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Abstract 

A limited search for polygon algorithms for use in a new military training simulation that 
interfaces with several others produced only planar algorithms. To avoid having to implement 
several different sophisticated map projections to guarantee compatibility with all the other 
simulations, we opted to develop algorithms that work directly on a sphere. 

The first is an algorithm to compute the area of a polygon whose edges are segments of great 
circles. 

Since our model represents certain object locations as mathematical points, the second topic 
is whether a specified point is inside a specified polygon. Possibly pathological cases are 
identified and eliminated. 

When we realized that most political boundaries are actually rhumb lines, use of the 
Mercator projection equations seemed unavoidable. We then reasoned that if all the edges were 
short enough, lat-Ion lines, great circle segments, and rhumb lines would be close enough to 
being identical that we could use whichever was most convenient. Thence, we looked at the 
relationship between the maximum distances between great circle segments and rhumb lines and 
between lat-Ion lines and rhumb lines as functions of length, azimuth, and latitude. 

The fmal algorithm fmds the area overlapped by two polygons. Again, potentially 
pathological cases are identified and eliminated. 

1 The research descnbed in this publication was carried out at the Jet Propulsion Laboratory, California Institute of 
Technology, under a contract with the National Aeronautics and Space Administration. 

• 
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Introduction 

A search for polygon algorithms for use in a new military training simulation that interfaces 
with several other simulations found only planar algorithms. To avoid having to implement a 
sophisticated map projection-or worse, several different sophisticated projections in an 
inherently doomed attempt to achieve compatibility with all the other simulations-we opted to 
develop algorithms that work directly on a sphere. 

The first is an algorithm to compute the area of a polygon whose edges are segments of great 
circles. 

Our model represents such things as small groups of people as being located at a 
mathematical point. The second algorithm addresses the issue of whether that point is located 
inside a specified polygon (representing the boundaries of a "neighborhood") or outside it. 

A planar polygon's edges are straight lines. On a sphere, the edges can be defmed as great 
circle segments, rhumb lines, or lat-lon linei. We began with great circle segments; then we 
realized that most "straight line" political boundaries are actually rhumb lines rather than great 
circle segments. Rhumb lines are straight on a Mercator projection/ but that fact does not help us 
avoid translating between projections. In fact, recasting the point-in-polygon line segment 
intersection tests to use rhumb line edges revealed the Mercator projection equations. 

We then reasoned that we could use great circle segments, rhumb lines, or lat-Ion lines for 
the polygons' edges if they were not too long. But how long is too long? 

2 This shorthand expression is meant to mean "straight line segments connecting points on a plot of latitude vs 
longitude, which is also known as an equidistant cylindrical, equirectangular, or Plate-Caree projection". See 
[Snyder 87] or [Snyder 89]. We will refer to this projection as the "lat-lon" projection. 

3 [Snyder 87] p 38. 
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A preliminary investigation suggested that an edge could be over a hundred kilometers long 
before the difference between rhumb lines and great circle segments exceeds the size of a pixel 
on our lat-Ion screen display. It also appeared that rhumb lines between two points are between 
the great circle segments and the lat-Ion lines between the same points. Furthermore, the lat-Ion 
lines are closer to the rhumb lines than the great circle segments are. The fourth section gives 
quantitative comparisons between the maximum distances between these three kinds of "straight 
line segments" as a function of length, azimuth, and latitude. Either the screen resolution, the 
real-world uncertainty as to the locations of the boundaries, or the real-world footprints of the 
things that are modeled as being located at a point can be used to choose a value for the 
maximum acceptable distance. 

The final section presents an algorithm for computing the area of overlap between two 
polygons. There is a variety of potentially pathological situations that must be considered if the 
polygons are allowed to have gerrymandered shapes. 

Preliminaries 

Assume we are dealing with a polygon with N vertices. The polygon is simply connected (a 
single piece), has no holes, no edge crosses or touches another, and neither pole is inside the 
polygon. 

The polygon is described in a counterclockwise direction4 by a succession of vertices, 
numbered from 0 to N-l. A vertex N, if given, is identical to vertex O. Note that "inside" and 
"outside" are defined by the requirement that the polygon be counterclockwise and/or by the 
requirement that neither pole be inside. 

The location of each vertex is given by its latitude and longitude. In the algorithms, latitude 
and longitude are expressed in radians. Latitude is zero at the equator, north is positive, south is 
negative. The latitude of point i is denoted by 4Ji. Longitude is zero at Greenwich; east is 
positive, west is negative. The longitude of point i is denoted by A;. 

The radius of the Earth is denoted by R. The area of the polygon is denoted by A and is 
expressed in the square of the units used for R. 

Area of a Polygon on a Sphere 

The Planar Case 

Only a few changes are needed to extend the planar algorithm for use on a sphere. 

First, consider the planar polygon at the top of the next page. Assume that the coordinates of 
its vertices are given in sequence in an overall counterclockwise direction. The sequence 
numbers of some of the vertices are shown in the figure: 0, 1,2,3,4, ... , N-2, N-I, N. Think of 
each edge that goes to the right as being a bottom surface and each edge that goes to the left as 
being a top surface. 

4 If the polygon is clockwise, the absolute value of the area will be the same, but the sign will be reversed (that is, 
negative). The point-in-polygon algorithm will be unaffected. 
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N-I 

baseline 

Planimeter Algorithm. Without loss of generality, the polygon is assumed to be 
described in a counterclockwise direction. Edges that go from right to left are considered 
to be "top" edges, those that go from left to right are "bottom" edges. Then, the area of 
the polygon is the sum of the areas between the top edges and the baseline minus the 
sum of the areas between the bottom edges and the baseline. It does not matter how far 
the baseline is from the polygon, as its coordinates will cancel out of the final equation. 
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Then, the area of the polygon is simply the area that is below the top surfaces and above the 
bottom surfaces. Or, to put it another way, the area of the polygon is the area between the top 
surfaces and the indicated baseline minus the area between the bottom surfaces and the baseline. 
For simplicity, the baseline must be entirely below the polygon. 

The area, then, is the sum of the areas under the edges, taking edges that go to the right as 
generating negative contributions to area, and those that go to the left as positive. Vertical edges 
will not contribute directly to the sum, but they will cause the top surfaces to be separated from 
the corresponding bottom surfaces-so they most definitely will affect the area. Denoting the 
signed area under the edge that goes from point i to point i+ 1 by ~ i+I gives the following , 

expression. 

A = .401 + AI2 + A23 + ... + AN-2, N-I + AN-I, N 

For convenience, let us define the x coordinate as increasing to the right with zero at any 
convenient location, Y as increasing upward with zero at the baseline. Then the region under the 
edge from point i to point i+ 1 is a trapezoid and its area is given by the width times the average 
height: 

A . 1 = (x· -x· 1)' (Yi + Yi+d 
1,1+ 1 l+ 2 

Skipping the steps of using this expression in the area equation for all the values of i, then 
collecting terms in Yi gives a formula for the area of the planar polygon. 

-2, A = (Xl - xN-d' Yo + (X2 - XO)· YI + ... + (XN-I - XN-3)' YN-2 + (XO - XN-2)' YN-I 

This formula can be rewritten as 

1 }:N-I 
A=-- (x· I-X' I)'Y' 2 i=O l+ 1- I 
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The Spherical Case - Exact Solution 

When large polygons are drawn on a sphere, the area enclosed by the edges will be 
significantly more than would be the case if the edges were drawn on a plane. Suppose the edges 
are segments of great circles. The same approach can be used to compute the area as on the 
plane, but the baseline is replaced by the South Pole. The fonnula developed below will not 
apply to a polygon that contains either pole. 

The area of the polygon can again be obtained by adding the signed areas south of each edge 
of the polygon: 

The regions whose areas are summed, however, are not trapezoids, but spherical triangles, 
with one vertex at the South Pole, the other two at the ends of the edge. 

North Pole 

South Pole 

Area of a Polar Spherical Triangle. The spherical triangle of interest has a vertex at the 
South Pole, is bounded on two sides by meridians and on the other side by the polygon 
edge, which is a segment of a great circle. 

Since one vertex is at the South Pole and two sides are along meridians, it seems like there 
should be a simple expression for the area. If there is, we were unable to find it A complicated 
exact answer can be found by the following sequence of steps: 

FIrst, compute the great circle distance between the points, d, from the Haversine Fonnula, 
which is well conditioned for small distances.s 

sin2 d = sin2 l/Ji+l - l/Ji + coscp .. coscp. . sin2 A;+l - A; 
2 2 I 1+1 2 

Thus, the three sides of the triangle have lengths d, 1r + l/Jj. and 1r + l/Jj+l. Compute the semi-
2 2 

perimeter, s, from 

s [Chamberlain 01). 
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1 (d (n ) (n )) d Jr l/Ji + l/Ji+l s=2" + 2+ l/Ji + 2+ l/Ji+l =2"+2+ 2 

Then, using I'Huiller's formula6
, compute the spherical excess, E, from 

Finally, the area is given by 
2 A· 1 =E·R 1,1+ 
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This result is obviously unusable. Instead of using a looked-up formula, let us go back to the 
idea that there should be a simple solution that winds up looking something like the solution in 
the planar case. 

The Spherical Case - Approximation 

To get the area under an edge, let us integrate, first over latitude, then over longitude. 

North Pole 

South Pole 

Area of a Polar Spherical Triangle. The integration element for computing the area of a 
spherical triangle with one vertex at the South Pole is bounded on two sides by meridians 
and on the other two sides by great circle segments through endpoints that are at the 
same latitude. 

The N-S sides of the element of area are along a meridian, so their length is R· dl/J. The end 
points of the E-W sides have the same latitude, but they are connected by a segment of a great 
circle, not by a line of constant latitude. As the width of the wedge approaches zero, the great 
circle approaches the chord, and the length of that chord is R· cos l/J. d)". Thus, the element of 

area is R2. cosl/J· dl/J· dJ... 

6 [Williams 06], "Some general spherical triangle formulae". 
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Integrating over the latitude from the South Pole to the point (cp, A) on the edge from point i 
to point i+ 1 gives the following for the area of the dA.-wide slice. 

dA = fq,().) R2 ·cos¢· d¢ dA 
q,=-tr/2 

Note that the upper limit is the great circle segment that connects the two points. Extreme rigor 
would have demanded use of a different symbol than tP for the variable of integration than for the 
boundary. Keeping that in mind, the integration over latitude yields the following. 

dA = R2. sin¢~~)2· dA =R2. (1 + sin¢(A))· dA 

Approximating sin¢(A) by its average value throughout the longitude interval from A; to 

A;+I' then integrating, gives 
2 

Ai,i+l = ~ ·(}..;+1-}..;)·(2+sin¢i +sin¢i+l) 

for the signed area under the edge that goes from point i to point i+ 1. 

Summing the signed areas under all the edges gives the following. 

- A . ~ = (AI - Ao)( 2 + sin 4JI + sin ¢o) 
R 

+(~ - Ad(2 + sin~ + sin4JI) 

+(A3 - ~}(2 + sin¢3 + sin~) 
+ ... 

+(AN -AN_d(2+sin¢N +sin¢N_d 

Many tenns appear with both plus and minus signs, the polygon is closed, and point N is point O. 
Simplifying and collecting terms by latitude gives the area of a polygon on a sphere: 

R2 N-I 
A = -2 ~i=O (A;+I - A;-d· sin ¢i 

The similarity of this fonnula to the planar fonnula is startling. 

Point in Polygon 

This section discusses whether a point Q with coordinates (Ao, ¢Q) is inside a specified 

polygon. If the point is exactly on an edge or at a vertex, it is defined to be inside the polygon, 
though little change would be needed with other defInitions. 

The algorithm is based on the familiar planar algorithm7 of constructing a test ray from the 
point in question to a point known to be outside the polygon (the North Pole is used here), 
followed by counting how many edges the ray crosses. An odd number indicates that the point is 
inside the polygon. Since each edge is considered in turn, vertices that have the same longitude 

7 See, for example, [Bourke 87] or [Finley 06], 
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as the test ray are potentially pathological. To avoid miscounting, such points (provided they are 
north of the test point) are treated as if they were east of the ray. Thus, those edges whose other 
end is westward will be counted, while those whose other end is not westward will not. 

First, avoid performing the computationally expensive spherical trigonometry computations 
when possible by checking the test ray against a pre-computed bounding box before looking at 
any of the polygon's edges. If the test ray does intersect the bounding box, Q is checked against 
each of the polygon's vertices. There is no point in testing whether Q is on an edge at this point, 
because that will be revealed when the intersection tests are performed and the rest of the edges 
can be skipped at that time. 

If Q is not on a vertex, the ray is compared to each edge of the polygon so the number of 
edge crossings can be counted.8 North-south edges are ignored because they add an even number 
of crossings (either zero or two). If the longitude of the ray is not between the longitudes of the 
ends of the edge, there is no intersection. If both ends of the edge are in the northern hemisphere 
and the test point is south of the chord (on a lat-Ion projection) between the end points, it 
intersects the edge. Only if the test point is north of that chord is it necessary to compute the 
latitude of the edge at the test point's longitude and compare it to the latitude of Q. 

"Bullet-proof' implementation of this algorithm allows for the fact that computers have 
finite precision when making equality tests between real numbers and when computing the 
arguments for inverse trigonometric functions. 

Three Kinds of Straight Lines 

While the point-in-polygon algorithm is topological in nature, the bounding box and the 
crossing tests assume a particular shape for the edges between successive vertices. On a plane, 
the edges are straight-line segments, but what are they on the surface of a sphere? 

The shortest distance between two points is a segment of a great circle. A line with a constant 
direction is a rhumb line.9 A straight line on a lat-lon projection is neither of these. If both points 
are in the northern (or southern) hemisphere, the rhumb line lies between the great circle segment 
and the lat-Ion line. 

Various implications of each of these kinds of "straight lines" are discussed below. We have 
drawn heavily on Ed Williams' extremely useful collection of solutions of problems in spherical 
trigonometry. \0 

8 An acttlal count is not needed; a Boolean variable can be flipped back and forth between even and odd. 

9 Most "straight line" political boundaries are actually rhumb lines. The oblique portion of the Califomia-Nevada 
border, for example, bears southeast from a defmed latitude and longitude in Lake Tahoe. See [Supreme Court SO]. 

10 See [Williams 06]. While that reference contains general solutions, some of the equations used here require that 
the lines are no more than n/2 radians (about 6214 miles) in length and do not cross the ±lS0° meridian. 
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Lat-Lon Lines 

Latitude as a Function of Longitude on a Lat-Lon Line 

The expression for latitude as a function of longitude on a lat-Ion line that goes through two 
specified points is the familiar equation of a straight line: 

A-AI tP=¢!. + (tP2-¢!.) 
Az -AI 

Bounding Box for Lat-Lon Edges 

If the point-in-polygon test is going to be made repeatedly, it will generally be advantageous 
to pre-compute the maximum and minimum latitudes and longitudes for the polygon: 
tPN' AE' tPs, Aw for the northern, eastern, southern, and western limits. 

The coordinates of the bounding box for polygons whose edges are lat-Ion lines are simply 
the maxima and minima if the coordinates of the vertices. 

tPN = max tPi 
tPs = min tPi 

Aw =max)..; 
AE = min)..; 

Intersection Test for Lat-Lon Edges 

The purpose of the intersection test is to count the number of edges crossed by a (northerly) 
test ray from point Q, which might be in the polygon, to a point that is known to be outside. Each 
edge is examined one at a time, so if the test ray goes through a vertex, it could be counted twice, 
once for each of the edges that meet at the vertex. To ensure that a test ray that goes through a 
vertex is counted once if the other ends of the two edges are on opposite sides of the test ray and 
either zero or two times if the other ends are on the same side, vertices that are exactly on the test 
ray are treated as being to the east of the test ray. 

The latitude of the crossing point, X, is as follows: 

tPx =tPi +(tPi+I-tPi)(~ -Ad 
A;+I - A; 

Interpolates in a Lat-Lon Line 

Suppose an edge with endpoints A and B, with coordinates (AA,tPA) and (AB,tPB)' is 

assumed to be a lat-Ion line. If the lat-Ion line is to be used as an approximation of a great circle 
segment or rhumb line, it must not be too long-as is discussed in a later section. If the 
maximum acceptable length is Lmax , where should the line be split? That is, what are the lat-Ion 

coordinates of suitable interpolated points on the edge? 
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First, compute the edge length,Il 
r-----------~----~----------

( )2 2(rpA + rpB) ( )2 L = R· ).B -).A cos 2 + rpB - rpA 

where R is the radius of the Earth. 

If the edge is too long, the number of points that have to be inserted, M, is the truncated 
quotient of L divided by Lmax. Then the coordinates of the r-th interpolated point are: 

Great Circle Segments 

J..,. =).A + _r_. (AB - ).A) 
M+l 

rp, = rp A + M
r
+ 1 . (rpB - rp A) 

Latitude as a Function of Longitude on a Great Circle 
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The formula for latitude as a function of longitude on a great circle that goes through two 
specified points is given by: 12 

The figure below shows a great circle on a lat-Ion projection. The equator and the meridians are 
the only great circles that appear as straight lines in this projection. 

Lat YS Lon on a Great Circle 

90~-----------------------------------------------------------, 

60+---------~ __ --~~--__ ~----------------------------------~ 

30+---~~--------------------~~----------------------------_; 

270 3 0 

-60t---------------------------------------~~----------~~--_1 

-90~----------------------------------------------------------~ 
Longitude 

Latitude vs Longitude on a Great Circle. When plotted on a lat-Ion projection, great 
circles look somewhat like blunted sine curves, as illustrated here. 

11 Note that the accuracy of this calculation is not too important, so there is no harm in using the average latitude. 
Also. keep in mind that latitudes and longitudes are assumed to be expressed in radians in all computations in this 
paper-though degrees are sometimes used in figures. 

12 [Williams 061. "Latitude of point on GC". 
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Bounding Box for Great Circle Edges 

The northern and southern edges of the bounding box are defmed by lines of constant 
latitude, and are not generally great circles. The eastern and western edges are defmed by lines of 
constant longitude, which are great circles. 

Thus, the limiting longitudes are the maximum and minimum longitudes of the vertices. 

Aw = mini A; and AE = maxi A; 

If the polygon is entirely in the northern hemisphere, the latitude of the southern edge of the 
bounding box is the minimum of the latitudes of the vertices. That is: tPs = mini tPi. If the 

polygon is entirely in the southern hemisphere, the northern edge is given by the maximum 
vertex latitude: tPN = maxi tPi . 

The other latitudinal boundary, however, is not so obvious, as the extreme latitude might not 
be at the end point of a segment Again drawing upon Ed Williams' formulas, we have a formula 
for 8, the azimuth ("initial course"l3) of the great circle segment from Pi toward P;+1 at P;: 

if A; = A;+1 and t/>i < tPi+l 

if A; = A;+l and t/>i > tPi+l 

If A; = A;+1 and tPi = tPi+l' the azimuth is undefmed, but then the two points are identical, a case 
that should be removed before further processing. 

Then, the maximum (and minimum) latitude on the great circle segment from point i to point 
i + 1, which is usually (but not necessarily) at one of the endpoints, is given by 

{

arCCOS(lSin 0i cos tPi I) 
tPmx i = max tPi 

tPi+l 

Intersection Test for Great Circle Edges 

The latitude of the point at which the northerly ray from Q intersects the great circle segment 
that goes through the end points of Ei is given by extracting tPx from the following equation: 

sin( Aa - A;+d sin( Aa - A;) 
tantPx = (tantP;) . (A; A; ) (tantPi+d. (A; A; ) sm . - ·+1 sm . - ·+1 

13 [Williams 06] "Course between points". 
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Interpolates in a Segment of a Great Circle 

Suppose an edge with endpoints A andB, with coordinates (AA,tPA) and ()"B,tPB)' is 

assumed to be a segment of a great circle. If it is longer than the maximum acceptable length, 
Lmax , what are the lat-Ion coordinates of suitable interpolated points on the edge? 

First, compute the edge length, 

L = 2· R· arcsi~ r"Si-n-2(-:-tPt-;-tP-2-:-)-+-c-os-th-.-co-S-4>2-.-si-n-2(-:-A-I-;-~--:-) ) 

If the edge is too long, the number of points that have to be inserted, M, is the truncated 
quotient of L divided by Lmax. 

Next, compute, e A ' the azimuth of the great circle at point A by the formula on the previous 
page. Then the coordinates of the r-th interpolated point are: 14 

tPr =arCSi~Sin tPA . cO{M
r
+ I· L) + cos tPA . Si~Mr+ 1· L). cos eA) 

Rhumb Lines 

Latitude as a Function of Longitude on a Rhumb Line 

Ed Williams also gives formulas that relate latitude and longitude on a rhumb line through 
two specified points. First, calculate the constant azimuth of the shortest rhumb line between the 
two points. IS 16 

eRL = mod{ [atan2{B,A) ],2:r} 

14 [Williams 06], "Lat/lon given radial and distance". 

15 As in [Williams 06], "Rhumb Line Navigation", from which this was taken, the atan2 function "has the 
conventional (C) ordering of arguments, namely atan2(y ,x)", which differs from that of Microsoft Excel. 

16 Implementation note: If a is the angle between the rhumb line and due north or south given by the flI'St quadrant 
result of a = arctan(B/A), the atan function puts the result in the correct quadrant, then the mod function puts it in 
tb.e range 0 to 231:. When the tangent of the rhumb line's azimuth is needed, that is simply tan 8 RL .. B/ A. 
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Then, the formula that relates latitude to longitude can be expressed in terms of that azimuth 
as follows: 

Meridians and parallels of latitude are the only rhumb lines that appear as straight lines in a 
lat-lon projection. 

Lat vs Lon on a Rhumb Une 

90~--------------------------------------------~ 

:: r------ --- ----------------------------~-.. .:...~: ::..----.-

~ 
60~----------------~~------------------------~ 

~50 ./ 

~ /' 
340 

/' 
30 ~------~-------------------------------------~ 

20 / 

10 / 

0 1
/ 

o 20 40 60 80 100 120 140 160 180 

Longitude 

Latitude vs Longitude on a Rhumb Line. When plotted on a lat-Ion projection, rhumb lines that 
do not follow a meridian directly to the poles approach them asymptotically, as illustrated here. 

Bounding Box for Rhumb Line Edges 

Since rhumb lines are pieces of monotonically northerly-southerly spirals about both poles, 
the bounding box can be determined by looking only at the end points of the edges, just as with 
lat-Ion lines: tPN = max tPi' tPs = min tPi' Aw = max~, )..E = min~ 

Intersection Test for Rhumb Line Edges 

The latitude of the point at which the northerly ray from Q intersects the rhumb line that goes 
through the end points of edge Ei is given by extracting tPx from the following equation: 

Interpolates in a Rhumb Line 

Suppose an edge with endpoints A and a, with coordinates ()..A,tPA) and ()..B,tPB)' is 
assumed to be a rhumb line. If it is longer than the maximum acceptable length, Lmax , what are 

the lat-Ion coordinates of suitable interpolated points on the edge? 
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First, compute the edge length, 

L=R· 

otherwise 

If the edge is too long, the number of points that have to be inserted, M, is the truncated 
quotient of Lover Lmax. Then the coordinates of the r-th interpolated point are: 

r 
~r =~A +-_·cosfJRL 

M+l 

q= 

1 1 r sin fJRL 
''T =.f\.A +--. 

M+l q 

How Long is Too Long? 

COS~A 

otherwise 

Under what circumstances does it matter which kind of "straight line" we use? 
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Implied differences in edge length are smail,17 not particularly important in our context, and 
can be computed, if needed, from the formulas given in this paper. 

The area of a polygon has only a second-order dependence on the exact shape of the edges 
unless the polygon is extremely gerrymandered. That is, a little fuzziness along the edges has 
only a small effect on the bulk of the area. In fact, if the polygon is entirely in either the northern 
or the southern hemisphere, the differences between the different definitions considered here is 
systematic. Consequently, errors near the southern edges will tend to cancel the errors near 
northern edges. 

Only when the edge location is inspected closely-as in the point-in-polygon algorithm­
does the exact shape of the edge matter. Consequently, we examined the maximum separation 
between the three kinds of "straight line" segments. 

Closed-form expressions for those distances promised to be so complicated that they would 
provide no insight So, we took the alternative approach of varying length, azimuth, and latitude, 

17 [Williams 06] notes that the distance between LAX (Los Angeles) and JFK (New York:) on a rhumb line is only 
1 % greater than the great circle distance (2164.6 nm versus 2144 nm). [Alexander 04] notes on pages 355-356 that 

the worst possible ratio of rhumb line distance to great circle distance is 'lt/2, or 57% too long. Lat-Ion lines are a 
little worse. 
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then computing the distance between points for many fractions of the way along each line, then 
recording the maximum separation. We used this information to produce the following tables. [8 

The contents of the cells in the tables answer the question that titles this section: How long 
an edge is too long? Specifically, 

1. Select a table for MSL' the maximum acceptable difference in location of a point on the edge 
if the edge were to be defined as a rhumb line or as a lat-Ion lineor for Moe, the maximum 
acceptable difference between a great circle and a lat-Ion line. 

• Find the cell for an edge for which the absolute value of the latitude is between the 
numbers given along the left side of the table, and 

• the absolute value of the azimuth (the angle with the meridian) is between the numbers 
along the bottom of the table. 

2. The number in the cell is the critical edge length. That is, there would be a point somewhere 
along a longer edge whose location, depending on which definition is used, would differ by 
more than the maximum acceptable value. 

Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 
o 

MaxsL, Acceptable Distance between Rhumb Line & Lat-Lon Line = 1 meter 
Cells contain Maximum Edge Length in kilometers 

8 6 

11 8 

14 10 

16 12 

19 14 

23 17 

29 21 

41 30 

10 20 

5 

7 

9 

10 

12 

15 

18 

26 

30 

5 5 

7 7 

8 8 

10 10 

12 12 

14 14 

17 17 

25 25 

40 
Azimuth in 0 

5 4 4 4 

7 7 8 8 

8 9 10 12 

10 10 12 16 

12 12 14 19 

14 15 17 23 

17 18 21 29 

25 26 30 42 

50 60 70 80 

18 It should be noted that these tables are the conceptual equivalent of a function with three arguments: the latitude of 
the more southwesterly end point, the azimuth toward the other end point. and the maximum acceptable distance 
between the rhumb line and the other kind of "straight" line segment This function produces-that is, the content of 
the tables is-a maximum edge length that satisfies those conditions. All three of the arguments must be known to 
use these tables. 

90 
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Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 

Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 

o 

o 

MaxsL• Acceptable Distance between Rhumb Line & Lat-Lon Line = 5 meters 

17 12 

24 17 

30 22 

36 26 

42 31 

51 37 

64 47 

91 67 

10 

Clio M ° Ed L th ° kOI t e s contaIn ax," um gE eng In lome ers 

11 

15 

19 

23 

27 

32 

41 

58 

20 30 

10 10 

14 14 

18 18 

21 21 

25 25 

30 30 

38 38 

54 54 

40 
Azimuth in 0 

10 11 

14 15 

18 19 

21 23 

25 27 

30 32 

38 41 

54 58 

50 60 70 

12 17 

17 24 

22 30 

26 36 

31 43 

38 51 

47 64 

67 92 

80 

MaxSLo Acceptable Distance between Rhumb Line & Lat-Lon Line = 10 meters 
Cells contain Maximum Edge Length in kilometers 

23 17 

33 24 

42 31 

50 37 

60 44 

72 53 

90 66 

127 93 

10 20 

15 

21 

27 

32 

38 

45 

57 

81 

30 

14 14 

20 20 

25 25 

30 30 

36 36 

43 43 

54 54 

76 76 

40 
Azimuth in 0 

14 15 17 23 

20 21 24 33 

25 27 31 42 

30 32 37 50 

36 38 44 60 

43 46 53 72 

54 57 66 91 

76 81 95 130 

50 60 70 80 

90 

90 
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Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 

Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 

o 

o 

MaxsLo Acceptable Distance between Rhumb Line & Lat-Lon Line = 20 meters 

33 24 

47 34 

59 43 

71 52 

84 62 

101 74 

127 93 

177 131 

10 

C II t ' M' Ed L th' k'i t ~I S con[c In axlmum ge eng In lomeers 

21 

30 

37 

45 

53 

64 

80 

113 

20 30 

20 20 

28 28 

35 35 

42 42 

50 50 

60 60 

75 75 

107 107 

40 
Azimuth in 0 

20 21 

28 30 

35 37 

42 45 

50 53 

60 64 

75 81 

107 115 

50 60 70 

24 33 

34 47 

43 59 

52 71 

62 85 

74 102 

93 128 

133 183 

80 

MaxSL• Acceptable Distance between Rhumb Line & Lat-Lon Line = 50 meters 
Cells contain Maximum Edge Length in kilometers 

51 38 

73 54 

92 68 

111 82 

132 97 

159 117 

198 146 

275 204 

10 20 

32 

47 

59 

70 

84 

101 

126 

177 

30 

31 31 

44 44 

55 55 

66 66 

79 79 

95 95 

118 118 

167 157 

40 
Azimuth in 0 

31 33 38 52 

44 47 54 74 

55 59 68 93 

66 71 82 112 

79 84 97 133 

95 101 117 161 

119 127 147 202 

168 179 209 288 

50 60 70 80 

90 

90 
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Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 

Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 

o 

o 

MaxSL• Acceptable Distance between Rhumb Line & Lat-Lon Line = 100 meters 

72 53 

103 76 

130 95 

157 115 

186 137 

223 164 

'Zl7 204 

380 283 

10 

C II t" M" Ed L th" k"1 t e s com, In axlfr urn gE eng In lome ers 

46 

65 

82 

99 

118 

142 

1n 

247 

20 30 

43 43 

62 62 

77 77 

93 93 

111 111 

133 133 

167 167 

233 233 

40 
Azimuth in 0 

43 46 

62 66 

77 83 

93 99 

111 118 

133 142 

167 178 

235 252 

50 60 70 

53 73 

76 104 

96 131 

115 158 

137 188 

165 227 

207 285 

294 405 

80 90 

MaxSL• Acceptable Distance between Rhumb Line & Lat-Lon Line = 200 meters 

101 74 

145 107 

183 134 

220 162 

262 192 

313 230 

387 286 

523 392 

10 

C II t " M Ed L th" k"1 t e s com, In axlmum ge eng In lome ers 

64 

92 

116 

140 

166 

199 

248 

343 

20 30 

60 60 

87 87 

109 109 

131 131 

156 156 

187 187 

234 234 

325 325 

40 
Azimuth in 0 

60 64 

87 93 

109 116 

131 140 

156 167 

188 201 

235 251 

328 352 

50 60 70 

75 103 

107 147 

135 185 

163 223 

194 266 

233 320 

292 402 

411 569 

80 90 
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Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 

Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 

o 

o 

MaxSL1 Acceptable Distance between Rhumb Line & Lat-Lon Line = 500 meters 

157 116 

227 167 

286 211 

344 253 

408 301 

487 360 

598 445 

787 597 

10 

C II ' M' Ed L h' k'i e s contain axUY um gE engt In lometers 

100 

145 

182 

219 

261 

312 

387 

525 

20 30 

94 94 

136 136 

171 171 

206 206 

245 245 

294 294 

365 365 

500 500 

40 
Azimuth in 0 

95 101 

136 146 

172 183 

207 221 

246 262 

295 315 

367 393 

505 545 

50 60 70 

118 161 

169 232 

213 292 

257 352 

305 419 

367 504 

458 632 

639 889 

80 

M~cl Acceptable Distance between Rhumb Line & Great Circle = 1 meter 

8 6 

11 8 

13 10 

16 12 

19 14 

23 17 

29 21 

41 29 

10 

C II ' M' Ed L h' k'i e s cont~ In axlmum gE engt In lometers 

5 

7 

8 

10 

12 

14 

17 

24 

20 30 

4 4 

6 5 

7 7 

9 8 

10 9 

12 11 

15 14 

22 20 

40 
Azimuth in 0 

4 4 

5 5 

6 6 

8 7 

9 9 

11 10 

13 13 

19 18 

50 60 70 

3 3 

5 5 

6 6 

7 7 

8 8 

10 10 

12 12 

18 17 

80 

90 

90 
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Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 

Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 

o 

o 

MaxGc• Acceptable Distance between Rhumb Line & Great Circle = 5 meters 

17 12 

24 17 

30 21 

35 25 

42 30 

51 36 

64 45 

90 65 

10 

C II " M" Ed L h" k"1 e s conte In axlmum gE engt In lometers 

10 

14 

18 

21 

25 

30 

38 

54 

20 30 

9 8 

12 11 

16 14 

19 17 

22 20 

27 24 

33 31 

48 44 

40 
Azimuth in 0 

8 7 

11 10 

14 13 

16 16 

19 18 

23 22 

29 28 

41 40 

50 60 70 

7 7 

10 10 

13 13 

15 15 

18 18 

22 22 

27 27 

39 39 

80 

M~c. Acceptable Distance between Rhumb Une & Great Circle = 10 meters 

23 17 

33 24 

42 30 

50 36 

59 42 

71 51 

89 64 

126 91 

10 

C II t" M" Ed L h" k"1 e s con am axlmum gE engt In lometers 

14 

20 

25 

30 

35 

42 

53 

75 

20 30 

12 11 

17 16 

22 20 

26 24 

31 29 

37 34 

47 43 

67 61 

40 
Azimuth in 0 

11 10 

15 15 

19 18 

23 22 

27 26 

32 31 

41 39 

58 56 

50 60 70 

10 10 

14 14 

18 18 

21 21 

25 25 

30 30 

38 38 

55 54 

80 

90 

90 
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Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 

Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 

o 

o 

MaxGc• Acceptable Distance between Rhumb Line & Great Circle = 20 meters 

32 23 

46 33 

58 42 

70 50 

84 60 

100 72 

126 90 

176 127 

10 

ell' M' Ed L h' k'i e s contc In axnT um ge engt In lometers 

19 

28 

35 

42 

50 

60 

75 

106 

20 30 

17 16 

24 22 

31 28 

37 34 

44 40 

53 48 

66 61 

94 86 

40 
Azimuth in 0 

15 14 

21 20 

27 25 

32 31 

38 36 

46 44 

57 55 

81 78 

50 60 70 

14 14 

20 20 

25 25 

30 30 

36 35 

43 43 

54 53 

77 77 

80 

MIDCc3c. Acceptable Distance between Rhumb Line & Great Circle = 50 meters 
Cells contain Maximum Edge Length in kilometers 

51 36 

73 52 

92 66 

110 79 

131 94 

158 113 

197 141 

273 198 

10 20 

30 

43 

54 

66 

78 

94 

117 

165 

30 

27 25 

38 35 

48 44 

58 53 

69 63 

83 76 

104 95 

147 135 

40 
Azimuth in 0 

23 22 22 22 

33 32 31 31 

42 40 39 39 

50 48 47 47 

60 57 56 56 

72 69 67 67 

90 86 85 84 

128 123 121 121 

50 60 70 80 

90 

90 
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Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 

Latitude 
in 0 

80 

70 

60 

50 

40 

30 

20 

10 

o 

o 

o 

MaxGc• Acceptable Distance between Rhumb Line & Great Circle = 100 meters 

71 51 

103 74 

129 92 

155 111 

185 132 

222 159 

275 198 

377 275 

10 

C II " M" Ed L h" k"1 e s contain axlmum gE engt In lometers 

43 

61 

77 

92 

110 

132 

165 

231 

20 30 

38 35 

54 50 

68 62 

82 75 

97 89 

117 107 

146 134 

205 189 

40 
Azimuth in 0 

33 31 

47 45 

59 56 

71 68 

84 81 

101 97 

127 122 

179 173 

50 60 70 

31 30 

44 44 

55 55 

66 66 

79 78 

95 94 

119 119 

171 170 

80 90 

MaxGc• Acceptable Distance between Rhumb Une & Great Circle = 200 meters 
Cells contain Maximum Edge Length in kilometers 

100 72 

144 103 

182 130 

219 157 

260 186 

311 223 

384 278 

519 381 

10 20 

60 

86 

108 

130 

155 

186 

231 

320 

30 

53 49 

76 70 

96 88 

115 106 

137 126 

164 151 

205 189 

286 265 

40 
Azimuth in 0 

46 44 43 43 

66 63 62 61 

83 79 78 77 

99 96 94 93 

118 114 111 111 

142 137 134 133 

178 172 168 168 

252 244 240 240 

50 60 70 80 90 
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Latitude 
in 0 

M~c, Acceptable Distance between Rhumb Line & Great Circle = 500 meters 
C II t' M Ed L th' k'l t ~I S con am axlmum ge eng In lome ers 

80 
156 112 93 

70 
225 162 135 

60 
284 204 170 

50 
342 246 204 

40 
405 292 243 

30 
483 349 291 

20 
593 432 361 

10 
782 581 491 

o 
o 10 20 30 

Area Overlapped by Two Polygons 

83 76 

119 110 

150 138 

181 166 

215 198 

258 237 

321 296 

441 410 

40 
Azimuth in 0 

50 

72 69 

103 99 

130 125 

157 151 

186 179 

224 216 

280 270 

392 381 

60 70 

68 

97 

122 

148 

176 

211 

266 

378 

80 

Suppose we have two Polygons, say P and T, that may have arbitrarily gerrymandered 
shapes. The issue is to determine the area shared by both polygons. 

68 

97 

122 

147 

175 

211 

265 

378 

To find that area, first check for simple cases, such as non-overlapping bounding boxes and 
one polygon being completely inside the other . 

• a b d 

f~ 
The No-Crossing Cases. Either polygon can be completely inside the other(as in a or b), 
even if they share some vertices or edges (as in e). They can be so thoroughly separated 
that their bounding boxes do not intersect (as in c). Their bounding boxes can intersect, 
but the polygons themselves do not (as in d), even though they may share some vertices 
or edges (as in f). 

90 
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If the situation is not one of these simple cases, some preparation of the polygons is in order. 
In particular, fmd all of the places where edges of P and T intersect each other, including end 
points of edges that lie on top of each other, and insert those additional vertices into both 
polygons as needed. 

Crossings-Add Points As Needed. Every edge in one polygon is compared to every 
edge in the other polygon to identify all of the intersection points and regions of overlap. 
Not all vertices that are on both polygons are crossing points, so it is necessary to inspect 
them further. Following the perimeter of one of the polygons (in a counterclockwise 
direction), the final shared vertex before the perimeter changes from being inside to being 
outside (or vice versa) is marked as a crossing point (shown in the figure as solid circles; 
some of the other shared vertices are shown as hollow circles). 

When done, both polygons contain all of the points they share. Then, follow the 
circumference of one of the polygons, say P, marking all of the crossings. This is a little tricky, 
because P might "bounce off' T instead of crossing it. Only the actual crossings are marked. For 
use in the extraction of sub-polygons, a record of the vertex number in the other polygon can be 
kept, either with the crossing points themselves19 or in a separate table. 

Then, the overlapped regions can be extracted by tracing along successive vertices of one of 
the polygons, say P, always in sequence, which is counterclockwise, until arriving at a vertex 
marked as a crossing. Then, an overlap polygon, S, is extracted by adding vertices from P to S 
until the next crossing is found. Then follow the other polygon, T, adding points from T to S, 
until the next crossing is found. Then follow P, then T, and so on, until back at the frrst of the 
points in P that is in S. While constructing S, unmark vertices as they are used to change from P 
to T or vice versa. 

Once S has been completed, its area can be computed by the algorithm described earlieJ?o and 
added to an accumulating total. Then S can be emptied and used again. 

19 In fact, the mark could be that sequence number itself, with a nuII value indicating that a vertex is not a crossing. 

20 The area computation requires an assumption about the shape of the edges. The relative error caused by assuming 

the wrong shape of the edges, however, is smaIl. Consider the total area of the lens-shaped regions between each 
pair of vertices bounded by a great circle segment and a rhumb line. The relative error caused by using the great 

circle segments is the area of all the lenses divided by the area of the polygon itself. If the edges are short enough, 
the lenses are very slender, so the relative error is very small 
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Having disposed of an overlap polygon and unmarked all of the vertices on P corresponding 
to the overlap polygon, proceed along P, repeating the process at the next marked vertex, 
extracting another overlap polygon S (if there are any), until back at the original starting point 
onP. 

Area of Overlapping Polygons. Starting outside the other polygon, follow the perimeter 
of one of the polygons to a crossing point. Then extract the shared sub-polygon by 
alternating between polygons, changing polygons at each crossing point. Unmark each 
crossing point as it is used so that the subpolygons will only be extracted once each. 
Accumulate the areas of the subpolygons as they are extracted. The polygon must be 
followed in the same direction (e.g., counterclockwise) as was used for marking crossing 
points to deal properly with the shared vertices indcated by hollow circles in the previous 
figure. 
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