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Algorithm 978: Safe Scaling in the Level 1 BLAS
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The square root of a sum of squares is well known to be prone to overflow and underflow. Ad hoc scaling
of intermediate results, as has been done in numerical software such as the BLAS and LAPACK, mostly
avoids the problem, but it can still occur at extreme values in the range of representable numbers. More
careful scaling, as has been implemented in recent versions of the standard algorithms, may come at the
expense of performance or clarity. This work reimplements the vector 2-norm and the generation of Givens
rotations from the Level 1 BLAS to improve their performance and design. In addition, support for negative
increments is extended to the Level 1 BLAS operations on a single vector, and a comprehensive test suite
for all the Level 1 BLAS is included.
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1. INTRODUCTION

The computation of the 2-norm of a vector x of length n,

||x||2 =
(

n∑
i=1

x2
i

)1/2

,

is a fundamental operation in numerical linear algebra software. The 2-norm or just a
sum of squares can also occur in other contexts where the software designer may not
think to call a library routine, such as complex division,

u
v

= a + bi
c + di

= (ac + bd) + (bc − ad) i
c2 + d2 ,

and the calculation of the sine of the angle between the x-axis and the line from (0,0)
to (a, b), in the x − y plane:

s = b√
a2 + b2

.

The difficulty in computing these quantities is that the sum of squares of the elements
of a vector x may overflow if any |xi| is greater than the square root of the largest
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12:2 E. Anderson

representable number, and it may underflow to zero if every |xi| is less than the square
root of the smallest representable number unless a suitable scaling is used. Software
to implement these operations, in the words of James Blue [1978], “should be accurate
and efficient, and should avoid all overflows and underflows,” but these objectives have
not always been achieved.

1.1. Issues with the Reference BLAS

A function to compute the 2-norm of a vector x of length n was included as part of
the original Basic Linear Algebra Subprograms (BLAS) [Lawson et al. 1979] using an
algorithm based on work by Blue [1978]. Blue’s algorithm divides the real number
line into small, medium, and large number ranges and uses three accumulators when
computing the sum of squares, one for the small numbers, which have to be scaled up
before being squared; one for the medium numbers, which do not require scaling; and
one for the large numbers, which have to be scaled down before being squared. The
implementation in the BLAS was efficient but difficult to understand, leading many
library writers to write their own, but these alternative versions were not always
as careful about scaling. In the 1990s, the reference version on netlib [Dongarra and
Grosse 1987] was replaced with a single-pass algorithm from LAPACK [Anderson et al.
1999] that makes one pass through the vector and continually rescales the sum by the
largest element in absolute value. This method avoids overflow by generally keeping
the sum of squares between 1.0 and n, but it scales every element, whether it needs
scaling or not, and the rescaling inhibits vectorization, making the algorithm very slow
[Anderson and Fahey 1996]. Also, if two or more of the elements of x are ±∞, the norm
is computed as NaN, when it should be ∞.

Scaling is also required in the BLAS procedure to generate plane rotations, commonly
called Givens rotations. A square root of a sum of squares occurs when computing the
sine and cosine of the angle of rotation. In the subroutine with real valued inputs
from the BLAS and its complex analog from LINPACK [Dongarra et al. 1979], the
components a and b of the sum of squares a2 + b2 were divided by |a| + |b| without
checking if this quantity was invertible or even computable without overflow. The
complex algorithm also did not return the same result as the real algorithm if provided
with real valued inputs. Bindel et al. [2002] analyze the scaling requirements for
constructing Givens rotations in great detail, but their implementation [Demmel 2002]
fails to avoid all the scaling pitfalls and is unable to pass the newly constructed tests.

The remaining vector (Level 1) BLAS have a few minor issues. The reference versions
employ manual loop unrolling to a depth of up to 7 based on previous studies showing
a performance benefit [Dongarra 1980], but manual unrolling is unnecessary now,
because it is a standard option in optimizing compilers. The reference Level 1 BLAS
are also inconsistent in their handling of vector increments, allowing the increment to
be positive, negative, or zero in some subroutines but only allowing positive increments
in others. Also, the Level 1 BLAS test program is woefully inadequate, including only a
few small test cases with precomputed results, and no vector longer than five elements.

1.2. Features of the New Model Implementation

In this work, we reimplement Blue’s algorithm for the 2-norm of a vector following the
original specification and show that it is faster than the current reference version. For
the generation of Givens rotations, we present a simpler algorithm than the one in
LAPACK and show that its scaling is sufficient under very mild assumptions about the
floating-point model. To address deficiencies in the other Level 1 BLAS, we introduce
a new model implementation in a more contemporary programming style, remove
the manual unrolling, extend the interface to admit general vector increments for all
subroutines, and construct a more comprehensive and scalable test suite.
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A few possible extensions are omitted from this study. The procedures for generating
and applying modified Givens rotations are not included, although they were part of
the original BLAS. A modified Givens rotation refactors the 2×2 Givens rotation ma-
trix as the product of a diagonal matrix and a 2×2 orthogonal transformation matrix
with some of its entries either 1 or −1, saving work when the rotation is applied if
the diagonal scaling does not need to be applied to the row vectors. The subroutines
to generate a modified Givens rotation were modernized using features of Fortran 90
by Hopkins [1997], while subroutines that both generate and apply a modified Givens
transformation, replacing the legacy BLAS equivalents, were proposed by Hanson and
Hopkins [2004], so it is not clear that reimplementing the legacy interface to these sub-
routines would have any value. Also, the matrix-vector (Level 2) BLAS [Dongarra et al.
1988] and the matrix-matrix (Level 3) BLAS [Dongarra et al. 1990] are not included,
because their reference implementations do not have the same issues identified in the
vector (Level 1) BLAS; there is no manual unrolling, all the vector increments are fully
general, and the existing test suites already allow test problem sizes to be controlled
by an input file.

Section 2 defines the scaling constants used in the new model implementation in
terms of the floating-point model. Section 3 describes Blue’s algorithm for the vector
2-norm and the modifications made to adapt it to contemporary floating-point models.
Section 4 revives a simpler algorithm for computing Givens rotations, introduces a
new complex equivalent, and shows that these implementations avoid overflow and
underflow under mild assumptions about the floating-point model. Section 5 describes
a new model implementation of the Level 1 BLAS and a few LAPACK extensions and a
new comprehensive test program for them. Section 6 contains some concluding remarks
and suggestions for further development.

2. SCALING TO AVOID UNDERFLOW AND OVERFLOW

Underflow and overflow are defined by the floating-point model. The floating-point
number system used in Fortran and described by Blue [1978] is a subset of the real
numbers consisting of zero and all elements of the form

f = ±(m1β
−1 + · · · mtβ

−t) × βe,

where

1 ≤ m1 < β; 0 ≤ mi < β, i = 2, . . . , t; emin ≤ e ≤ emax.

The requirement is that m1 ≥ 1 makes the numbers normalized and guarantees that
the representation is unique. A floating-point model is defined by four integers: the
base or radix β, the number of mantissa digits t, and the minimum and maximum
exponents emin and emax, from which one can define the following constants:

Smallest model number: r = βemin−1

Largest model number: R = βemax
(
1 − β−t

)
Machine precision: ε = β1−t

The smallest model number r is the underflow threshold, while the largest model
number R is the overflow threshold. The machine precision is the relative spacing be-
tween consecutive model numbers. Sometimes this term is used interchangeably with
“machine epsilon,” but if the machine epsilon is defined as the maximum relative rep-
resentation error, then the machine epsilon is half the machine precision in rounded
arithmetic [Demmel 1997]. In Fortran, the floating-point model parameters β, t, emin,
and emax can be obtained from the intrinsic functions RADIX, DIGITS, MINEXPO-
NENT, and MAXEXPONENT, and the model numbers r, R, and ε can be obtained from
the intrinsic functions TINY, HUGE, and EPSILON.
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The IEEE floating-point model [IEEE 2008] extends the model above by allowing
m1 = 0 if e = emin. Numbers with this representation are called denormalized. The
inclusion of denormalized numbers allows a more gradual underflow to zero, instead
of treating all values less than βemin−1 as zero. The smallest representable number
including the denormalized numbers is βemin−t.

2.1. Safe and Well-Scaled Numbers

A floating-point number f will be said to be safe if 1/ f can be computed without overflow
or underflow. For the purpose of this definition, the value of f will be considered to have
underflowed if it is less than the smallest model number, even though it may still be
representable as a denormalized number. A floating-point number f will be said to be
well scaled if f 2 can be computed without overflow or loss of precision due to underflow.
Bounds for testing that f is safe or well scaled are discussed in the following section.
When discussing only the upper bound, we will say that f is safe from overflow, and
when discussing only the lower bound, we will say that f is safe from underflow.

2.2. Boundaries for Scaling Regions

The first constants that we need for scaling are the boundaries SAFMIN and SAF-
MAX of the range of safe numbers, such that 1/ f is computable as a model number
if SAFMIN ≤ | f | ≤ SAFMAX. Although in theory the floating-point model parame-
ters could all be chosen independently, in practice the exponent range is usually fairly
symmetric about 0, with a slight bias towards positive exponents because overflow is a
more serious concern than underflow. Assuming a positive exponent bias, the smallest
safe number greater than zero is the smallest model number βemin−1, and its inverse
is β1−emin. However, if 1 − emin ≥ emax, we would instead set SAFMAX to βemax−1 and
SAFMIN to β1−emax .

We also require the boundaries of the range of well-scaled numbers for deciding
when the sum of squares can be computed without scaling. Extending the definition of
a well-scaled number, we will say that a vector x of length n is well scaled if

∑n
i=1 x2

i can
be computed by an unscaled algorithm without underflow or overflow. More precisely,
x is well scaled if r ≤ ∑n

i=1 x2
i ≤ R, a definition that allows some |xi| < r but not all

|xi| < r. A sufficient condition for x to be well scaled is
√

r ≤ |xi| ≤ √
R/n for 1 ≤ i ≤ n

or
√

r ≤ |xi| ≤ √
R · ε for n ≤ 1/ε.

Since the square root may not be exactly computable, Blue [1978] took the nearest
power of the radix and defined tsml = β�(emin−1)/2� and tbig = β	(emax−t+1)/2
, where �u� is
the smallest integer greater than or equal to u and 	u
 is the largest integer less than
or equal to u. Then x is well scaled if tsml ≤ |xi| ≤ tbig for 1 ≤ i ≤ n and n ≤ 1/ε. If any
xi were not well scaled, then Blue employed powers of the radix as scaling constants,
multiplying small values by ssml = β−	(emin−1)/2
 and large values by sbig = β−�(emax−t+1)/2�.
This scaling is sufficient to avoid underflow if r is the smallest representable number,
but when denormalized numbers are included, it is necessary to shift some more.
Inserting a factor of 1/

√
ε makes ssml = β−	(emin−t)/2
, then as desired

(xi · ssml)2 ≥
(
βemin−t · β−(emin−t)/2

)2
≥ βemin−t.

Note that multiplying values of x near
√

r by 1/
√

r · ε makes the scaled value as big as
1/

√
ε, its square as big as 1/ε, and the summation of n ≤ 1/ε of them as big as 1/ε2,

but this should not cause any difficulty as long as 1/ε2 ≤ R, which generally holds if
β2(t−1) ≤ β1−emin or t − 1 ≤ (1 − emin) /2. This important model assumption is discussed
further in Section 4.4.
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Table I. Scaling Constants in Terms of Model Parameters β, t , emin, and emax

Name Symbol Formula Notes
ULP ε β1−t unit in last place
SAFMIN max

(
βemin−1, β1−emax

)
SAFMAX min

(
β1−emin, βemax−1)

1/SAFMIN
RTMIN (SAFMIN/ULP)1/2

RTMAX (SAFMAX · ULP)1/2 1/RTMIN
TSML tsml β�(emin−1)/2� called b by Blue
TBIG tbig β	(emax−t+1)/2
 called B by Blue
USML usml β	(emin−t)/2
 called s by Blue
UBIG ubig β�(emax−t+1)/2� called S by Blue
SSML ssml β−	(emin−t)/2
 1/USML
SBIG sbig β−�(emax−t+1)/2� 1/UBIG

Finally, we require the boundaries of the range of numbers that are well scaled and
whose square or sum of squares is also safe. These parameters would be needed, for
example, in complex division where we have a sum of squares in the denominator.
For these boundaries, we divide SAFMIN by ε (also called ULP for “unit in the last
place”), multiply SAFMAX by ε, and take their square roots, hence the names RTMIN
and RTMAX. The variable names ULP, SAFMIN, SAFMAX, RTMIN, and RTMAX
are already in common use in LAPACK.1 The scaling boundaries and constants are
summarized in Table I, and values of these constants for the IEEE 32-bit and 64-bit
binary floating-point models are shown in the Appendix.

2.3. Safe Scaling and Blue’s Scaling

Consider the special case of computing s =
√

x2 + y2 for real inputs x and y. A simple
way to avoid overflow or underflow would be to scale x and y by w = max (|x| , |y|),
making s = w

√
(x/w)2 + (y/w)2. At the time of this writing, this is exactly what is done

in the LAPACK function SLAPY2 in single precision (or DLAPY2 in double precision),
the body of which in pseudo code is as shown in Algorithm 1a:

ALGORITHM 1a: LAPACK method for s =
√

x2 + y2 with x and y real

w = max(|x|, |y|)
z = min(|x|, |y|)
if z = 0

s = w
else

s = w ·
√

1 + (z/w)2

end if

There are several problems with this algorithm. First, the Fortran functions max and
min are indeterminate if one of x or y is NaN (not a number). Logically, they should
return NaN, but they may not, so if x = 0 and y is NaN, it is possible that both w and
z could be zero and SLAPY2 could return 0, not NaN. Second, w may not be invertible.
For example, if w and z are Inf (a representation of infinity), then z/w will be NaN,
making s NaN, not Inf as expected. Finally, there is no attempt to avoid dividing by

1We have used the variable name ULP to refer to machine precision instead of EPS, because the ma-
chine epsilon is also used in LAPACK. The inquiry function SLAMCH(‘Precision’) returns β1−t while
SLAMCH(‘Epsilon’) returns 1

2 β1−t in rounded arithmetic. The symbol ε is used for consistency with Blue.
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12:6 E. Anderson

w when x and y are already well scaled, even though the divide tends to be a costly
operation on modern microprocessors. It is also useless to do any scaling if x or y are
NaN, but we want to avoid the cost of testing for NaNs, so the main concern is to make
sure that the scaling constant is safe if x and y are not NaN.

A safe scaling constant would be

w = min(SAFMAX, max(SAFMIN, |x|, |y|)).
We call this restriction safe scaling because the alternative would be unsafe—we never
want to divide by more than SAFMAX or by less than SAFMIN. The algorithm with
these improvements is as shown in Algorithm 1b:

ALGORITHM 1b: Safe scaling method for s =
√

x2 + y2 with x and y real
if |x| = 0

s = |y|
else if |y| = 0

s = |x|
else

w = min (SAFMAX, max (SAFMIN, |x| , |y|))
if (RTMIN < |x| < RTMAX) and (RTMIN < |y| < RTMAX)

s =
√

x2 + y2

else
s = w ·

√
(x/w)2 + (y/w)2

end if
end if

Here we have not tried to take advantage of the fact that x/w or y/w may be exactly
1 if w = |x| or w = |y|. This ensures that any NaNs will propagate to the result.

The final improvement is to use Blue’s scaling constants if x or y is not well scaled.
Blue did not actually implement this special case, but it would look something like
Algorithm 1c:

ALGORITHM 1c: Blue’s scaling method for s =
√

x2 + y2 with x and y real
if |x| = 0

s = |y|
else if |y| = 0

s = |x|
else

w = max (|x| , |y|)
z = min (|x| , |y|)
if w > tbig

s = (
1/sbig

) ·
√(

x · sbig
)2 + (

y · sbig
)2

else if w < tsml

s = (1/ssml) ·
√

(x · ssml)2 + (y · ssml)2

else if z < tsml

s = w ·
√

1 + (z/w)2

else
s =

√
x2 + y2

end if
end if
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In the actual implementation, the precomputed constants ubig = 1/sbig and usml = 1/ssml
are used. When either x or y is large, both values are scaled down by a precomputed
factor, and when both x and y are small, both are scaled up by a precomputed factor.
If only one of x or y is small, the smaller element is scaled by the larger element to
avoid a loss of precision when the square of one element is just above the underflow
threshold and the square of the other element is just below the underflow threshold and
would underflow to zero. The advantage to Blue’s scaling is that it does not introduce
any roundoff error when multiplying by the precomputed constants because they are
powers of the radix.

2.4. Importing Scalar Parameters

The traditional means of getting floating-point constants into a Fortran procedure
has been through an inquiry function. LAPACK uses an inquiry function SLAMCH
(or DLAMCH in double precision), while its predecessors used functions such as
I1MACH/R1MACH/D1MACH [Fox et al. 1978] or MACHAR [Cody 1988]. Even though
xLAMCH can be implemented using calls to intrinsic functions provided in Fortran 90,
there is still the overhead of the function call itself. To eliminate this overhead, some
subroutines in LAPACK compute the constants they need on the first call and store
them in a SAVE block for direct use on subsequent calls, a poor programming practice
that inhibits thread safety.

A better solution implemented in LAPACK3E [Anderson 2002] is to store constants
as parameters in a Fortran module and USE the module. Then there is no overhead
of a function call and no reason to duplicate trivial declarations of common constants
such as zero and one. For clarity, the constants that are required can be itemized on
the USE line, for example,

use LA_CONSTANTS, only: wp, zero, one

The only disadvantage is that the constants module has to be generated once when the
software is compiled. Code to generate the module and versions of the Fortran module
source generated on an IEEE-754 system for 32-bit and 64-bit floating-point precision,
which most people will be able to use without modification, are provided with the test
package and included in the Appendix.

Although the main reason for placing all constants in a module is to allow a more
uniform software design, there is also a performance advantage to storing them as
parameters with preset values. For example, consider again the LAPACK function
SLAPY2 to compute s =

√
x2 + y2 as described in the previous section. Three versions

of the “safe scaling” version of this function were prepared, one in which the constants
required for scaling are obtained from a module, one in which they are obtained from the
LAPACK inquiry function or computed, and one in which they are computed on entry
using Fortran intrinsic functions for the model parameters. In the module approach,
the constants are included via a single USE line:

use LA_CONSTANTS32, only: wp, zero, safmin, safmax, rtmin, rtmax

while the LAPACK approach using an inquiry function is

integer, parameter :: wp = 4
real(wp), parameter :: zero = 0.0_wp
real(wp), parameter :: one = 1.0_wp
real(wp) :: ulp, safmin, safmax, smlnum, rtmin, rtmax
real(wp) :: SLAMCH
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ulp = SLAMCH(‘Precision’)
safmin = SLAMCH(‘Safe minimum’)
safmax = one / safmin
smlnum = safmin / ulp
rtmin = sqrt(smlnum)
rtmax = one / rtmin

and the intrinsic function method is
integer, parameter :: wp = 4
real(wp), parameter :: zero = 0.0_wp
real(wp), parameter :: one = 1.0_wp
real(wp), parameter :: ulp = epsilon(one)
real(wp), parameter :: safmin = tiny(one)
real(wp), parameter :: safmax = one / safmin
real(wp), parameter :: smlnum = safmin / ulp
real(wp), parameter :: rtmin = sqrt(smlnum)
real(wp), parameter :: rtmax = one / rtmin

Each version of SLAPY2 was called repeatedly in a loop with elements from vectors
x and y of length n = 1,000,000 and the average time for the n calls was computed. On
a single core of an Intel E5–2670 processor, using Intel Fortran version 17.0 with the
options -O3 -fp-model precise, the following timings were observed:

Method for importing constants Time for n calls to SLAPY2
Module 4.5 milliseconds
Inquiry function 94.3 milliseconds
Intrinsics 4.5 milliseconds

The performance advantage of the module approach over the inquiry function is
clear, and although there is no difference in performance between the module and the
intrinsics, there is a huge advantage in software maintainability. In practice, having
the same constant computed in many different locations as was done in LAPACK leads
to many different values being used for a constant like smlnum. The module approach
is used in the new model implementations that accompany this article.

3. SUM OF SQUARES

The sum of squares operation for a vector x with n elements is

S =
n∑

i=1

x2
i = x2

1 + x2
2 + · · · + x2

n,

from which the Euclidean or 2-norm can be computed as ||x||2 = √
S. This computation

will overflow if the absolute value of any xi is greater than the square root of overflow,
and it will underflow to zero if the absolute value of every xi is less than the square
root of underflow. Even if some of the xi ’s are large enough in magnitude to avoid
underflow in ||x||2, accuracy may be lost if the contributions of many other xi ’s are
lost due to underflow. To avoid overflow, values that are large in magnitude must be
scaled towards zero, and to avoid underflow, values that are small in magnitude must
be scaled away from zero. A further consideration is to ensure that all scaling constants
are invertible, so that division can be replaced by multiplication by the reciprocal. But
if the calculation does not cause any underflow or overflow, we can and should use an
unscaled algorithm.
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One approach to scaling is to return a multiplier w and sum of squares q such that
S = w2 · q, from which the 2-norm can be computed as ||x||2 = w · √

q. The LAPACK
auxiliary routine xLASSQ computes w and q without forming the 2-norm and also
accepts input values for w and q, allowing the sum of squares of the elements of a
vector x to be added to an existing sum of squares.

3.1. Blue’s Algorithm

To compute s =
√

x2
1 + x2

2 + · · · + x2
n, Blue used the scaling constants of Section 2.2 to

define the ranges of small, medium, and large numbers and employed three accumula-
tors, one for the small numbers that need to be scaled up, one for the medium numbers
that do not require scaling, and one for the large numbers that need to be scaled down.
The main loop of Blue’s algorithm, with the accumulators called asml, amed, and abig,
respectively, is as follows:

asml = 0; amed = 0; abig = 0
for i = 1 to n

if |xi| > tbig

abig ← abig + (
xi · sbig

)2

else if |xi| < tsml

asml ← asml + (xi · ssml)2

else
amed ← amed + x2

i

end if
end for

Note that any NaN values will fall through the tests and be added to amed, which will
then become NaN.

It now remains to combine the accumulators and take the square root. If there is
any contribution from abig, then asml can be ignored, so at most two of the accumulators
need to be combined. If abig and amed are nonzero, we apply the scaling factor sbig to amed
and return

s = (
1/sbig

) ·
√

abig + (
amed · sbig

) · sbig.

If abig is zero but amed and asml are both nonzero, we cannot add amed into asml by
computing (amed · ssml) · ssml because it would likely cause overflow, and we cannot add
asml into amed by computing (asml/ssml) /ssml without likely causing underflow. Instead
we turn this into a SLAPY2 problem with x = √

amed and y = √
asml/ssml. Clearly, x as

a 2-norm of medium numbers cannot be small, so we can use the LAPACK algorithm
from Section 2.3 without risk of overflow:

ymax = max
(√

amed,
√

asml/ssml
)

ymin = min
(√

amed,
√

asml/ssml
)

s = ymax ·
√

1 + (ymin/ymax)2.

A few modifications have been made to Blue’s algorithm in the current implementa-
tion. The test to see if amed is nonzero, which will fail if amed is NaN, has been augmented
with a check for NaN values to ensure that NaN values propagate to the result. The
isnan function is implemented as a generic function in the new model implementation
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12:10 E. Anderson

using built-in intrinsics if available. Also, rescaling by the larger of two accumulators
is done only when combining amed and asml. The implementation with these changes is
shown in Algorithm 2.

ALGORITHM 2: Blue’s algorithm for the 2-norm
asml = 0; amed = 0; abig = 0
for i = 1 to n

if |xi| > tbig

abig ← abig + (
xi · sbig

)2

else if |xi| < tsml
asml ← asml + (xi · ssml)2

else
amed ← amed + x2

i
end if

end for
if abig > 0

if amed > 0 or isnan(amed)
abig ← abig + (

amed · sbig
) · sbig

end if
Set w = 1/sbig and q = abig

else if asml > 0
if amed > 0 or isnan(amed)

ymin = min
(√

amed,
√

asml/ssml
)

ymax = max
(√

amed,
√

asml/ssml
)

Set w = 1 and q = y2
max

(
1 + (ymin/ymax)2)

else
Set w = 1/ssml and q = asml

end if
else

Set w = 1 and q = amed
end if

For xLASSQ, the values of w and q are returned, while for xNRM2 there is one addi-
tional step to compute ||x||2 = w · √

q.
Blue’s use of multiple accumulators does not address the accuracy lost by combining

elements in the sum of squares with widely differing magnitudes (except, in a limited
way, when there are elements on both sides of the cutoff for large or small values).
Two entries of the vector may both be in the safe range, but the square of one may
overwhelm the other, even though sufficiently many of the smaller elements could
affect the sum. This problem is not unique to the 2-norm; it is also present in the
dot product, the vector sum, and in higher-level BLAS operations. Since the other
BLAS do not rearrange operations to prevent roundoff, we do not attempt it here
either.

3.2. Timing Comparisons

Alternatives to Blue’s algorithm include the current reference version of xNRM2 on
netlib based on LAPACK’s xLASSQ, in which the sum of squares is continually rescaled
by the largest |xi| seen so far in a single pass through the vector x, and the 2-pass
method for xLASSQ implemented in LAPACK3E, in which the first pass computes w =
maxi {|xi|} and the second pass computes s = w ·

√∑n
i=1 (xi/w)2. Timing comparisons

were conducted on five algorithms for the double precision 2-norm function DNRM2:
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1. The original Level 1 BLAS DNRM2 based on Blue’s algorithm (Legacy)
2. The current DNRM2 from netlib based on LAPACK’s DLASSQ (LAPACK)
3. The 2-pass algorithm for DLASSQ inlined into DNRM2 (2-pass)
4. The new implementation based on Blue’s algorithm (Blue)
5. An unsafe algorithm that does no scaling (Unsafe)

The purpose of the timing test is to show that Blue’s algorithm can be made competitive
with vectorizable algorithms for the 2-norm with a modern implementation. Optimized
BLAS, such as Intel MKL [Intel 2015], ATLAS [Whaley et al. 2001], and OpenBLAS,
achieve better performance on this algorithm by detecting when scaling can be avoided,
implementing kernels in assembly language, and speculatively vectorizing loops that
may occasionally contain a branch [Sujon et al. 2013].

The numeric range of the values in the vector x can affect the performance of the
algorithms by varying the amount of scaling and branching that is done. The best case
for branch prediction is when all the values are in the same range, and the worst case
is when they alternate between ranges that are scaled differently. To demonstrate all
the features of the latest code, we generated eight different test vectors with values set
as follows:

1. Values from the medium range that do not require scaling (Medium)
2. Values from the range that would cause overflow (Large)
3. Values from the range that would cause underflow (Small)
4. All zero (Zero)
5. Alternating medium and large (ML)
6. Alternating medium and small (MS)
7. Alternating medium and zero (MZ)
8. Alternating medium, large, small, and zero (MLSZ)

Tests were conducted both for vectors inside the cache and for vectors constructed as
columns of an array that is too large to fit in cache, with similar results, so only the
out-of-cache tests will be shown.

Results for the out-of-cache test using one core of a 2.6GHz Intel Xeon E5-2670
processor and the Intel compiler are shown in Figure 1. Each procedure was called
nrep = 100 times with a vector of length n = 1,000,000, and the time shown is the
average time in seconds of a single call. The unsafe algorithm represents the best
possible performance but is only able to return a valid result in four of the eight
cases. The legacy BLAS and Blue’s algorithm are the best performers for a medium
vector, which is the case most likely to occur in practice. The LAPACK algorithm is
the worst or second-worst performer in all cases except for the zero vector, where it is
the best because it tests for zeros. The legacy BLAS performs poorly in several cases
where its archaic code logic using computed GOTOs defies the compiler’s efforts at
branch prediction. The 2-pass algorithm is a steady performer but is beaten by Blue’s
algorithm in all cases except the zero vector because each element must be accessed
twice. For all the performance graphs in this report, Intel Fortran and C compilers
version 17.0 were used with the options -O3 -fp-model precise -xHost.

4. COMPUTATION OF GIVENS ROTATIONS

A Givens rotation (or plane rotation) is an orthogonal transformation used to introduce
zeros selectively in a matrix computation. The original Level 1 BLAS only included
subroutines to generate and apply Givens rotations for real data, but the functionality
was extended to complex data in LINPACK [Dongarra et al. 1979]. As in the 2-norm
function, underflow and overflow must be avoided in intermediate results so that the
output parameters are computed accurately.
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Fig. 1. Out-of-cache timing comparison of DNRM2 and DZNRM2 variants on one core of an Intel Xeon
E5-2670 processor (2.6GHz, 20 MB cache), n = 1,000,000; time in seconds (lower is better).

4.1. Real Givens Rotation

In the real case, constructing the rotation matrix reduces to the 2×2 problem of solving
the following constrained equation for c and s, given a pair of real input values f and
g: [

c s
−s c

] [
f
g

]
=

[
r
0

]
subject to c2 + s2 = 1.
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If g is already 0, then there is nothing to do and the computation returns c = ±1
(depending on the sign desired for r) and s = 0. If g is not 0, then the equations can be
solved by substitution to give

r = ±
√

f 2 + g2, c = f/r, s = g/r.

The choice of sign for r distinguishes the different algorithms for computing the
rotation. For consistency with the new BLAS standard [Blackford et al. 2002], we will
use the specification from Bindel et al. [2002] and LAPACK3E [Anderson 2002], where
r takes the sign of f , making c positive, as shown in Algorithm 3a.

ALGORITHM 3a: Construct Givens rotation given real f and g
if g = 0

c = 1; s = 0; r = f
else if f = 0

c = 0; s = sgn (g) ; r = |g|
else

d =
√

f 2 + g2

c = | f | /d
s = (g · sgn ( f )) /d
r = sgn ( f ) · d

end if

In this algorithm, for a real number x, sgn(x) = { 1,

−1,

x≥0
x<0

Algorithm 3a has the geometric interpretation of rotating a vector ( f, g) in the right
half of the x−y plane to (

√
f 2 + g2, 0) and rotating a vector ( f, g) in the left half of

the x − y plane to (−
√

f 2 + g2, 0). In a sense, vectors that are already pointing in the
direction of positive x are rotated to the positive x axis, and vectors that are already
pointing in the direction of negative x are rotated to the negative x axis.

As has already been seen in Sections 2 and 3, scaling may be required to avoid
underflow or overflow when computing

√
f 2 + g2. Scaling may also be necessary to

ensure that
√

f 2 + g2 is invertible so that we can replace divisions by this quantity with
multiplications by its reciprocal. We will use the safe scaling method from Section 2.3.
The computation of a real Givens rotation with this scaling is as shown in Algorithm 3b:

Note that if | f | � |g| in Algorithm 3b, d =
√

f 2 + g2 ≈
√

g2 = |g| and | f | /d may
underflow, making c zero, but this is unavoidable. Similarly, if |g| � | f | , d ≈ | f | and
g/d may underflow, making s zero, but this is also unavoidable. It might save a few
operations to test for these cases, but the results would be the same.

4.2. Complex Givens Rotation

When f and g are complex, the constrained equation from Section 4.1 becomes[
c s

−s c

] [
f
g

]
=

[
r
0

]
subject to c2 + s · s = 1;

where c is real, s and r are complex, and s is the complex conjugate of s. Other forms of
the complex Givens rotation are possible, for example, making s real or r real instead
of c, but in matrix computations it is more efficient to have c or s real because this
reduces the cost of applying the rotation to a matrix. For consistency, it is also desired
to have the complex algorithm return the same answer as the real algorithm if f and
g are real.
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ALGORITHM 3b: Construct real Givens rotation with scaling
if g = 0

c = 1; s = 0; r = f
else if f = 0

c = 0; s = sgn (g) ; r = |g|
else if (RTMIN < | f | < RTMAX) and (RTMIN < |g| < RTMAX)

d =
√

f 2 + g2

c = | f | /d
s = (g · sgn ( f )) /d
r = sgn( f ) · d

else
u = min (SAFMAX, max (SAFMIN, | f | , |g|))
fs = f/u; gs = g/u
d = √

f 2
s + g2

s
c = | fs| /d
s = (gs · sgn( f )) /d
r = (sgn( f ) · d) · u

end if

The complex analog of the algorithm from Section 4.1 is as shown in Algorithm 4a:

ALGORITHM 4a: Construct Givens rotation given complex f and g
if g = 0

c = 1; s = 0; r = f
else if f = 0

c = 0; s = g/|g|; r = |g|
else

d =
√

| f |2 + |g|2
c = | f | /d
s = (

g · sgn( f )
)
/d

r = sgn ( f ) · d
end if

where, for a complex number z, |z| = √
zz =

√
(Re (z))2 + (Im(z))2 and

sgn (z) =
{

z/ |z| , z �= 0
1, z = 0 .

As before, scaling may be required to avoid underflow or overflow in the computation

of
√

| f |2 + |g|2 and to ensure that this quantity is invertible. A simple scaling such as

u = min (SAFMAX, max (SAFMIN, |Re ( f )| , |Im( f )| , |Re (g)| , |Im(g)|))
would fix the sum of squares, but now we must be concerned about underflow when
scaling f by a component of g because complex numbers have both a magnitude and a
direction, and sgn ( f ) may still contribute a direction even when the magnitude of f is
very small. If | f | � |g|, then a different scaling v may need to be applied to f , and the
results multiplied by v/u where necessary. On the other hand, underflow in g/u when
|g| � | f | does not affect the results.

To optimize performance, we would like to avoid computing | f | if possible because
it requires another square root. An equivalent formulation employed by Bindel et al.
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when f and g are not zero is

f2 = | f |2 ; g2 = |g|2 ; h2 = f2 + g2

d =
√

f2 · h2

p = 1/d
c = f2 · p
s = g · ( f · p)
r = f · (h2 · p) .

For this formulation to be used, f and g must be well scaled, and even then the
algorithm must guard against underflow and overflow when computing f2 · h2. In the
event that this quantity is outside the safe range, the new implementation computes
d as

√
f2

√
h2. The construction of a complex Givens rotation with these considerations

is shown in Algorithm 4b.
The test “if fmax � gmax” is implemented in the code as “if fmax/u < RTMIN” using

the value of RTMIN from Section 2.2. Although we would like to combine the real
quantities h2 · p and u first in the scaled case before multiplying the complex value fs,
we cannot prevent overflow in (h2 · p) · u when f is small and g is large, so instead we
compute r = ( fs · (h2 · p)) · u at the cost of one additional multiply.

4.3. Timing Comparisons

Since the generation of a Givens rotation is a scalar procedure, timing comparisons
were conducted on the LAPACK routine xLARGV, which is the vector equivalent of the
subroutine xLARTG from LAPACK or xROTG from the BLAS or LINPACK. Several
methods for constructing Givens rotations were compared:

1. Vector version of xROTG (BLAS)
2. LAPACK3E versions (LAPACK)
3. Optimized vector version of xROTG (ModBLAS)
4. New version described here (New)

The LAPACK3E versions of xLARGV were used instead of LAPACK because the cur-
rent LAPACK implementations did not pass the timing program’s internal checks. It
is worth noting that only the new version is able to pass the new rigorous test program
at extremes of the floating point range, although all of these versions produced correct
answers for the test problems used in the timing program.

To exercise all the different paths through the code, the following different scaling
combinations were used for the input values f and g:

1. f small, g small (SS)
2. f small, g medium (SM)
3. f small, g large (SL)
4. f medium, g small (MS)
5. f medium, g medium (MM)
6. f medium, g large (ML)
7. f large, g small (LS)
8. f large, g medium (LM)
9. f large, g large (LL)

Results for a single core of an Intel Xeon E5-2670 processor using the Intel compiler
are shown in Figure 2. A few simple optimizations to the vector version of the BLAS
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ALGORITHM 4b: Construct complex Givens rotation with scaling
if g = 0

c = 1; s = 0; r = f
else if f = 0

gmax = max (|Re (g)|, |Im(g)|)
if (RTMIN < gmax < RTMAX)

c = 0; s = g/|g|; r = |g|
else

u = min (SAFMAX, max (SAFMIN, gmax))
gs = g/u
c = 0; s = gs/ |gs| ; r = |gs| · u

end if
else

fmax = max (|Re ( f )| , |Im( f )|)
gmax = max (|Re (g)| , |Im(g)|)
if (RTMIN < fmax < RTMAX) and (RTMIN < gmax < RTMAX) then

{Use unscaled algorithm}
f2 = | f |2 ; g2 = |g|2 ; h2 = f2 + g2
if ( f2 > RTMIN) and (h2 < RTMAX)

d = √
f2 · h2

else
d = √

f2
√

h2
end if
p = 1/d
c = f2 · p
s = g · ( f · p)
r = f · (h2 · p)

else {Use scaled algorithm}
u = min (SAFMAX, max (SAFMIN, fmax, gmax))
gs = g/u; g2 = |gs|2
if fmax � gmax {Use different scalings for f and g}

v = min (SAFMAX, max (SAFMIN, fmax))
w = v/u
fs = f/v; f2 = | fs|2 ; h2 = f2 · w2 + g2

else {Use the same scaling for f and g}
w = 1
fs = f/u; f2 = | fs|2 ; h2 = f2 + g2

end if
if ( f2 > RTMIN) and (h2 < RTMAX)

d = √
f2 · h2

else
d = √

f2
√

h2
end if
p = 1/d
c = ( f2 · p) · w
s = gs · ( fs · p)
r = ( fs · (h2 · p)) · u

end if
end if

routine xROTG (replacing division by multiplication by the reciprocal and eliminating
two calls to CABS in the complex case) made it more competitive and allowed a fairer
comparison via the ModBLAS results. The new implementation generally matches the
performance of the best BLAS and LAPACK versions in the real case and improves on
it in the complex case.
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Fig. 2. Out-of-cache timing comparison of DLARGV and ZLARGV variants on one core of an Intel Xeon
E5-2670 processor (2.6GHz, 20MB cache); n = 1,000,000; time in seconds (lower is better).

4.4. Floating-Point Model Assumptions

Algorithms 3b and 4b are sufficient to avoid underflow and overflow using some mild
assumptions about the floating-point model that are required to prove the following
desired relationships between safe and well-scaled numbers.

THEOREM 1. If r is a real representable number, then with
u = min (SAFMAX, max (SAFMIN, |r|)), r/u is well scaled.
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Table II. Calculation of Bound in p-bit Arithmetic for Safe Scaling to Produce a Well-Scaled Number

β p t emin emax (1 − emin)/2 + 1 IEEE format
2 16 11 −13 16 8 binary16
2 32 24 −125 128 64 binary32 (basic)
2 64 53 −1021 1024 512 binary64 (basic)
2 128 113 −16381 16384 8192 binary128 (basic)

10 32 7 −94 97 48 decimal32
10 64 16 −382 385 192 decimal64 (basic)
10 128 34 −6142 6145 3072 decimal128 (basic)

PROOF. We need to show that |r/u| ≤ √
SAFMAX even for values of r larger than

SAFMAX and that |r/u| ≥ √
SAFMIN even for values of r smaller than SAFMIN.

As discussed in Section 2.2, the exponent range is typically fairly symmetric about
zero, with a slight bias towards the positive exponents because overflow is a more se-
rious concern than underflow. Assuming a positive exponent bias, the smallest safely
invertible number SAFMIN is the smallest model number βemin−1, and its inverse SAF-
MAX is β1−emin. The largest model number is βemax (1 − β−t), but for this analysis the
upper bound βemax is more useful. Hence for any real number r, |r/u| ≤ βemax+emin−1, and
for this to be less than

√
SAFMAX = β(1−emin)/2, we need emax + emin − 1 ≤ (1 − emin) /2.

The expression on the left side represents the positive exponent bias, while the ex-
pression on the right side represents one half of the negative exponent range. The
inequality holds easily if the bias is small, as it is in the IEEE programming models.
For example, in 32-bit IEEE arithmetic, emax + emin − 1 = 2, while (1 − emin) /2 = 63.
Historically, the exponent ranges have not always been so symmetric; Blue cites the
CDC 6000/7000, for which β = 2 and in double precision emin = −927 and emax = 1070,
but even in this case emax + emin − 1 = 142, much less than (1 − emin) /2 = 464. For
|r/u| to be more than

√
SAFMAX, the hardware designer would have to have allo-

cated 20% or more of the exponent range to the positive bias, which is very unlikely to
occur.

At the low end, the ratio is complicated by the possible presence of denormalized
numbers, which can admit a value of r much smaller than SAFMIN. Denormalized
numbers are denoted by a biased exponent of 0 and correspond to an exponent of emin
but with a leading mantissa digit of m1 = 0. The smallest denormalized number is
βemin−t, so using this value for the smallest possible r gives |r/u| ≥ β−t+1. This value
is greater than or equal to

√
SAFMIN if −t + 1 ≥ (emin − 1) /2 or t − 1 ≤ (1 − emin) /2.

The quantity t − 1 represents the maximum number of shifts that would have to
be done to renormalize the result of adding or subtracting two numbers with the
same exponent if some of the leading mantissa digits were zero. If t − 1 were greater
than (1 − emin) /2, then adding or subtracting numbers in more than half the negative
exponent range could result in a denormalized number due to cancellation. This would
be an unacceptably high percentage, so it is unlikely that the hardware designer would
ever make the fraction of exponent bits so low. This completes the proof, but it is worth
checking the assumptions.

The IEEE 754-2008 standard [IEEE 2008] says that the radix β should be 2 or 10
and that emin should be 1 − emax. The IEEE floating-point model differs from the model
described in Section 2 in that the mantissa is normalized to the range [1, β), instead of
to [β−1, 1); adjusting for our model requires adding one to emin and emax, making emin =
3 − emax and emax + emin − 1 = 2. This relationship makes SAFMIN = βemin−1 and should
ensure that emax + emin −1 ≤ (1 − emin) /2 as desired. To confirm that t ≤ (1 − emin) /2+1
also holds in practice, this bound is calculated for several IEEE floating-point number
formats in Table II. In each of the base 2 systems, for p-bit arithmetic, there is 1 bit
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allocated to the sign, t bits for the mantissa, and k bits for the exponent, but the first
mantissa bit is implicit and not stored, so t + k = p. Also, (1 − emin) /2 + 1 = 2k−2

because the exponent range is approximately symmetric with a small positive bias
and one reserved value in each half for infinities and NaNs. The allocation of bits is
more complicated in the decimal systems, but the ratio of mantissa bits to exponent
bits is about the same. All the systems shown satisfy t ≤ (1 − emin) /2 + 1, except the
system with t = 11, k = 5, and p = 16, which corresponds to IEEE “half” precision, an
interchange format that by implication is not intended for arithmetic use. We see that
|r/u| ≥ √

SAFMIN holds with room to spare for all the standard floating-point number
systems with 32 bits of precision or more.

THEOREM 2. If z is a complex representable number, then with
u = min (SAFMAX, max (SAFMIN, |Re (z)| , |Im(z)|)), z/u is well scaled.

PROOF. Recall from Section 2.2 that a vector of length 2 is well scaled if the sum
of squares of its components can be computed by an unscaled algorithm without
underflow or overflow. If z = (0, 0), then u = SAFMIN and z/u = (0,0), which is
trivially well scaled. If z is nonzero, then at least one of Re (z) or Im(z) is nonzero.
Let zmin = min (|Re (z)| , |Im(z)|) and zmax = max (|Re (z)| , |Im(z)|), and suppose
SAFMIN ≤ zmax ≤ SAFMAX, so that u = zmax. Then |z/u|2 = 1 + (zmin/zmax)2 and
1 ≤ 1 + (zmin/zmax)2 ≤ 2, so z/u is well scaled for this case.

Now suppose |zmax| > SAFMAX, so u = SAFMAX. In this case, |z/u|2 = (zmin/u)2 +
(zmax/u)2 ≤ 2 · |zmax/SAFMAX|, so for z/u to be well scaled, we require |zmax/SAFMAX| ≤√

SAFMAX/2. As in the proof of Theorem 1, the left side is at most βemax+emin−1 and the
right side is β(1−emin)/2 divided by

√
2, or β−1/2 when β = 2, which will hold (for β = 2)

if emax + emin − 1 ≤ −emin/2. The left side represents the positive exponent bias and is
always 2 in IEEE arithmetic, while the right side is half the negative exponent range,
an exponential historically much larger than the positive exponent bias.

If |zmax| < SAFMIN, then u = SAFMIN. In this case, |z/u|2 = (zmin/u)2 + (zmax/u)2 ≥
(zmax/u)2 ≥ SAFMIN from Theorem 1.

COROLLARY 1. If a complex representable number z is well scaled, then |z| and z/ |z|
are well scaled.

THEOREM 3. The product of two well-scaled numbers is a representable number.

THEOREM 4. The product of a well-scaled number and a number of unit norm is well
scaled.

THEOREM 5. The product of a safe number and a number of unit norm is safe.

The proofs of Theorems 3–5 follow directly from the definitions and the norm property
|z1 · z2| = |z1| · |z2|.
4.5. Proof of Safety

We will say that an algorithm is safe if its output results do not overflow or under-
flow unless overflow or underflow cannot be avoided. Overflow or underflow cannot be
avoided in every circumstance, and in these cases the proper result is to return plus or
minus infinity or zero. We now examine Algorithm 4b to see if it is safe. The proof of
Algorithm 3b follows as a special case.

If g is zero, the algorithm does no computation, simply returning with r = f . If f
is zero, g is a representable number, and RTMIN < max(|Re(g)|, |Im(g)|) < RTMAX,
then g is well scaled and |g| is both well scaled and safe, so s and r are both well
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scaled. If g requires scaling, the scaling constant u makes g well scaled by Theorem 2,
hence s is well scaled, and the quantity r is a product of a well-scaled number and a
safe number. We cannot conclude anything about r, and it may overflow, but if it does,
overflow was unavoidable. If g contains a NaN, then gmax may or may not be NaN; the
IEEE standard is ambiguous in this case. But regardless of what scaling is computed,
at least one component of gs will be NaN, so |gs| will be NaN, making s and r both NaN.
If g contains an infinite value and no NaNs, then |gs| will be infinite, s will contain
NaN, and r will be infinite.

If f and g are both nonzero and well scaled, then f2 = | f |2, g2 = |g|2, and h2 = f2 +g2
are all computable without underflow or overflow. Since f2 ≤ f2 + g2 = h2, the condi-
tions f2 > RTMIN and h2 < RTMAX are equivalent to RTMIN < f2 < RTMAX and
RTMIN < h2 < RTMAX, hence SAFMIN < f2 · h2 < SAFMAX, which guarantees that
the product is safe and its square root is well scaled, so a single square root can be used.
If the product is not safe, the conditions on f and g still ensure that | f | and

√
| f |2 + |g|2

are well scaled and that d = √
f2

√
h2 is safe, hence its inverse p is also safe. The co-

sine c = f2 · p is the product of two real representable numbers and is equivalent to
c = | f |/

√
| f |2 + |g|2, which is always positive and between 0 and 1 inclusive. The sine

s is the product of a well-scaled number g and the product f · p = f/(| f |
√

| f |2 + |g|2),
which is well scaled as the product of a number of unit norm and a well-scaled num-
ber, hence s is representable. The quantity r is the product of a well-scaled number f
and the product h2 · p = (| f |2 + |g|2)/(| f |

√
| f |2 + |g|2) =

√
| f |2 + |g|2/| f |. This expres-

sion must be at least 1 because | f | > 0. If | f | ≥ |g|, then
√

| f |2 + |g|2 ≤
√

2| f |2 and√
| f |2 + |g|2/| f | ≤ √

2. If | f | < |g|, then
√

| f |2 + |g|2 ≤
√

2|g|2 and
√

| f |2 + |g|2/| f | ≤√
2|g|/| f | ≤ √

2 RTMAX/RTMIN = √
2(RTMAX)2 = √

2(SAFMAX · ULP), showing
that h2 · p is safe. Thus r is the product of two representable numbers, which is as safe
as we can make it.

If f and g are both nonzero but not well scaled, then both are scaled to form fs
and gs. The scaling constant u = min(SAFMAX, max(SAFMIN, fmax, gmax)) will make
one of fs or gs well scaled by Theorem 5. Regardless of whether f or g is larger
in magnitude, g is scaled by u. If fmax � gmax, an alternate scaling constant v =
min(SAFMAX, max(SAFMIN, fmax)) is applied to f ; this makes fs well scaled and is
important to prevent underflow in fs. However, if scaling by u will not cause underflow,
f is also scaled by u. Then f2 = | fs|2, g2 = |gs|2, and either h2 = f2 · (v/u)2 + g2
or h2 = f2 + g2, and the rest of the analysis proceeds as in the unscaled case with
scaling factors added to the formulas for c and r. The constant w = v/u may not
be safe with respect to underflow if the magnitude of g is much larger than that
of f , but in this case, referring back to Algorithm 4a, underflow is unavoidable in
c = | f |/

√
| f |2 + |g|2 ≈ | f |/|g|.

If f is nonzero and f or g contains a NaN, then at least one component of the sum
of squares in h2 will be NaN, so d will be NaN, p will be NaN, and c, s, and r will all be
NaN, as desired. If f or g contain an infinite value, then at least one component of the
sum of squares in d will be infinite, so c and s will be 0 or NaN and r will be infinite.
We could save a few operations by testing for gmax � fmax, but it would not change the
results.

5. OTHER IMPROVEMENTS TO THE BLAS

Other than the scaling issues when computing the 2-norm of a vector or con-
structing Givens rotations, the primary concern with the original BLAS is making
them consistent with successor packages, such as the matrix-vector (Level 2) BLAS
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[Dongarra et al. 1988], the matrix-matrix (Level 3) BLAS [Dongarra et al. 1990], LIN-
PACK [Dongarra et al. 1979], and LAPACK [Anderson et al. 1999]. As the BLAS have
evolved, the interfaces have standardized on allowing the vector increment to be posi-
tive or negative, a feature only partially supported in the Level 1 BLAS. The reference
versions of the Level 2 and 3 BLAS are very straightforward, leaving any optimizations
such as was attempted with manual unrolling in the original BLAS to the developers
of numerical libraries. The test programs for the Level 2 and 3 BLAS and LAPACK are
also driven by a data file, allowing them to test a user-selectable range of problem sizes
in order to exercise all paths in an implementation optimized by a library developer
for a particular architecture.

5.1. Naming Conventions

The names of the Level 1 Basic Linear Algebra Subprograms take the form

< datatype(s) >< function >

where the standard data types are

I Integer
S Single precision real
D Double precision real
C Single precision complex
Z Double precision complex

Functions begin with the character matching their return data type, while subroutines
begin with the character matching the data type of their vector arguments. When the
interface contains both real and complex arguments, two of these data types may be
used in the subroutine name. For example, the 2-norm of a complex vector in double
precision is DZNRM2, indicating that the return type is double precision real and the
vector argument is double precision complex, and there is both a ZDSCAL and ZSCAL
for scaling a double precision complex vector, the first scaled by a double precision real
scalar and the second by a double precision complex scalar.

The full list of BLAS modified by this work is as follows:

Data types Name Description
S,D,C,Z IxAMAX Maximum element in absolute value
S,D,SC,DZ xASUM 1-norm of a vector
S,D,C,Z xAXPY Sum of two vectors: y ← ax + y
S,D,C,Z xCOPY Copy a vector: y ← x
S,D xDOT Real dot product: xT y
C,Z xDOTC Complex dot product, conjugated: xT y
C,Z xDOTU Complex dot product, unconjugated: xT y
S,D,SC,DZ xNRM2 2-norm of a vector
S,D,C,Z,CS,ZD xROT Apply a Givens rotation
S,D,C,Z xROTG Compute a Givens rotation
S,D,C,Z,CS,ZD xSCAL Scale a vector: x ← ax
S,D,C,Z xSWAP Swap two vectors

The functionality of the routines xAXPY, xCOPY, xDOT, xROT, and xSWAP is un-
changed from the original BLAS, but updated versions of these routines are provided
for consistency in programming style. The functions C/Z ROTG, C/Z ROT, and CS/ZD
ROT are BLAS-like extensions provided with LINPACK and/or LAPACK.
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New implementations are also provided for the following LAPACK auxiliary routines:

Data types Name Description
S,D,C,Z xLARTG Compute a Givens rotation
S,D,C,Z xLASSQ Compute a scaled sum of squares

The KIND is parameterized in each of these routines, so additional variations, such as
128-bit real or complex versions, could easily be constructed.

5.2. General Vector Increment

The BLAS and LAPACK subroutines that include a vector argument typically also
include a vector increment INCX describing the spacing between consecutive elements
of the n-element vector x. Following a convention that goes back to the original BLAS
article, if INCX > 0 then the ith element of x is stored in X (1 + (i − 1) ∗ INCX) , while
if INCX < 0 then the ith element of x is stored in X (1 − (n − i) ∗ INCX) for 1 ≤ i ≤ n.
This method of indexing when INCX < 0 avoids negative indices in the array X, in
compliance with the Fortran standard of the time in which these subroutines were
developed.

Oddly enough, the implementors of the Level 1 BLAS did not follow this convention
for subroutines operating on a single vector. For these subroutines, the authors said,
“Only positive values of INCX are allowed.” However, the implementation did not
check for a negative increment and behaved irrationally if a negative increment was
supplied, in some cases iterating from 1 to 1 + (n − 1) ∗ INCX in steps of INCX, that
is, from 1 to −n + 2 if INCX were −1, referencing elements of x with a negative index
in violation of the Fortran standard of that time. In the 1990s, the reference BLAS on
netlib [Dongarra and Grosse 1987] were modified to quietly return without an error
condition if INCX < 0 in those subprograms that purported not to allow negative
increments. However, some vendor libraries, such as the Cray Scientific Library [Cray
Research 1993], the IBM Engineering and Scientific Subroutine Library [IBM 2012],
and the Intel Math Kernel Library [Intel 2015], had already implemented negative
increments for single-vector subroutines the same as for two-vector subroutines. The
new model implementation standardizes this extension. In the discussion that follows,
variables from the Fortran subroutines are referred to by their names in lowercase
letters, that is, x and incx, rather than X and INC X, to match the style of the new
model implementation.

The algorithms for the 1-norm xASUM, the infinity norm IxAMAX, and the vector
scaling xSCAL are straightforward to implement with provision for a general increment
that can be positive, negative, or zero (a general vector increment was also added to
xNRM2, described in Section 3). To minimize loop overhead, a special case is provided
for each of these operations when incx = 1, the most commonly occurring case. For
example, the main loop for incx = 1 in xSCAL is

do i = 1, n
x(i) = alpha∗x(i)

end do

while the loop for incx �= 1 is

ix = 1
if( incx < 0 ) ix = 1 - (n-1)∗incx
do i = 1, n

x(ix) = alpha∗x(ix)
ix = ix + incx

end do
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Note that the starting point for the vector x is moved to the end of the array, and the
array is traversed in reverse order when incx < 0.

Negative increments are rarely used in linear algebra software because the Level 2
and 3 BLAS allow a general stride in only one dimension of a two-dimensional (2D)
array, and that stride must be positive. However, predecessors to the BLAS, such as
matrix-vector multiply (MXVA) and matrix-matrix multiply (MXMA) from the Cray
Scientific Library [Cray Research 1993], supported both a column increment iac and
a row increment iar for a 2D array A, and the increments could be positive or nega-
tive. This approach allows a smaller number of kernels to be developed in a low-level
language [Sheikh et al. 1992]. For example, it is only necessary to develop a lower tri-
angular system solve, because if a two-dimensional matrix Ahas iac = 1 and iar = lda,
the solution vector x has stride incx = 1, and the right-hand side vector y has stride
incy = 1, an upper triangular system Ax = y can be solved by the lower triangular
kernel with iac = −1, iar = −lda, incx = −1, and incy = −1. It is unclear if the original
BLAS authors had this in mind.

An increment of 0 would mean that the vector is not a vector at all but a scalar. Zero
increments are flagged as an error in LAPACK and the Level 2 BLAS, in part because
allowing them in an output vector x would inhibit vectorization or lead to unexpected
results. For example, a matrix-vector multiply y = Ax with incy = 0 would reduce to
a dot product of the last row of A with the vector x. In the Level 1 BLAS, there is no
provision for error handling, so the new model implementation allows zero increments,
and the test program validates them, but their use is strongly discouraged.

5.3. Special Handling of NaNs

In general, when NaNs are encountered on input, it is desirable to have them propagate
to the output result. The propagation will occur naturally in floating-point combinations
as are found in xAXPY, xROT, and xSCAL, but care must be taken to ensure that
optimizations to the norm and dot product routines do not optimize away the NaNs.
An adjustment must also be considered for the function IxAMAX to find the index of
the maximum element in absolute value.

The current reference version of IxAMAX initializes the maximum value to the
absolute value of the first element of the vector x and then scans elements 2 through
n to see if any are larger. If the first element is NaN, all comparisons to it will fail, so
IxAMAX will return 1, while if the first element is not NaN, all comparisons against
subsequent NaN values will fail, and the index returned will be of the largest non-NaN
value. To fix this inconsistency, we initialize the maximum value to −1.0 and the index
to 1 and scan elements 1 through n for a larger element. If all entries are NaN, the
function returns 1 as before; otherwise, it will return the index of the largest non-NaN
value. This behavior is consistent with how NaNs are handled in the Fortran intrinsic
functions MAXLOC and MAXVAL and by statistical packages such as Matlab and R.

5.4. Test Program

New test code for the Level 1 BLAS has been developed, replacing the Level 1 BLAS
test program, which contained only pre-computed problems of dimension 5 or less.
The new test program is driven by an input file in the style of the Level 2 or Level 3
BLAS test suites, from which the problem sizes, values of the scalar parameters, and
test paths can be selected. Test inputs to xASUM, xNRM2, xROTG/xLARTG, and
xLASSQ are set to a range of positive and negative values, including values near zero,
underflow, and overflow to exercise all the scaling pitfalls. NaN values are also used
in the test programs for IxAMAX, IxASUM, xDOT, xNRM2, xLARTG, and xLASSQ to
verify the expected propagation of NaNs. For xAMAX, xAXPY, xCOPY, xROT, xSCAL,
and xSWAP, the correct answer is known or readily computed, and results should agree
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exactly. For xASUM, xDOT, xNRM2, and xLASSQ, test vectors are constructed with
values between −1 and 1 and scaled to the desired range, and the expected result
is calculated by a straightforward algorithm on the vector before scaling. Roundoff
errors do occur and grow like O (n), so the resulting test ratios must be scaled by n;
for example, the test ratio for the relative error in the computed value tcom for SNRM2
compared to the expected value texp is

|tcom − texp|
|texp| · n · ε

,

and this value should be O (1). For xROTG/xLARTG, the equation being solved (in the
real case) is [

c s
−s c

] [
f
g

]
=

[
r
0

]
subject to c2 + s2 = 1,

and the constructed values of c, s, and r are verified by checking that

(1) c · f + s · g = r
(2) −s · f + c · g = 0
(3) c2 + s2 = 1.
(4) Sign of c is correct (c ≥ 0 in xLARTG)

Validation of results includes an examination of all memory locations that should not
be modified by the subroutine or function call to confirm that their values have not
changed. Tests were conducted using the Intel, Gnu, and PGI compilers on a single
node of an IBM iDataPlex system having an Intel Xeon processor. All program units
compiled without warnings, and all tests passed with the new model implementation.

Previous versions of the BLAS and LAPACK routines tested here fail the newly
constructed tests in both expected and unexpected ways. The legacy BLAS routines
xASUM, xNRM2, IxAMAX, and xSCAL fail tests with negative increments because
they did not support them. The LAPACK versions of xLASSQ fail tests with input
values of w = 1.0 and q = 0.0 and a vector scaled near zero because they do not do
any scaling in this case. The reference versions of xNRM2 and xLASSQ fail tests with
infinite values by returning NaN due to the unsafe scaling employed. The reference
version of IxAMAX fails tests with x (1) = NaN by returning 1, whereas the test
program expects the index of the first non-NaN if one exists as described in Section 5.3.
The legacy BLAS and LAPACK routines to compute Givens rotations are not consistent
between the real and complex versions when provided with real inputs because this
feature was not part of their design, and they go into an infinite loop for certain badly
scaled input values. The routines to compute Givens rotations described in Bindel et al.
[2002] produce wrong answers or unexpected NaNs in the complex case due to overflow
in the intermediate results.

The design of the new test code and model implementation allows for easy extension
to additional data types beyond the four provided ones. As in LAPACK3E, the KIND
and all common constants such as zero and one are coded as Fortran parameters and
included via a module, rather than hard-coded in every program unit as in LAPACK.
Floating-point model parameters such as epsilon, SAFMIN, and SAFMAX are also
specified as parameters in the constants module, rather than using an inquiry function
with the cost of a function call on every use as in LAPACK. Generic intrinsic functions
are used wherever possible, and the kind is added to the CMPLX intrinsic function for
portability. Most importantly, the new implementation is compact and readable in the
style of the BLAS or of LINPACK, allowing it to serve as a model for robust software
design.

ACM Transactions on Mathematical Software, Vol. 44, No. 1, Article 12, Publication date: July 2017.



Algorithm 978: Safe Scaling in the Level 1 BLAS 12:25

6. CONCLUSION

This article describes algorithmic improvements made in reimplementing the Level 1
BLAS and related subroutines from LAPACK. Performance tests show that the new
implementations are as fast or faster than the existing reference implementations,
particularly for the 2-norm and for any subroutine requiring calls to the LAPACK
inquiry function. A new comprehensive test program demonstrates correctness even for
extreme values in the floating-point model and exposes the limitations of the reference
versions that are hereby replaced.

The modular design of the software and test procedures allows for easy extensions
to other data types, such as 128-bit precision. Defining all program constants in a
module is both good programming practice and a performance improvement over the
use of an inquiry function. Safe scaling as done here is easy to describe and leads to
more straightforward implementations of basic algorithms from LAPACK and related
software. In addition, a common source for all real data types or all complex data types
could be achieved by selecting the kind at compile time as in LAPACK3E and using
generic function names in place of type-specific names. Generic interfaces have the
advantage of supporting compile-time verification of the number and type of arguments,
but a fully general interface supporting all array reshaping leads to an exponential
explosion of interfaces, and if more than one subroutine is included in the module,
dependencies are created to other possibly unwanted library routines.

Like the previous BLAS, this implementation does not compensate for roundoff errors
that occur when adding a sequence of numbers. With the exception of Blue’s algorithm
for the 2-norm, values are added from 1 to n, and roundoff errors that occur when
adding two values of widely differing magnitudes are dropped. Blue’s algorithm does
some grouping of values by magnitude, but roundoff errors within those groups are
also dropped. The test program constructs test cases for the worst case of roundoff
error, which is O (n) for the dot product, 1-norm, 2-norm, and sum of squares and,
consequently, has to scale the resulting test ratios by 1/n. Introducing some form of
compensated summation as described, for example, in Higham [1996], would allow this
test to be more strict.

APPENDIX: CONSTANTS MODULES FOR 32-BIT AND 64-BIT IEEE ARITHMETIC

module LA_CONSTANTS32
!
! -- BLAS/LAPACK module --
! May 06, 2016
!
! Standard constants
!
integer, parameter :: wp = 4
real(wp), parameter :: zero = 0.0_wp
real(wp), parameter :: half = 0.5_wp
real(wp), parameter :: one = 1.0_wp
real(wp), parameter :: two = 2.0_wp
real(wp), parameter :: three = 3.0_wp
real(wp), parameter :: four = 4.0_wp
real(wp), parameter :: eight = 8.0_wp
real(wp), parameter :: ten = 10.0_wp
complex(wp), parameter :: czero = ( 0.0_wp, 0.0_wp )
complex(wp), parameter :: chalf = ( 0.5_wp, 0.0_wp )
complex(wp), parameter :: cone = ( 1.0_wp, 0.0_wp )
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character∗1, parameter :: sprefix = ‘S’
character∗1, parameter :: cprefix = ‘C’

!
! Model parameters
!
real(wp), parameter :: eps = 0.5960464478E-07_wp
real(wp), parameter :: ulp = 0.1192092896E-06_wp
real(wp), parameter :: safmin = 0.1175494351E-37_wp
real(wp), parameter :: safmax = 0.8507059173E+38_wp
real(wp), parameter :: smlnum = 0.9860761315E-31_wp
real(wp), parameter :: bignum = 0.1014120480E+32_wp
real(wp), parameter :: rtmin = 0.3140184864E-15_wp
real(wp), parameter :: rtmax = 0.3184525782E+16_wp

!
! Blue’s scaling constants
!
real(wp), parameter :: tsml = 0.1084202172E-18_wp
real(wp), parameter :: tbig = 0.4503599627E+16_wp
real(wp), parameter :: ssml = 0.3777893186E+23_wp
real(wp), parameter :: sbig = 0.1323488980E-22_wp

end module LA_CONSTANTS32

module LA_CONSTANTS
!
! -- BLAS/LAPACK module --
! May 06, 2016
!
! Standard constants
!
integer, parameter :: wp = 8
real(wp), parameter :: zero = 0.0_wp
real(wp), parameter :: half = 0.5_wp
real(wp), parameter :: one = 1.0_wp
real(wp), parameter :: two = 2.0_wp
real(wp), parameter :: three = 3.0_wp
real(wp), parameter :: four = 4.0_wp
real(wp), parameter :: eight = 8.0_wp
real(wp), parameter :: ten = 10.0_wp
complex(wp), parameter :: czero = ( 0.0_wp, 0.0_wp )
complex(wp), parameter :: chalf = ( 0.5_wp, 0.0_wp )
complex(wp), parameter :: cone = ( 1.0_wp, 0.0_wp )
character∗1, parameter :: sprefix = ‘D’
character∗1, parameter :: cprefix = ‘Z’

!
! Model parameters
!
real(wp), parameter :: eps = 0.11102230246251565404E-015_wp
real(wp), parameter :: ulp = 0.22204460492503130808E-015_wp
real(wp), parameter :: safmin = 0.22250738585072013831E-307_wp
real(wp), parameter :: safmax = 0.44942328371557897693E+308_wp
real(wp), parameter :: smlnum = 0.10020841800044863890E-291_wp
real(wp), parameter :: bignum = 0.99792015476735990583E+292_wp
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real(wp), parameter :: rtmin = 0.10010415475915504622E-145_wp
real(wp), parameter :: rtmax = 0.99895953610111751404E+146_wp

!
! Blue’s scaling constants
!
real(wp), parameter :: tsml = 0.14916681462400413487E-153_wp
real(wp), parameter :: tbig = 0.19979190722022350281E+147_wp
real(wp), parameter :: ssml = 0.44989137945431963828E+162_wp
real(wp), parameter :: sbig = 0.11113793747425387417E-161_wp

end module LA_CONSTANTS
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