ESP-Hosted Bluetooth

1 Bluetooth Stack

Currently, ESP-Hosted expects the Bluetooth stack needs to be run on host. So it would be worth to check the memory requirement for the preferred Bluetooth host
stack are satisfied.

ESP-Hosted, functioning similar to relay, doesn't really limit or prefers any specific Bluetooth stack. Just because esp-nimble being readily available, esp-nimble is
used to showcase the porting layer. Practically, users can use their own preferred Bluetooth stack with small porting effort.

As of current, ESP-Hosted uses esp-nimble, which is NimBLE stack readily available from ESP-IDF. esp-nimble is fork of Apache NimBLE. NimBLE stack provides
Bluetooth Low Energy only (BLE only) functionality.

2 Bluetooth Controller

ESP-Hosted re-uses the Bluetooth controller running at slave. Slave is expected to be configured to use controller only mode.

As ESP-Hosted is just communication medium, it doesn't limit to BLE only. Classic BT stacks are also supported, given the slave has Classic-BT controller. The
Classic-BT or BLE or both availability depends upon the Bluetooth stack support and ESP chipset chosen. As of today, ESP32 supports Classic-BT+BLE, whereas,
the other ESP slave chipsets support BLE only.

3. Bluetooth Interface

Hosted allows two ways to use the Bluetooth stack running over host to communicate with the Bluetooth controller.

e VHCI
o VHCI is standard HCI with extra headers or metadata
o VvHCI embedded ESP-Hosted header and re-uses the underlying ESP-Hosted transport, such as SPI/SDIO.
o This option is much easier to set up. With this approach, once the existing SPI or SDIO transport is set up, in no time you get a working Bluetooth using vHCI
driver.
o When to prefer this option
= Complete control of Bluetooth messages
= Extra flexibility of debugging
= No extra GPIOs for setting up (faster or no-set-up time)
e Standard HCI
o Standard HCl is a transparent way of handling HCI messages
o The pure HCI messages originated from Bluetooth stack running over Host, are sent through medium like UART to the Bluetooth controller at ESP
o When to prefer this approach
= Transparency - Messages not appended with headers.
= Portability - Because of standard HCI, any slave is replaceable with any other co-processor chipset (ESP or any other as well)

3.1 NimBLE host stack with vHCI

ESP-Hosted currently works with the ESP-IDF NimBLE Bluetooth Stack through a VHCI driver.
The ESP-IDF NimBLE Bluetooth host expects the following APIs to init, and send Bluetooth Packets:

e hci_drv_init
e ble_transport_11_init
e Dble_transport_to_11 _acl _impl

e Dble_transport_to_11_cmd_impl

The ESP-IDF NimBLE Bluetooth host receives Bluetooth Event and ACL data through this interface:

e hci_rx_handler

3.1.1 Host vHCI Init

The following sequence diagrams show Bluetooth initialization and how the Bluetooth Host sends and receives data through Hosted.
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PlantUML file for diagram:

3.1.2 Host VHCI Tx

Current Bluetooth Implementation in ESP Hosted: TX

TX data from host Bluetooth stack to slave Bluetooth controller via vHCI

PlantUML file for diagram:
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3.1.2 Host VvHCI Rx

Current Bluetooth Implementation in ESP Hosted: RX
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e PlantUML file for diagram: @ hosted_bluetooth_rx.txt

3.2 NimBLE host stack using standard HCI

NIimBLE also directly talk to a Bluetooth Controller through the UART interface. This does not involve any Hosted Code and only requires a UART driver.

Simple example of this configuration can be found in the following ESP-IDF NimBLE Host-only Example:

e on GitHub: [ https://github.com/espressif/esp-idf/tree/master/examples/bluetooth/nimble/bleprph_host_only ]

3.2.1 Host HCI Init

The following sequence diagram shows the Bluetooth initialization and how Bluetooth Host sends and receives data through UART.
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PlantUML file for diagram:

@ hosted_uart init.txt

3.2.2 Host HCI Tx
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PlantUML file for diagram:

@ hosted_uart_tx.txt

3.2.3 Host HCI Rx
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PlantUML file for diagram:
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