
Chapter 2

Ground-Truth Positioning System

Testing the accuracy of the proposed iSBL-SF positioning system algorithm re-
quires knowing where the system truly is - thus, a ground-truth positioning system
is needed. This system should give the true position of the iSBL array (with some
uncertainty), and should be controllable and positionable to allow testing of dif-
ferent locations.

This chapter details the design of the Fo-SHIP, the ground-truth positioning
system for this thesis. First, the inspiration behind the design and previous works
that the Fo-SHIP builds off of are discussed. The mechanical and electrical design
are detailed, and the manufacturing and assembly are shown. Then, the soft-
ware running the Fo-SHIP is documented. Lastly, the calibration, testing, and
validation of the system are described.

2.1 Design Inspiration and Previous Works
The ground-truth positioning system for this thesis is modeled after a unique
actuator henceforth known as a “stacked hexapod platform,” as first described in
a publication from NASA Langley Research Center [1]. In the paper, Balaban,
Cooper, and Komendera constructed an actuator they called an “Assembler” made
of multiple Stewart platforms that are vertically stacked upon each other. The
mechanism is a novel attempt at creating a robotic system that can assemble
structures in space, and is the only one of its kind. A picture of their actuator is
shown in Figure 2.1 below.

2.1.1 Stewart Platform Origins

A Stewart platform, also known as a hexapod or Stewart-Gough platform, is a
six degree-of-freedom (DOF) actuator invented in the mid-20th century. The true
inventor of the platform is disputed. In 1954, Eric Gough, an automotive engineer,
designed a hexapod platform to test different loading conditions on tires [2]. A
picture of his platform is shown in Figure 2.2 below.
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Figure 2.1: Stacked Stewart platform from Balaban, Cooper, and Komendera [1]
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Figure 2.2: Gough’s hexapod platform [2]

Eleven years later, D. Stewart (an engineer whose full first name appears to
be unknown) published a paper proposing a platform with six degrees of freedom
meant for use in flight simulators. In his paper, he noted correspondence with
Gough [3]. An image of his proposed platform is shown in Figure 2.3 below.

Figure 2.3: Stewart’s hexapod platform [3]

Additionally, an engineer named Klaus Cappel independently developed a
hexapod platform as a flight simulator for helicopter pilots and constructed a
prototype in 1964 [2]. An image of Cappel’s platform is shown in Figure 2.4.

Despite the independent creations of the platform, Stewart’s name has stuck.
Though “Stewart platform” is the most common name of this type of mechanism,
the mechanism in this thesis’s implementation will be primarily referred to as a
“hexapod.”
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Figure 2.4: Cappel’s hexapod platform [2]

2.1.2 Reinforcement Learning Research

As part of an Artificial Intelligence course taken in pursuit of this Master’s degree,
a deep reinforcement learning agent was designed to control a stacked hexapod
platform [4]. For this implementation, a custom Gymnasium (a common deep
reinforcement learning framework [5]) environment was developed to represent
the kinematics of a stacked hexapod platform. A visualization of the environment
is shown in Figure 2.5 below.

Figure 2.5: Custom stacked hexapod platform Gymnasium environment [4]

The location and orientation of a single hexapod platform is dependent on
the platform directly beneath it. Two vectors are used per platform: a position
vector describes the distance between the centers of the top and bottom of a
platform, and an orientation vector describes the vector normal to the surface
of the top of the platform. This is a simplified implementation of a hexapod
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platform; normally, they are described by the six actuators that connect the base
and the top. However, the simplified implementation was much easier to work with
for a first attempt at deep reinforcement learning. Additionally, the simplified
implementation can be related to the true implementation (using six actuators)
using kinematics, so the model still moves as a “true” hexapod platform would.

The reinforcement learning attempt ultimately did not succeed due to errors
in the Gymnasium implementation (which were identified months after the initial
attempt). However, this first attempt at creating a stacked hexapod platform was
the inspiration behind the ground-truth positioning system for this thesis. Future
plans are to train a deep reinforcement learning agent to control the platform built
for this thesis, using an improved Gymnasium environment and interfacing with
the real-world system.

2.1.3 Inverse Kinematics of a Single Hexapod Platform

Much of the inverse kinematics work for this mechanism were derived from previous
authors. Notably, a paper by an unknown author from the Wokingham U3A Math
Group details an inverse kinematics solution for a hexapod platform controlled by
six rotary servos [6]. An art installation named “memememe” improved upon this
solution and implemented the design into a single hexapod platform for controlling
the motion of a smartphone attached to the end effector [7]. Lastly, an open-source
implementation of a single hexapod platform using an ESP32 was posted online by
Nicolas Jeanmonod [8] [9]. This thesis has modified Jeanmonod’s implementation
to work with a stacked hexapod platform and some new features and functions
were added, but his work is the backbone of the hexapod platform controller. The
details of the inverse kinematics of the platform will be described later in Section
2.5.5, along with their code implementation.

2.1.4 Consideration of Alternative Systems

The stacked hexapod platform was one of many contenders for the ground-truth
positioning system. The requirements for the ground-truth position system were:
� Six degrees of freedom - translation and rotation about XYZ axes
� Low cost - this thesis is not funded through grants or external sources
� Large range of motion - at least capable of ±0.5m along some translational axis
and ±45° about some rotational axis

� High accuracy - true position must be within ±1cm of setpoint

The actuators considered were:
� Cartesian/gantry robot - a robot constructed from linear actuators (similar to
a 3D printer) and a rotating end effector

� Articulated arm robot - a robot constructed from rotary actuators (similar to
most industrial robotic arms)

� Stacked hexapod platform - a robot constructed from stacked hexapod platforms
� Cable-driven robot - a robot with a large frame and multiple (6-8) cable-driven
actuators that move an end effector in the center of the frame
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The evaluation criteria were:
� Accuracy - is the system capable of high accuracy and repeatability? Higher
accuracy is better.

� Cost - is the actuator low-cost to design and manufacture? Lower cost is better.
� Manufacturability - how feasible is it to make the parts required to the necessary
tolerances? Easier manufacturability is better.

� Research potential - is it a novel system? More novel and less widely used is
better.

� Relative size - how large is the system compared to its range of motion? Smaller
is better.

� Complexity - how many moving parts does the system have?

A Pugh matrix below shows the consideration process. Ultimately, the stacked
hexapod platform was chosen due to its low cost, high research potential, and
manufacturability.

Table 2.1: Pugh matrix for ground-truth positioning system actuator

Criteria Weight
Cartesian
robot

Articulated
robot

Stacked
hexapod
platform

Cable-
-driven
robot

Accuracy 3 Datum - - -
Cost 5 Datum + + +

Manufacturability 2 Datum S + -
Research potential 4 Datum S + +

Relative size 3 Datum + + S
Complexity 1 Datum + - -

Weighted Sums 0 6 10 3

The chosen system has been named the “Four-Stacked Hexapod Isometric Plat-
form,” abbreviated as Fo-SHIP. The system is four equally-sized (isometric) hexa-
pod platforms stacked upon each other. As an added bonus, the pronunciation of
Fo-SHIP sounds like “faux ship,” which is exactly what this positioner is: a fake
version of the submarine that the iSBL-SF system will be eventually deployed on.

2.2 Mechanical Design
The mechanical design of the Fo-SHIP is inspired by Jeanmonod’s implementation
[8]. His design, shown below, uses six rotary servos sandwiched between two
hexagonal plates as the base, and a single hexagonal plate as the top / end effector.
Ball joints are used to connect threaded rods to the servo horns and the end
effector. The top hexagonal plate is 3D printed and uses heat-set threaded inserts
to secure the ball screws, while the base plates appear to be made from composite
board material. His design is fully documented and a parts list is available on the
project’s GitHub page [9] A CAD rendering and physical model of Jeanmonod’s
implementation can be seen in Figures 2.6 and 2.7.

Jeanmonod’s implementation would need to be modified to fit the goals of this
thesis. The top and bottom platforms are different sizes, which would not work for
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Figure 2.6: Jeanmonod’s implementation of a single hexapod platform, CAD
model [9]

Figure 2.7: Jeanmonod’s implementation of a single hexapod platform, physical
model [8]
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a stacked hexapod platform where each level is of uniform size. Making each level
the same size makes manufacturing and design much easier; however, the load on
each level is not uniform, which means that the bottom-most level experiences
much more force and wear than the top-most level. In future implementations
of stacked hexapod platforms, a cascading design (where the bottom-most level
is larger and has more powerful motors, and the size/weight of each platform
decreases as the number of platforms increase) would be recommended.

The implementation for this thesis is shown below. It uses a common plate
design which can be modified for the needs of each individual platform. The base
plate of the first platform, Figure 2.8, has three through holes for 3/8”-16 bolts
to attach the Fo-SHIP to a wooden base. The base plates of the second and
fourth platform, Figure 2.9, have mounting slots for a PCA9685 servo driver and
an MPU6050 IMU (details in Section 2.5.2). The base plate of the third platform,
Figure 2.10, has a mounting slot for the MPU6050 only. The middle plate of each
platform, Figure 2.11, has holes to allow servo wires to pass through (this plate
sits on top of the servos). The top / end effector plate, Figure 2.12, has mounting
holes to attach the iSBL-SF array adapter. Figure 2.13 shows the spacing between
plates for the second platform. All plates were modeled using SOLIDWORKS.

Figure 2.8: First platform base plate

Figure 2.9: Second and fourth platform base plate

8



Figure 2.10: Third platform base plate

Figure 2.11: Middle plate for all platforms

Figure 2.12: End effector plate
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Figure 2.13: Spacing of plates for second platform

The plates were printed in the Cal Poly Mustang ‘60 Machine Shop on Prusa
Mk.3 FDM printers using blue PETG. PETG was chosen due to its strength,
durability, non-brittle nature, and heat resistance when compared to materials
like PLA [10]. Figure 2.14 shows one of the printed base plates with a PCA9685
servo driver resting in its mounting slot.

Figure 2.14: Printed base plate with PCA9685 servo driver

A bill of materials for all components of the Fo-SHIP is shown in Table 2.2.
Note that some equipment used for fabrication, such as soldering irons and 3D
printers, is essential to the build and is not factored into the bill of materials.
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Table 2.2: Bill of Materials for Fo-SHIP
Item Quantity Price (ea) Vendor

Blue PETG filament, 1kg 1 $25 Amazon
MG996R servo motors, 6 pieces 4 $27 Amazon
Metal ball joint, M3, 12 pieces 4 $12 Amazon

Threaded inserts, M3, 120 pieces 2 $7 Amazon
Threaded rods, M3, 100mm, 12 pieces 2 $6 Amazon
Aluminum servo horns, M3, 10 pieces 3 $14 Amazon

M3x8 socket head cap screws, 100 pieces 1 $8 Amazon
M3x5 socket head cap screws, 50 pieces 2 $5 Amazon

M3 hexagonal nuts, 100 pieces 1 $10 Ace Hardware
M3x20 phillips head screws, 25 pieces 1 $10 Ace Hardware

3/8”-16 hexagonal bolt 3 $1 Ace Hardware
3/8”-16 hexagonal nut 3 $1 Ace Hardware
M2x4 screw, 5 pieces 1 $2 Ace Hardware

M2 hexagonal nut, 5 pieces 1 $2 Ace Hardware
ESP32-WROOM microcontroller 1 $10 Amazon

PCA9685 servo driver board, 2 pieces 1 $14 Amazon
MPU6050 IMU, 3 pieces 2 $10 Amazon

DC variable power supply, 0-30V, 0-30A 1 $50 Amazon
MPU6050 IMU, 3 pieces 2 $10 Amazon
Jumper wires, assorted 2 $7 Amazon

Solderless breadboard pack 1 $8 Amazon
24-gauge wire, assorted colors, 30 feet each 1 $15 Amazon
Scrap wood boards for base of platform 2 $0 Machine shop

Total Cost $292
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Lastly, Jeanmonod’s code implementation uses the dimensions of the platform
to compute the inverse kinematics model. Certain parameters are used to perform
these calculations; the values used for this thesis’s implementation (based on the
models above) are located in Table 2.3. A diagram of the parameters can be seen
below in Figure 2.15.

Table 2.3: Parameters for hexapod platform code implementation

Parameter name Measurement Units Determined by?

ROD LENGTH 106.0 mm

Measured six assembled
threaded rods with ball
joints attached, took

average, then assembled all
other rods and set to that

uniform length

Z HOME 100 mm

Personal preference - servo
horns are horizontal at
90mm, but setting to
100mm gives greater

range-of-motion for angular
displacement

ARM LENGTH 24.0 mm
Measured six aluminum
servo horns with calipers,

took average

THETA P 50.02 deg

Computed from CAD
model, verified using

calipers and trigonometry
on printed parts

THETA B 20.53 deg

Computed from CAD
model, verified using

calipers and trigonometry
on printed parts

THETA S 120 deg

Computed from CAD
model, verified using

calipers and trigonometry
on printed parts

P RAD 57.73 mm

Computed from CAD
model, verified using
calipers on assembled

platform, took average of
three readings

B RAD 82.7 mm

Computed from CAD
model, verified using
calipers on assembled

platform, took average of
three readings
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Figure 2.15: Parameters for hexapod platform in Jeanmonod’s code implementa-
tion [9]
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2.3 Electrical Design
The electrical wiring and design of the Fo-SHIP is relatively straightforward -
it consists of an ESP32 microcontroller communicating with two PCA9685 servo
drivers and five MPU6050 IMUs. The PCA9685 is a servo controller board that
communicates with a microcontroller (or other controller) over I2C, a common
electronics protocol. It has 16 channels that use standard hobby servo motor
wiring (ground / 5V / PWM); by sending the correct message over I2C, the mi-
crocontroller can control up to 16 servo motors, LEDs, or anything that takes in
a PWM signal [11].

PWM, or pulse width modulation, is a technique for modulating the width of
an electrical pulse. For servo motors, a common protocol is to divide pulses into
20ms periods and set the output to “high” for a certain amount of time, depending
on the angle desired. Figure 16 shows a common configuration for hobby servo
motors. The specifics of how the instructions for a certain pulse width are sent
from the microcontroller to the PCA9685 are explained in section 2.5.

Figure 2.16: Hobby servo motor PWM timing [12]

The MPU6050s also communicate over the same I2C line. Each MPU6050
reads linear acceleration and angular velocity about three axes (XYZ). There is
one MPU6050 attached to the wooden base of the Fo-SHIP, and one attached to
the top of each hexapod platform. When the Fo-SHIP is at rest, the acceleration
values can be read and converted to a 3D orientation. Using this data, any “slop”
in the system is accounted for - if the Fo-SHIP’s end effector is set to 15° about
the X axis, the true orientation for each hexapod platform can be measured (and
it can be confirmed if the end effector is actually oriented at 15°). The specifics of
how data is sent between the MPU6050s and the ESP32 microcontroller, how the
accelerometer data is converted to orientation, and how the true orientation can
be used to correct the forward kinematics model of the Fo-SHIP are discussed in
Section 2.5.

14



For I2C, all that is needed is four wires: ground, power, SDA (data), and SCL
(clock). For two (or more) devices that are communicating over I2C, all devices
share the same line for each of the four wires, and a pullup resistor is added to
the SDA and SCL lines. Figure 2.17 shows a common wiring schematic for I2C
communication.

Figure 2.17: Typical I2C wiring [13]

The ESP32, PCA9685s, and MPU6050s are all connected to the same I2C bus.
Each MPU6050 has an AD0 pin that must be pulled low (to ground) to choose
which IMU to read from. Additionally, the ESP32 is connected via USB to a
laptop, providing logic power and facilitating data transfer via UART. There is a
button connected to one of the ESP32 general purpose input-output (GPIO) pins
for user interaction and to begin data collection. The ESP32 is also connected to
an STM32 microcontroller via a serial bus (RX/TX). Lastly, the PCA9685s have
an additional power input to provide high-current power to the 24 servos of the
Fo-SHIP. A wiring diagram for the Fo-SHIP can be seen in Figure 2.18.

2.4 Manufacturing and Assembly
As stated in Section 2.2, the plates of the Fo-SHIP were printed in the Cal Poly
Mustang ‘60 Machine Shop over the course of two weeks. M3 threaded inserts
were heat-set into blind and through holes in the plates using a soldering iron.
Note that the mounting slots for the PCA9685 and MPU6050 have through holes
for heat-set inserts as well.

A wooden base was manufactured from two boards: one on the bottom that
has a large circular cutout, and another on top that has through holes for the
mounting bolts. The bottom board is necessary to provide an offset between the
ground and the mounting bolts and nuts. The wooden base can be seen in Figure
2.19.

The Fo-SHIP was assembled one level at a time, starting with the bottom
platform. The servos were mounted between the base and middle plate of the first
platform, loosely secured using M3x5 socket head cap screws. The servos were
adjusted to be parallel with the edges of the plates, and the screws ere tightened
in a star pattern to avoid uneven clamping forces and misalignments. The servos
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Figure 2.18: Fo-SHIP wiring diagram

Figure 2.19: Wooden base of Fo-SHIP
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were then powered and set to an angle of 90° (horizontal). Aluminum servo horns
were placed on the servo output; adjacent horns were placed to be pointed towards
each other as shown in Figure 2.20. The horns were attached using screws to the
servo output and were further secured via small, off-center screws that clamp the
body of the horn around the servo output.

The threaded rod linkages were assembled by screwing on threaded ball joint
connectors at both ends, turning each connector an equal amount to ensure equal
thread penetration. The length between the centers of each ball joint bearing was
measured, and the ball joints were adjusted until the length is 106mm ± 1mm.
For each platform, six linkages were gathered and each was attached to the inside
of a servo horn at the furthest threaded hole. An M3x20 screw was placed through
the ball joint bearing and screwed into the servo horn. Once tightened, an M3 nut
was secured to the end of the M3x20 screw and torqued to prevent the connection
from loosening.

A second platform was assembled as described in the previous paragraph up
until after the servo horns were secured. Then, both platforms were laid hori-
zontally on a table and the linkages from the first platform were secured to the
corresponding threaded inserts on the base of the second platform using M3x8
screws. Care was taken to avoid over-torquing any threaded inserts, since they
are secured only by melted plastic.

The above process was repeated until four platforms had been assembled. At
this point, the end effector plate was attached to the top-most platform.

Once all platforms were assembled, an MPU6050 was attached to the base of
each platform (besides the first level), to the end effector plate, and to the wooden
base. The MPU6050s were secured using M3x5 screws and care was taken to
avoid over-torquing the screws and deforming the plastic beneath, which would
result in an altered angle reading from the IMUs. Then, the PCA9685 boards were
attached to the base of the second and fourth platform and secured with M2x4
screws and M2 nuts. Once secured, the servo wires were attached to the PCA9685
boards in a clockwise pattern. A number was written on each servo’s body to note
which pins it connects to on its corresponding PCA9685 board. Wires were added
to each MPU6050 and PCA9685 in accordance with the wiring diagram in Section
2.3 and were connected to a breadboard that held the ESP32 microcontroller.

The breadboard and the button included in the wiring diagram were secured to
the wooden base with adhesive. Loose wires were joined using cable ties, and hot
glue was used to insulate electrical connections and prevent wires from dislodging
from the breadboard. The fully-assembled Fo-SHIP with all platforms and wiring
can be seen in Figure 2.21 below.
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Figure 2.20: Assembled Fo-SHIP, first two layers
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Figure 2.21: Assembled Fo-SHIP, first two layers
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2.5 Software Design
The code running on the ESP32 to control the Fo-SHIP is quite complex and
has many different functions and files. This section will be broken down into six
subsections. The first will show custom structs used for the code and the con-
figuration / parameters of each platform of the Fo-SHIP. The second will discuss
the MPU6050 failures and how a workaround was implemented. The third will
discuss the main program initialization and loop, and will include a finite-state
machine representation of the code. The fourth will detail the forward kinematics
calculations for the multi-platform configuration, focusing on the big-picture of
how one platform affects the next. The fifth will derive the inverse kinematics
algorithm used to calculate servo angles for a single platform’s setpoint. The last
will explain some demonstration functions that show the full range-of-motion of
the Fo-SHIP.

As stated previously, the majority of this code is built off of Nicolas Jean-
monod’s implementation on GitHub [9], and the Fo-SHIP would not be functional
without his contributions.

2.5.1 Custom Structs and Hexapod Configuration

The Fo-SHIP uses a few custom structs for its data processing. First, calibration_t
is a struct used for saving the gains and offsets of each individual servo.

1 typedef struct

2 {

3 double gain;

4 int offset;

5 } calibration_t;

Next, angle_t is a strut used for saving information about each servo’s angle
in a variety of units: radians, degrees, microseconds (for PWM) and PWM value
(int from 0 to 4096).

1 typedef struct

2 {

3 double rad; // Servo angle in radian.

4 double deg; // Servo angle in degrees.

5 int us; // Servo angle in us (PWM).

6 uint16_t pwm_us; // Servo angle in range 0 to 4096 (PWM).

7 double debug; // Used for debug.

8 } angle_t;

Lastly, platform_t is the most common struct used in the main program code.
It defines the setpoint for a single platform with six coordinates, one for each major
axis: (X, Y, Z, A, B, C), where A is roll about the X axis, B is pitch about the Y
axis, and C is yaw about the Z axis.

1 typedef struct

2 {

3 double hx_x; // Surge , translation along X axis (mm)

4 double hx_y; // Sway , translation along Y axis (mm)

5 double hx_z; // Heave , translation along Z axis (mm)
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6 double hx_a; // Roll , rotation around X axis (rad)

7 double hx_b; // Pitch , rotation around Y axis (rad)

8 double hx_c; // Yaw , rotation around Z axis (rad)

9 } platform_t;

Many configuration parameters are stored in Hexapod_Config1.h. These in-
clude the parameters in Table 2.3, as well as offset values for each servo, the full
range of a servo described with a pulse width timing, minimum and maximum
values for each axis of motion, and the orientation of each servo relative to the
coordinate system.

2.5.2 MPU6050 Failure and Workaround

After fully assembling the Fo-SHIP, it was discovered that only one out of the six
MPU6050s purchased from Amazon was functional. Due to a limited budget and
limited time (and after much testing of the MPU6050s to determine if they were
truly fault or if it was a code issue, which it was not), it was decided to forgo using
any of the MPU6050s for orientation correction. However, the amount of slop in
the Fo-SHIP’s many platforms required some sort of orientation correction for the
forward kinematics calculations.

Thankfully, the iSBL receiver array has a higher quality (and functional) IMU
which outputs the orientation of the end effector, which will be discussed more in
Chapter 4. As a workaround, at the time of processing an acoustic measurement,
the current orientation of the end effector is sent over UART from the STM32
to the ESP32. This orientation is assumed to be the true orientation of the end
effector (top-most platform’s top plate). Assuming that the amount of slop in
the system is uniform for each platform, the true orientation of a single platform
relative to the one beneath it can be estimated as shown:

1 modPos = currentPos;

2 modPos.hx_a = radians(stm_roll /4);

3 modPos.hx_b = radians(stm_pitch /4);

4 modPos.hx_c = radians(stm_yaw /4);

5 getEndEffectorCoords (&modPos , &modPos , &modPos , &modPos , false);

While this may seem like a large simplification, it improves the accuracy of the
Fo-SHIP’s position estimate by over 100%.

The original implementation of the MPU6050s is still in the code and will be
explained here. The workflow for extracting the angle of each platform relative
to the one beneath it using the MPU6050s is below. This workflow is for a single
MPU6050 and is repeated for each platform’s IMU:
� Take a number of readings from the MPU6050’s accelerometer, communicating
over I2C, and take the average to reject noise

� Convert the acceleration data into Euler angles (absolute orientation)
� Convert the absolute Euler angles into a rotation matrix
� Take the transpose of this matrix
� Multiply the absolute rotation matrix for this platform by the transpose of the
rotation matrix of the platform beneath it to get the relative orientation rotation
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matrix for this platform
� Extract the relative Euler angles for this platform from the relative orientation
rotation matrix

� Save these Euler angles as the relative orientation of each platform

In the main.cpp file, see these functions for more details:
� void readMPU(int IMU_NUM, int num_avgs);

� void getEulerFromMPU(float *IMU_AccelData, float *IMU_Angles);

� void getRotMatFromEuler(float *IMU_Angles, float *IMU_RotMat);

� void getEulerFromRotMat(float *IMU_RotMat, float *IMU_Angles);

� void multiply3x3Matrices(float *matA, float *matB, float

*result);

� void transposeMatrix(float *mat, float *result);

� void multiply3x3MatrixVector(float *mat, float *vec, float

*result);

2.5.3 Main Program

The main program in main.cpp does a few things: it starts and maintains a serial
connection with the STM32 and the laptop for data collection; it reads from the
MPU6050s and computes their relative orientation; it controls the motion of each
platform of the Fo-SHIP; and it performs the forward kinematics calculations that
provide the ground-truth position estimate for the iSBL array, arguably its most
important role. A finite-state machine representation of the main.cpp code can
be seen below.

Figure 2.22: Finite-state machine diagram for Fo-SHIP code

In the initialization state, the program does the following:
� Initializes the GPIO pins for each MPU6050 and the input button
� Begins the serial connection with the STM32 and the laptop
� Initializes the MPU6050s, setting their sensitivity and data rates
� Makes the top platform pitch forward and backward to show that the system is
working

� Performs any demonstration functions if they are selected (see Section 2.5.6)
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After this, it waits until the button is pressed before entering the main loop.
This gives time for the iSBL array to initialize and get an initial orientation.

Once the button is pressed and the main loop begins, the following sequence
repeats until the button is pressed again (in which case, it pauses and restarts the
loop). This sequence is meant for data collection - for a fixed transmitter location,
the Fo-SHIP will move through a variety of points and record the position estimate
from the STM32 and the iSBL-SF algorithm, then compare it to the true position
as estimated by the Fo-SHIP. The loop executes the following steps:
� Calculates the axes that it should iterate through (XYZ or ABC)
� For each axis to iterate through, it does the following:

– Based on the next setpoint of the Fo-SHIP, sends the x-coordinate of the
iSBL array’s center to the STM32

– Moves to the next setpoint for that axis (for example, moves from X = 5mm
to X = 4mm)

– Waits while the iSBL-SF algorithm calculates a position estimate based on
acoustic readings for the current setpoint

– Prints a datapoint to the laptop’s serial connection containing multiple po-
sition estimates from the iSBL-SF algorithm, and the true position of the
platform as calculated by the Fo-SHIP

– Repeats from the top of this list until all setpoints for a given axis have been
tested (for example, testing all points between X = 20mm and X = -20mm)

First, the Fo-SHIP calculates which axes it is going to test for this loop. In
testing, it was found helpful to sometimes only test the linear (XYZ) axes, and
sometimes only test the rotational (ABC) axes. For the final testing, all axes were
tested and a flip-flop variable was assigned so that all axes were tested equally.

1 bool translational_axes = false;

2 ...

3 if (translational_axes)

4 {

5 axes [0] = "X";

6 axes [1] = "Y";

7 axes [2] = "Z";

8 }

9 else

10 {

11 axes [0] = "Z";

12 axes [1] = "B";

13 axes [2] = "C";

14 }

The maximum and minimum values of each axis, as well as the step size incre-
ment, are defined in the main loop.

1 if (axes[axis] == "X") {

2 start_val = 5;

3 end_val = -5;

4 step_increment = linear_step_increment;

5 ...

6 } else if (axes[axis] == "A") {

7 start_val = radians (5);
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8 end_val = radians (-5);

9 step_increment = angular_step_increment;

10 ...

Then, each axis is tested individually. First, the new position of the platform
is calculated, and true orientation compensation is applied as described in Section
2.5.2. The Fo-SHIP calculates what the next x-coordinate of the iSBL array’s
center will be after this new move is executed. While it would be more accurate
to move first, get the new orientation, and use that as the platform’s true position,
this approach is preferred. It is easier to implement, is more reliable (don’t have
to wait for the IMU to stabilize for its new setpoint), works better timing-wise,
and is accurate enough for testing purposes.

1 for (float current_val = start_val *(1- stationary); current_val >=

end_val; current_val -= step_increment *(1- stationary)) {

2 platform_t newPos = {0, 0, 0, 0, 0, 0};

3

4 if (axes[axis] == "X") newPos.hx_x = current_val;

5 else if (axes[axis] == "Y") newPos.hx_y = current_val;

6 else if (axes[axis] == "Z") newPos.hx_z = current_val;

7 else if (axes[axis] == "A") newPos.hx_a = current_val;

8 else if (axes[axis] == "B") newPos.hx_b = current_val;

9 else if (axes[axis] == "C") newPos.hx_c = current_val;

10 ...

11 platform_t modPos = newPos;

12 float rollDiff = modPos.hx_a - currentPos.hx_a;

13 float pitchDiff = modPos.hx_b - currentPos.hx_b;

14 float yawDiff = modPos.hx_c - currentPos.hx_c;

15 modPos.hx_a = radians(stm_roll /4) + rollDiff;

16 modPos.hx_b = radians(stm_pitch /4) + pitchDiff;

17 modPos.hx_c = radians(stm_yaw /4) + yawDiff;

18 ...

19 getEndEffectorCoords (&modPos , &modPos , &modPos , &modPos , false);

20 ...

21 float next_val = true_x / 1000;

The reason for sending the x-coordinate is covered more in Chapter 3, but
it is necessary for proving a simulated “depth” measurement for the iSBL-SF
algorithm. In the full underwater application, a pressure sensor would provide a
depth measurement, which is essential for the iSBL-SF algorithm to work properly
with short baselines. Since pressure sensors would not work for the above-water
testing here, the true x-coordinate of the iSBL array is sent to the STM32 and is
used for depth measurement simulation.

Next, a custom function sendRobustFloat() is used to ensure that the true_x
value is sent to the STM32. The function uses checksums and start/end characters
to ensure robust data transmission. Initially, there were many unexpected issues
with sending data to the STM32 from the ESP32 (but not the other way around),
which may suggest a fault TX-¿RX wire. This function is called up to three times;
once a message is sent, if the checksum calculated by the STM32 does not match
the one sent by the ESP32, the STM32 instructs the ESP32 to send a message
again. If this fails three times, the datapoint is skipped.
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1 void sendRobustFloat(float value) {

2 char message [50];

3 int messageLength = snprintf(message , sizeof(message), "%.4f",

value);

4

5 int checksum = 0;

6 for (int i = 0; i < messageLength; i++) {

7 checksum += message[i];

8 }

9 checksum %= CHECKSUM_MODULUS;

10

11 SerialPort.print(START_MARKER);

12 SerialPort.print(message);

13 SerialPort.print(’,’);

14 SerialPort.print(checksum);

15 SerialPort.print(END_MARKER);

16 SerialPort.println ();

17

18 // ensure transmission is complete

19 SerialPort.flush ();

20 }

Multiple times in the code, a blocking while() loop is used. A block similar
to the one below is used to allow the button press to be registered (to reset the
data collection or pause it) when a blocking function is necessary.

1 while (! SerialPort.available ()){

2

3 // if the button is pressed ,

4 if (digitalRead(BUTTON)){

5

6 // turn the LED on

7 digitalWrite(LED , HIGH);

8

9 // move back to home

10 moveSlowly (&currentPos , &home_coords [0], 20, binaryToDecimal(

move_str));

11 currentPos = {0, 0, 0, 0, 0, 0};

12

13 // break out of all the loops

14 shouldBreak = true;

15

16 // turn the LED back off

17 digitalWrite(LED , LOW);

18 Serial.println("BUTTON PRESSED , 1");

19

20 // wait until the button is pressed again to resume testing

21 while (! digitalRead(BUTTON)){}

22 digitalWrite(LED , HIGH);

23 delay (1000);

24 break;

25 }

26 }

Once the next x-coordinate is sent, the Fo-SHIP executes the move to the
next setpoint. Depending on the type of test being run (gradual or rapid move-
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ment), the Fo-SHIP moves at a different speed. Every movement uses the custom
moveSlowly() function, which linearly interpolates between the current setpoint
and the desired (next) setpoint. Notably, the function moves each platform to the
same setpoint - it would need to be modified to control each platform individually.

1 void moveSlowly(platform_t *startCoords , platform_t *endCoords ,

uint16_t num_steps , uint8_t which_platform) {

2 platform_t startPos = *startCoords;

3 platform_t endPos = *endCoords;

4 int8_t movOK = -1;

5

6 for (uint16_t step = 0; step < num_steps; step ++) {

7 double t = (( double)step) / (double)num_steps;

8

9 // linearly interpolate between startPos and endPos

10 platform_t interpPos;

11 interpPos.hx_x = startPos.hx_x + t * (endPos.hx_x - startPos.

hx_x);

12 interpPos.hx_y = startPos.hx_y + t * (endPos.hx_y - startPos.

hx_y);

13 interpPos.hx_z = startPos.hx_z + t * (endPos.hx_z - startPos.

hx_z);

14 interpPos.hx_a = startPos.hx_a + t * (endPos.hx_a - startPos.

hx_a);

15 interpPos.hx_b = startPos.hx_b + t * (endPos.hx_b - startPos.

hx_b);

16 interpPos.hx_c = startPos.hx_c + t * (endPos.hx_c - startPos.

hx_c);

17

18 // calculate servo angles using the interpolated positions

19 movOK = 0;

20 if (which_platform & (1 << 3)) movOK += hx_servo.

calcServoAngles(interpPos , servo_angles0 , 0);

21 if (which_platform & (1 << 2)) movOK += hx_servo.

calcServoAngles(interpPos , servo_angles1 , 1);

22 if (which_platform & (1 << 1)) movOK += hx_servo.

calcServoAngles(interpPos , servo_angles2 , 2);

23 if (which_platform & (1 << 0)) movOK += hx_servo.

calcServoAngles(interpPos , servo_angles3 , 3);

24

25 hx_servo.updateServos(movOK);

26

27 delay (50);

28 }

29

30 // move to the final position

31 movOK = 0;

32 if (which_platform & (1 << 3)) movOK += hx_servo.calcServoAngles

(endPos , servo_angles0 , 0);

33 if (which_platform & (1 << 2)) movOK += hx_servo.calcServoAngles

(endPos , servo_angles1 , 1);

34 if (which_platform & (1 << 1)) movOK += hx_servo.calcServoAngles

(endPos , servo_angles2 , 2);

35 if (which_platform & (1 << 0)) movOK += hx_servo.calcServoAngles

(endPos , servo_angles3 , 3);

36 hx_servo.updateServos(movOK);

37 }
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Once the Fo-SHIP moves to its new position, it waits while the iSBL array
records an acoustic pulse and the STM32 calculates new position estimates. Once
the STM32 sends its results over, the ESP32 decodes the serial string, parses the
information, and prints the important results to the laptop via serial. Notably,
the ESP32 also includes the true position of the iSBL array, which the STM32
does not have access to for its calculations (besides the x-coordinate).

1 String readSerialString () {

2 String receivedString = "";

3 while (SerialPort.available ()) {

4 char c = SerialPort.read();

5 if (c == ’\r’ || c == ’\n’) {

6 break;

7 }

8 receivedString += c;

9 delay (2);

10 }

11 receivedString.trim();

12 return receivedString;

13 }

14 // once the STM32 sends its data , parse it and put the data into

floats

15 String receivedString = readSerialString ();

16 float x_kf , y_kf , z_kf , x_r_isbl , y_r_isbl , z_r_isbl , x_isbl ,

y_isbl , z_isbl;

17 sscanf(receivedString.c_str(), "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%

f",

18 &x_kf , &y_kf , &z_kf , &x_r_isbl , &y_r_isbl , &z_r_isbl ,

19 &x_isbl , &y_isbl , &z_isbl , &stm_roll , &stm_pitch , &stm_yaw);

20

21 // once we have the new orientation of the platform , use it to

recalculate the true end effector pos

22 modPos = currentPos;

23 modPos.hx_a = radians(stm_roll /4);

24 modPos.hx_b = radians(stm_pitch /4);

25 modPos.hx_c = radians(stm_yaw /4);

26 getEndEffectorCoords (&modPos , &modPos , &modPos , &modPos , false);

27

28 // since XYZ and ABC have different units , we need to format the

current value differently

29 float printval;

30 printval = degrees(current_val *4);

31 if (translational_axes) printval = current_val *4;

32

33 // print a single datapoint / row

34 Serial.println(String(axes[axis]) + ", " + String(printval)+ ": "

35 + String(x_kf) + ", " + String(y_kf) + ", " + String(z_kf) + "; "

36 + String(x_r_isbl) + ", " + String(y_r_isbl) + ", " + String(

z_r_isbl) + "; "

37 + String(x_isbl) + ", " + String(y_isbl) + ", " + String(z_isbl) +

"; "

38 + String(true_x) + ", " + String(true_y) + ", " + String(true_z) +

"; "

39 + String(stm_roll) + ", " + String(stm_pitch) + ", " + String(

stm_yaw) + ";");

This process repeats until all values in an axis have been tested. Then, the
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next axis is tested until all three axes for that loop are iterated through. Then,
the int translational_axes flips its value and the other three axes are tested.

There is additional code for transmitting large chunks of data (like the entire
adc_buf data, as described in Chapter 3), but it is currently commented out.

2.5.4 Multi-Platform Forward Kinematics Calculations

Similar to the deep reinforcement learning implementation in Section 2.1.2, the
large-scale forward kinematics model assumes that each platform can be repre-
sented by two vectors: a translational vector defining the distance from the center
of the base of a platform to the center of the top of a platform, and a rotational
vector defining the vector normal to the top of the platform. Additionally, each
platform has a constant offset in its local Z coordinate to account for the height
of the servos. Figure 2.23 below shows the forward kinematics model in two di-
mensions, but the math scales to three dimensions.

In the diagram, there are some items to note. First, the Z axis is pointing in
the opposite direction to the final implementation. Next, we work from the base
up to the top, applying the previous rotation matrix to each subsequent level.
Point xP denotes the center of the iSBL array, which has a constant offset vector
which is rigidly attached to the top platform’s end effector. Each rotation matrix
(R1, R3, etc.) is defined relative to the platform beneath it, not to the global
frame - the second platform’s base’s rotation in the global frame is described by
R2*R1*R0, but its rotation relative to the platform beneath it is just R2.

This forward kinematics model was implemented in the main code of the Fo-
SHIP with the function below. The values true_x, true_y, and true_z are then
accessible by the rest of the program when needed.

1 void getEndEffectorCoords(platform_t *coords1 , platform_t *coords2

, platform_t *coords3 , platform_t *coords4 , bool USE_IMU){

2 float d[3] = {0, 0, -34};

3 float TP[3] = {80 + 30, 0, -78.38 - 4};

4 float zhome = static_cast <float >( Z_HOME);

5

6 float T1[3] = {static_cast <float >(coords1 ->hx_x), static_cast <

float >(coords1 ->hx_y), static_cast <float >(coords1 ->hx_z) +

zhome };

7 float T2[3] = {static_cast <float >(coords2 ->hx_x), static_cast <

float >(coords2 ->hx_y), static_cast <float >(coords2 ->hx_z) +

zhome };

8 float T3[3] = {static_cast <float >(coords3 ->hx_x), static_cast <

float >(coords3 ->hx_y), static_cast <float >(coords3 ->hx_z) +

zhome };

9 float T4[3] = {static_cast <float >(coords4 ->hx_x), static_cast <

float >(coords4 ->hx_y), static_cast <float >(coords4 ->hx_z) +

zhome };

10

11 float eul1 [3] = {0, 0, static_cast <float >(coords1 ->hx_c)};

12 float eul2 [3] = {0, 0, static_cast <float >(coords2 ->hx_c)};

13 float eul3 [3] = {0, 0, static_cast <float >(coords3 ->hx_c)};

14 float eul4 [3] = {0, 0, static_cast <float >(coords4 ->hx_c)};
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Figure 2.23: Forward kinematics diagram
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15

16 if (USE_IMU) {

17 eul1 [0] = IMU1_Angles [0];

18 eul1 [1] = IMU1_Angles [1];

19 eul2 [0] = IMU2_Angles [0];

20 eul2 [1] = IMU2_Angles [1];

21 eul3 [0] = IMU3_Angles [0];

22 eul3 [1] = IMU3_Angles [1];

23 eul4 [0] = IMU4_Angles [0];

24 eul4 [1] = IMU4_Angles [1];

25 } else {

26 eul1 [0] = static_cast <float >(coords1 ->hx_a);

27 eul1 [1] = static_cast <float >(coords1 ->hx_b);

28 eul2 [0] = static_cast <float >(coords2 ->hx_a);

29 eul2 [1] = static_cast <float >(coords2 ->hx_b);

30 eul3 [0] = static_cast <float >(coords3 ->hx_a);

31 eul3 [1] = static_cast <float >(coords3 ->hx_b);

32 eul4 [0] = static_cast <float >(coords4 ->hx_a);

33 eul4 [1] = static_cast <float >(coords4 ->hx_b);

34 }

35

36 float R0[9] = {1, 0, 0, 0, 1, 0, 0, 0, 1};

37 float R1[9] = {1, 0, 0, 0, 1, 0, 0, 0, 1};

38 float R2[9] = {1, 0, 0, 0, 1, 0, 0, 0, 1};

39 float R3[9] = {1, 0, 0, 0, 1, 0, 0, 0, 1};

40 float R4[9] = {1, 0, 0, 0, 1, 0, 0, 0, 1};

41

42 float R1R0 [9] = {1, 0, 0, 0, 1, 0, 0, 0, 1};

43 float R2R1R0 [9] = {1, 0, 0, 0, 1, 0, 0, 0, 1};

44 float R3R2R1R0 [9] = {1, 0, 0, 0, 1, 0, 0, 0, 1};

45 float R4R3R2R1R0 [9] = {1, 0, 0, 0, 1, 0, 0, 0, 1};

46

47 getRotMatFromEuler(eul1 , R1);

48 getRotMatFromEuler(eul2 , R2);

49 getRotMatFromEuler(eul3 , R3);

50 getRotMatFromEuler(eul4 , R4);

51

52 multiply3x3Matrices(R1 , R0 , R1R0);

53 multiply3x3Matrices(R2 , R1R0 , R2R1R0);

54 multiply3x3Matrices(R3 , R2R1R0 , R3R2R1R0);

55 multiply3x3Matrices(R4 , R3R2R1R0 , R4R3R2R1R0);

56

57 float x0[3] = {0, 0, -30};

58 float dT1[3] = {d[0] + T1[0], d[1] + T1[1], d[2] + T1[2]};

59 float x1[3];

60 multiply3x3MatrixVector(R0 , dT1 , x1);

61 x1[0] += x0[0];

62 x1[1] += x0[1];

63 x1[2] += x0[2];

64

65 float dT2[3] = {d[0] + T2[0], d[1] + T2[1], d[2] + T2[2]};

66 float x2[3];

67 multiply3x3MatrixVector(R1R0 , dT2 , x2);

68 x2[0] += x1[0];

69 x2[1] += x1[1];

70 x2[2] += x1[2];

71

72 float dT3[3] = {d[0] + T3[0], d[1] + T3[1], d[2] + T3[2]};
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73 float x3[3];

74 multiply3x3MatrixVector(R2R1R0 , dT3 , x3);

75 x3[0] += x2[0];

76 x3[1] += x2[1];

77 x3[2] += x2[2];

78

79 float dT4[3] = {d[0] + T4[0], d[1] + T4[1], d[2] + T4[2]};

80 float x4[3];

81 multiply3x3MatrixVector(R3R2R1R0 , dT4 , x4);

82 x4[0] += x3[0];

83 x4[1] += x3[1];

84 x4[2] += x3[2];

85

86 float xP[3];

87 multiply3x3MatrixVector(R4R3R2R1R0 , TP , xP);

88 xP[0] += x4[0];

89 xP[1] += x4[1];

90 xP[2] += x4[2];

91

92 true_x = xP[0];

93 true_y = xP[1];

94 true_z = xP[2];

95 }

Of particular note is the argument USE_IMU; if this is set to true, then the
Euler angle of each setpoint is replaced by the current angles detected by the
MPU6050s. These angles have been calculated as described in Section 2.5.2. This
compensates for the slop in the system.

With the current workaround of using the iSBL array’s IMU to estimate the
true orientation of each platform, these estimated angles are inserted into the
setpoint coordinates directly, so USE_IMU is not currently used.

2.5.5 Single-Platform Inverse Kinematics Derivation

The inverse kinematics for a single platform describe what angles each servo should
be in order to achieve a given platform_t setpoint. This implementation uses
Algorithm 3 of Jeanmonod’s implementation [9] with some modifications, which
can be found in Hexapod_KinematicsCalcServoAnglesAlgo3.h.

First, a coordinate transform is applied. This thesis assumes an X forward, Y
left, and Z down coordinate system.

1 double temp = coord.hx_x;

2 coord.hx_x = -coord.hx_y;

3 coord.hx_y = -temp;

4 temp = coord.hx_a;

5 coord.hx_a = -coord.hx_b;

6 coord.hx_b = -temp;

7 coord.hx_c = -coord.hx_c;

8 coord.hx_z = -coord.hx_z;

In the algorithm, each servo’s angle is calculated independently from the rest.
For the rest of this explanation, a single servo’s calculation is explained. See Figure
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2.15 for important points marked on the platform.

First, the vector BP is determined. This vector points from the center of the
servo horn’s rotation axis to the point where the ball bearing joint must move to.
For Stewart platforms, the inverse kinematics tend to be quite easy: to move the
platform to a certain position and orientation, apply the transformation to each of
the joints on the top of the platform and determine how much the actuator should
move to reach that point. For example, to move a platform from X = 0mm to X
= 5mm, each point P is shifted 5mm along the X axis.

1 double BP_x = P_COORDS[sid ][0] * cosB * cosC + P_COORDS[sid ][1] *

(sinA * sinB * cosC - cosA * sinC) + coord.hx_x - B_COORDS[sid

][0];

2 double BP_y = P_COORDS[sid ][0] * cosB * sinC + P_COORDS[sid ][1] *

(sinA * sinB * sinC + cosA * cosC) + coord.hx_y - B_COORDS[sid

][1];

3 double BP_z = -P_COORDS[sid ][0] * sinB + P_COORDS[sid ][1] * sinA *

cosB + coord.hx_z - Z_HOME;

Once BP is determined, it is rotated from the global coordinate frame into the
servo’s local coordinate frame.

1 double

2 a = COS_THETA_S[sid] * BP_x + SIN_THETA_S[sid] * BP_y ,

3 b = -SIN_THETA_S[sid] * BP_x + COS_THETA_S[sid] * BP_y ,

4 c = BP_z ,

5 ...

In the servo’s local coordinate frame, B is located at (0, 0, 0), A (the connection
between the rod linkage and the servo horn arm) is located at some point (x, 0, z),
and P is located at (a, b, c). The rod linkage has length R, and the servo arm has
length L. To find the angle that the servo arm should set to, two equations need
to be satisfied:

(x− a)2 + b2 + (z − c)2 = L2 (2.1)

x2 + z2 = R2 (2.2)

These equations describe the relationship between the rod linkage length and
the servo arm length. The equations can be combined and expanded to get the
following:

L2 + a2 + b2 + c2 −R2 − 2ax− 2cz = 0 (2.3)

The servo arm should be set to an angle θ, which forms a right triangle with
adjacent side x, opposite side z, hypotenuse L, and nearest angle θ. From this
triangle, the relationship can be shown:

tan(θ) = fraczx (2.4)
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The goal is to form a quadratic equation from Equations 2.3 and 2.4, and this
can be achieved by defining:

t = tan(
θ

2
) =

z

2x
(2.5)

Using half-angle identities, it can be shown that:

sin(θ) =
2t

1 + t2
(2.6)

cos(θ) =
1− t2

1 + t2
(2.7)

Using the triangle from before, additional expressions for x and z can be
formed:

x = L cos(θ) = L ∗ 1− t2

1 + t2
(2.8)

z = L sin(θ) = L ∗ 2t

1 + t2
(2.9)

Substituting into the original equations gives:

L2 + a2 + b2 + c2 −R2 − 2
aL(1− t2) + (cL(2t)

1 + t2
= 0 (2.10)

This equation can be fully expanded into the quadratic form below:

t2(L2+a2+b2+c2−R2+2aL)+t(−4cL)+(L2+a2+b2+c2−R2−2aL) = 0 (2.11)

t2(A) + t(B) + (C) = 0 (2.12)

The solution to this equation, assuming the negative square root for stability,
is:

t =
−B −

√
B2 − 4AC

2A
(2.13)

If the term inside the square root, B2 − 4AC, is negative, then the given
setpoint has no valid servo angle to reach it. This term is checked with the lines
below, with i1 = B^2 - 4AC:

1 double i1 = -ARM_LENGTH4 - ROD_LENGTH4 - a4 - b4 - c4 + 2 * (

ARM_LENGTH2 * (ROD_LENGTH2 + a2 - b2 + c2) + ROD_LENGTH2 * (a2

+ b2 + c2) - a2 * (b2 + c2) - b2 * c2);
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2 if (i1 < 0)

3 {

4 movOK = -5;

5 break;

6 }

Assuming that the term is positive and valid, the next step is to take the square
root of i1 and solve the quadratic:

1 double rt_i1 = sqrt(i1);

2 double i2 = (2 * ARM_LENGTH * c - rt_i1) /

3 (ARM_LENGTH2 + 2 * ARM_LENGTH * a -

4 ROD_LENGTH2 + BP2);

Lastly, the term i2 = t, and the original expression for t is solved for θ:

1 double i3 = 2 * atan(i2);

The double i3 now contains the angle for this singular servo in radians, which
is converted to a PWM signal and set in the Hexapod_Servo class. This process
is repeated for each servo.

2.5.6 Demonstration Functions

The last functions for the Fo-SHIP are related to some demonstration modes.
These functions include:
� Reaching the minimum and maximum positions for each axis
� Moving in a circle about the pitch and roll axes (largest possible movements for
the Fo-SHIP)

� Actively tracking the transmitter by moving the pitch and yaw axes to point
the iSBL array directly towards it

The first is quite simple - it works almost identically to the main testing code,
except it reaches the full range-of-motion for each axis. First, it moves each
platform the same; each platform moves to its maximum X value, then minimum
X value, then maximum Y value, and so on. After the last axis (C) has been
actuated, it then moves the second and third platform in an inverted manner.
So, for the X axis, the first and fourth platforms move to the maximum X value
while the second and third move to the minimum X value. This motion forces
the end effector to stay fully stationary for the translational axes and level for the
rotational axes.

The circle demonstration shows the speed and agility of the Fo-SHIP. First, it
plots the setpoints to move through for a given radius, starting at the maximum
value of the roll axis and rotating between the roll and pitch axes.

1 for (uint8_t angleID = 0; angleID < nb_points; angleID ++)

2 {

3 coords[angleID] = {0, 0, 0, (radius * cos(angle)), (radius * sin

(angle)), 0};

4 angle += angleInc;

5 }

34



The active tracking is more complex and requires some functions from the main
loop to communicate with the STM32 and iSBL-SF algorithm. Once a datapoint
is collected, the STM32 sends the estimated position of the receiver array as well as
the “true” position of the transmitter. For this demonstration, the transmitter is
being held and moved, so it does not match the “true” position, but this doesn’t
matter - the vector pointing from the receiver array to the transmitter can be
reconstructed from the data sent by the STM32 as shown below. More details on
the acoustic position estimate can be found in Chapter 3.

1 String receivedString = readSerialString ();

2 float x_kf , y_kf , z_kf , x_r_isbl , y_r_isbl , z_r_isbl , x_isbl ,

y_isbl , z_isbl , stm_roll , stm_pitch , stm_yaw , x_tx , y_tx , z_tx

;

3 sscanf(receivedString.c_str(), "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%

f,%f,%f,%f",

4 &x_kf , &y_kf , &z_kf , &x_r_isbl , &y_r_isbl , &z_r_isbl ,

5 &x_isbl , &y_isbl , &z_isbl , &stm_roll , &stm_pitch , &stm_yaw ,

6 &x_tx , y_tx , z_tx);

7

8 // calculate the angle to move the Fo -SHIP to point the iSBL array

at the transmitter

9 float pitch , yaw;

10 float x_latx = x_tx - x_isbl;

11 float y_latx = y_tx - y_isbl;

12 float z_latx = z_tx - z_isbl;

13 pitch = atan2f(z_latx , x_latx);

14 yaw = atan2f(y_latx , x_latx);

15 new_pos.hx_b += pitch /4;

16 new_pos.hx_c += yaw /4;

17 moveSlowly (& current_pos , &new_pos , 14, binaryToDecimal (1111));

18 current_pos = new_pos;

After determining the vector point from the receiver array to the transmitter,
the Fo-SHIP determines the pitch and yaw movement required to point directly
at the transmitter. The movement is then executed.

2.6 System Calibration
Careful calibration of the servo offsets is required to produce accurate positioning
for the Fo-SHIP. A go/no-go gauge was manufactured to ensure that each servo
horn was level with the rest when at a neutral position.

Each pair of servos was leveled according to the following workflow:
� Set all platforms to a setpoint (0, 0, 10, 0, 0, 0) where all servos should be level,
power the Fo-SHIP, and move the platforms to the setpoint

� Test each pair of servos with the gauge by attempting to fit the width of both
servo horn arms between the channel of the gauge

� If little-to-no force is required to fit the servo horn arms between the gauge’s
channel, then that pair of servos is level

� If a moderate amount of force is required to fit the arms or if they are un-
able to fit in the gauge, then the servo offsets in const int PW_OFFSET[] in
Hexapod_Config1.h need to be adjusted.
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Figure 2.24: Go/no-go gauge drawing and part

Figure 2.25: Manufacturing of go/no-go gauge on mill in Mustang ‘60 Machine
Shop
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� Adjust the servo offsets by a small amount in the direction of the misalignment;
if both servo arms have a downward slope from the base to the tip of the servo
horn, then add an offset that will make the servos turn upright

� Repeat this process, applying the new offset values and testing each pair of
servos, until all servo horns are level

Each servo horn is between 7.5mm and 7.8mm in width and between 24.5mm
and 25.5mm in length between connection holes. The go-no-go gauge has a width
of 7.85mm and a length of 31.4mm. The spacing between servos is between 57mm
and 59mm. In a worst-case scenario, both servo horns are 7.5mm wide and 24.5mm
long, and the spacing between servos is 59mm. The relationship between these
constants and the maximum angular misalignment between the servos is derived
below.

Figure 2.26: Servo misalignment diagram (exaggerated scale)

The goal is to find an equation that relates the angle θ to the constants of the
physical setup. By comparing the vertical components of the servo horn arm with
the width of the gauge, we can find the following equations:

x2 =
d

2
− lscos(

θ

2
) (2.14)

x1 = (
lg
2
− x2) ∗

sin( θ
2
)

cos( θ
2
)

(2.15)
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x3 =
ws

2cos( θ
2
)

(2.16)

wg =
ws

2
+ x1 + x3 (2.17)

This system of equations was solved using the worst-case scenario constants
from above using Python to get a maximum angular error of 3.7° between ser-
vos when using the go/no-go gauge. This angular misalignment is a worst-case
and not all servos are misaligned to this degree, but it’s important to take into
consideration when performing the position estimate validation.

1 import numpy as np

2 from scipy.optimize import fsolve

3

4 # Givens

5 ws = 7.5

6 ls = 24.5

7 wg = 7.85

8 lg = 31.4

9 d = 59

10

11 # Calculate

12 def equations(vars):

13 theta = vars

14 x2 = d/2 - ls * np.cos(theta /2)

15 x1 = (lg/2 - x2) * np.sin(theta /2) / np.cos(theta /2)

16 x3 = ws / (2 * np.cos(theta /2))

17 eq1 = ws/2 + x1 + x3 - wg

18 return eq1

19

20 theta_ans = fsolve(equations , (0)) # Initial guess

21 print(np.degrees(theta_ans))

2.7 System Testing and Validation
Once the servos were calibrated and all of the code was functioning, it was im-
perative to verify the accuracy of the Fo-SHIP’s position estimate. A variety of
positions were tested and measured multiple times, and the averages of these mea-
surements were recorded. Table 2.4 summarizes the positions tested, the estimated
XYZ position of the iSBL array’s center, and the measured XYZ position of the
iSBL array’s center. The measured values have an uncertainty of ±1.6mm due to
the measurement devices used. All units are in millimeters, and the absolute error
is computed as the L2 distance from the estimated point to the measured point.
The estimated XYZ position is calculated using the forward kinematics model
described in Section 2.5.4 and uses the IMU on the iSBL array for orientation
estimation.

The average positional error of the Fo-SHIP when using the IMU orientation
compensation is 7.35mm. The maximum error measured was 21.12mm (for the
maximum possible displacement), and the positional error tends to grow as the
pitch and roll increase.
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Table 2.4: Fo-SHIP position validation

Position Est. X Est. Y Est. Z Meas. X Meas. Y Meas. Z Abs. Err.

Zero 124 1 -642 127 0 -643 3.32

Max X 152 1 -638 152 2 -639 1.41

Max Y 126 21 -642 127 19 -643 2.45

Min Z 122 -2 -708 126 -1 -711 5.10

Max Roll 90 305 -520 101 295 -535 21.12

Min Pitch 333 4 -425 340 2 -430 8.83

Med Roll 111 178 -604 105 172 -610 10.39

Med Pitch 263 2 -542 257 1 -543 6.16

This error comes from a variety of sources:
� Angular misalignment for the servo horns, as described in the previous section
� Slop in the system from servos not holding their precise angle due to loading
� Potentially loose connections from the heat-set inserts moving during testing
� Slight bending on some of the threaded rod linkages from repeated testing
� Inaccurate measurement of parameters for a single platform as defined in the
code

� Measurement inaccuracy from above testing

While this error is larger than desired, it is acceptable given the low-cost na-
ture of the actuator. Better actuators and metal base plates would significantly
improve the positioning accuracy of the Fo-SHIP. For any future implementations,
it is recommended to use linear actuators in place of rotational servos and to use
machined metal plates with smaller tolerances than the 3D printed components
used here.
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