc d

Ž . �the continuous or non-atomic part of g .

REMARK 2: Lipschitz continuous functions, and hence continuously differen-
tiable functions, have locally bounded variation.

6. CHARACTERIZATION OF EQUILIBRIUM

In this paper we focus on perfect equilibria in stationary Markov strategies
that are bounded below in the sense that a self’s continuation payoff is at least
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what she would get if all future selves were to consume all of their cash on
hand.14 With this in mind, we adopt the following convention.

CONVENTION 3: We refer henceforth to perfect equilibria in stationary Marko�
strategies that are bounded below simply as equilibria.

The equilibria of our model can be characterized in the usual way. Define
� . � . Ž . � .r : 0, �
 � 0, �
 by the formula r x � Rx � y, define V : 0, �
 �

� . Ž . Ž . 
 t Ž . Ž .�
, �
 by the formula V x � U x �Ý � HU y f y dy, and definet�1

 t t� . � . Ž . Ž . Ž Ž ..V : 0, �
 � �
, �
 by the formula V x �U x �Ý � U r x . Then wet�1

have the following theorem.

Ž .THEOREM 4 Characterization : A consumption function C is an equilibrium if
� . � .and only if there exists a continuation-�alue function V : 0, �
 � �
, �
 and

� . � .a current-�alue function W : 0, �
 � �
, �
 such that

Ž . Ž . Ž .V x 
V x 
V x ,

Ž . Ž Ž .. Ž Ž Ž .. . Ž .V x �U C x �� V R x�C x �y f y dy ,H

Ž . Ž Ž .. Ž Ž Ž .. . Ž .W x �U C x ��� V R x�C x �y f y dy ,H
and

Ž . Ž . Ž Ž . . Ž .C x 	 argmax U c ��� V R x�c �y f y dyH
� �c	 0, x

� .for all x	 0, �
 .

7. LOCAL REGULARITY OF THE CURRENT-VALUE FUNCTION

Ž .The Characterization Theorem Theorem 4 shows that any equilibrium
� �continuation-value function lies in the interval V, V . In this section we fix an

� �arbitrary Borel measurable V	 V, V , and we establish the local regularity
� . � .properties of the associated function �V : 0, �
 � �
, �
 given by the

formula

Ž .Ž . Ž . Ž Ž . . Ž .�V x � max U � x ��� V R 1�� x�y f y dy .H½ 5� ��	 0, 1

The section can be omitted on a first reading.

14 Equilibria that are not bounded below do occur for some parameter values. For example, if
��1, then there exists a stationary equilibrium in which C�0 and V��
. For other parameter
values, they can be ruled out. For example, if ��1, then all equilibria are bounded below. We view
equilibria that are not bounded below as economically pathological.



HYPERBOLIC CONSUMERS 943

� .We begin with four lemmas. Define the function G : 0, �
 �� by the
Ž . Ž . Ž .formula G s �HV Rs�y f y dy. Then we have the following lemma:

LEMMA 5: G is twice continuously differentiable.

PROOF: Changing variables according to the formula z�Rs�y, we obtain
Ž . Ž . Ž . �Ž . Ž . �Ž . �Ž .G s � HV z f z � Rs dz, G s � �RHV z f z � Rs dz, and G s �

�2 Ž . Ž . � �R HV z f z�Rs dz. Since V
V
V and supp f� y, y , we may apply the
bounded convergence theorem to conclude that G, G�, and G� are all contin-
uous. Q.E.D.

� � � . � . Ž .Define the function w : 0, 1 � 0, �
 � �
, �
 by the formula w � , x �
Ž . ŽŽ . .U � x �� � G 1�� x . Then we have Lemma 6.

LEMMA 6: w is continuous.

PROOF: This follows at once from the continuity of U and G. Q.E.D.

� . � �Define the optimal policy correspondence � : 0, �
 � 0, 1 by the formula
Ž . Ž .� x �argmax w � , x . Then we have the following lemma.� 	�0, 1�

LEMMA 7: � is nonempty �alued, compact �alued, and upper semicontinuous.

� �PROOF: This follows from the continuity of w and the compactness of 0, 1 .
Q.E.D.

Ž . Ž �LEMMA 8: For all x�0, � x � 0, 1 .

Ž .PROOF: This follows at once from the fact that � w � , x �����
 as �
�0� . Q.E.D.

We are now in a position to prove the main result of this section. Put
� � Ž .W��V and, for each �	 0, 1 , define a function w by the formula w� x ��

Ž .w � , x . Then we have the following theorem.

Ž . �THEOREM 9 Local Regularity : Both W and W are functions of locally
Ž . Ž .bounded �ariation on 0, �
 . Moreo�er, for all x �0 and all 
	 0, x there0 0
� � � � � � � �exists K�0 such that W 
K , W 
K , and W ��K on x �
 , x �
 .0 0

� � � �The inequality W 
K means, more explicitly, that the measure W is
nonsingular with respect to Lebesgue measure, and that the absolute value of
the density of W � with respect to Lebesgue measure is bounded by K. The
inequality W � ��K means, more explicitly, that the negative part of the
measure W � is nonsingular with respect to Lebesgue measure, and that its
density with respect to Lebesgue measure is bounded by K.
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� �PROOF: Put J� x �
 , x �
 . Then W � �sup w � . That is, the0 0 J � 	 � Ž J . � J

restriction of W to the interval J is the upper envelope of the restrictions of the
� Ž .4 �functions � ��	� J to the interval J. Now, using the formulae for G, G ,�

and G� given in the proof of Lemma 5, it is easy to show that there exists K�0
� Ž . � � � Ž . � � �Ž . � Ž .such that w x , w x , w x 
K for all �	� J and all x	J. The inequal-� � �

� Ž . � Ž . � �ity w x 
K for all �	� J implies at once that W 
K on J. Next, if�

Ž . � 4 Ž . Ž . Ž .x , x 	J and � 	� x for i	 1, 2 , then we have W x �w x �w x1 2 i i 2 � 2 2 � 1 2
Ž . Ž . Ž .and W x �w x �w x . Hence1 � 1 1 � 2 1

Ž . Ž . Ž . Ž . Ž .W x �W x 
w x �w x 
K x �x2 1 � 2 2 � 2 1 2 1

and

Ž . Ž . Ž . Ž . Ž .W x �W x �w x �w x �K x �x .2 1 � 1 2 � 1 1 2 1

That is, W is Lipschitz continuous with coefficient K on J. Hence W is of
� � �locally bounded variation on J, and W 
K on J. Finally, define q : ��� by

Ž . Ž . 2 Ž . � Ž .the formula q x � K�2 x . Then w �q is convex for all �	� J . HenceJ�

Ž . � Ž . � Ž .�W�q �sup w �q is convex. Hence W�q is of locally boundedJ J� 	 � Ž J . �
� Ž .� �variation on J, and W � W�q �q �0�K��K. Q.E.D.

Theorem 9 has the following corollaries, the proofs of which follow standard
lines and are omitted.

COROLLARY 10: The right and left deri�ati�es D W and D W of W are wellR L
Ž .defined on 0, �
 , and we ha�e D W�D W.R L

Ž .In particular, W can have upward or convex kinks but it cannot have
Ž .downward or concave kinks.

Ž .COROLLARY 11 Envelope Principle : For all x�0:
Ž . Ž . � Ž . � Ž . Ž .�i for all �	� x , w x 	 D W x , D W x ;� L R
Ž . Ž . � Ž . Ž .ii there exists � 	� x such that w x �D W x ;L � LL
Ž . Ž . � Ž . Ž .iii there exists � 	� x such that w x �D W x .R � RR

Ž .COROLLARY 12 Shadow-Price Principle : For all x�0:
Ž . Ž . �Ž . � Ž . Ž .�i for all �	� x , U � x 	 D W x , D W x ;L R
Ž . Ž . �Ž . Ž .ii there exists � 	� x such that U � x �D W x ;L L L
Ž . Ž . �Ž . Ž .iii there exists � 	� x such that U � x �D W x .R R R

8. THE WEAK HYPERBOLIC EULER RELATION

We are now in a position to establish the WHER. The proof will be deferred
to the end of the section.
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Ž .THEOREM 13 WHER : Let C be an equilibrium. Then C is of locally bounded
Ž .�ariation on 0, �
 , and we ha�e the WHER:

Ž � .Ž . Ž � .Ž Ž Ž .. . Ž .U �C x �R� U �C R x�C x �y f y dyH

Ž . Ž � .Ž Ž Ž .. .�R� 1�� U �C R x�C x �yH
Ž . � Ž Ž Ž .. .� f y C R x�C x �dyc

Ž .	 U�C
Ž . Ž Ž Ž .. .�R� 1�� R x�C x �yH

	C

Ž . � Ž Ž Ž .. .� f y C R x�C x �dy ,d

Ž .with equality if C x �x.

The right-hand side of the WHER involves three terms. We refer to these
terms as the exponential term, the continuous hyperbolic term, and the discon-
tinuous hyperbolic term. We also refer to the sum of the continuous and
discontinuous hyperbolic terms as the hyperbolic term.

In order to build up some intuition for the WHER, we consider three
corollaries.

Ž .COROLLARY 14 EER : If ��1, then we ha�e the EER:

Ž � .Ž . Ž � .Ž Ž Ž .. . Ž .U �C x �R� U �C R x�C x �y f y dy ,H
Ž .with equality if C x �x.

Ž � .Ž .In this relation, U �C x is the marginal utility of consumption today, and
Ž � .Ž Ž Ž .. .U �C R x�C x �y is the marginal utility of consumption tomorrow. The
relation therefore states that the marginal utility of consumption today is at
least R� times the expectation of the marginal utility of consumption tomorrow.

Ž . Ž .COROLLARY 15 SHER : Suppose that there exists X	 0, �
 such that:
Ž . Ž Ž .. � � � �i R x�C x �y	 y, X for all x	 y, X and all y	supp f ; and
Ž . � �ii C is Lipschitz continuous on y, X .

� �Then, for all x	 y, X , we ha�e the SHER:

Ž � .Ž . ŽŽ Ž . � .Ž � ..U �C x �R� 1� 1�� C U �CH
Ž Ž Ž .. . Ž .� R x�C x �y f y dy ,

Ž .with equality if C x �x.
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In other words, when ��1, the discount factor � in the EER must be
replaced by the effective discount factor

Ž Ž . � Ž Ž Ž .. ..� 1� 1�� C R x�C x �y ,
�Ž Ž Ž .. .where C R x�C x �y is the marginal propensity to consume tomorrow.

REMARK 16: The mathematical significance of the first hypothesis of Corol-
� �lary 15 is that y, X is an absorbing interval: once cash-on-hand falls in this

interval, it remains there forever. The mathematical significance of the second
� Ž . Ž . � � �hypothesis is that there exists L�0 such that C x �C x 
L x �x for2 1 2 1

� � Ž .all x , x 	 y, X . Equivalently: i C is of locally bounded variation on a1 2
�� � Ž .neighborhood of y, X ; ii the measure C is nonsingular with respect to

Ž . �Lebesgue measure; and iii the absolute value of the density of C with respect
to Lebesgue measure is bounded by L.

REMARK 17: The economic significance of the first hypothesis of Corollary 15
� �is that we only expect to observe levels of cash-on-hand that lie in y, X . The

economic significance of the second hypothesis is that C� can be interpreted in
the usual way: the only complication is that it will in general be discontinuous.

REMARK 18: Theorem 10 below shows that the hypotheses of Corollary 15 are
satisfied when � is close to 1.

� . � . � �Finally, let I be the identity mapping on 0, �
 , and let M : 0, �
 � 0, �

be the generalized marginal utility of consumption given by the formula

� Ž Ž ..� 
U C x if x is a point of continuity of C
� �Ž .	 U�CŽ .M x � .

Ž .x if x is a point of discontinuity of C� �ž /	C

Corollary 19 follows.

Ž .COROLLARY 19 MHER : We ha�e the MHER:

Ž . Ž Ž Ž .. .M x �R� M R x�C x �yH L

�Ž .Ž Ž . . Ž Ž Ž .. .� f y I� 1�� C R x�C x �dy ,L

Ž .with equality if x is a point of continuity of C and C x �x.

Corollary 19 makes three points. First, in the hyperbolic model, it is more
natural to formulate the Euler Relation in terms of the generalized marginal
utility of consumption than in terms of the marginal utility of consumption. This
is because, in the hyperbolic model, there may be jumps in the consumption
function, and the current self must take these into account when evaluating the
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marginal utility of future consumption. Secondly, in order to formulate the
Euler Relation in terms of the generalized marginal utility of consumption, it is
necessary to work with the left-continuous version of C. In other words, it is
necessary to assume that the consumer chooses the highest possible consump-
tion level in cases where she is indifferent among more than one consumption
choice. Thirdly, given that the Euler Relation is formulated in terms of the
generalized marginal utility of consumption, the only difference between the
SHER and the MHER is that the expression

Ž Ž . � .Ž Ž Ž .. .1� 1�� C R x�C x �y dy

in the SHER is replaced by the expression
�Ž Ž . . Ž Ž Ž .. .I� 1�� C R x�C x �dyL

in the MHER because C is not necessarily absolutely continuous.

REMARK 20: The consumption function C has at most a countable number of
discontinuities. Hence, if the initial value x of cash-on-hand is a point of0
continuity of C, then the probability that the equilibrium path hits a point
of discontinuity of C is zero. Moreover, irrespective of whether x is a point of0
continuity of C or not, the probability that the equilibrium path hits a point of
discontinuity of C at any t greater than zero is zero. The fact that the condition
for the MHER to hold as an equality is more restrictive than the condition for
the WHER to hold as an equality therefore of very little practical importance.

We turn now to the proof of Theorem 13. This can be omitted at a first
reading. We need three lemmas.

Ž .LEMMA 21: Suppose that z 	 0, �
 , and let g and h be two right-continuous1
Ž . Ž .functions of locally bounded �ariation on 0, �
 such that g�h�0 on 0, z .1

Then

Ž . Ž . Ž . � Ž . Ž . � Ž .g z h z � g z h dz � h z g dzH H2 2 L
� � � �z , z z , z1 2 1 2

Ž .for all z 	 z , �
 .2 1

PROOF: This result is a simple adaptation of Theorem VI.90 of Dellacherie
Ž .and Meyer 1982 . Q.E.D.

LEMMA 22: Suppose that F : ��� is continuously differentiable, and let g be a
Ž .function of locally bounded �ariation on 0, �
 . Then F � g is a function of locally

Ž .bounded �ariation on 0, �
 and, for all 0�z 
z ��
, we ha�e1 2

Ž .Ž . Ž .Ž .F � g z � � F � g z �2 1

Ž .	 F � g
� � �Ž .Ž . Ž . Ž . Ž .� F � g z g dz � z g dz .H Hc cž /	g� � � �z , z z , z1 2 1 2
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Ž .�In particular, the measure F � g is absolutely continuous with respect to the
measure g�, and we ha�e

Ž .	 F � g� � � �Ž . Ž . Ž .Ž . Ž . Ž . Ž .F � g dz � F � g z g dz � z g dz .c dž /	g

PROOF: This result is a simple adaptation of formula VI.92.1 of Dellacherie
Ž .and Meyer 1982 . Cf. also formulae VI.93.1 and VI.93.2 of the same work.

Q.E.D.

LEMMA 23: Suppose that C is an equilibrium. Then C is of locally bounded
Ž .�ariation on 0, �
 .

� Ž .PROOF: Corollary 12 implies that D W
U �C
D W in 0, �
 . TheoremL R
Ž .9 implies that D W is of locally bounded variation in 0, �
 , and thatR

Ž . � Ž .D W� D W . So U �C is of locally bounded variation in 0, �
 . Lemma 22L R L
Ž �.�1 Ž � .therefore implies that C� U � U �C is of locally bounded variation in

Ž .0, �
 . Q.E.D.

Ž . Ž .PROOF OF THEOREM 13: Fix x�0 and put � x �C x �x. Then

Ž Ž . .� w � x , x
� �Ž Ž . . Ž Ž Ž .. . Ž .�xU � x x �xR�� V R 1�� x x�y f y dyH

��

�0,
Ž . Žwith equality if � x �1 by the first-order condition for the maximization of w
.with respect to � . So

� Ž Ž .. Ž Ž Ž .. . � Ž .U C x ��R�� V R x�C x �y f y dy ,H
Ž .with equality if C x �x. Now

Ž Ž Ž .. . � Ž .� V R x�C x �y f y dyH
Ž Ž . .Ž Ž Ž .. . � Ž .� W� 1�� U�C R x�C x �y f y dyH

Ž Ž . .because V�W� 1�� U�C . Moreover,

Ž Ž Ž .. . � Ž .W R x�C x �y f y dyH
� Ž Ž Ž .. . Ž .�� W R x�C x �y f y dyH

Ž .using Lemma 21 to integrate by parts

Ž � .Ž Ž Ž .. . Ž .�� U �C R x�C x �y f y dyH
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Ž � � .because W �U �C except at a countable number of points ; and

Ž .Ž Ž Ž .. . � Ž .U�C R x�C x �y f y dyH

Ž .Ž Ž Ž .. . � Ž .� U�C R x�C x �y f y dyH R

Ž .because C�C except at a countable number of pointsR

�Ž .Ž . Ž Ž Ž .. .�� f y U�C R x�C x �dyH R

�Ž .Ž . Ž Ž Ž .. .�� f y U�C R x�C x �dyH

Ž Ž .� Ž .�.using Lemma 21 to integrate by parts and because U�C � U�CR

Ž .Ž � .Ž Ž Ž .. . � Ž Ž Ž .. .�� f y U �C R x�C x �y C R x�C x �dyH c

Ž .	 U�C
�Ž . Ž Ž Ž .. . Ž Ž Ž .. .� f y R x�C x �y C R x�C x �dyH dž /	C

Ž .using Lemma 22 . This completes the proof of the WHER in the case x�0.
�Ž Ž .. �Ž .Finally, the WHER is trivial when x�0, for in that case U C x �U 0 ��
.

Q.E.D.

9. GLOBAL REGULARITY

In this section we prove a sharper version of the Local-Regularity Theorem
Ž .Theorem 9 . This result is needed for the proof of the SHER. The section can
be omitted on a first reading.

� �Ž . Ž . � . � .Put V �� V�0 and V �� V�0 , define N : 0, �
 � 0, �
 by the1
� �Ž . Ž . Ž . � . � .formula N x �V y �V Rx�y , and define N : 0, �
 � 0, �
 by the1 2

Ž . Ž �Ž . . Ž .formula N x � U x �x �N x . Then we have the following theorem.2 1

Ž .THEOREM 24 Global Regularity : There exist K�0 such that, for all V	
� �V, V ,
Ž . Ž . Ž .i 1�� U�� V
�V
 1�� U�� V,
Ž . � Ž .� � Ž .ii U 
 �V 
U � KN , and1
Ž . Ž .� Ž .iii �V ��KN on 0, �
 .2



C. HARRIS AND D. LAIBSON950

PROOF: Put W��V. We have

Ž . Ž . Ž Ž . . Ž .W x 
 max U � x ��� V R 1�� x�y f y dyH½ 5� ��	 0, 1

Ž . � Ž .4
 1�� max U � x
� ��	 0, 1

Ž . Ž Ž . . Ž .�� max U � x �� V R 1�� x�y f y dyH½ 5� ��	 0, 1

Ž . Ž . Ž .
 1�� U x �� V x

and

Ž . Ž . Ž Ž . . Ž .W x � max U � x ��� V R 1�� x�y f y dyH½ 5� ��	 0, 1

Ž . Ž . Ž .�U x ��� V y f y dyH

Ž . Ž . Ž . Ž . Ž .� 1�� U x �� U x �� V y f y dyHž /
Ž . Ž . Ž .� 1�� U x �� V x .

This completes the proof of part 1.
Ž .Next, Corollary 12 tells us that, for all x�0, there exist � , � 	� x suchL R

that

Ž . � Ž . � Ž . Ž . � ŽŽ . .D W x �w x �� U � x � 1�� � � G 1�� xH � H H H H H

� 4for h	 L, R . Moreover the first-order condition tells us that

� Ž . � ŽŽ . .xU � x �x� � G 1�� x �0H H½ 5� 
1H

Ž . �Ž . �ŽŽ . .with at least one equality. Hence D W x �U x �� � G 1�� x . NowH H

� �ŽŽ . . Ž Ž . . Ž .G 1�� x � �R V R 1�� x�y f y dyHH H

� �Ž Ž . . � � �Ž .
R V R 1�� x�y f y dyH H

Ž . � � �Ž . 	 � 	 Ž .
R N x f y dy
R f N x .H 11 1

Hence there exists K �0 such that1

� Ž . Ž Ž .. Ž . Ž . � Ž . Ž Ž ..U x � �K N x 
D W x 
D W x 
U x � �K N x .1 1 L R 1 1

�Ž . Ž Ž .. �Ž .Noting that U x � �K N x �U x , we obtain part 2.1 1
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Ž .Finally, for all x�0 and all �	� x , we have
2� � �2Ž . Ž . Ž . ŽŽ . .w x �� U � x � 1�� � � G 1�� x .�

Moreover

�� ��
� �2 Ž . Ž . Ž .� U � x �� U � x �� D W xRx x

��
�Ž Ž . Ž Ž ...�� U x � �K N x1 1x

Ž .by U4, Corollary 12 and part 2 and

� �2ŽŽ . . Ž Ž . . Ž .G 1�� x � �R V R 1�� x�y f y dyH H

2 	 � 	 Ž .
R f N x .1 1

Hence

�
� � �2Ž . Ž Ž . Ž Ž ... 	 	 Ž .w x �� U x � �K N x �R f N x .1� 1 1 1x

Ž . �Ž . Ž . �Ž .Now N x dominates U x �x and N x �x for large x, and U x �x dominates1 1
Ž . Ž . �Ž .N x and N x �x for small x. Hence there exists K �0 such that w x �1 1 2 �

Ž . Ž .�K N x . Noting that N x is continuous in x and independent of � , we2 2 2
obtain part 3. Q.E.D.

� �Theorem 24 has three corollaries. For all Borel measurable V	 V, V , put
Ž �.�1 Ž .�V� U � D �V and �V��V� 1�� U��V. Denote the bounds onR

� �W and W given in Theorem 24 by W , W , and W . Let I denote the identity1 1 2
Ž .mapping on 0, �
 . Then the first corollary is as follows.

Ž . Ž .COROLLARY 25: There is a continuous function C : 0, �
 � 0, �
 such1
�� � Ž .that, for all Borel measurable V	 V, V , we ha�e 0
�V
I and �V 
C .1

PROOF: The inequality 0
�V
I is immediate from the fact that �
�
� � � � �1Ž . Ž . Ž . Ž .�V �U . As for the inequality �V 
C , put A� U . Let W : 0, �
1 1

Ž . Ž . Ž . Ž .�Ž .� 0, �
 be any function such that: i W x � �V x if x is a point of1
Ž .� Ž . Ž . �Ž .Ž . Ž .Ž .�continuity of �V ; and ii W x 	 D �V x , D �V x and1 L R

�Ž Ž . .	 A� �V
� Ž Ž .. Ž .A W x � x otherwise.�1 ž /ŽŽ . .	 �V

�� Ž . � �4Put A�min A � ��	 W , W . Then1 1
�Ž Ž . .	 A� �V� � � ��Ž . Ž Ž . .Ž . Ž .�V � A � �V �V � �Vc d�ŽŽ . .	 �V

�� �Ž .Ž . Ž .� A �W �V 
 A �W W 
AW1 1 2 2
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Ž �by Lemma 22, by definition of W , because A �0 and by definition of A1
.respectively . Q.E.D.

The second corollary is as follows.

Ž .COROLLARY 26: There is a continuous function V : 0, �
 �� such that, for1
�� � Ž .all Borel measurable V	 V, V , we ha�e V
�V
V and �V �V .1

PROOF: We have

Ž .Ž . Ž .Ž . Ž . Ž Ž Ž .Ž .. . Ž .�V x � �V x � 1�� � V R x� �V x �y f y dyH
Ž . Ž . Ž . Ž .� 1�� U x �� V x � 1�� �

Ž Ž Ž .Ž .. . Ž . Ž .� V R x� �V x �y f y dy�V x .H
�Ž .Ž . Ž . Ž . Ž .Similarly, �V x 
V x . As for the inequality �V �V , let C : 0, �
 �1 0

Ž . Ž . Ž . Ž .Ž .0, �
 be any function such that: i C x � �V x if x is a point of0
Ž . Ž . � Ž . Ž .�continuity of �V; and ii C x 	 C x , C x and0 R L

Ž .	 U��V
� Ž Ž .. Ž .U C x � x otherwise.0 ž /Ž .	 �V

Then

Ž .	 U��V� � � ��Ž . Ž . Ž . Ž .Ž . Ž .�V � �V � 1�� U ��V �V � �Vc dž /Ž .	 �V
� ��Ž . Ž .Ž .Ž .� �V � 1�� U �C �V0

�Ž .Ž .�W � 1�� U �C C1 0 1

Ž .�W � 1�� W C1 1 1

Ž � �by Lemma 22, by definition of C , because U �0 and because U �C 
D �V0 0 R
.respectively . Q.E.D.

The third corollary is the following.

Ž .COROLLARY 27: There exists ll 	 0, �
 such that, for all Borel measurable0
� � � �V	 V, V , we ha�e �V�I on 0, ll .0

� Ž . �Ž .4PROOF: Put ll �min x �KN x �U x . Q.E.D.10

REMARK 28: Using a different representation of �V as the upper envelope
Ž .� �of smooth functions, it can be shown that �V �U ��V. This estimate does

Ž .�not provide an a priori lower bound for �V because it involves the endoge-



HYPERBOLIC CONSUMERS 953

nous quantity �V. It does however yield sharper versions of Corollaries 25 and
Ž .� Ž .� Ž .�26, namely �V 
1 and �V � �V . In particular, for all V there exists

Ž . � . Ž .l	 0, �
 such that �V�I on 0, ll and �V�I on ll , �
 .

We are now in a position to establish existence and continuous dependence
on the parameter �. Define two functions of locally bounded variation on
Ž .0, �
 to be equivalent if and only if they are equal at all points of continuity,
and let BBVV 0 denote the set of equivalence classes of functions of locallyloc

Ž . 1bounded variation on 0, �
 . Let BBVV denote the set of functions that,loc
together with their first derivative, are in BBVV 0 . Let S be the set ofloc V

�0V	BBVV such that V
V
V and V �V . View � as a mapping from S toloc 1 V
BBVV 1 , and view � and � as mappings from S to BBVV 0 . Let BBVV 0 beloc V loc loc
endowed with the topology generated by the sets of the form

x �
2 �
� �Ž . Ž .Ž . Ž .g g�g x dx�� , h x g�g dx ��H H0 0½ 5x 01

0 Ž .for some g 	BBVV , 0�x �x ��
, ��0 and continuous h : 0, �
 �� of0 loc 1 2
compact support. Let BBVV 1 be endowed with the topology generated by theloc
sets of the form

� Ž . � Ž � .4g �g	N g , g 	N g0 0

1 Ž . 0for some g 	BBVV , some open neighborhood N g of g in BBVV , and0 loc 0 0 loc
Ž � . � 0some open neighborhood N g of g in BBVV . Then we have the following0 0 loc

theorem.

� � Ž . Ž .THEOREM 29: For all �	 0, 1 , let EE � denote the set of triples W, V, C 	
BBVV 1 �BBVV 0 �BBVV 0 such that W is the current-�alue function, V is theloc loc loc
continuation-�alue function, and C is the consumption function of an equilibrium.
Then EE is nonempty �alued, compact �alued, and upper semicontinuous.

PROOF: The set S is a nonempty compact convex subset of BBVV 0 . More-V loc
over the a priori estimates contained in Theorem 9 and Corollaries 25 and 26
imply that � , � , and � are continuous, and that � is a self-map of S . WeV
may therefore apply Tychonov’s fixed-point theorem to conclude that EE is
nonempty valued, and standard arguments to conclude that EE is compact valued
and upper semicontinuous. Q.E.D.

10. THE STRONG HYPERBOLIC EULER RELATION REVISITED

In this section we show that, if �R�1 and � is sufficiently close to 1, then
there is an absorbing interval on which all equilibria C are Lipschitz continuous.
In other words, the hypotheses of Corollary 15 are satisfied.
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� . Ž .THEOREM 30: Suppose that �R�1. Then there exists �	 0, 1 and X	 0, �

� �such that, for all �	 � , 1 and all equilibria C:

Ž . Ž Ž .. � � � �i R x�C x �y	 y, X for all x	 y, X and all y	supp f ; and
Ž . � �ii C is Lipschitz continuous on y, X .

Ž .PROOF: Note first that, if ��1, then there is a unique equilibrium W , V , C .1 1 1
� � � �It is well known that W 
0 and C 	 0, 1 . Moreover, the methods of Schecht-1 1

Ž . Ž . Ž .man and Escudero 1977 show that there exist �	 0, 1 and x	 0, �
 such
Ž Ž ..that R x�C x �y
� x for all x�X.1

� � � �Next, since W 
0 and C 	 0, 1 , W and C are both Lipschitz continuous1 1 1 1
� �on y, X . Hence, since EE is compact valued and upper semicontinuous,

� 	 	 Ž . Ž .4sup W�W � W , V , C 	EE � and
1

� 	 	 Ž . Ž .4sup C�C � W , V , C 	EE �
1

	 	 � �both converge to 0 as ��1, where � denotes the supremum norm on y, X .


The existence of the absorbing interval then follows from the uniform conver-
� �gence of C to C on y, X .1

� � � �Finally, for all x	 y, X and all �	 0, 1 , we have

Ž Ž . .Ž Ž . . � Ž .W� 1�� U�C R 1�� x�y f y dyH

Ž Ž . Ž . .Ž Ž . . � Ž .� W � W�W � 1�� U�C R 1�� x�y f y dyH 1 1

� Ž Ž . . Ž .� W R 1�� x�y f y dyH 1

ŽŽ . Ž .Ž ..Ž Ž . . � Ž .� W�W � 1�� U�C R 1�� x�y f y dy .H 1

Hence, since W � 
0 and since W and C converge uniformly to W and C on1 1 1
� �y, X ,

Ž Ž . .Ž Ž . . � Ž .lim sup sup W� 1�� U�C R 1�� x�y f y dyH
��1 � � � �x	 y , X , �	 0, 1


0.

� . � �We conclude that there exists � 	 0, 1 such that, for all �	 � , 1 and all2 2
Ž . Ž .W, V, C 	EE � ,

� Ž .sup U � x
� � � �x	 y , X , �	 0, 1

2 Ž Ž . .Ž Ž . . � Ž .�R � W� 1�� U�C R 1�� x�y f y dy�0.H
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In other words, the second derivative of the current self’s objective function is
bounded away from 0. It follows at once that: the current self possesses a unique

� �best response for all x	 y, X ; this best response can be characterized by the
first-order condition; and, applying the Lipschitz Implicit Function Theorem15 to
the first-order condition, the consumption function is Lipschitz continuous on
� �y, X . Q.E.D.

REMARK 31: Theorem 30 has been proven despite the fact that the liquidity
constraint binds over some range of X.

REMARK 32: There are other cases in which the conclusions of Theorem 30
hold. For example, they hold if �� is close to 0.

REMARK 33: It does not appear to be possible to strengthen the second
conclusion of Theorem 30. Numerical simulations suggest that C is rarely, if

� .ever, Lipschitz continuous on the whole of 0, �
 .

REMARK 34: The method of continuity used in the proof of Theorem 30 can
be applied to obtain additional properties of C. For example: if U and f are
both three times continuously differentiable, and if � is sufficiently close to 1,

� � �then C �0 on y, X ; and if U and f are both four times continuously
differentiable, if there exists ��1 such that U �U
�U �U� �� , and if � is

� 16� �sufficiently close to 1, then C 
0 on y, X .

11. CONCLUSION

This paper analyzes the intrapersonal game that arises when a consumer with
a quasi-hyperbolic discount function faces liquidity constraints and uncertain
income. When the consumption function is Lipschitz continuous�a property
that holds in a neighborhood of ��1�the Hyperbolic Euler Relation reduces
to

� Ž Ž .. � � Ž . Ž � Ž .. � � Ž Ž ..U C x �E R C x ��� 1�C x � U C x .t t i�1 t�1 t�1

In general, the hyperbolic Euler Relation is characterized by an endogenous
effective discount factor, which varies with the marginal propensity to consume.

The results in this paper generalize. First, our results apply to the finite-horizon
case. More interestingly, our arguments apply when there is more than one state

15 Ž .Cf., Clarke et al. 1998, Theorem 3.1.9, p. 108 .
16 The consumption function C will in general have a downward kink at the point ll at which the

liquidity constraint ceases to bind. So C� is in general a measure.
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variable: e.g., multiple assets including illiquid assets and�or state variables that
capture endogenous preferences like habit formation.
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