Neural Network Training

Geena Kim

Learning in perceptron

- Perceptron rule
- Delta rule (Gradient Descent)

Perceptron algorithm

- Cycle through the training instances
- Only update W on misclassified instances
- If instance misclassified:
 - If instance is positive class (positive misclassified as negative)

$$W = W + X_i$$

If instance is negative class (negative misclassified as positive)

$$W = W - X_i$$

Perceptron

Delta rule (Gradient Descent)

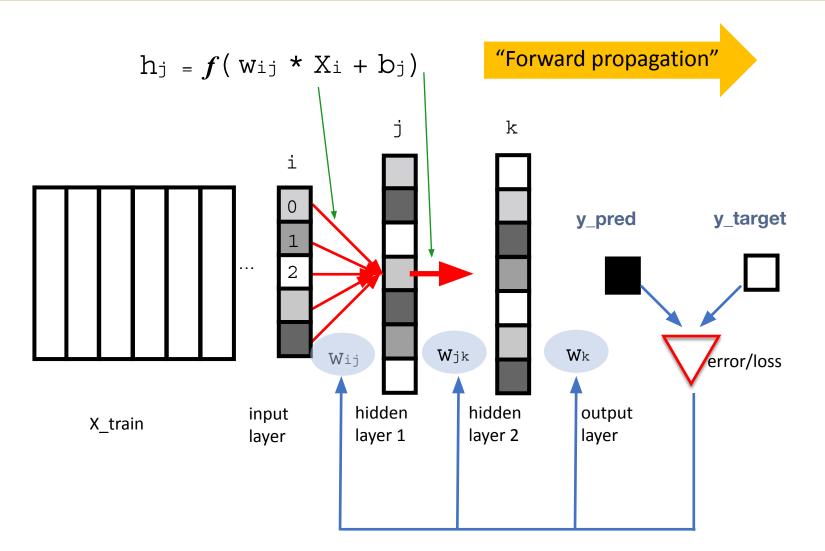
$$\omega_j \leftarrow \omega_j - \alpha \frac{\partial \mathcal{L}}{\partial \omega_j}$$

$$\mathcal{L} = \frac{1}{2}(\hat{y}_i - y_i)^2$$

$$\hat{y}_i = \sum_j \omega_j X_{ij}$$

$$\omega_j \leftarrow \omega_j - \alpha(\hat{y}_i - y_i) X_{ij}$$

How Neural Network Training Works



"Backward propagation"

$$W_{ij} \leftarrow W_{ij} - \alpha \frac{\partial \mathcal{L}}{\partial W_{ij}}$$

Weight Update Rule

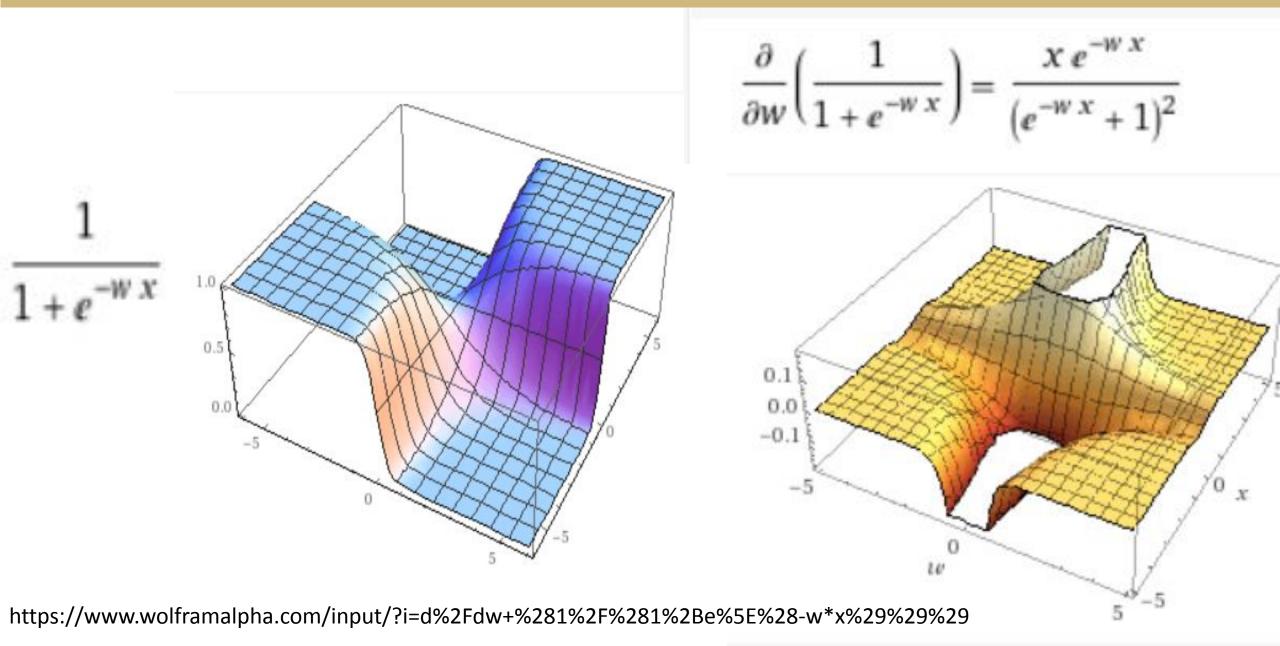
Loss Function Gradient (Chain Rule) Back Propagation

Chain Rule Reminder

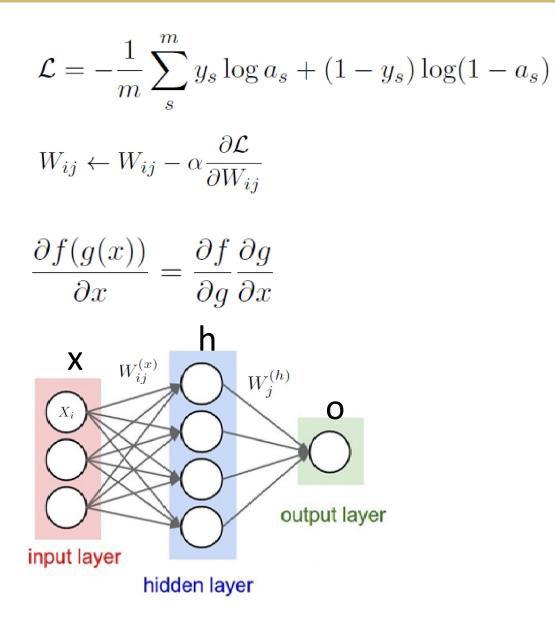
 $\frac{\partial f(g(x))}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}$

Example: gradient of sigmoid

Chain Rule Reminder

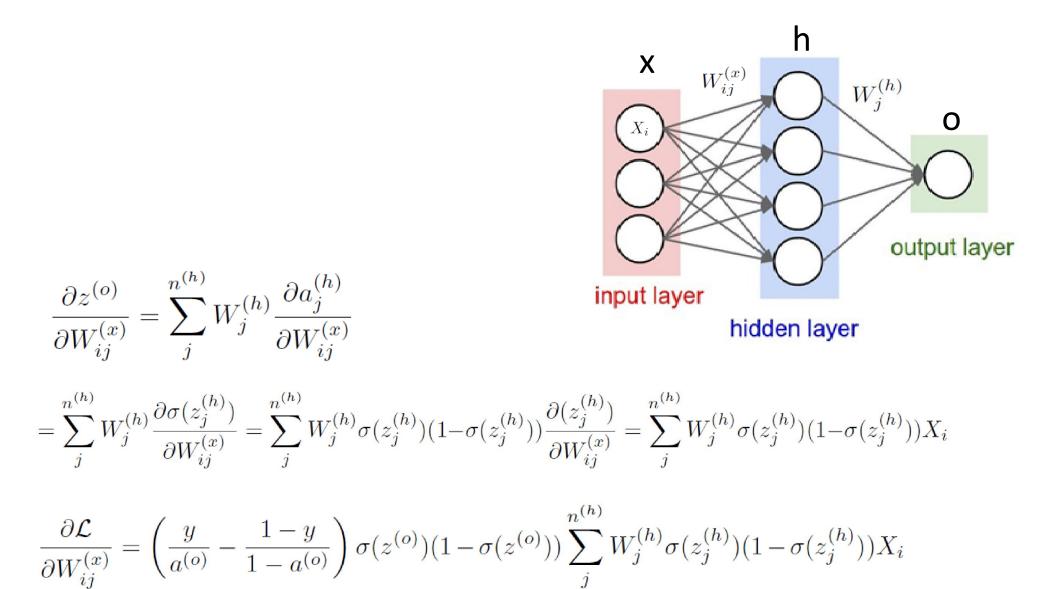


Calculating Gradient- Chain Rule



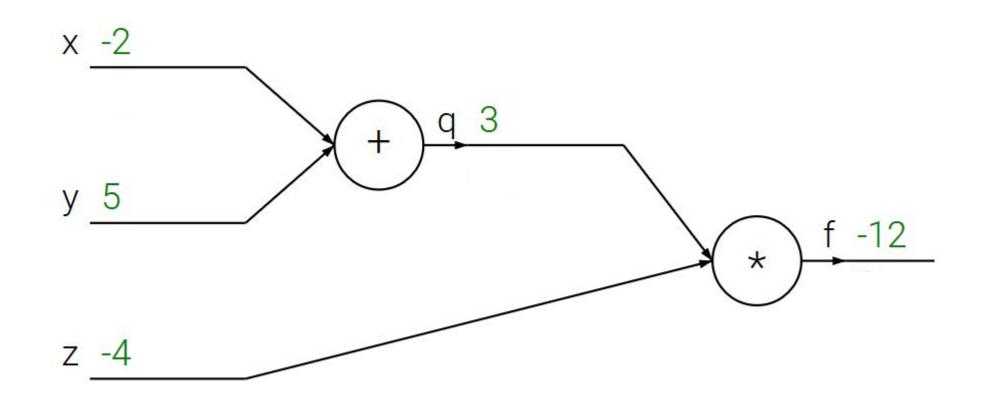
$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial W_{ij}^{(x)}} &= \frac{\partial \mathcal{L}(a^{(o)})}{\partial a^{(o)}} \frac{\partial a^{(o)}}{\partial W_{ij}^{(x)}} \\ &= \left(\frac{y}{a^{(o)}} - \frac{1 - y}{1 - a^{(o)}}\right) \frac{\partial a^{(o)}}{\partial W_{ij}^{(x)}} \\ \frac{\partial a^{(o)}}{\partial W_{ij}^{(x)}} &= \frac{\partial \sigma(z^{(o)})}{\partial z^{(o)}} \frac{\partial z^{(h)}}{\partial W_{ij}^{(x)}} \\ &= \frac{\partial \sigma(z^{(o)})}{\partial z^{(o)}} \frac{\partial z^{(o)}}{\partial W_{ij}^{(x)}} = \sigma(z^{(o)})(1 - \sigma(z^{(o)})) \frac{\partial z^{(o)}}{\partial W_{ij}^{(x)}} \end{aligned}$$

Calculating Gradient- Chain Rule



Back Propagation- Computation Graph

q = x+y f = q*z



Back Propagation- Computation Graph

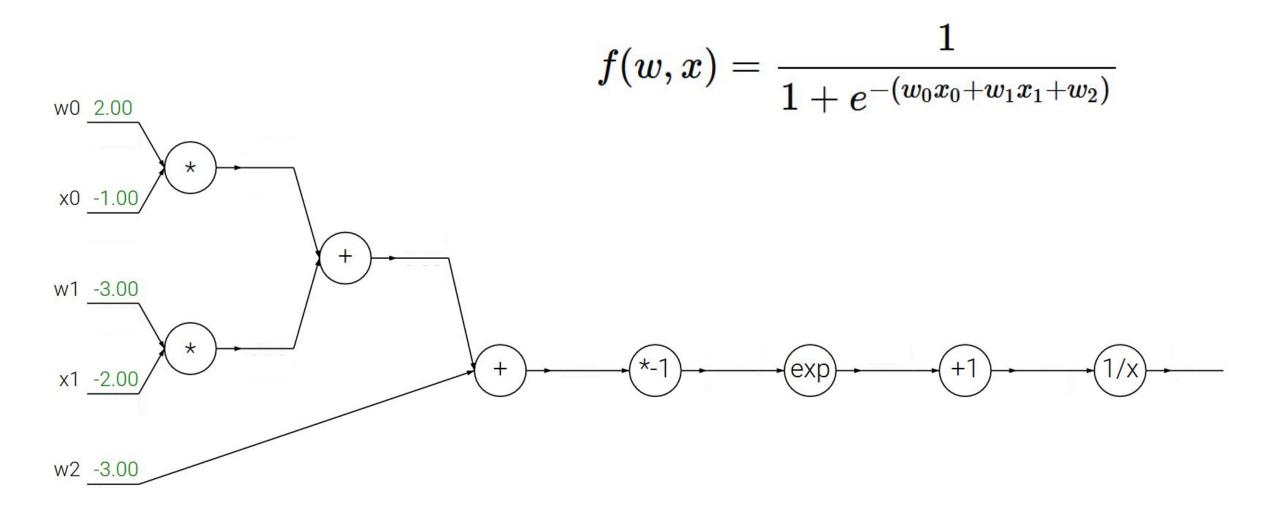


Image borrowed from Stanford cs231n

Back Propagation- Computation Graph

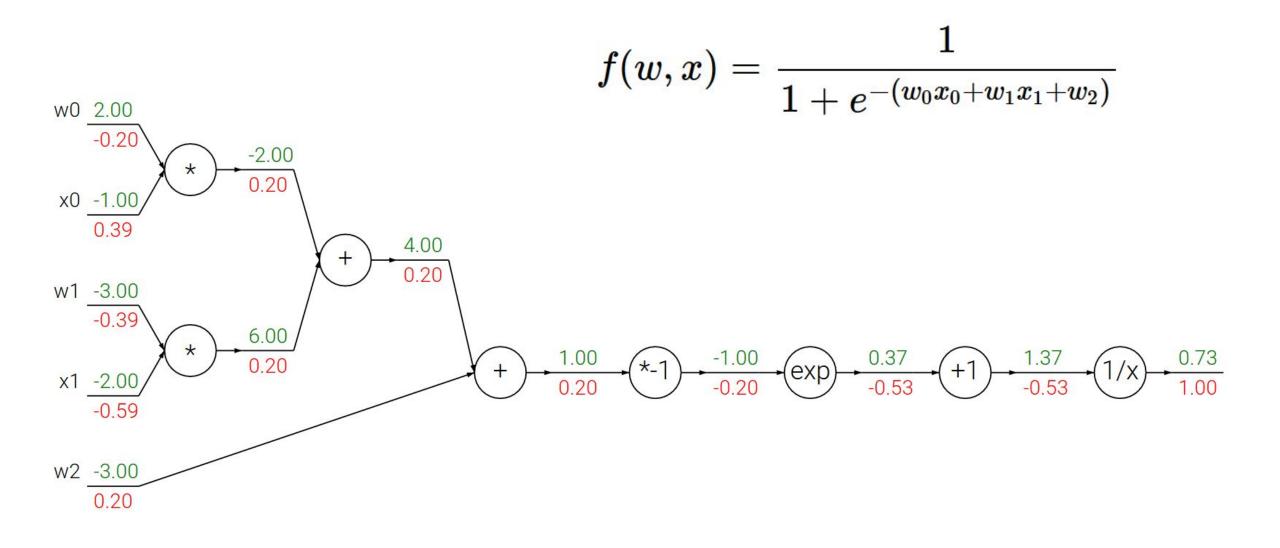


Image borrowed from Stanford cs231n

How does the computer perform differentiation?

Automatic Differentiation (Autodiff)

10	defvjp(anp.add,	<pre>lambda g, ans, x, y : unbroadcast(x, g),</pre>
11		<pre>lambda g, ans, x, y : unbroadcast(y, g))</pre>
12	<pre>defvjp(anp.multiply,</pre>	<pre>lambda g, ans, x, y : unbroadcast(x, y * g),</pre>
13		<pre>lambda g, ans, x, y : unbroadcast(y, x * g))</pre>
14	<pre>defvjp(anp.subtract,</pre>	<pre>lambda g, ans, x, y : unbroadcast(x, g),</pre>
15		<pre>lambda g, ans, x, y : unbroadcast(y, -g))</pre>
16	<pre>defvjp(anp.divide,</pre>	<pre>lambda g, ans, x, y : unbroadcast(x, g / y),</pre>
17		<pre>lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))</pre>
18	<pre>defvjp(anp.true_divide,</pre>	<pre>lambda g, ans, x, y : unbroadcast(x, g / y),</pre>
19		<pre>lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))</pre>
20	<pre>defvjp(anp.power,</pre>	
21	lambda g, ans, x, y	: unbroadcast(x, g * y * x ** anp.where(y, y - 1, 1.)),
22	lambda g, ans, x, y:	: unbroadcast(y, g * anp.log(replace_zero(x, 1.)) * x ** y))

https://github.com/mattjj/autodidact/blob/master/autograd/numpy/numpy_vjps.py https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf