ESP-Hosted Bluetooth

1 Bluetooth Stack

Currently, ESP-Hosted expects the Bluetooth stack needs to be run on host. So it would be worth to check the memory requirement for the preferred Bluetooth host
stack are satisfied.

ESP-Hosted, functioning similar to relay, doesn't really limit or prefers any specific Bluetooth stack. Just because esp-nimble being readily available, esp-nimble is
used to showcase the porting layer. Practically, users can use their own preferred Bluetooth stack with small porting effort.

As of current, ESP-Hosted uses esp-nimble, which is NimBLE stack readily available from ESP-IDF. esp-nimble is fork of Apache NimBLE. NimBLE stack provides
Bluetooth Low Energy only (BLE only) functionality.

2 Bluetooth Controller

ESP-Hosted re-uses the Bluetooth controller running at slave. Slave is expected to be configured to use controller only mode.

As ESP-Hosted is just communication medium, it doesn't limit to BLE only. Classic BT stacks are also supported, given the slave has Classic-BT controller. The
Classic-BT or BLE or both availability depends upon the Bluetooth stack support and ESP chipset chosen. As of today, ESP32 supports Classic-BT+BLE, whereas,
the other ESP slave chipsets support BLE only.

3. Bluetooth Interface

Hosted allows two ways to use the Bluetooth stack running over host to communicate with the Bluetooth controller.

e VHCI
o VHCI is standard HCI with extra headers or metadata
o VvHCI embedded ESP-Hosted header and re-uses the underlying ESP-Hosted transport, such as SPI/SDIO.
o This option is much easier to set up. With this approach, once the existing SPI or SDIO transport is set up, in no time you get a working Bluetooth using vHCI
driver.
o When to prefer this option
= Complete control of Bluetooth messages
= Extra flexibility of debugging
= No extra GPIOs for setting up (faster or no-set-up time)
e Standard HCI
o Standard HCl is a transparent way of handling HCI messages
o The pure HCI messages originated from Bluetooth stack running over Host, are sent through medium like UART to the Bluetooth controller at ESP
o When to prefer this approach
= Transparency - Messages not appended with headers.
= Portability - Because of standard HCI, any slave is replaceable with any other co-processor chipset (ESP or any other as well)

3.1 NimBLE host stack with vHCI

ESP-Hosted currently works with the ESP-IDF NimBLE Bluetooth Stack through a VHCI driver.
The ESP-IDF NimBLE Bluetooth host expects the following APIs to init, and send Bluetooth Packets:

e hci_drv_init
e ble_transport_11_init
e Dble_transport_to_11 _acl _impl

e Dble_transport_to_11_cmd_impl

The ESP-IDF NimBLE Bluetooth host receives Bluetooth Event and ACL data through this interface:

e hci_rx_handler

3.1.1 Host vHCI Init

The following sequence diagrams show Bluetooth initialization and how the Bluetooth Host sends and receives data through Hosted.

Current Bluetooth Implementation in ESP Hosted: Initialization

Hosted Master

Hosted Slave

NimBLE Host SPI/SDIO SPI/SDIO
Bluetooth Stack VHCI Driver Interface Interface ‘ Bluetooth Controller
1 I 1 I 1
‘ ; Bluetooth Initialization ; ‘
| | | | |
' hei_drv_init() \: l | l
| e I | I
} do any init required 1 : 1
1 1 I 1
L(................................ L] | | |
' ble_transport_lI_init()_ ! : | }
| | | |
: do any transport init required | | }
| <] | | |
[§eooosconsooosaoascoasaoasanasaad =n [I [
| | | | |
NimBLE Host VHCI Driver SPI/SDIO SPI/SDIO ‘ Bluetooth Controller
Bluetooth Stack Interface Interface

@ hosted_uart_init.txt

PlantUML file for diagram:

3.1.2 Host VHCI Tx

Current Bluetooth Implementation in ESP Hosted: TX

TX data from host Bluetooth stack to slave Bluetooth controller via vHCI

PlantUML file for diagram:

@ hosted bluetooth_tx.txt

Hosted Master Hosted Slave
NimBLE Host SPI1/SDIO SPI/SDIO
Bluetooth Stack VHCI Driver Interface Interface ‘ Bluetooth Controller
‘ ‘ Bluetooth Stack Sends ACL Data			
ble_transport_to_Il_acl_impl() _ l			
I L I			
l convert ACL data to HCI			
<]			
esp_hosted_tx() - : :			
>			
: add Hosted header : :			
1 <	I I		
; SPI/$DIO (VHCI cata)> ! :			
} remove Hosted header :			
<			
1 HCI data R			
oo			
S 0			
	.		
- } Bluetooth Stack Sends CMD Data : :
| | | | |
: ble_transport_to_ll_cmd_impl()_ : : | :
\ > | | |
: convert CMD data to HCI : : :
| | | |
‘ «] ‘ | i
| | | |
l esp_hosted_tx() o | |
| - | |
} add Hosted header : :
| < | |
1 SPI/$DIO (VHCI data)_ | I
| = |
l remove Hosted header :
| <] |
| |
| HCI data <!
| [——— n | |
& """"""""""""""""""""""""""""" T | | |
| | | | |
NimBLE Host VHCI Driver SPI1/SDIO SPI1/SDIO ‘ Bluetooth Controller
Bluetooth Stack Interface Interface

3.1.2 Host VvHCI Rx

Current Bluetooth Implementation in ESP Hosted: RX

Hosted Master Hosted Slave
NimBLE Host

SPI/SDIO SPI/SDIO
Bluetooth Stack VHCI Driver Interface Interface ‘ Bluetooth Controller

Bluetooth Stack Receives Event/ACL Data

_ HCl data

<

|
l
l add Hosted header
|
|
|
|

SP|/SDIO (VHCI data)

remave Hosted header

<« !

|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|
: hci_rx_handler()
|

<
[~

Receive Event Data)

convert HCI data to
Event

| P

ble_transport_to_hs_evt()

<
)

b e e >

L
Receive ACL Data)

convert HCI data to
ACL

[JOoSPO9E000E000EE00EEE0EEE0EEO0EEO0EE00s >
: o T DR RO BT LI > am
| | |
NimBLE Host VHCI Driver SPI/SDIO SPI/SDIO ‘ Bluetooth Controller
Bluetooth Stack Interface Interface

RX data from slave Bluetooth controller to host Bluetooth stack via vHCI

e PlantUML file for diagram: @ hosted_bluetooth_rx.txt

3.2 NimBLE host stack using standard HCI

NIimBLE also directly talk to a Bluetooth Controller through the UART interface. This does not involve any Hosted Code and only requires a UART driver.

Simple example of this configuration can be found in the following ESP-IDF NimBLE Host-only Example:

e on GitHub: [https://github.com/espressif/esp-idf/tree/master/examples/bluetooth/nimble/bleprph_host_only]

3.2.1 Host HCI Init

The following sequence diagram shows the Bluetooth initialization and how Bluetooth Host sends and receives data through UART.

Bluetooth Implementation with UART Interface to Bluetooth Controller: Initialization

Master Slave
NimBLE Host Bluetooth Controller

Bluetooth Stack UART Driver with UART Interface

Bluetooth Initialization

| |
| |
' hei_drv_init() _ l
\ - \
l do any init required l
: PE— :
L(................................ L |
| | |
' ble_transport_lI_init()_ ! }
| - |
} do any transport init required |
| < |
r(""""""""""""""""" — |
| | |
NimBLE Host UART Driver Bluetooth Controller

Bluetooth Stack with UART Interface

Standard HCI over UART : Initialization

PlantUML file for diagram:

@ hosted_uart init.txt

3.2.2 Host HCI Tx

Bluetooth Implementation with UART Interface to Bluetooth Controller: TX

Master

NimBLE Host

Bluetooth Stack UART Driver

Slave

Bluetooth Controller
with UART Interface

Bluetooth Stack Sends ACL Data

ble_transport_to_Il_acl_impl() _ |

>
conve
<

UART

nt ACL data to HCI

TX (standard HCI)

-

Bluetooth Stack Sends CMD Data

ble_transport_to_II_cmd_impl()_ |

rt CMD data to HCI

|
|
|
|
|
|
|
|
|
|
|
h
Ll
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
)

TX (standard HCI)

conve
UART
s :
NimBLE Host UART Driver

Bluetooth Stack

>,
v
|
|
1

Bluetooth Controller
with UART Interface

Standard HCI over UART : TX Data to Bluetooth Controller

PlantUML file for diagram:

@ hosted_uart_tx.txt

3.2.3 Host HCI Rx

Bluetooth Implementation with UART Interface to Bluetooth Controller: RX

Master

NimBLE Host
Bluetooth Stack

UART Driver
|

Slave

Bluetooth Controller
with UART Interface

<

_ ble_transport_to_hs_evi()

A

; Bluetooth Stack Receives Event/ACL Data
| |
| . _ UART RX (standard HCI)
| [~
Receive Event Data)
convert HCI data to
Event

convet
ACL

<

t HCI data to

S >
! I
NimBLE Host UART Driver

Bluetooth Stack

Bluetooth Controller
with UART Interface

Standard HCI over UART : RX Data from Bluetooth Controller

PlantUML file for diagram:

@ hosted _uart_rx.txt

	Page 1
	Page 2
	Page 3
	Page 4

