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A B S T R A C T

Great progress has been made in deep learning (DL) based state-of-health (SOH) estimation of lithium-ion
batteries, which helps to provide recommendations for predictive maintenance and replacement of lithium-ion
batteries. However, despite the abundance of articles, few open-source codes are publicly available. While
there are several public datasets, they tend to be more oriented toward simulating laboratory environments
rather than real-world usage scenarios. Moreover, they solely provide raw data without any corresponding
preprocessing codes, resulting in inconsistencies in preprocessing methods across different papers. These
reasons lead to unfair comparisons and ineffective improvements. In response to these problems, this paper
publishes a large-scale lithium-ion battery run-to-failure dataset, consisting of 55 batteries, and provides a
unified data preprocessing method. Besides, we comprehensively evaluate 5 well-known DL-based models to
provide benchmark research. To be specific, first, the existing DL-based SOH estimation methods are reviewed
in detail. Second, we provide a comprehensive evaluation of DL-based models on 2 large-scale datasets,
including 100 batteries, with 3 input types and 3 normalization methods. Third, we make the complete
evaluation codes and dataset publicly available for better comparison and model improvement. Fourth, we
discuss future DL-based SOH estimation, including unsupervised learning, transfer learning, interpretability,
and physics-informed machine learning. We emphasize the importance of open-source code, provide baseline
estimation errors (error upper bounds), and discuss existing issues in this field. The code library is available
at: https://github.com/wang-fujin/SOHbenchmark.
1. Introduction

Lithium-ion batteries have the advantages of high energy density,
low self-discharge rate, and long lifetime [1]. As one of the most widely
used energy storage devices in modern society, lithium-ion batteries
played an indispensable role in portable rechargeable devices [2],
electric vehicles [3,4], energy storage power stations [5], satellites [6],
and other fields [7]. The performance of lithium-ion batteries degrades
due to the degradation of their electrochemical components and the
increase of internal resistance, resulting in capacity and power decay,
also known as battery aging. The aging and damage of lithium-ion
batteries may lead to the failure of the power system, causing property
damage and personal injury [8]. Therefore, the prognostics and health
management (PHM) of lithium-ion batteries are very important. It is
essential to estimate battery health, and model battery degradation
aging to meet the required operational performance and optimize the
usage process [9].
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State-of-health (SOH) and remaining useful life (RUL) are the most
important parameters to evaluate the current battery health and per-
formance [10]. SOH is defined as the ratio of the maximum available
capacity of the current cycle to the initial capacity [11]. RUL is closely
related to SOH and is defined as the number of cycles remaining
from the current cycle until the SOH drops to 80%. SOH can track
the actual performance of the battery in the application, describing
the degree of degradation and aging. Unfortunately, SOH cannot be
directly measured. Generally speaking, only several variables such as
voltage, current, and temperature can be directly measured. SOH can be
estimated from these measurements. Thus, how to estimate SOH more
accurately and effectively is still a challenging problem.

In recent years, various SOH estimation methods of lithium-ion
batteries have been proposed, which greatly advance the development
of this field. The SOH estimation of lithium-ion batteries aims to
evaluate the current state of the battery and provide recommenda-
tions for predictive maintenance and replacement, thereby improving
vailable online 9 December 2023
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the reliability and safety of the system operation. Approaches for
SOH estimation typically include model-based methods and data-driven
methods. Model-based methods, such as electrochemical models [12],
equivalent circuit models [13], etc., usually require the help of expert
knowledge and experience to determine the model parameters. In
contrast, the data-driven methods [14] require minimal knowledge of
battery aging mechanisms and can mine representative information
from historical data.

Deep learning (DL), as a powerful data mining technology and
one of the representatives of data-driven methods, has been widely
used in various fields and achieved great success, including com-
puter vision [15,16], natural language processing [17,18], automatic
driving [19,20], mechanical fault diagnosis [21–23], etc. In the field
of battery health management, many scholars have applied DL tech-
nology, including multi-layer perception (MLP), convolutional neural
network (CNN), recurrent neural network (RNN), Transformer, and
their various variants, to battery SOH estimation [24–26], since the
public availability of some large battery datasets. However, models
proposed by different researchers often have unique input types and
hyper-parameters. Publicly available large battery datasets also do not
provide a unified data preprocessing method, resulting in different
preprocessing methods in different papers. Unfortunately, few schol-
ars have made their codes public, leading to unfair comparisons and
ineffective improvements of methods proposed in papers. To address
this problem, it is crucial to provide a benchmark study and open-
source codes. In this uniform benchmark, the researchers can make a
fair comparison and propose more appropriate and efficient methods.

For a comprehensive comparison, it is necessary to utilize different
datasets and compare the performance of different models on a unified
platform. What is more, different data preprocessing methods and input
types also have a great impact on the model performance. Without
controlling for variables, it would be difficult to discern whether im-
provements in results stem from enhancements to the model itself or
modifications to data preprocessing methods.

To address these issues, we conduct experiments on two large
datasets, with a total of 100 batteries. One is the Toyota-MIT-Stanford
dataset [27], which contains 45 batteries, and the other is a new
dataset we will make publicly available, which contains 55 batteries.
Specifically, we compare and evaluate the performance of DL-based
models in the lithium-ion battery SOH estimation task in detail from
different perspectives, including different DL models, input types, and
normalization methods. Based on this benchmark study, we evaluate
and discuss the results, and explore future research directions for SOH
estimation tasks of lithium-ion batteries. We also release a code library
to evaluate DL-based SOH estimation models and provide a baseline,
the upper bound of the model’s estimation error, to avoid ineffective
improvements. Through these works, we aim to provide a fair com-
parison environment and discuss the issues of existing methods. We
also emphasize the importance of open-source codes. Although many
review papers have been published on battery health management,
to the best of our knowledge, this is the first work to conduct a
comprehensive benchmark study and release the code library to the
public. The benchmark code library is available at: https://github.com/
wang-fujin/SOHbenchmark.

The overall organizational structure of our paper is shown in Fig. 1.
Our contributions are as follows:

1. We develop a large battery dataset, which contains run-to-failure
data of 55 batteries under 6 charging and discharging strategies.
In particular, there are some of our unique charging and dis-
charging strategies. For example, we simulate the charging and
discharging strategies of satellites in geosynchronous earth orbit
(GEO), which have not been seen in other public datasets.

2. We evaluate various vanilla DL algorithms and data preprocess-
ing methods for SOH estimation of lithium-ion battery to provide
a benchmark. A total of 5 DL models are implemented. Each
model is evaluated on 100 batteries with different preprocessing,
2

including 3 input types and 3 normalization methods.
3. We release the code library for the better comparisons. It is a uni-
fied battery SOH estimation library, which retains an extended
interface for everyone to load their own datasets and models to
carry out new studies.

The remainder of this paper is organized as follows. In Section 2, we
give a review of the development of DL methods in the field of lithium
battery SOH estimation. Section 3 to Section 7 present the evaluation
algorithm, datasets, data preprocessing, evaluation methodologies, and
evaluation results, respectively. Section 8 discusses the evaluation re-
sults and further discusses future research directions. The conclusions
are given in Section 9.

2. Review

2.1. Review screening methods

In recent years, DL-based methods have been widely used in the
field of battery health management and prognosis. This paper mainly
focuses on a benchmark study of deep learning in SOH estimation of
lithium-ion batteries, excluding SOC estimation and RUL prediction.
The ScienceDirect, IEEE Xplore, and Springer were used to find relevant
papers for this benchmark study. We used joint keywords, such as
(‘‘li-ion battery’’ OR ‘‘lithium-ion battery’’ OR ‘‘lithium battery’’) AND (‘‘ca-
pacity’’ OR ‘‘state of health’’) AND ‘‘deep learning’’, for our initial search.
More than 700 literature were searched. We limited the publication
year of the article to 2017 to the present (early 2023), limited the
article type to journal articles, and conducted a brief analysis of the
article titles. A total of nearly 300 articles have been downloaded.
Finally, we conducted detailed screening based on abstracts and paper
content, and selected about 100 papers from the download list for
review in this paper.

2.2. Literature reviews

Many scholars have done some work on the SOH prediction of
lithium-ion battery. According to the literature retrieved above, we
make a brief review and summary in this part. A summary and clas-
sification of DL-based SOH estimation methods are given in Table 1.

2.2.1. RNN-based model
Recurrent Neural Network (RNN) is often used to deal with prob-

lems where sequence data is taken as input. Based on vanilla RNN,
many variants have been developed, such as long short-term memory
(LSTM) network and gate recurrent unit (GRU). This part will review
the work of the RNN-based model in SOH estimation problem.

In Che’s research [28], an LSTM model using probabilistic regres-
sion was applied to predict battery capacity, which extracted health
indicators (HIs) from partial capacity and voltage series as input.
The similar studies were conducted by [29,30], and they established
a health assessment framework based on LSTM. To solve the prob-
lem that laboratory feature extraction methods are inapplicable due
to highly unstable operating conditions of electric vehicles, Heinrich
et al. [31,32] used LSTM to model the electric response during capacity
testing and proposed a SOH estimation method based on virtual battery
experiments. Aiming at the problem that hyper-parameters of LSTM
are difficult to pre-define in the SOH estimation problem, optimiza-
tion algorithms such as particle swarm optimization (PSO) [33] and
cuckoo search [34] were used to optimize hyper-parameters to speed
up the convergence of the model. Chen et al. [35] used empirical
mode decomposition (EMD) to extract features from the battery data
and then fed the features into different deep RNNs to estimate the
SOH. To address the problem of complex calculation of incremental
capacity (IC) curve, Zhang et al. [36] improved the IC curve calculation
method and established an SOH estimation model based on LSTM using

IC features as input. Using features as input to estimate SOH is a
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Fig. 1. The organizational structure of this paper.
popular approach [37,38]. Researchers have designed various feature
extraction methods to obtain more representative features to improve
the estimation accuracy of SOH . Chen [39], Li [40], and Tian [41]
et al. extracted features from charging data as input to the model to
predict SOH. In contrast, some studies [42,43] extracted features from
discharge data. Ma et al. [44,45] proposed a method for battery SOH
prediction based on LSTM network, which improved the prediction
accuracy by extracting features from the differential thermal voltam-
metry (DTV) curve. However, all the above studies are based on feature
engineering, and the performance of the model heavily depends on the
expert experience and the quality of handcraft features.

Considering the powerful feature extraction ability of DL, many
studies directly use raw data as input to estimate SOH. Li et al. [46,
47] proposed a LSTM-based model which can predict battery health
without feature extraction. What is more, Refs. [48,49] used raw
charging and discharging data as model input to predict capacity and
SOH. Wang et al. [50] proposed a Bi-LSTM model, using normalized
capacity time series data as the training data of the model, and trans-
forming the RUL problem into a time series prediction problem [51].
Li et al. [52] proposed a framework for capacity prediction through
multitasking learning which uses the RNN-based sequence-to-sequence
model. Considering the volatility and non-linearity in battery degrada-
tion, Cheng [53] and Chen [54] combined EMD and LSTM to predict
SOH and degradation trajectories. Zhang et al. [55] designed a model
that can update the hyper-parameters based on historical data, which
can better track the capacity degradation trajectory. Hong et al. [56]
proposed a method for online SOH estimation of electric vehicle batter-
ies using variable-length input LSTM networks, which can learn battery
degradation factors according to different driving phases.

The model with raw data as input can perform an end-to-end
SOH prediction, omitting the time-consuming and laborious feature
extraction process. However, the performance of these models relies
more on their feature extraction capabilities than those based on fea-
ture engineering, which requires the model to have a strong feature
3

extraction capability to predict SOH more accurately.
2.2.2. CNN-based model
Convolutional neural networks (CNN) have achieved great success

in computer vision. In the field of battery SOH estimation, a large num-
ber of CNN-based methods have also been proposed. Yang et al. [57]
completed feature extraction of two consecutive charge and discharge
cycles by CNN, and then predicted SOH through a random forest algo-
rithm. Ruan et al. [58] proposed a CNN-based method to automatically
extract degradation features from reliable 𝛥𝑄 signals. To achieve online
forecasting, Shen et al. [59] proposed a model that utilizes deep neural
network with multiple convolutional layers to estimate lithium-ion
battery capacity online. Their method has a higher accuracy compared
to the traditional machine learning methods in online prediction.

In the actual industry, current, voltage, and temperature are often
easy to collect, so most methods estimate SOH based on these three
measurements. However, there are also methods to improve prediction
accuracy via exploring more variables. Xiong et al. [60] used the raw
impedance spectrum as the input quantity of CNN. They constructed
an input reconstruction module to maintain high accuracy of battery
capacity prediction even with a large number of unlabeled samples.
Pradyumna et al. [61] proposed a capacity estimation method based
on electrochemical impedance spectroscopy (EIS), but this method
could only predict off-line and accurately only at 100% SOC. Some
scholars also consider from the perspective of the model input, and try
to improve the model performance via changing the series data into
other forms. Costa et al. [62] applied dynamic time warping (DTW)
technology to convert battery data into images, which are inputted into
CNN to complete the characterization of a battery degradation process.
Sohn et al. [63] proposed a method to monitor battery degradation
by online predicting the knee-point of battery capacity. Similarly, Ji
et al. [64] also proposed a method for SOH estimation combined with
knee-point probability prediction.

Considering the incomplete charging process, several papers use
partial data to predict SOH [65,66]. Fan et al. [67] proposed a method
to estimate battery capacity using voltage data from the first 10 s of

a battery discharge curve. Deng et al. [68] proposed three data-driven
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methods to estimate SOH based on short random charging segments.
The methods have been verified on commercial lithium-ion batteries
at different temperatures and discharge rates, but require constant
temperature, discharge current, and complete charge/discharge cycles.
Similarly, Tian et al. [69,70] proposed a DL method based on CNN,
using a small portion of charging data to predict battery degradation.
Saxena et al. [71] designed a CNN model to predict the entire battery
capacity decay curve using data from the first 100 cycles.

To account for temporal information in battery data, Zhou et al. [72]
proposed a Temporal-Convolutional Network (TCN) based battery SOH
estimation model that uses voltage and temperature degradation trends
as inputs and takes health characteristics into account. In Bockrath’s
research [73], TCN is also applied to estimate the battery health state.

CNN has a weight-sharing property that allows it to accommodate
more layers with the same number of parameters in comparison to
other models. Additionally, its superior feature extraction ability has
been tested and proven in the realm of computer vision. In battery
SOH prediction, CNN is also widely used for feature extraction and has
achieved great results.

2.2.3. Other DL-based models
In addition to RNN-based and CNN-based models, some other DL-

based models are also used for battery SOH estimation. Due to its
relatively small number of articles, we will focus our review on this
part.

Wang et al. [74] utilized a dual self-attention mechanism to build
the network, and used local and global self-attention modules to en-
hance the ability of SOH prediction. Qian et al. [75] combined his-
torical state information and future load information to proposed an
attention-based sequence-to-sequence model consisting of two encoders
and one decoder for SOH prediction. To modeling battery degradation
timing, Wang et al. [76,77] proposed a degradation trend alignment
method based on cycle-consistency learning to align battery degrada-
tion data, and then got the health state based on the aligned features.
Kim et al. [78] employed information-maximizing generative adversar-
ial networks (GAN) to identify potential features, followed by using
Gaussian process regression to predict battery capacity. This method
can predict the discharge capacity of the battery well. To estimate the
capacity of lithium-ion batteries according to the time series charac-
teristics in the process of battery degradation, Cui et al. [79] proposed
a model using feature transformation process neural network. Mckay
et al. [80] proposed a method that can generate data based on an elec-
trochemical model and then predict lithium-ion battery performance
based on MLP. In addition, Autoencoder (AE) [81,82], MLP [83,84],
deep belief network (DBN) [85,86], radial basis function (RBF) net-
work [87], extreme learning machine (ELM) [88,89], etc., are also
used for the task of SOH prediction. Xue et al. [90] adopted gen-
eralized regression neural network to complete the construction of
SOH prediction model, and used quantum genetic algorithm (QGA)
to optimize the hyper-parameters of the network. Qaisar et al. [91]
put forward an event-based approach to extract and forecast battery
capacity, highlighting the benefits of utilizing artificial neural networks
(ANNs).

Scholars seem to be interested in using handcraft features as input,
regardless of the type of network being used. Song et al. [92] designed
a feedforward neural network (FFNN) with handcraft features as input
to estimate SOH. In [93], Maleki proposed a DL structure combining
autoregressive integrated moving average (ARIMA) and knowledge
transfer asset to achieve the estimation of SOH. The least absolute
shrinkage and selection operator (LASSO) regression and Pearson corre-
lation coefficient are used to selecting the four most influential features
as the input of the network. Lin et al. [94] adopted temperature
and features extracted from voltage signals as inputs to the model
which is an improved fuzzy cerebellar model neural network (IFCMNN)
designed to estimate SOH and has good universality.
4

2.2.4. Hybrid models
The hybrid model refers to a model that combines various types of

basic networks to improve the accuracy of SOH prediction. For exam-
ple, Pepe et al. [95] proposed a battery health prediction model in-
corporating neural networks and ordinary differential equation (ODE).
Zhang et al. [96] proposed a battery state prediction method based
on GAN-CLS and Bi-LSTM. It uses GAN-CLS to generate data and Bi-
LSTM to train a model. Yao et al. [97] used three neural networks,
CNN, LSTM, and graph neural network (GNN), to analyze the 27 HIs
extracted from the charging and discharging data. It is interesting to
note that many scholars [98–102] choose CNN to extract hidden infor-
mation from data, and utilize LSTM to process time series information
for enhancing the model performance. In addition, combining LSTM or
CNN with attention mechanism is also a common method [103–107], in
which the attention mechanism is used to extract more robust features.

Although the hybrid model may have higher predictive accuracy,
its model architecture is more complex and consists of a larger number
of parameters. It is worth investigating whether combining multiple
networks is necessary for enhancing model performance in estimating
SOH. This investigation would also entail examining the individual
performance of each fundamental network structure in SOH estimation.

2.3. A brief review of reviews

In recent years, due to the efforts of scholars, the research on
battery health management has made great progress. An interesting
observation is that many review papers related to this topic have also
been published. We reviewed the application of DL in battery SOH
estimation above. Here, we make a summary of some review papers,
so that readers can quickly find the articles they want to know.

Refs. [108–110] reviews the current status of SOC estimation, clas-
sifies SOC estimation methods, and discusses the advantages, disad-
vantages, limitations, and future research directions of the algorithms.
Similarly, Ref. [111–114] mainly reviews the current state of SOH
estimation. Some articles provide an overall review of battery PHM [24,
115,116], including SOC, SOH, and RUL prediction.

Che et al. [117] reviewed the lithium battery aging mechanism and
the latest health prediction methods, and summarized the main chal-
lenges and research prospects of battery health prediction. Li et al. [14]
discussed the strengths and limitations of data-driven approaches for
lithium battery health estimation and lifetime prediction, and further
discussed the challenges of battery health management and potential
next-generation technologies. Zhang et al. [11] assessed the PHM of
lithium-ion batteries based on DL-based method, introduced commonly
used data, methods, and evaluation metrics, and looked forward to the
prospect of using DL technology to achieve effective PHM of lithium-
ion batteries. Similarly, Lipu [118] also conducted a survey on the
application of DL-based method in SOC, SOH, and RUL prediction. He
mainly focused on methods, implementations, strengths, weaknesses,
contributions, etc., and also explored various limitations and challenges
of DL in BMS related to battery, algorithmic, and operational issues.

Although many reviews have been published, they did not provide
a benchmark for comparison by subsequent scholars. In this paper, we
not only review the existing DL-based SOH estimation methods, but also
publish a large dataset and provide a code library to facilitate other
scholars to study and compare their individual methods.

3. Evaluation algorithms

It is impossible to cover all the published models since there is
currently no open source community in the field of battery SOH estima-
tion. Therefore, we evaluate 5 well-known DL-based models, including
MLP, CNN, LSTM, GRU, and Attention model. It is worth noting that
we only evaluate they vanilla structures without any other variants. In
this section, we briefly explain these five algorithms.
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Table 1
DL-based SOH estimation methods.

Reference Method Dataset Input type Number of features

[28] LSTM MIT-Stanford Features from charging data 6
[29] LSTM NASA Features from charging and discharging data
[33] LSTM Data from the laboratory Features from charging and discharging data 4
[34] DACS-LSTM NASA, CALCE Features from charging and discharging data 9
[35] LSTM NASA Features from charging and discharging data 4
[37] GRU-HMM NASA, Oxford Features from charging and discharging data 3
[38] Bi-LSTM NASA Features from charging data
[39] GRU Oxford Features from charging data 6
[40] LSTM, BiLSTM NASA, Lishen LR1865SZ Features from charging data 1
[42] KIRNN-Monte Carlo Data from the laboratory Features from discharging data 10
[43] GPR, LSTM, ANN NASA, CALCE, Oxford Features from discharging data 5
[44] LSTM NASA Features from charging and discharging data 3
[46] LSTM RWTH Charging and discharging data
[47] LSTM RWTH Charging data
[48] LSTM NASA, CALCE Charging and discharging data
[49] AST-LSTM NASA Charging and discharging data
[52] Sequence to Sequence RWTH Charging and discharging data
[53] LSTM-EMD CALCE Charging data
[55] LSTM NASA Charging and discharging data
[56] LSTM EVs dataset in Beijing Charging data
[57] CNN-RF MIT-Stanford Features from charging and discharging data
[58] CNN Oxford Charging and discharging data
[59] Deep CNN NASA Charging data
[60] CNN Data from the laboratory Charging and discharging data
[61] CNN Data from the laboratory Charging and discharging data
[62] DTW-CNN Data from the laboratory Charging and discharging data
[63] CNN MIT-Stanford Charging and discharging data
[67] CNN Oxford Discharging data
[69] [70] CNN NASA, CALCE, Oxford Charging data
[72] Attention depthwise-TCN NASA Charging data
[73] TCN NASA Charging and discharging data
[74] Dual self-attention Data from the laboratory Features from charging data 15
[78] EISGAN, GPR Data from the laboratory Charging and discharging data
[81] Encoder–decoder NASA Charging and discharging data
[83] MLP NASA Features from charging and discharging data 5
[84] MLP NASA Features from discharging data 6
[85] DBN NASA Features from discharging data 17
[87] RBF-AR NASA, CALCE Features from charging and discharging data 3
[88] ELM Oxford Features from charging and discharging data 5
[89] ISSA-DELM NASA Features from discharging data 2
[90] PF-QGA-GRNN NASA, real vehicle dataset Charging and discharging data
[91] ANN NASA Features from discharging data 3
[95] NN based on ODE NASA, Oxford Features from charging data 1
[97] CNN, LSTM, GNN MIT-Stanford Features from charging and discharging data 27
[99] CNN-LSTM NASA Charging and discharging data
[103] QGA-ASM-LSTM NASA, CALCE Features from charging and discharging data 28
[104] LSTM, Attention, GCN NASA Features from charging and discharging data 8
[107] CNN-transform NASA Features from charging and discharging data 4
[119] SSL CALCE, Oxford Features from charging data 3

Note: NASA dataset comes from [120], MIT-Stanford dataset comes from [27,121], Oxford dataset comes from [122], CALCE dataset comes from [123], and NWTH dataset comes
rom [46].
.1. MLP

MLP gained popularity in the machine learning field in the 1980s
124]. The MLP has a forward structure where each layer is fully
onnected, as shown in Fig. 2. A MLP consists of several hidden layers,
n input layer, and an output layer. MLP can be calculated using the
ollowing formula:

= 𝜙(𝑊 ⋅ 𝑥 + 𝑏), (1)

where 𝜙(⋅) represents the activation function, 𝑊 is the weight, 𝑏
enotes bias, and 𝑥 is the input.

MLP can be used to solve the simple prediction and classifica-
ion problems. However, as the complexity of the task increases, the
LP’s computational load is too heavy, resulting in unsatisfactory

erformance for some time series problem.

.2. CNN

In 1980, the neurocognitive machine model was developed, which is
he first neural network model with the convolutional structure [125].
5

Fig. 2. The diagram of MLP.

A dozen years later, LeCun et al. [126] designed the LeNet-5 network
in 1998, which applied CNN to handwritten digit recognition and
trained it using the backpropagation algorithm. In 2012, Krizhevsky
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Fig. 3. The diagram of CNN.

t al. [15] achieved a significant breakthrough in the ImageNet image
lassification competition by using the AlexNet. Besides, He et al. [127]
ave won the champion of ILSVRC in 2015, and ResNet has become a
ilestone in the history of CNN.

Generally, CNN is composed of convolutional layer, activation func-
ion, pooling layer, and fully connected layer, as shown in Fig. 3.

For an input 𝑥, the convolutional layer can be defined as a multi-
lication with a filter kernel 𝑤, the feature map after the convolutional
ayer can be formulated as:
𝑙
𝑘 = 𝜙(𝑤𝑙

𝑘 ⋆ 𝑥 + 𝑏𝑙𝑘), (2)

here ⋆ denotes the convolution operator, ℎ𝑙𝑘, 𝑤𝑙
𝑘, and 𝑏𝑙𝑘 denote the

obtained feature map, the weight, and the bias of the 𝑘th convolutional
kernel of the 𝑙th layer, respectively.

Activation functions are used to add nonlinear factors, improve the
expression ability of neural networks, and solve problems that cannot
be solved by linear models. ReLU is a common activation function, it
can be described as:

ReLU(ℎ𝑙𝑘) = max(0, ℎ𝑙𝑘), (3)

where ℎ𝑙𝑘 denotes the output of the convolution layer.
The pooling layer is set behind the convolutional layer to downsam-

le the feature map, thereby reducing the parameters and computation.
ommon pooling operations include Max Pooling and Average Pooling.
he maxpooling layer can be defined as:
𝑙
𝑘 = down(ReLU(ℎ𝑙𝑘); 𝑠), (4)

here down(⋅) denotes the down-sampling function of the maxpooling
ayer, 𝑧𝑙𝑘 and 𝑠 denote the output feature map of the pooling layer and
ooling size, respectively.

After a series of convolutional and pooling layers, the high-level
eatures of the input data are extracted and fed into the fully connected
ayer, which is used to convert the high-dimensional feature vector into
low-dimensional vector and output the final result.

.3. LSTM

LSTM, proposed in 1997 [128], is a variant of RNN, which has better
rocessing capability for gradient disappearance in long sequence data
raining. The structure of LSTM is shown in Fig. 4.

LSTM has two transitive states, 𝑐𝑡 and ℎ𝑡, which improve the pro-
essing efficiency compared to RNN’s one state. An LSTM cell contains
forget gate 𝑓𝑡, an input gate 𝑖𝑡, and an output gate 𝑜𝑡. The calculation
rocess of LSTM can be expressed as:

𝑡 = 𝜎
(

𝑊𝑓 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑓
)

, (5)

( [ ] )
6

𝑖𝑡 = 𝜎 𝑊𝑖 ⋅ ℎ𝑡−1, 𝑥𝑡 + 𝑏𝑖 , (6)
Fig. 4. The diagram of LSTM.

Fig. 5. The diagram of GRU.

𝑐𝑡 = tanh
(

𝑊𝑐 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑐
)

, (7)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡, (8)

𝑜𝑡 = 𝜎
(

𝑊𝑜 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑜
)

, (9)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh
(

𝑐𝑡
)

. (10)

where 𝜎(⋅) represents the Sigmoid function, 𝑊𝑓 , 𝑊𝑖, 𝑊𝑐 , and 𝑊𝑜 repre-
sent weighted matrix, 𝑏𝑓 , 𝑏𝑖, 𝑏𝑐 , and 𝑏𝑜 represent bias, and ⊙ stands for
Hadamard Product, which is the multiplication of the corresponding
entries in the matrices.

3.4. GRU

GRU, proposed in 2014 [129], is also a kind of RNN. It has good
applicability to the backpropagation gradient problem and time series
problem. GRU has a lower computational cost compared to LSTM, since
it is simpler to compute and train. The overall structure of GRU is
shown in Fig. 5.

The update gate 𝑧𝑡 of GRU is composed of the input gate in LSTM
merged with the forget gate, and the reset gate 𝑟𝑡 is composed of the
hidden layer and memory unit of LSTM. The formulas are as follows:

𝑧𝑡 = 𝜎
(

𝑊𝑧 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑧
)

, (11)

𝑟𝑡 = 𝜎
(

𝑊𝑟 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑟
)

, (12)

ℎ̃𝑡 = tanh
(

𝑊ℎ ⋅
[

𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏ℎ
)

, (13)

ℎ𝑡 =
(

1 − 𝑧𝑡
)

⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡. (14)

where 𝑊𝑧, 𝑊𝑟, and 𝑊ℎ represent weighted matrix, 𝑏𝑧, 𝑏𝑟, and 𝑏ℎ
̃
represent bias, and ℎ𝑡 is hidden state.
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Fig. 6. The diagram of self-attention.

By incorporating a gating mechanism for selective memory and for-
etting, this design simplifies the structure and improves computational
erformance.

.5. Attention

Attention is a technique that allows a model to focus on the key
arts of its input or output. It was originally a concept used in the
isual domain of image classification. It was later widely used in natural
anguage processing, especially in machine translation. In 2014, the
oogle Mind team applied Attention mechanism to recurrent models of
NN to classify images [130]. Bahdanau et al. [131] applied Attention
echanism to machine translation in 2015. The simultaneous transla-

ion and alignment of a machine translation task using an attention-like
echanism is the first application of Attention on neural language pro-

essing. Besides, the Google Machine translation team made extensive
se of self-attention methods to learn text representation in 2017 [132].

Take Self-Attention for example. The original formula for Attention
an be expressed as:

Attention(𝑄,𝐾, 𝑉 ) = sof tmax(𝑄𝐾𝑇
√

𝑑𝑘
)𝑉 , (15)

where 𝑄 is analogous to inquiry, 𝐾 is analogous to index, 𝑉 is anal-
ogous to an answer, and 𝑑𝑘 is the dimension of the hidden layer. 𝑄
and 𝐾 obtain a mask matrix with all values of 0–1, and 𝑉 is used
to preserve the input characteristics. The diagram of Self-Attention is
shown in Fig. 6.

4. Datasets

In this paper, we conduct the experiments on two large datasets,
with a total of 100 batteries, for the battery SOH estimation. We
provide the detailed experimental results for each battery.

4.1. XJTU battery dataset

The XJTU battery dataset is a new large-scale dataset we designed
for this benchmark. There are 55 lithium-ion batteries subjected to 6
charging and discharging strategies in this dataset, which records their
run-to-failure data. These lithium-ion batteries were manufactured by
LISHEN, whose chemical composition is LiNi0.5Co0.2Mn0.3O2. They have
a nominal capacity of 2000 mAh, a nominal voltage of 3.6 V, a charge
cut-off voltage of 4.2 V, and a discharge cut-off voltage of 2.5 V.
All batteries cycled to failure in 40-channel ACTS-5V10A-GGS-D at
7

l

room temperature, as shown in Fig. 7. We use batch 1 to batch 6 to
represent the 6 charging and discharging strategies, respectively. All
batches except batch 2 consist of 8 batteries, while batch 2 contains 15
batteries. All battery data are available at: https://wang-fujin.github.
io/.

4.1.1. Batch 1
The batteries in batch 1 were cycled under a fixed charging and dis-

charging strategy. All batteries were charged to 4.2 V at 2 C with con-
stant voltage and constant current (CC–CV) mode and then discharged
to 2.5 V at 1 C.

4.1.2. Batch 2
Batch 2 contains 15 batteries, and its charging and discharging

strategy is similar to batch 1. All batteries were charged to 4.2 V at
3 C with CC–CV mode and then discharged to 2.5 V at 1 C.

4.1.3. Batch 3
Batch 3 has a more complex protocol than that of the first two

batches. All batteries were charged at 2 C with CC–CV mode. Then
they were discharged to 2.5 V with a current value of 𝑥 C, where
𝑥 ∈ {0.5, 1, 2, 3, 5}.

4.1.4. Batch 4
Batch 4 is similar to batch 3. The batteries were charged at 2 C

with CC–CV mode and then discharged to 3.0 V with the same current
as batch 3.

4.1.5. Batch 5
Batch 5 follows the random walking strategy, thereby the entire

process of charging and discharging are more closely with real-life
usage. Specifically, all cells are charged to 4.2 V at 1 C with CC–CV
mode and then discharge to 3.0 V. The discharge current is a random
integer in the range of [2, 8] ampere and the duration is in the range of
2, 6] min.

.1.6. Batch 6
In batch 6, we simulated the charging and discharging strategy of

satellite in geosynchronous earth orbit (GEO). The batteries of GEO
atellites only supply power during the shadow period of the earth, and
he depth-of-discharge (DOD) is generally less than 80% [133]. The
uration of each discharge is determined by the duration of the Earth’s
hadow. Therefore, the discharge duration of each cycle is different,
nd the DOD is also different. More details can be found in Appendix A.

.2. Toyota-MIT-Stanford dataset

The Toyota-MIT-Stanford dataset [27] contains data of LiFePO4
LFP) batteries cycled under fast-charging. These lithium-ion cells were
anufactured by A123 Systems (APR18650M1A). They have a nominal

apacity of 1.1 Ah and a nominal voltage of 3.3 V. In fast-charging
xperiments, these batteries were charged to 80% SOC through 4 stages
f fast-charging in constant current (CC) mode and then fully charged
n a CC–CV model. During the first three stages, each stage (0%–
0%, 20%–40%, and 40%–60%, respectively) charges 20% SOC at a
redetermined rate. In the fourth stage, the charging rate is determined
y ensuring that the total charge time of four stages is 10 min. Then all
atteries were discharged at 4 C in a CC mode. The run-to-failure data
f 45 batteries from the last batch were used in this paper. Since these
atteries contain 9 charging strategies, we divide them into 9 groups,

abeled as group 1 to group 9 respectively in Table 2.

https://wang-fujin.github.io/
https://wang-fujin.github.io/
https://wang-fujin.github.io/
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Fig. 7. The schematic diagram of the experimental platform.
Table 2
Details about the Toyota-MIT-Stanford dataset.

Group Charge protocol Discharge protocol Channel
0-20%-40%-60%-80%

1 3.6-6-5.6-4.755

4C

11,12,27,29,38
2 4.4-5.6-5.2-4.252 8,15,18,32,48
3 4.8-5.2-5.2-4.16 1,2,10,20,42
4 5.2-5.2-4.8-4.16 6,7,37,41,45
5 6-5.6-4.4-3.834 9,21,22,31,36
6 7-4.8-4.8-3.652 3,25,26,28,44
7 8-4.4-4.4-3.94 13,16,23,24,47
8 8-6-4.8-3 14,17,30,35,39
9 8-7-5.2-2.68 19,33,34,40,43

5. Data preprocessing

The data preprocessing methods, including the type of input data
and the normalization way, have a great influence on the performance
of the model. In this paper, we compared the impact of three input
types on model performance. Meanwhile, each input type is normalized
by three methods.

5.1. Input type

From the articles reviewed above, it can be found that the input
types of the models proposed in different papers are not uniform, which
makes it hard to form a fair comparison among models. To provide
a benchmark, we evaluated the impact of three input types on model
performance.

It is worth noting that all the three input types come from charging
data. Some papers rely on discharging data to estimate SOH, but we
think that is unrealistic due to the fact that the battery discharging
process is user-specific. That is, different batteries, or even one battery
in two discharging cycles, have different discharging strategies. On
the contrary, batteries of the same type usually have same charging
strategy. Therefore, we believe that it is more realistic to estimate SOH
with charging data.
8

5.1.1. Complete charging data
Using complete charging data as input to the model requires only

the simplest preprocessing. First, the charging data of each cycle is
divided, and then all charging data are resampled to a fixed length
since the number of points sampled in each cycle is different. In this
paper, the fixed length is set to 128. To be specific, the time, voltage,
current, and temperature data in each cycle are resampled at equal time
intervals to 128 points, i.e., the shape of each sample 𝑥𝑖 ∈ R128×4.

5.1.2. Partial charging data
In some practical industrial applications, batteries are not always

fully charged and discharged. Therefore, the partial charging data is
used as an input type. We have intercepted the charging data where
the charging voltage is within the specified range, 3.7–4.1 V for the
XJTU battery dataset and 3.0–3.59 V for the Toyota-MIT-Stanford
dataset. Then, all data are resampled to 128 points. The shape of each
sample 𝑥𝑖 ∈ R128×4. Note that the voltage range here is only selected
subjectively and has no special meaning.

5.1.3. Handcraft features from charging data
Extracting handcraft features as model input is another hot re-

search topic. Many scholars focus on extracting more representative
features. In this paper, we extracted a total of 67 handcraft features
from charging data. The description of each feature can be found in
Appendix B. The shape of each sample 𝑥𝑖 ∈ R67×1. It is worth noting
that our handcraft features are simply cleaned due to some errors in
the calculation process. Specifically, each feature is judged by using the
3𝜎 criterion, and values out of range are replaced by means of linear
interpolation.

5.2. Normalization

In the sampled data, the units and scales of the values in each chan-
nel are different. The normalization method is often used to preprocess
data to make the training process more stable [21]. The common
normalization methods are [0, 1] normalization, [−1, 1] normalization,
z-score normalization, and so on. The following is a brief introduction
to these common normalization methods:
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5.2.1. [0, 1] normalization
[0, 1] normalization is a linear transformation of the original data to

ransform the data to the range of [0, 1], and the formula is as follows:

𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
, (16)

where 𝑥 represents raw data, 𝑥𝑛𝑜𝑟𝑚 represents normalized data, and
𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum values of the raw data,
respectively.

5.2.2. [−1, 1] normalization
Similar to [0, 1] normalization, the [−1, 1] normalization is also a

inear transformation that can be implemented by:

𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
× 2 − 1. (17)

The meanings of these parameters are the same as those in Sec-
tion 5.2.1.

5.2.3. Z-score normalization
The z-score normalization is the result obtained by subtracting the

mean value from the original data and dividing it by the standard
deviation. The formula is as follows:

𝑥𝑛𝑜𝑟𝑚 = 𝑥 − �̄�
𝜎𝑥

, (18)

where 𝑥 is raw data, 𝑥𝑛𝑜𝑟𝑚 denotes data after normalization, and �̄� and
𝑥 are mean and standard deviation of the raw data, respectively.

. Evaluation methodology

.1. Evaluation metrics

To quantitatively evaluate the performance of the models, three
valuation criteria were used in this paper. That is, mean absolute error
MAE), mean absolute percentage error (MAPE), mean squared error
MSE), and the determination coefficient 𝑅2 are employed to evaluate
he error between the estimated SOH and true SOH.

.1.1. MAE
MAE, which is the absolute value of the difference between the

redicted value and the true value and then averaged, reflects the
agnitude of the average error value. The calculation formula is as

ollows:

AE = 1
𝑁

𝑁
∑

𝑖=1

|

|

𝑦𝑖 − �̂�𝑖||, (19)

where �̂�𝑖 and 𝑦𝑖 represent the estimated and true SOH, and 𝑁 denotes
he number of samples.

.1.2. MAPE
MAPE, which is the average of the relative errors, reflects the size

f the errors proportionally. The calculation formula is as follows:

APE = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

|

�̂�𝑖 − 𝑦𝑖
𝑦𝑖

|

|

|

|

, (20)

.1.3. MSE
MSE, which is the average sum of the squares of each error, is used

o measure the difference between the true value and the predicted
alue. The calculation formula is as follows:

SE = 1
𝑁
∑

(

𝑦𝑖 − �̂�𝑖
)2 . (21)
9

𝑁 𝑖=1
Table 3
The number of model parameters.

Model CNN LSTM GRU MLP Attention

Parameter 311 505 209 025 158 849 172545 366 089

6.1.4. Determination coefficient
The determination coefficient 𝑅2 is a valuable evaluation metric

used to assess how well a regression model fits the data. It measures the
proportion of the variance in the dependent variable that is predictable
from the independent variables. A higher 𝑅2 value indicates a better fit.
The formulation is as follows:

𝑅2 = 1 −
∑𝑁

𝑖=1
(

𝑦𝑖 − �̂�𝑖
)2

∑𝑁
𝑖=1

(

𝑦𝑖 − �̄�
)2

, (22)

where �̄� represents the average SOH of all samples.

6.2. Implementation details

To sum up, the flow chart of battery SOH estimation in this bench-
marking study is shown in Fig. 8. The details of model structure and
training process will be introduced later.

6.2.1. Model structure
The purpose of this paper is to provide a benchmark for DL research

in the field of battery SOH estimation. Therefore, all the models we
implement in this paper are vanilla models without any other variants.
For example, our CNN model is similar to the classic ResNet [127]
model. The structures of all models are given in Figs. C.16 and C.17.
To ensure relative fairness, the extracted features of all models will
eventually pass through the same predictor, which consists of two
Linear layers with a ReLU layer embedded in the middle, as shown in
Fig. C.17(f). In addition, we try our best to ensure that the number
of model parameters is on the same order of magnitude, as shown in
Table 3.

6.2.2. Data splitting method
To ensure the completeness of the experiment, each battery in the

same batch/group was used as a test set in turn, and the remaining
batteries are randomly divided into a training set and a validation set,
as shown in Fig. 9.

6.2.3. Experiment details
All models were optimized by minimizing MSE loss. The Adam

optimizer with an initial learning rate of 2e−3 and weight decay of
5e−4 was used in the training phase. The batch size was set to 128,
the epoch was set to 100, and early stopping is set to 30. A multi-step
learning scheduler was used to adjust the learning rate, where gamma
is set to 0.5 and milestones are set to [30, 70].

It is worth noting that to ensure comparability among models, all
experiments for all models follow the same set of hyper-parameters.
To ensure the comparability among different input types of the same
model, all input types are preprocessed into the same shape. Consid-
ering that the shape of the complete charging data and the partial
charging data are both 128 × 4, the shape of the handcraft features
is also transformed into 128 × 4 with a Linear layer.

7. Results

We have conducted a comprehensive set of experiments using 3
different input types and 3 normalization methods, resulting in 9 sets of
detailed results for each dataset. Specifically, the XJTU battery dataset
yielded a set of experimental results consisting of 55 batteries per
set, while the Toyota-MIT-Stanford dataset produced a set of results
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Fig. 8. The flow chart of battery SOH estimation. .
Fig. 9. Example visualization of data splitting strategy for batch 1 in XJTU battery
dataset. Batch 1 consists of 8 batteries. Each battery was used in turn as a test battery
to carry out experiments.

consisting of 45 batteries per set. A total of 18 sets of preliminary exper-
imental results were generated. However, due to space limitations, we
only presented tables for two sets of preliminary experimental results,
one for each dataset. The remaining results have been processed and
condensed into fewer tables.

To be specific, the preliminary experimental results of the two
datasets are given in Tables 4 and 5. The inputs for the results in both
tables are handcraft features with [−1, 1] normalization. The other
preliminary experimental results will be placed in our code repository,
which are available from this link.

7.1. Detailed results of the XJTU battery dataset

The results of the XJTU battery dataset are shown in Table 4, Ta-
ble D.8 to Table D.10 in Appendix D. Table 4 details the test results for
the 55 batteries, where each model takes handcraft features with [−1,
1] normalization as input. The results from Table D.8 to Table D.10 are
the results of batch average. Specifically, the MAE, MAPE, and MSE of
each batch in these tables are the average of all batteries in this batch.
Notably, to avoid accidents, all results in all tables are averaged from
three experiments.

It can be seen from Table 4 that the SOH estimation difficulty of
each batch varies. Under the premise of [−1,1] normalized handcraft
10
features as input, the estimation difficulty of batch 1, batch 3, and batch
4 is relatively low, since the estimation errors of the batteries in these
batches are basically in the same order of magnitude and smaller. Most
of the batteries in batch 2 also have small errors, except for batteries
2, 3, 8, 9, 14, and 15. It can be seen that the estimation errors of
these batteries on all models are significantly larger than those of other
batteries in batch 2. The SOH estimation of batch 5 and batch 6 is
more difficult than other batches, because the errors of these batteries
are generally larger than those of other batches. The fact is that the
charging and discharging strategies of batch 5 and batch 6 are more
complicated. From the model perspective, MLP, GRU, and CNN all
perform well, while LSTM and Attention are poor.

Table D.8 shows the results of the XJTU battery dataset with [−1, 1]
normalization. From the perspective of input type, the best results are
achieved in most experiments with handcraft features as input. From
the perspective of model, MLP gets the best results, followed by CNN.
It is worth noting that in all experiments with complete charging data
as input, the errors of LSTM and GRU are significantly larger than those
of other models. In experiments with the other two input types, this gap
was less pronounced.

Table D.9 shows the results of the XJTU battery dataset with [0, 1]
normalization. Overall, the best results are still obtained in experiments
with handcraft features as input. From the perspective of model, CNN
obtains the best results, followed by MLP and GRU. Similar results to
Table D.8 can be obtained in that the errors of LSTM and GRU with
complete charging data as input are obviously larger than those of
other models. The possible fact is that the difference between [−1, 1]
normalization and [0, 1] normalization is small. Another noteworthy
point is that in all experiments with CNN model, the experiments with
partial charging data as input get the best results.

Table D.10 shows the results of the XJTU battery dataset with z-
score normalization. Contrary to the results of the previous two tables,
CNN performs the best, followed by Attention, and MLP is the worst of
all models. From the perspective of input type, most of the experiments
with handicraft features as input get the best results, except that the
best results of MLP appear in the experiments with complete charging
data as input. In addition, by comparing Table D.8, Table D.9, and
Table D.10, the results of z-score normalization seem to be worse than
those of the other two normalization methods.

https://github.com/wang-fujin/SOHbenchmark
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Table 4
The results of XJTU battery dataset, the input type is handcraft features with [−1, 1] normalization. The best result was bolded.

Model CNN LSTM GRU MLP Attention

Batch Battery MAE MAPE MSE R2 MAE MAPE MSE R2 MAE MAPE MSE R2 MAE MAPE MSE R2 MAE MAPE MSE R2

1

1 5.162 5.703 0.057 0.976 5.901 6.485 0.054 0.977 5.716 6.354 0.055 0.977 5.818 6.480 0.058 0.975 9.193 10.145 0.133 0.944
2 5.383 5.964 0.047 0.983 4.960 5.559 0.045 0.984 3.612 4.034 0.024 0.991 3.405 3.811 0.021 0.993 5.959 6.587 0.070 0.975
3 5.594 6.245 0.068 0.977 4.971 5.556 0.060 0.979 3.988 4.469 0.044 0.985 2.940 3.297 0.039 0.987 8.229 8.974 0.133 0.954
4 3.568 3.942 0.025 0.991 4.079 4.461 0.024 0.991 3.103 3.318 0.013 0.995 3.947 4.150 0.022 0.992 5.904 6.443 0.058 0.979
5 5.468 5.919 0.046 0.985 3.637 4.046 0.024 0.992 2.507 2.753 0.010 0.997 2.126 2.307 0.007 0.998 6.384 7.058 0.072 0.976
6 6.015 6.506 0.051 0.982 3.172 3.477 0.018 0.994 2.666 2.888 0.011 0.996 4.695 4.968 0.028 0.990 4.922 5.291 0.036 0.987
7 6.000 6.357 0.050 0.983 6.703 7.198 0.062 0.979 6.397 6.822 0.053 0.982 7.761 8.288 0.072 0.976 6.288 6.913 0.068 0.977
8 9.335 9.854 0.139 0.938 3.221 3.530 0.022 0.990 2.910 3.149 0.016 0.993 3.341 3.592 0.022 0.990 5.966 6.494 0.056 0.975

2

1 2.686 3.002 0.020 0.990 4.903 5.262 0.035 0.982 3.063 3.282 0.017 0.991 3.148 3.373 0.020 0.990 5.983 6.483 0.059 0.970
2 17.913 18.738 0.514 0.959 12.825 13.475 0.212 0.933 12.880 13.549 0.191 0.968 13.775 14.503 0.207 0.964 12.929 13.905 0.270 0.920
3 23.021 24.294 0.864 0.951 19.301 20.348 0.454 0.905 18.954 19.978 0.445 0.942 20.828 21.960 0.544 0.981 15.894 16.891 0.338 0.877
4 6.893 7.394 0.082 0.977 6.360 6.861 0.064 0.951 5.259 5.678 0.046 0.959 3.802 4.113 0.028 0.976 11.143 12.175 0.214 0.913
5 22.241 23.427 0.929 0.771 5.248 5.523 0.040 0.978 3.610 3.819 0.024 0.983 3.714 3.948 0.026 0.982 7.282 7.946 0.093 0.932
6 8.498 9.161 0.138 0.859 6.556 7.063 0.065 0.881 4.204 4.525 0.030 0.924 3.585 3.833 0.025 0.965 6.323 6.773 0.069 0.904
7 6.985 7.556 0.077 0.767 6.099 6.411 0.051 0.750 5.122 5.496 0.038 0.818 5.548 5.992 0.049 0.875 7.187 7.926 0.103 0.685
8 17.726 18.712 0.508 0.736 10.147 10.809 0.135 0.891 10.025 10.735 0.123 0.902 9.340 10.033 0.108 0.894 6.125 6.603 0.060 0.861
9 11.339 12.240 0.186 0.662 8.385 9.241 0.089 0.823 10.734 11.627 0.130 0.826 12.087 12.961 0.177 0.787 13.890 15.059 0.226 0.868
10 6.001 6.602 0.066 0.961 7.007 7.969 0.106 0.970 4.628 5.235 0.051 0.978 6.342 6.917 0.058 0.987 8.487 9.520 0.127 0.899
11 6.083 6.630 0.069 0.575 10.851 11.906 0.135 0.981 8.169 8.925 0.082 0.989 3.796 4.152 0.028 0.988 12.401 13.609 0.174 0.958
12 4.960 5.369 0.033 0.925 7.390 8.053 0.070 0.965 6.494 7.013 0.059 0.984 4.640 5.018 0.034 0.987 9.944 10.701 0.124 0.963
13 14.022 15.093 0.375 0.972 4.148 4.609 0.036 0.982 3.300 3.647 0.028 0.986 3.651 4.025 0.029 0.982 7.806 8.631 0.112 0.963
14 10.306 11.180 0.203 0.661 12.425 13.672 0.171 0.910 9.836 10.801 0.109 0.918 5.823 6.345 0.051 0.928 11.011 12.098 0.138 0.960
15 13.320 15.005 0.342 0.891 18.403 20.382 0.367 0.948 15.956 17.553 0.268 0.924 12.990 14.212 0.183 0.896 20.712 22.890 0.462 0.867

3

1 4.407 4.730 0.035 0.989 4.897 5.368 0.042 0.987 3.460 3.746 0.021 0.994 2.965 3.191 0.016 0.995 4.966 5.391 0.045 0.986
2 3.760 4.112 0.024 0.993 4.321 4.736 0.034 0.990 2.933 3.224 0.018 0.995 2.925 3.203 0.015 0.995 4.967 5.478 0.048 0.986
3 3.279 3.495 0.017 0.993 5.507 5.828 0.040 0.984 5.434 5.784 0.037 0.985 4.315 4.646 0.027 0.989 9.348 9.951 0.112 0.954
4 10.425 10.827 0.146 0.953 9.088 9.484 0.105 0.966 7.508 7.787 0.073 0.976 7.292 7.548 0.069 0.978 6.132 6.551 0.061 0.980
5 3.191 3.414 0.016 0.995 4.623 5.016 0.034 0.989 3.872 4.155 0.022 0.993 3.994 4.263 0.023 0.993 4.456 4.768 0.033 0.990
6 4.350 4.652 0.025 0.992 3.317 3.537 0.018 0.994 2.862 3.015 0.012 0.996 3.644 3.833 0.018 0.994 5.654 5.965 0.046 0.984
7 3.934 4.212 0.028 0.989 3.544 3.812 0.027 0.989 3.001 3.229 0.018 0.993 3.043 3.256 0.016 0.993 6.276 6.713 0.078 0.969
8 4.920 5.206 0.047 0.981 2.511 2.663 0.010 0.996 2.436 2.614 0.010 0.996 2.469 2.655 0.011 0.996 5.512 5.837 0.044 0.982

4

1 7.206 7.792 0.062 0.973 4.502 5.005 0.043 0.981 4.672 5.108 0.036 0.985 5.236 5.653 0.041 0.982 7.105 7.687 0.080 0.966
2 4.213 4.648 0.047 0.977 8.359 8.996 0.092 0.955 7.164 7.690 0.066 0.968 4.461 4.812 0.033 0.984 5.508 5.991 0.060 0.971
3 3.810 4.086 0.023 0.991 7.180 7.745 0.072 0.972 6.027 6.440 0.051 0.981 5.510 5.835 0.044 0.983 5.559 5.962 0.049 0.981
4 6.025 6.396 0.043 0.982 5.912 6.359 0.051 0.978 4.874 5.231 0.036 0.985 4.519 4.816 0.031 0.987 5.458 5.951 0.055 0.977
5 3.793 4.090 0.021 0.990 5.213 5.622 0.044 0.978 5.132 5.532 0.040 0.980 4.486 4.854 0.031 0.984 6.974 7.550 0.074 0.963
6 4.876 5.262 0.034 0.980 4.424 4.800 0.037 0.979 4.202 4.579 0.035 0.980 4.484 4.896 0.038 0.978 4.578 4.930 0.039 0.978
7 8.820 9.506 0.098 0.947 7.413 8.035 0.074 0.960 7.407 7.982 0.070 0.962 7.143 7.669 0.064 0.965 8.962 9.499 0.111 0.940
8 4.060 4.463 0.030 0.986 4.627 5.084 0.043 0.980 3.715 4.088 0.027 0.987 3.721 4.056 0.025 0.989 5.973 6.460 0.056 0.974

5

1 16.638 18.192 0.482 0.720 9.297 10.185 0.148 0.914 10.530 11.559 0.162 0.906 23.123 25.187 1.474 0.440 9.343 10.221 0.144 0.916
2 11.560 12.360 0.184 0.889 8.563 9.227 0.125 0.925 6.891 7.411 0.089 0.946 22.565 24.471 0.610 0.630 7.829 8.458 0.121 0.927
3 11.237 12.483 0.202 0.908 10.431 11.744 0.208 0.905 8.776 9.868 0.151 0.931 11.442 12.510 0.199 0.909 9.535 10.605 0.160 0.927
4 8.970 9.704 0.141 0.937 6.626 7.290 0.114 0.949 6.440 7.085 0.106 0.952 16.997 18.785 0.408 0.817 9.267 10.136 0.171 0.923
5 13.762 15.480 0.309 0.866 11.979 13.386 0.238 0.897 12.868 14.241 0.237 0.897 12.019 12.926 0.209 0.909 14.367 15.746 0.283 0.877
6 8.009 8.717 0.109 0.946 6.493 7.188 0.095 0.953 5.963 6.586 0.079 0.961 8.245 9.009 0.115 0.943 8.795 9.718 0.161 0.921
7 7.490 8.232 0.130 0.927 10.722 11.599 0.157 0.913 11.914 12.884 0.177 0.901 17.775 19.149 0.435 0.757 10.250 11.194 0.153 0.915
8 14.758 15.973 0.342 0.878 13.020 14.685 0.292 0.896 11.894 13.420 0.229 0.918 10.148 11.095 0.155 0.945 12.413 13.875 0.245 0.913

6

1 5.441 5.905 0.062 0.973 13.106 14.311 0.281 0.878 11.452 12.516 0.226 0.902 10.761 11.766 0.206 0.911 8.263 9.091 0.149 0.935
2 8.820 9.496 0.130 0.924 10.065 10.862 0.185 0.892 10.750 11.537 0.190 0.888 11.018 11.800 0.193 0.887 11.648 12.474 0.211 0.876
3 8.417 9.058 0.101 0.951 9.571 10.478 0.184 0.911 8.943 9.764 0.157 0.924 8.647 9.436 0.145 0.930 8.974 9.702 0.129 0.938
4 11.940 12.787 0.178 0.918 12.826 14.018 0.275 0.873 12.806 13.893 0.245 0.887 13.396 14.477 0.252 0.883 13.707 14.682 0.240 0.889
5 21.862 23.974 0.566 0.674 17.011 18.599 0.380 0.782 15.664 17.088 0.329 0.811 16.253 17.726 0.353 0.797 21.889 23.853 0.592 0.660
6 12.039 12.693 0.204 0.917 13.015 14.166 0.313 0.873 11.155 12.214 0.272 0.889 10.967 11.986 0.263 0.893 10.773 11.742 0.249 0.899
7 5.754 6.214 0.061 0.962 9.466 10.334 0.170 0.893 8.540 9.299 0.140 0.913 8.527 9.247 0.137 0.914 8.290 8.996 0.135 0.915
8 6.113 6.602 0.067 0.955 10.877 11.754 0.197 0.870 10.773 11.621 0.183 0.879 10.330 11.131 0.166 0.890 7.675 8.313 0.111 0.927

Note: (1). All values are the average value of 3 experiments; (2). For intuitive display, the values of MAE, MAPE, and MSE are all magnified 1000 times.
7.2. Detailed results of the Toyota-MIT-Stanford dataset

The results of the Toyota-MIT-Stanford dataset are shown in Table 5,
Table D.11 to Table D.13 in Appendix D. Table 5 details the test
results for the 45 batteries, where each model takes handcraft features
with [−1, 1] normalization as input. The results from Table D.11 to
Table D.13 are the results of batch average. Specifically, the MAE,
MAPE, and MSE of each batch in these tables are the average of 5
batteries in this batch.

The Toyota-MIT-Stanford dataset contains 45 batteries, which are
evenly divided into 9 groups. The charging process of each group goes
through 4 stages from 0 to 80% SOC, and all batteries are discharged
11
at a constant current of 4 C. In other words, the charging and dis-
charging strategy of Toyota-MIT-Stanford is relatively simple. This also
corresponds to the conclusion in Table 5, that is, the SOH estimation
results of the 9 groups in the Toyota-MIT-Stanford dataset are relatively
uniform, except for batteries 1 and 2 in group 3, and batteries 1, 2, and
4 in group 4. From the perspective of the model, the Attention model
has won the first place the most times, and LSTM has the least.

The results of the Toyota-MIT-Stanford dataset with [−1, 1] normal-
ization are shown in Table D.13. It can be seen from the table that the
experiment with partial charging data or handcrafted features as input
has obtained better results, tied for first place, without distinguishing
the model. For CNN model, the results with handcraft features as input
are the best, while the MLP model has the best result with partial
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Table 5
The results of Toyota-MIT-Stanford dataset, the input type is handcraft features with [−1, 1] normalization. The best result was bolded.

Model CNN LSTM GRU MLP Attention

Batch Battery MAE MAPE MSE R2 MAE MAPE MSE R2 MAE MAPE MSE R2 MAE MAPE MSE R2 MAE MAPE MSE R2

1

1 7.106 7.723 0.081 0.899 6.797 7.465 0.066 0.917 4.764 5.205 0.035 0.956 5.396 5.885 0.044 0.945 10.011 10.970 0.138 0.828
2 6.197 6.711 0.052 0.959 5.170 5.633 0.041 0.968 4.793 5.217 0.031 0.976 5.695 6.148 0.039 0.970 3.089 3.424 0.019 0.985
3 4.460 4.869 0.031 0.966 7.718 8.324 0.075 0.919 9.035 9.711 0.095 0.896 9.278 9.957 0.101 0.890 11.117 12.005 0.153 0.833
4 8.892 9.537 0.106 0.908 10.051 10.702 0.126 0.892 9.325 9.901 0.106 0.909 10.007 10.615 0.121 0.896 7.454 8.038 0.084 0.928
5 2.084 2.301 0.009 0.991 3.585 3.940 0.024 0.976 2.628 2.888 0.013 0.987 3.833 4.172 0.025 0.976 4.897 5.350 0.039 0.962

2

1 10.542 11.137 0.128 0.902 10.328 10.855 0.127 0.902 9.902 10.513 0.110 0.916 11.648 12.379 0.148 0.887 6.121 6.457 0.063 0.952
2 8.628 9.324 0.101 0.907 11.304 12.088 0.167 0.846 9.845 10.532 0.124 0.885 5.990 6.551 0.057 0.947 16.205 17.295 0.334 0.692
3 3.707 4.047 0.023 0.983 7.108 7.853 0.095 0.931 5.966 6.538 0.063 0.955 5.486 5.953 0.046 0.967 6.663 7.345 0.082 0.941
4 5.772 6.097 0.080 0.922 5.670 5.996 0.047 0.954 5.388 5.686 0.046 0.955 4.629 4.913 0.038 0.963 5.269 5.695 0.048 0.953
5 5.633 6.085 0.079 0.921 5.490 6.040 0.052 0.948 6.032 6.593 0.053 0.946 5.116 5.606 0.044 0.956 8.369 9.049 0.090 0.909

3

1 13.441 14.599 0.231 0.817 19.552 21.576 0.429 0.660 20.368 22.381 0.440 0.652 21.016 22.966 0.459 0.637 20.679 22.687 0.502 0.602
2 10.517 11.062 0.135 0.877 11.875 12.522 0.159 0.855 13.743 14.541 0.205 0.813 17.850 18.907 0.337 0.693 8.177 8.643 0.086 0.922
3 10.299 11.013 0.142 0.862 8.363 8.851 0.084 0.918 7.599 8.042 0.068 0.934 5.195 5.522 0.036 0.965 4.794 5.135 0.036 0.965
4 5.857 6.345 0.060 0.942 6.183 6.583 0.050 0.951 6.566 6.968 0.057 0.944 8.746 9.267 0.095 0.908 3.967 4.269 0.025 0.976
5 9.181 9.792 0.129 0.864 5.901 6.373 0.050 0.947 6.096 6.570 0.048 0.949 17.748 18.916 0.372 0.607 6.781 7.343 0.068 0.928

4

1 31.859 33.738 1.631 0.363 15.003 16.140 0.390 0.674 11.408 12.241 0.164 0.863 60.077 63.804 4.664 0.596 13.605 14.567 0.279 0.767
2 12.158 13.217 0.214 0.706 12.641 13.784 0.189 0.740 12.550 13.620 0.180 0.753 10.529 11.382 0.138 0.810 13.881 15.055 0.237 0.675
3 8.506 9.251 0.108 0.863 16.641 18.045 0.296 0.622 15.810 17.070 0.266 0.660 9.687 10.470 0.140 0.821 19.946 21.440 0.441 0.437
4 19.688 20.784 0.445 0.579 15.108 15.772 0.263 0.751 17.563 18.390 0.339 0.679 20.519 21.466 0.482 0.544 10.488 11.023 0.130 0.877
5 27.700 29.321 0.843 0.630 6.257 6.609 0.045 0.943 9.003 9.558 0.089 0.888 30.656 32.340 1.019 0.585 4.654 5.066 0.049 0.939

5

1 7.870 8.576 0.111 0.905 6.347 7.076 0.087 0.925 6.183 6.789 0.063 0.946 9.786 10.572 0.110 0.905 8.503 9.309 0.116 0.901
2 8.152 8.988 0.122 0.863 7.869 8.651 0.093 0.896 5.677 6.220 0.050 0.944 6.137 6.743 0.059 0.934 14.391 15.595 0.257 0.713
3 8.552 9.081 0.092 0.924 11.892 12.600 0.168 0.862 12.243 12.983 0.170 0.861 12.855 13.663 0.185 0.848 12.601 13.544 0.225 0.816
4 9.968 10.628 0.217 0.826 10.382 10.922 0.129 0.896 7.029 7.405 0.063 0.949 16.596 17.506 0.295 0.763 6.515 6.961 0.063 0.949
5 6.946 7.558 0.100 0.895 7.394 7.948 0.071 0.926 6.726 7.223 0.057 0.940 3.322 3.594 0.019 0.980 10.295 11.064 0.141 0.852

6

1 8.067 8.509 0.082 0.919 2.676 2.900 0.014 0.986 2.821 3.006 0.012 0.988 3.059 3.261 0.014 0.987 5.865 6.300 0.050 0.950
2 10.831 11.426 0.166 0.851 8.165 8.585 0.081 0.928 5.860 6.171 0.044 0.960 6.569 6.951 0.057 0.949 4.375 4.685 0.038 0.966
3 8.068 8.755 0.088 0.904 11.410 12.212 0.170 0.814 12.104 12.911 0.184 0.798 12.253 13.093 0.177 0.807 14.525 15.611 0.251 0.726
4 8.330 8.819 0.094 0.907 9.622 10.119 0.110 0.891 8.937 9.365 0.095 0.907 9.687 10.148 0.110 0.892 5.654 6.010 0.051 0.950
5 8.247 8.871 0.096 0.892 3.225 3.580 0.027 0.970 2.806 3.070 0.015 0.983 3.570 3.869 0.021 0.977 6.279 6.787 0.057 0.936

7

1 6.864 7.479 0.075 0.950 4.613 5.124 0.042 0.972 3.905 4.322 0.027 0.982 3.122 3.466 0.020 0.987 9.671 10.646 0.127 0.915
2 12.822 13.866 0.237 0.805 9.915 10.578 0.121 0.901 11.559 12.374 0.151 0.876 34.755 37.476 1.347 0.705 7.234 7.781 0.072 0.941
3 9.830 10.658 0.152 0.845 3.459 3.742 0.016 0.983 2.884 3.135 0.013 0.987 4.710 5.183 0.039 0.960 4.134 4.468 0.027 0.973
4 3.748 4.155 0.026 0.978 4.341 4.783 0.037 0.969 3.123 3.450 0.018 0.985 4.606 5.081 0.031 0.975 12.716 13.835 0.194 0.838
5 7.486 8.191 0.098 0.934 5.150 5.755 0.063 0.957 4.219 4.694 0.038 0.974 6.733 7.271 0.061 0.959 5.870 6.541 0.075 0.949

8

1 14.929 15.965 0.259 0.755 13.224 14.032 0.204 0.807 12.706 13.449 0.184 0.826 11.698 12.391 0.158 0.851 7.168 7.658 0.074 0.930
2 7.683 8.290 0.086 0.902 10.973 11.911 0.144 0.837 9.813 10.579 0.111 0.874 6.562 7.072 0.053 0.940 16.346 17.609 0.302 0.658
3 6.718 7.268 0.067 0.934 5.096 5.553 0.041 0.959 3.925 4.259 0.023 0.978 3.815 4.126 0.019 0.982 8.525 9.246 0.098 0.904
4 17.040 18.058 0.349 0.636 16.142 17.045 0.292 0.696 18.459 19.561 0.364 0.621 20.035 21.244 0.429 0.553 7.372 7.830 0.071 0.927
5 15.972 17.274 0.333 0.644 14.569 15.861 0.253 0.729 17.727 19.204 0.342 0.634 17.004 18.356 0.326 0.652 12.553 13.672 0.228 0.756

9

1 6.594 7.203 0.092 0.858 5.309 5.727 0.037 0.942 6.569 7.098 0.050 0.922 6.324 6.942 0.102 0.841 6.786 7.429 0.082 0.872
2 10.876 11.558 0.142 0.815 11.733 12.434 0.157 0.797 13.484 14.278 0.205 0.734 18.935 20.055 0.399 0.483 5.140 5.557 0.058 0.924
3 9.402 10.140 0.162 0.809 5.405 5.847 0.049 0.943 4.471 4.823 0.033 0.962 38.017 40.387 1.616 0.698 5.871 6.365 0.056 0.934
4 4.485 4.917 0.041 0.946 6.249 6.872 0.060 0.921 7.420 8.052 0.063 0.917 6.528 7.092 0.060 0.921 8.834 9.573 0.093 0.878
5 15.319 16.273 0.280 0.683 7.967 8.612 0.093 0.894 6.255 6.776 0.060 0.931 30.935 32.724 1.051 0.592 6.283 6.801 0.060 0.932

Note: (1). All values are the average value of 3 experiments; (2). For intuitive display, the values of MAE, MAPE, and MSE are all magnified 1000 times.
charging data as input. For the other three models, similar results are
achieved with handcraft features as input and partial charging data as
input. Counting the results of all models in all input types, it can be
found that the Attention model has achieved the most first places, while
LSTM has the least.

Table D.12 shows the results of the Toyota-MIT-Stanford dataset
with [0, 1] normalization. From the perspective of input type, the best
results are obtained in most experiments with partial charging data as
input, followed by handcraft features, and last by complete charging
data. However, overall, the gap in the experimental results among the
three input types is not large. For CNN model, the results with complete
charging data as input are the best. From a model perspective, Attention
model still wins the most first places, while CNN has the least.

The results of the Toyota-MIT-Stanford dataset with z-score normal-
ization are given in Table D.13. Overall, the best results are obtained in
experiments with handcraft features as input. For each model, complete
charging data is the best input type for MLP, while partial charging data
is the best for GRU. From a model perspective, contrary to the previous
two tables, CNN and MLP perform the best, and LSTM is the worst.
12
7.3. Results of models

From the results, we can observe that CNN model is a competitive
model on the XJTU battery dataset. MLP model gets promising results
on the XJTU battery dataset when the normalization method is [−1, 1]
normalization or [0, 1] normalization. However, it obtains the worst
results when the z-score normalization method is used to preprocess
data.

Attention model achieves great success on the Toyota-MIT-Stanford
dataset when the normalization method is [−1, 1] normalization or [0,
1] normalization, while CNN and MLP perform better when the data is
preprocessed with z-score normalization.

7.4. Results of input types

In two datasets and all normalization methods, handcraft features
seem to be a promising input type. For the XJTU battery dataset, the
charging and discharging strategy is complex. Therefore, the handcraft
features are more suitable for most situations, since the complete
charging data or partial charging data may contain more noise, while
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handcrafted features are simply cleaned. For the Toyota-MIT-Stanford
dataset, the charging and discharging strategy is simple, so the gap
among three input types is not large. In Tables D.11 and D.12, exper-
iments with partial charging data as input achieve even better results
than those with handcraft features as input.

7.5. Results of normalization method

To provide a comprehensive and intuitive representation, we have
plotted the test MAE for all models with three input types and three
normalization methods, as shown in Fig. 10. It can be seen from figure
that [−1, 1] normalization and [0, 1] normalization are better than
-score normalization on almost all models, regardless of the input
ype. In most cases, [−1, 1] normalization is slightly better than [0,
] normalization. Therefore, in future research, it is recommended to
se [−1, 1] normalization method for data preprocessing.

. Discussion

.1. Discussion on dataset

Although there are many publicly available datasets, most of them
dopt the strategy of constant current and constant voltage charging
ode, and constant current discharging mode. In addition, most pub-

icly available datasets are fully charged and fully discharged. In actual
sage, users often do not fully charge or discharge. Therefore, it is
ecessary to publish more datasets in line with actual usage scenarios
or scholars to study. In this paper, we published a batch of dataset that
imulate actual working scenarios of GEO satellites, as well as a batch
f dataset that simulate the actual usage of users, that is, the battery
ischarges at random currents for random durations. More datasets
hat are more in line with actual usage scenarios are needed, such as
ompletely random current for charging and discharging with not fully
harged and not fully discharged.

.2. Discussion on features

In this paper, we compare the impact of three input types on the
esults: complete charging data, partial charging data, and handcraft
eatures. In each input type there are points worth studying. For
xample, in the study that takes partial charging data as input, how to
etermine the starting and ending point of input data. In this paper,
e subjectively truncated the data at the voltage of 3.7–4.1 V. In
ddition to this truncation method, countless truncation methods can
lso be designed. How to truncate to maximize the effective infor-
ation retained and ensure the best performance of the model is a
roblem worth studying. In the study with handcraft features as input,
e extracted 67 statistical features from charging data. Likewise, we

irmly believe that better features can be designed. How to extract more
easonable, representative, and universal features is also a direction
orth studying.

.3. Future works

Although DL-based method can obtain promising results in SOH
stimation of lithium-ion battery, there are still some issues that merit
urther discussion and research. In this paper, we further discuss the fol-
owing four issues, including unsupervised learning, transfer learning,
13

nterpretability, and physics-informed machine learning.
8.3.1. Unsupervised learning
Currently, most studies on lithium-ion battery SOH estimation using

DL belong to the category of supervised learning methods. They assume
that there are sufficient data and labels for model training. In fact,
data in real industries are mostly unlabeled. Therefore, how to use a
large amount of unlabeled data to train a model is a problem worthy
of discussion and research.

Unsupervised learning has achieved great success in computer vi-
sion and natural language processing, but little research has been done
in the field of battery SOH estimation [134,135]. The DL algorithm is
used in various fields due to its ability to extract features from massive
amounts of data. However, in the massive data generated in real indus-
tries, labeled data is only the tip of the iceberg. Using a large amount
of unlabeled data to train the model, DL-based method can exert more
powerful capabilities. Unsupervised learning is an alternative approach
to this task. How to design a suitable loss function or design a surrogate
task to use unlabeled data is a point worth studying in the future.

8.3.2. Transfer learning
The SOH estimation models based on DL follow an assumption

that the training set and test set obey the same distribution. However,
such an assumption is often not satisfied in reality, as changes in
operating conditions will inevitably lead to different sample structures
and different data distributions, also called domain shifts or distribution
shifts.

The performance of DL models degrades rapidly when test condi-
tions change. Transfer learning is an alternative approach to this prob-
lem [136]. In the published work, there are also some articles [137–
141] that consider the distribution shift, and propose a SOH estima-
tion model based on transfer learning. How and what to transfer is,
however, a question worthy of study. Only by figuring out what the
transfer learning model has learned and transferred, can we essentially
improve the performance of transfer learning model, thereby avoiding
negative transfer.

8.3.3. Interpretability
Although DL algorithms can achieve great results, they all lack

interpretability and transparency. Due to the ‘‘black-box’’ nature of DL,
we do not know whether the model has actually learned the features
that can reflect battery degradation, why the model makes such a de-
cision, and when the model will fail, which also limits the deployment
of DL models in real industry. Users also tend to be reluctant to use
models they cannot explain. In risk-sensitive scenarios, once the model
fails or gives wrong prediction results, it will threaten life safety and
cause huge property losses. Therefore, model interpretability in SOH
estimation is a worthy research issue.

Among the published works, the interpretability of SOH estimation
models is less studied. Several papers [142–144] have studied the inter-
pretability of models. In previous work, we proposed an explainability-
driven model improvement framework for lithium-ion battery SOH
estimation [145]. To the best of our knowledge, this is also the first
study of using explanations to improve model performance in SOH
estimation tasks. Interpretable models can constitute a human-in-the-
loop system in which machine–human interactions can lead to optimal
learning. How to explain the decisions of a model and how to use these
explanations to improve the model performance are future research
trends.

8.3.4. Physics-informed machine learning
Physics-driven machine learning (PIML), or physics-informed neu-

ral network (PINN), is a new paradigm developed in recent years.
It combines the excellent characteristics of neural networks and the
knowledge of physical equations, aiming to more accurately describe
and predict physical phenomena and system behavior. On the one
hand, PIML generally incorporates physical equations, which makes the

model interpretable to a certain extent. On the other hand, DL models
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Fig. 10. Effect of different normalization methods on model performance. (a)–(e): XJTU dataset. (f)–(j): Toyota-MIT-Stanford dataset. For consistency, the 𝑦-axis of all subplots
corresponding to the same dataset is constrained to the same value (50 for XJTU battery dataset and 40 for Toyota-MIT-Stanford dataset), and the excess will not be displayed.
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can be trained with fewer samples due to the limitation of physical
knowledge, and generally, the model can converge faster. Therefore,
PINN is a research hotspot in the future.

Among the existing works, some articles [146–149] have initially
incorporated physics knowledge in DL models. However, these studies
still have some room for improvement. They need to know the pa-
rameters of the physical model, or only use the physical knowledge to
preprocess the data. Bazant et al. [150] divide models that integrate
physical knowledge and DL into five categories: (1) using machine
learning to learn the residuals predicted by the physics-based model,
(2) using the data generated by the physics-based model to assist in
training the machine learning model, (3) using the machine learning
model to learn the parameters of the physics-based model, (4) using the
physics-based model to constrain the architecture or loss of machine
learning models, and (5) using machine learning models to assist in
solving physical equations. How to integrate physical knowledge into
DL models more subtly and appropriately is worth studying.

9. Conclusion

In this paper, we develop a large lithium-ion battery dataset with
run-to-failure data of 55 batteries under 6 charging and discharging
strategies. Combined with another publicly available dataset, we eval-
uate the performance of 5 DL models on 100 batteries. In addition,
we also compare the impact of 3 input types and 3 normalization
methods on model performance. It is worth noting that the results and
conclusions we obtained are only based on the two datasets and feature
extraction methods we used, and may not be necessarily representative.
Our work aims to evaluate the performance of commonly used DL-
based SOH estimation models from different perspectives and provide
a benchmark for other scholars to compare their proposed models,
avoiding ineffective improvements.

Additionally, we also provide a code library for other scholars
to test the performance of their own models and their own dataset.
We hope that the evaluation results and code library will facilitate a
better understanding of DL-based SOH estimation models and provide
a unified framework for proposing more effective models. Further,
we discuss future research directions and summarize four directions
that may facilitate the development of SOH estimation of lithium-ion
battery.
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Appendix A. Dataset

GEO satellites experience the Earth’s shadow during the spring and
autumn equinoxes each year, approximately 23 days before and after
the equinoxes, resulting in a total duration of approximately 46 days
for each occurrence [133]. During the period of the Earth’s shadow,
the duration of the shadow varies in a regular pattern every day, as
depicted in Table A.6 and Fig. A.11. Specifically, the duration of the
shadow initially increases gradually before decreasing. An illustration
of the discharge capacity curve of battery 1 in batch 6 is given in
Fig. A.12.

Appendix B. Feature engineering

A total of 67 features are derived from the charging data. The
description of each feature is given in Table B.7. To provide a simple
and representative representation, we visualize the features of the
battery 1 in the XJTU battery dataset batch 1, as shown in Figs. B.14
and B.15. The specific calculation process of some features will be
introduced below.

Cumulate charge energy (E) is calculated by:

𝐸 = ∫

𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡
𝑉 ⋅ 𝐼𝑑𝑡. (B.1)

where 𝑉 and 𝐼 represent voltage and current during the charging
process.

Cumulate charge capacity (Q) is calculated by:

𝐸 = ∫

𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡
𝐼𝑑𝑡. (B.2)

From a statistical point of view, four features are derived, signal
mean, standard deviation, skewness and kurtosis. They are calculated
based on the following equations:

̄ = 1
𝑛

𝑛
∑

𝑖=1
𝑥 (𝑖) (B.3)

𝜎 =

√

√

√

√

1
𝑛 − 1

𝑛
∑

𝑖=1
(𝑥 (𝑖) − �̄�)2 (B.4)

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
∑𝑛

𝑖=1 (𝑥 (𝑖) − �̄�)3

(𝑛 − 1) 𝜎3
(B.5)

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∑𝑛

𝑖=1 (𝑥 (𝑖) − �̄�)4

(𝑛 − 1) 𝜎4
(B.6)

The entropy of curve represents the amount of information con-
tained in a curve. Thus, we calculated the entropy of normalized
CCCV-CCCT and CVCC-CVCT curves as input features according to the
following formula:

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝑛
∑

𝑖=1
𝑝𝑖 ⋅ log

(

𝑝𝑖
)

(B.7)

where 𝑝𝑖 is normalized value of a curve. The features constant current
charge time (CCCT) and constant voltage charge time (CVCT) represent
the time span of the two horizontal segments in Fig. B.13. The slopes of
CCCV-CCCT and CVCC-CVCT curves are calculated as 𝑑𝑉 ∕𝑑𝑡 and 𝑑𝐼∕𝑑𝑡.

Appendix C. Model structure

See Figs. C.16 and C.17.

Appendix D. Results

See Table D.13.
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Table A.6
The discharge duration of each cycle of the GEO satellite in the Earth’s shadow period [133].

Cycle number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

Discharge duration 5 20 34 41 46 50 54 56 58 60 62 64 68 69 70 71 72 72 72 72 72 72 72
Fig. A.11. The discharge duration of each cycle of the GEO satellite in the Earth’s shadow period.
Fig. A.12. An illustration of the discharge capacity curve of battery 1 in batch 6 during the whole life cycles.
Fig. B.13. Constant current–constant voltage charge strategy. CC represents constant current and CV represents constant voltage.
16
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Fig. B.14. A visualization of partial handcraft features for batch 1 battery 1 in XJTU battery dataset. Subheadings No. 1 to No. 35 correspond to Feature No. in Table B.7.
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Fig. B.15. A visualization of partial handcraft features for batch 1 battery 1 in XJTU battery dataset. Subheadings No. 36 to No. 67 correspond to Feature No. in Table B.7. The
last subplot shows the label (capacity).
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Table B.7
Handcraft features from charging process. Note: CC represents constant current, CV
represents constant voltage, CCCV represents constant current charge voltage, CVCC
represents constant voltage charge current, CCCT denotes constant current charge time
and CVCT denotes constant voltage charge time.

Data type Feature no. Feature

charge

1 Cumulated charge energy
2 Cumulated charge capacity
3 Mean charge time
4 Mean charge voltage
5 Mean charge current
6 Mean charge temperature
7 Standard deviation of charge current
8 Standard deviation of charge voltage
9 Standard deviation of charge temperature
10 skewness of charge current
11 skewness of charge voltage
12 skewness of charge temperature
13 kurtosis of charge current
14 kurtosis of charge voltage
15 kurtosis of charge temperature

CC mode

16 Energy during CC segment
17 Capacity during CC segment
18 Mean time during CC segment
19 Mean voltage during CC segment
20 Mean temperature during CC segment
21 Standard deviation of voltage during CC segment
22 Standard deviation of temperature during CC segment
23 skewness of voltage during CC segment
24 skewness of temperature during CC segment
25 kurtosis of voltage during CC segment
26 kurtosis of temperature during CC segment
27 constant current charge time
28 Entropy of CCCV-CCCT curve
29 Energy during 3.9–4.0 V
30 Capacity during 3.9–4.0 V
31 Mean time during 3.9–4.0 V
32 Mean voltage during 3.9–4.0 V
33 Mean temperature during 3.9–4.0 V
34 Standard deviation of voltage during 3.9–4.0 V
35 Standard deviation of temperature during 3.9–4.0 V
36 skewness of voltage during 3.9–4.0 V
37 skewness of temperature during 3.9–4.0 V
38 kurtosis of voltage during 3.9–4.0 V
39 kurtosis of temperature during 3.9–4.0 V
40 Slope of CCCV-CCCT curve during 3.9–4.0 V
41 Entropy of CCCV-CCCT curve during 3.9–4.0 V

CV mode

42 Energy during CV segment
43 Capacity during CV segment
44 Mean time during CV segment
45 Mean current during CV segment
46 Mean temperature during CV segment
47 Standard deviation of current during CV segment
48 Standard deviation of temperature during CV segment
49 skewness of current during CV segment
50 skewness of temperature during CV segment
51 kurtosis of current during CV segment
52 kurtosis of temperature during CV segment
53 constant voltage charge time
54 Entropy of CVCC-CVCT curve
55 Energy during 1.0–0.9 A
56 Capacity during 1.0–0.9 A
57 Mean time during 1.0–0.9 A
58 Mean current during 1.0–0.9 A
59 Mean temperature during 1.0–0.9 A
60 Standard deviation of current during 1.0–0.9 A
61 Standard deviation of temperature during 1.0–0.9 A
62 skewness of current during 1.0–0.9 A
63 skewness of temperature during 1.0–0.9 A
64 kurtosis of current during 1.0–0.9 A
65 kurtosis of temperature during 1.0–0.9 A
66 slope of CVCC-CVCT curve during 1.0–0.9 A
67 Entropy of CVCC-CVCT curve during 1.0–0.9 A
19
Fig. C.16. (a): Details of ResBlock1d in CNN model, which is exactly the same as
that in 1D ResNet. (b): Details of Encoder in Attention model, which are similar to
TransformerEncoder.
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Fig. C.17. A visualization of model structures. (a). CNN. (b). MLP. (c). LSTM. (d). GRU. (e). Attention. (f). Details of the Predictor.
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Table D.8
The results of XJTU battery dataset with [−1,1] normalization. For each column, within each batch, the best result of three input types was bolded. For each row, the best result
among five models was shown in italics.

Model CNN LSTM GRU MLP Attention

Input type Batch MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE

A

1 12.362 13.421 0.300 20.080 22.542 0.788 21.891 24.456 0.853 7.398 8.121 0.098 9.818 10.784 0.165
2 18.012 19.338 0.780 21.697 23.795 0.789 23.102 25.323 0.845 11.910 12.910 0.257 12.489 13.574 0.282
3 7.815 8.474 0.108 26.675 29.405 1.337 28.004 30.621 1.278 7.261 7.907 0.096 8.100 8.742 0.107
4 8.494 9.240 0.127 23.775 26.404 1.142 25.403 28.080 1.189 9.585 10.437 0.166 9.893 10.742 0.173
5 14.928 16.230 0.431 36.014 40.298 2.133 36.115 40.443 2.165 12.363 13.578 0.271 12.741 13.990 0.288
6 18.795 20.374 0.723 28.440 31.280 1.512 28.078 30.915 1.503 23.320 25.331 1.157 21.913 23.822 1.030

B

1 6.235 6.822 0.070 7.480 8.169 0.083 7.834 8.487 0.088 6.408 6.960 0.062 7.803 8.449 0.095
2 10.766 11.590 0.251 10.711 11.692 0.191 10.715 11.626 0.189 6.186 6.675 0.067 10.791 11.806 0.205
3 6.509 6.898 0.072 6.343 6.766 0.063 6.290 6.683 0.060 5.562 5.930 0.053 8.705 9.262 0.136
4 7.981 8.695 0.122 10.894 11.863 0.191 11.012 11.949 0.184 8.098 8.783 0.108 9.712 10.500 0.158
5 16.668 18.079 0.487 35.771 40.082 2.138 36.165 40.443 2.133 16.901 18.571 0.497 14.103 15.475 0.325
6 16.882 18.370 0.543 33.128 36.262 1.890 33.045 36.218 1.900 24.581 26.849 1.054 20.517 22.356 0.759

C

1 5.816 6.311 0.060 4.581 5.039 0.039 3.862 4.223 0.028 4.254 4.612 0.034 6.606 7.238 0.078
2 11.466 12.293 0.294 9.337 10.105 0.135 8.149 8.791 0.109 7.538 8.092 0.104 10.474 11.414 0.171
3 4.783 5.081 0.042 4.726 5.056 0.039 3.938 4.194 0.026 3.831 4.074 0.024 5.914 6.332 0.058
4 5.350 5.781 0.045 5.954 6.456 0.057 5.399 5.831 0.045 4.945 5.324 0.038 6.264 6.754 0.065
5 11.553 12.643 0.237 9.641 10.663 0.172 9.409 10.382 0.154 15.289 16.641 0.451 10.225 11.244 0.180
6 10.048 10.841 0.171 11.992 13.065 0.248 11.260 12.241 0.218 11.237 12.196 0.214 11.403 12.357 0.227

* A is the charging data; B is the partial charging data; C is the handcraft features.
Note: (1). All values are the average value of 3 experiments; (2). For intuitive display, all values have been magnified 1000 times.

Table D.9
The results of XJTU battery dataset with [0,1] normalization. For each column, within each batch, the best result of three input types was bolded. For each row, the best result
among five models was shown in italics.

Model CNN LSTM GRU MLP Attention

Input type Batch MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE

A

1 10.431 11.438 0.198 22.463 25.174 0.934 23.863 26.676 1.007 8.134 8.964 0.121 8.779 9.594 0.133
2 16.782 18.137 0.743 25.637 28.138 0.975 24.853 27.307 0.945 13.246 14.352 0.293 12.640 13.747 0.268
3 9.786 10.548 0.187 27.089 29.875 1.360 28.528 31.516 1.502 7.696 8.427 0.112 7.950 8.675 0.118
4 7.560 8.233 0.103 25.121 27.875 1.216 25.150 27.902 1.221 10.124 11.042 0.201 10.083 10.988 0.191
5 16.127 17.388 0.466 35.953 40.263 2.142 36.056 40.359 2.143 14.737 16.164 0.381 17.148 18.802 0.487
6 17.672 19.194 0.679 28.433 31.287 1.514 27.831 30.671 1.497 22.340 24.312 1.001 20.747 22.587 0.919

B

1 5.703 6.288 0.058 8.852 9.758 0.130 8.371 9.200 0.114 8.549 9.274 0.108 12.275 13.539 0.265
2 13.238 14.201 0.463 11.769 12.921 0.238 11.250 12.310 0.211 9.635 10.503 0.154 11.752 12.858 0.242
3 5.710 6.099 0.056 7.192 7.723 0.082 6.932 7.449 0.077 6.858 7.305 0.075 8.436 9.066 0.130
4 8.087 8.810 0.118 11.593 12.682 0.225 11.541 12.583 0.213 9.923 10.759 0.151 10.770 11.688 0.196
5 15.704 17.161 0.432 35.621 39.928 2.141 35.905 40.214 2.139 14.824 16.268 0.356 17.433 19.204 0.520
6 17.409 18.972 0.567 33.432 36.537 1.905 32.969 36.111 1.889 27.453 30.101 1.330 29.126 31.901 1.521

C

1 27.359 29.201 1.459 5.210 5.762 0.051 4.299 4.693 0.032 6.754 7.284 0.082 6.767 7.338 0.069
2 28.032 30.128 1.581 10.023 10.862 0.156 8.777 9.488 0.120 9.040 9.743 0.142 10.148 11.005 0.163
3 10.320 10.928 0.418 5.406 5.802 0.052 4.371 4.656 0.033 4.486 4.765 0.034 5.689 6.050 0.054
4 8.160 8.739 0.162 6.546 7.122 0.073 5.777 6.235 0.053 5.492 5.913 0.048 6.015 6.499 0.059
5 34.582 37.306 1.752 9.911 10.987 0.189 9.873 10.899 0.173 13.836 15.129 0.317 9.940 11.020 0.201
6 9.702 10.485 0.176 17.241 18.768 0.663 11.182 12.195 0.225 10.830 11.801 0.210 10.239 11.126 0.192

* A is the charging data; B is the partial charging data; C is the handcraft features.
Note: (1). All values are the average value of 3 experiments; (2). For intuitive display, all values have been magnified 1000 times.
21
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Table D.10
The results of XJTU battery dataset with z-score normalization. For each column, within each batch, the best result of three input types was bolded. For each row, the best result
among five models was shown in italics.

Model CNN LSTM GRU MLP Attention

Input type Batch MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE

A

1 21.797 23.585 0.877 20.702 23.178 0.820 23.798 26.636 1.025 8.187 8.840 0.102 6.715 7.358 0.093
2 20.930 22.461 1.115 26.535 29.126 1.142 31.294 34.319 1.512 17.556 18.912 0.463 12.179 13.219 0.322
3 7.229 7.710 0.146 27.446 30.440 1.510 31.143 34.483 1.811 11.234 12.050 0.207 6.619 7.162 0.081
4 7.816 8.420 0.116 24.120 26.791 1.185 25.632 28.433 1.275 8.683 9.391 0.128 8.012 8.750 0.121
5 22.799 24.774 0.847 36.042 40.334 2.135 35.762 40.078 2.139 13.419 14.764 0.329 11.714 12.903 0.279
6 12.776 13.803 0.308 28.277 31.121 1.494 29.232 32.103 1.554 18.522 20.192 0.705 16.304 17.629 0.515

B

1 36.364 40.309 2.474 37.388 41.412 2.438 44.055 48.648 2.776 287.701 311.225 143.892 43.185 47.013 3.072
2 41.711 45.850 2.975 35.607 39.325 2.153 35.514 39.264 2.303 278.173 301.800 186.625 55.613 60.714 5.971
3 42.911 46.730 3.077 42.131 46.047 2.845 43.967 47.871 2.966 178.370 188.504 59.169 47.318 51.557 3.766
4 38.165 41.769 2.454 35.953 39.366 2.218 36.219 39.652 2.339 191.194 203.646 75.885 38.893 42.401 2.494
5 24.789 26.920 1.036 36.250 40.549 2.151 36.205 40.504 2.148 20.583 22.642 0.709 11.708 12.987 0.296
6 16.264 17.745 0.501 27.187 29.926 1.457 33.192 36.314 1.890 25.326 27.738 1.157 17.437 19.050 0.605

C

1 5.249 5.732 0.047 8.294 9.029 0.174 8.894 9.729 0.210 42.566 45.919 3.260 7.203 7.839 0.116
2 8.706 9.434 0.149 10.202 11.053 0.189 14.835 16.062 0.484 21.566 23.213 0.935 11.195 12.133 0.231
3 5.102 5.545 0.051 6.926 7.487 0.108 11.205 12.152 0.358 26.012 27.683 1.172 7.406 8.023 0.113
4 5.951 6.479 0.060 6.326 6.866 0.065 11.605 12.605 0.320 13.359 14.365 0.380 7.509 8.175 0.100
5 14.095 15.552 0.462 13.387 14.853 0.429 16.416 18.183 0.600 48.896 53.616 3.917 14.254 15.698 0.399
6 10.613 11.466 0.206 12.916 13.930 0.324 13.673 14.733 0.368 16.041 17.145 0.501 11.331 12.245 0.236

* A is the charging data; B is the partial charging data; C is the handcraft features.
Note: (1). All values are the average value of 3 experiments; (2). For intuitive display, all values have been magnified 1000 times.

Table D.11
The results of Toyota-MIT-Stanford dataset with [−1,1] normalization. For each column, within each batch, the best result of three input types was bolded. For each row, the
est result among five models was shown in italics.
Model CNN LSTM GRU MLP Attention

Input type Group MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE

A

1 17.439 18.865 0.825 12.057 13.446 0.352 12.167 13.515 0.335 11.349 12.572 0.259 8.666 9.659 0.197
2 28.806 30.787 1.466 21.895 23.840 0.768 22.216 24.125 0.754 15.505 16.823 0.458 11.476 12.511 0.263
3 12.529 13.549 0.513 9.524 10.579 0.210 9.567 10.597 0.200 14.133 15.538 0.434 11.331 12.521 0.294
4 8.893 9.546 0.189 8.523 9.414 0.181 8.746 9.626 0.177 6.980 7.724 0.138 6.213 6.855 0.095
5 46.447 49.840 4.016 34.483 37.625 2.410 42.620 46.191 3.933 22.823 24.710 0.888 17.656 19.138 0.607
6 9.772 10.572 0.341 8.657 9.464 0.173 9.006 9.786 0.166 9.530 10.375 0.198 7.543 8.244 0.139
7 8.538 9.251 0.101 12.321 13.518 0.257 12.225 13.359 0.246 13.884 15.186 0.344 10.484 11.470 0.190
8 14.233 15.220 0.574 12.979 14.242 0.292 12.255 13.439 0.265 14.525 15.820 0.374 11.952 13.028 0.258
9 18.984 20.433 0.916 12.362 13.663 0.352 11.764 12.966 0.308 9.917 11.014 0.291 9.424 10.450 0.262

B

1 10.728 11.597 0.287 10.223 10.996 0.160 10.381 11.236 0.172 5.364 5.822 0.067 5.078 5.524 0.055
2 52.206 55.765 3.553 12.513 13.592 0.288 12.905 14.022 0.307 10.989 11.871 0.257 9.578 10.411 0.182
3 28.259 30.263 1.585 10.527 11.494 0.221 12.285 13.433 0.277 7.773 8.489 0.133 8.896 9.649 0.140
4 16.096 17.217 0.594 8.879 9.707 0.145 8.488 9.357 0.158 5.931 6.527 0.073 6.553 7.214 0.105
5 17.604 19.028 0.699 6.905 7.684 0.135 6.758 7.607 0.154 5.300 5.865 0.062 5.957 6.505 0.078
6 32.939 35.311 1.969 7.358 8.050 0.110 6.394 7.028 0.096 5.938 6.462 0.099 5.360 5.870 0.066
7 47.674 50.832 3.848 23.928 25.932 1.080 33.101 35.670 2.545 10.357 11.162 0.271 10.649 11.458 0.218
8 8.332 9.076 0.158 8.757 9.561 0.124 8.409 9.207 0.130 4.370 4.859 0.063 9.330 10.161 0.143
9 20.065 21.618 0.809 6.910 7.602 0.110 7.198 7.950 0.126 6.756 7.382 0.125 7.024 7.668 0.090

C

1 5.748 6.228 0.056 6.664 7.213 0.066 6.109 6.584 0.056 6.842 7.355 0.066 7.314 7.958 0.086
2 6.857 7.338 0.082 7.980 8.567 0.098 7.426 7.972 0.079 6.574 7.080 0.067 8.525 9.168 0.123
3 9.859 10.562 0.139 10.375 11.181 0.155 10.874 11.701 0.164 14.111 15.116 0.260 8.879 9.616 0.143
4 19.982 21.262 0.648 13.130 14.070 0.237 13.267 14.176 0.208 26.294 27.892 1.289 12.515 13.430 0.227
5 8.298 8.966 0.129 8.777 9.439 0.110 7.572 8.124 0.081 9.739 10.416 0.134 10.461 11.295 0.161
6 8.709 9.276 0.105 7.019 7.479 0.080 6.506 6.904 0.070 7.027 7.464 0.075 7.339 7.879 0.089
7 8.150 8.870 0.118 5.496 5.997 0.056 5.138 5.595 0.050 10.785 11.696 0.300 7.925 8.654 0.099
8 12.468 13.371 0.219 12.001 12.880 0.187 12.526 13.410 0.205 11.823 12.638 0.197 10.393 11.203 0.154
9 9.335 10.018 0.143 7.333 7.898 0.079 7.640 8.205 0.082 20.148 21.440 0.646 6.583 7.145 0.070

* A is the charging data; B is the partial charging data; C is the handcraft features.
Note: (1). All values are the average value of 3 experiments; (2). For intuitive display, all values have been magnified 1000 times.
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Table D.12
The results of Toyota-MIT-Stanford dataset with [0,1] normalization. For each column, within each batch, the best result of three input types was bolded. For each row, the best
result among five models was shown in italics.

Model CNN LSTM GRU MLP Attention

Input type Group MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE

A

1 22.775 24.579 1.249 11.601 13.057 0.376 12.482 13.911 0.359 10.385 11.597 0.259 9.650 10.847 0.274
2 31.741 33.796 2.047 23.943 26.333 1.123 21.846 23.851 0.771 17.176 18.627 0.470 17.826 19.586 0.618
3 12.557 13.629 0.372 10.460 11.637 0.256 9.644 10.712 0.215 11.999 13.237 0.274 9.882 10.996 0.229
4 6.175 6.691 0.082 8.880 9.869 0.211 8.614 9.524 0.186 6.982 7.717 0.127 7.541 8.344 0.162
5 31.019 33.359 2.241 21.047 23.284 0.939 33.437 36.408 2.037 33.563 36.204 2.254 17.730 19.466 0.635
6 14.363 15.549 0.570 9.758 10.726 0.238 9.068 9.917 0.188 8.214 8.976 0.165 6.835 7.576 0.162
7 8.955 9.760 0.137 12.749 14.070 0.302 12.019 13.213 0.262 12.255 13.392 0.261 8.400 9.304 0.165
8 16.541 17.768 0.599 13.533 14.890 0.335 12.775 14.041 0.298 12.060 13.198 0.264 8.756 9.689 0.195
9 17.481 18.882 0.971 14.823 16.392 0.485 12.147 13.455 0.340 10.887 12.006 0.339 11.577 12.862 0.346

B

1 15.891 16.899 0.754 11.117 11.956 0.190 10.732 11.551 0.161 6.514 7.063 0.086 6.710 7.263 0.081
2 53.956 57.431 3.809 12.517 13.615 0.282 12.932 14.008 0.267 13.038 14.134 0.281 11.284 12.264 0.207
3 18.314 19.708 0.766 10.591 11.582 0.237 11.049 12.048 0.210 12.307 13.361 0.313 8.342 9.056 0.125
4 21.842 23.502 1.206 9.434 10.283 0.157 8.562 9.368 0.135 7.426 8.155 0.121 6.687 7.317 0.100
5 21.767 23.437 1.202 7.616 8.467 0.158 6.661 7.438 0.119 5.649 6.251 0.066 5.020 5.608 0.076
6 15.222 16.288 0.766 7.809 8.562 0.132 6.443 7.048 0.088 5.657 6.184 0.084 4.676 5.173 0.065
7 37.863 40.576 2.364 23.751 25.845 0.972 35.132 37.852 2.662 35.692 38.187 2.994 11.331 12.424 0.286
8 24.177 26.090 1.465 9.346 10.217 0.145 8.672 9.475 0.121 5.346 5.914 0.080 7.017 7.649 0.093
9 14.945 16.066 0.761 7.448 8.182 0.123 7.086 7.788 0.107 7.161 7.840 0.115 5.839 6.448 0.093

C

1 10.775 11.622 0.343 7.079 7.693 0.075 6.556 7.077 0.061 9.370 10.121 0.135 6.972 7.593 0.082
2 9.439 10.142 0.197 8.989 9.681 0.127 9.142 9.798 0.125 11.839 12.686 0.214 6.717 7.225 0.081
3 19.355 20.757 0.786 10.382 11.200 0.159 10.574 11.379 0.163 16.402 17.605 0.350 8.636 9.344 0.124
4 56.621 60.226 3.762 12.931 13.877 0.239 13.247 14.160 0.226 22.176 23.546 0.681 12.273 13.192 0.235
5 35.065 37.486 2.108 9.128 9.843 0.118 6.849 7.371 0.074 18.213 19.545 0.448 8.306 8.962 0.103
6 17.866 18.965 0.729 7.670 8.206 0.094 7.065 7.513 0.075 10.223 10.927 0.148 7.426 7.940 0.087
7 23.780 25.773 1.034 5.961 6.545 0.070 6.268 6.808 0.067 14.122 15.281 0.275 7.137 7.800 0.087
8 22.843 24.469 0.805 11.835 12.743 0.186 12.162 13.035 0.192 13.067 14.038 0.255 12.909 13.878 0.211
9 39.385 42.106 1.928 7.619 8.231 0.093 6.448 6.957 0.073 28.892 30.912 1.252 7.404 8.006 0.081

* A is the charging data; B is the partial charging data; C is the handcraft features.
Note: (1). All values are the average value of 3 experiments; (2). For intuitive display, all values have been magnified 1000 times.

Table D.13
The results of Toyota-MIT-Stanford dataset with z-score normalization. For each column, within each batch, the best result of three input types was bolded. For each row, the
best result among five models was shown in italics.

Model CNN LSTM GRU MLP Attention

Input type Group MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE

A

1 14.054 15.271 0.452 28.953 32.137 1.447 32.149 35.394 1.684 5.415 5.935 0.072 12.137 13.169 0.335
2 26.371 28.190 1.140 24.371 26.872 1.238 23.683 26.138 1.191 17.249 18.555 0.455 20.198 21.751 0.688
3 19.135 20.719 0.788 27.414 30.333 1.304 27.343 30.347 1.346 7.665 8.409 0.123 11.078 12.008 0.269
4 15.994 17.167 0.622 19.086 20.850 0.682 29.487 32.170 1.302 14.595 15.641 0.398 9.373 10.146 0.189
5 32.678 34.986 1.919 22.437 24.787 1.030 21.598 23.889 0.983 16.392 17.554 0.412 14.380 15.613 0.526
6 18.445 19.693 0.676 25.916 28.381 1.291 25.151 27.629 1.244 7.284 7.900 0.126 8.868 9.535 0.158
7 10.617 11.462 0.236 30.985 33.827 1.824 34.600 37.633 2.264 21.274 22.915 1.005 15.784 17.169 0.473
8 14.474 15.645 0.492 24.997 27.366 1.055 34.568 37.613 1.880 6.774 7.423 0.107 15.266 16.625 0.457
9 18.928 20.477 0.734 25.457 28.164 1.280 25.785 28.538 1.299 7.813 8.606 0.164 11.996 12.990 0.258

B

1 16.653 17.781 0.616 12.139 13.031 0.218 11.802 12.688 0.213 6.882 7.403 0.093 8.666 9.291 0.156
2 20.808 22.316 0.645 24.147 25.767 0.920 22.313 23.912 0.757 23.058 24.937 1.058 34.659 37.325 2.234
3 17.473 18.839 0.683 12.076 12.927 0.238 8.538 9.160 0.109 10.671 11.557 0.179 16.089 17.471 0.509
4 22.815 24.445 0.968 8.578 9.325 0.130 8.421 9.182 0.127 14.867 16.204 0.502 9.934 10.796 0.195
5 12.814 13.937 0.344 6.810 7.442 0.079 7.207 7.797 0.075 10.403 11.283 0.178 11.340 12.378 0.272
6 21.942 23.693 0.960 11.165 12.055 0.192 10.123 10.965 0.165 7.747 8.361 0.143 11.478 12.366 0.320
7 24.968 26.794 1.419 11.962 12.884 0.229 10.696 11.599 0.196 23.187 24.999 0.907 19.007 20.428 0.830
8 15.131 16.447 0.451 17.279 18.606 0.494 15.194 16.367 0.366 8.711 9.459 0.140 10.069 10.918 0.198
9 16.830 18.267 0.839 8.779 9.532 0.119 11.026 11.898 0.174 7.911 8.588 0.105 9.734 10.507 0.324

C

1 6.072 6.554 0.064 6.455 6.957 0.067 10.940 11.891 0.239 53.601 58.041 6.204 7.951 8.607 0.119
2 6.768 7.251 0.081 8.976 9.600 0.176 11.140 11.970 0.299 87.473 93.580 23.135 8.869 9.496 0.175
3 11.559 12.510 0.205 11.146 12.080 0.190 13.716 14.826 0.346 98.937 106.096 17.034 11.088 11.961 0.204
4 12.553 13.422 0.204 13.660 14.625 0.269 13.120 14.078 0.265 76.932 81.989 11.607 13.066 13.969 0.235
5 8.785 9.421 0.120 12.478 13.409 0.402 12.672 13.638 0.240 61.801 66.524 6.658 11.347 12.163 0.195
6 6.400 6.836 0.067 10.854 11.570 0.383 11.167 11.915 0.366 35.105 37.564 2.069 8.273 8.850 0.114
7 8.218 9.011 0.122 8.355 9.186 0.110 14.404 15.708 0.648 40.399 43.933 3.538 11.269 12.304 0.290
8 6.415 6.903 0.068 9.274 10.002 0.143 9.622 10.370 0.154 37.891 40.835 2.342 8.638 9.318 0.121
9 7.152 7.678 0.077 8.881 9.571 0.126 9.505 10.234 0.161 60.913 65.133 6.490 7.525 8.067 0.090

* A is the charging data; B is the partial charging data; C is the handcraft features.
Note: (1). All values are the average value of 3 experiments; (2). For intuitive display, all values have been magnified 1000 times.
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