

The Fourth International Workshop on Human Brain and Artificial Intelligence (HBAI 2024)

Are EEG-to-Text Models Working?

Hyejeong Jo^{1*}, Yiqian Yang^{2*}, Juhyeok Han¹, Yiqun Duan³, Hui Xiong²⁺, Won Hee Lee¹⁺

¹ Department of Software Convergence, Kyung Hee University, Republic of Korea

² AI Thrust, HKUST(GZ), People's Republic of China

³ University of Technology Sydney, Australia

* Equal contribution, *†*Corresponding author

INTRODUCTION

• This work critically analyzes existing models for open-vocabulary EEG-to-Text translation.

KYUNG HEE

UNIVERSITY

- We identify a crucial limitation: previous studies often employed implicit teacher-forcing during evaluation, which gives an illusion of high performance in terms of text generation metrics [1].
- Additionally, they lacked a critical benchmark, comparing model performance on **pure noise inputs**.
- We propose a methodology to differentiate between models that truly learn from EEG signals and those that simply memorize training data [2].

MATERIALS AND METHODS

- This approach will lead to reliable model assessments and pave the way for robust EEG-to-Text communication systems.
- We aim to assess the model's ability to learn from EEG data and address issues with implicitly employed teacher-forcing discussed by Yang [4].
- We followed the approach of Wang and Ji [1] and utilized the publicly available ZuCo dataset [3].

- We split the data into three sets: 80% (training), 10% (development), 10% (testing).
- The model architecture consists of two components:

(1) A transformer encoder: processing word-level EEG features and generates embeddings. (2) A pretrained BART model takes the encoder's embeddings and decodes them into text sequences.

- To assess the impact of teacher-forcing, we evaluated the model's performance under two conditions: (1) With teacher-forcing, (2) Without teacher-forcing.
- Evaluated the model's translation performance using BLEU, ROUGE, and WER.
- We designed four distinct scenarios.
 - (1) EEG (training and testing)
 - (2) Random (training and testing)
 - (3) EEG (training) + Random (testing)
 - (4) Random (training) + EEG (testing).

RESULTS

Table 1. EEG-to-Text model evaluation on the ZuCo 1.0 dataset, incorporating reading tasks from SR, NR, and TSR. "w/tf " denotes results obtained using teacher-forcing during evaluation.					
Pretrained model	Training	Testing	BLEU-1 (%)	ROUGE-1 (%)	WER (%)
BART	EEG	EEG	13.69	11.98	108.43
	EEG	Random	13.87	12.23	108.31
	Random	EEG	14.05	11.46	110.96
	Random	Random	14.22	11.62	110.98
BART w/tf	EEG	EEG	39.31	26.41	78.08
	EEG	Random	39.34	26.44	78.07
	Random	EEG	39.67	26.29	78.09
	Random	Random	39.69	26.32	78.09

- Previous methodologies **perform similarly on noise** and actual EEG data.
- Teacher-forcing during evaluation resulted in a substantial performance by at least three-fold compared to evaluations without it.
- Similar evaluation results were observed across models trained on EEG or random input data, regardless of the evaluation data type.

CONCLUSIONS

- Results showed similar performance on pure noise and actual EEG data with previous methodologies.
- Highlighted potential for **inflated metrics with teacher-forcing** and previous evaluation methods.
- Regularly incorporating noise baselines during evaluation is crucial for establishing a reliable performance benchmark.
- Adoption of these practices will enhance research reliability and accelerate the development of robust EEG-to-Text communication systems.

ACKNOWLEDGEMENT

This work was supported by the Culture, Sports and Tourism R&D Program through the Korea Creative Content Agency grant funded by the Ministry of Culture, Sports and Tourism (RS-2023-00226263)

[1] Wang, Z., Ji, H.: Open vocabulary electroencephalography-to-text decoding and zero-shot sentiment classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 5350-5358. [2] Jo, H., Yang, Y., Han, J., Duan, Y., Xiong, H., Lee, W.H.: Are EEG-to-Text Models Working? arXiv preprint arXiv:2405.06459 (2024). [3] Hollenstein, N., Rotsztejn, J., Troendle, M., Pedroni, A., Zhang, C., Langer, N.: ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading. Scientific data 5, 1-13 (2018). [4] Yang, Y., Duan, Y., Zhang, Q., Xu, R., Xiong, H.: Decode Neural signal as Speech. arXiv preprint arXiv:2403.01748 (2024).

Email: {girlsending0, whlee}@khu.ac.kr, {yyang937, xionghui}@connect.hkust-gz.edu.

* Code is available at https://github.com/NeuSpeech/EEG-To-Text.