
2 8 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 4 8 5

ARTICLE RESEARCH

sampled state-action pairs (s, a), using stochastic gradient ascent to
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ (|)

∂
σp a slog

We trained a 13-layer policy network, which we call the SL policy
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from
other research groups of 44.4% at date of submission24 (full results in
Extended Data Table 3). Small improvements in accuracy led to large
improvements in playing strength (Fig. 2a); larger networks achieve
better accuracy but are slower to evaluate during search. We also
trained a faster but less accurate rollout policy pπ(a|s), using a linear
softmax of small pattern features (see Extended Data Table 4) with
weights π; this achieved an accuracy of 24.2%, using just 2 μs to select
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy
network by policy gradient reinforcement learning (RL)25,26. The RL
policy network pρ is identical in structure to the SL policy network,

and its weights ρ are initialized to the same values, ρ = σ. We play
games between the current policy network pρ and a randomly selected
previous iteration of the policy network. Randomizing from a pool
of opponents in this way stabilizes training by preventing overfitting
to the current policy. We use a reward function r(s) that is zero for all
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current
player at time step t: +1 for winning and −1 for losing. Weights are
then updated at each time step t by stochastic gradient ascent in the
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ (|)

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game
play, sampling each move ~ (⋅|)ρa p st t from its output probability
distribution over actions. When played head-to-head, the RL policy
network won more than 80% of games against the SL policy network.
We also tested against the strongest open-source Go program, Pachi14,
a sophisticated Monte Carlo search program, ranked at 2 amateur dan
on KGS, that executes 100,000 simulations per move. Using no search
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised

Figure 1 | Neural network training pipeline and architecture. a, A fast
rollout policy pπ and supervised learning (SL) policy network pσ are
trained to predict human expert moves in a data set of positions.
A reinforcement learning (RL) policy network pρ is initialized to the SL
policy network, and is then improved by policy gradient learning to
maximize the outcome (that is, winning more games) against previous
versions of the policy network. A new data set is generated by playing
games of self-play with the RL policy network. Finally, a value network vθ
is trained by regression to predict the expected outcome (that is, whether

the current player wins) in positions from the self-play data set.
b, Schematic representation of the neural network architecture used in
AlphaGo. The policy network takes a representation of the board position
s as its input, passes it through many convolutional layers with parameters
σ (SL policy network) or ρ (RL policy network), and outputs a probability
distribution (|)σp a s or (|)ρp a s over legal moves a, represented by a
probability map over the board. The value network similarly uses many
convolutional layers with parameters θ, but outputs a scalar value vθ(s′)
that predicts the expected outcome in position s′.

R
eg

re
ss

io
n

C
la

ss
i�

ca
tio

nC
lassi�cation

Self Play

Policy gradient

a b

Human expert positions Self-play positions

N
eural netw

ork
D

ata

Rollout policy

p p p (a⎪s) (s′)p

SL policy network RL policy network Value network Policy network Value network

s s′

Figure 2 | Strength and accuracy of policy and value networks.
a, Plot showing the playing strength of policy networks as a function
of their training accuracy. Policy networks with 128, 192, 256 and 384
convolutional filters per layer were evaluated periodically during training;
the plot shows the winning rate of AlphaGo using that policy network
against the match version of AlphaGo. b, Comparison of evaluation
accuracy between the value network and rollouts with different policies.

Positions and outcomes were sampled from human expert games. Each
position was evaluated by a single forward pass of the value network vθ,
or by the mean outcome of 100 rollouts, played out using either uniform
random rollouts, the fast rollout policy pπ, the SL policy network pσ or
the RL policy network pρ. The mean squared error between the predicted
value and the actual game outcome is plotted against the stage of the game
(how many moves had been played in the given position).

15 45 75 105 135 165 195 225 255 >285
Move number

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n
sq

ua
re

d
 e

rr
or

on
 e

xp
er

t
ga

m
es

Uniform random
rollout policy
Fast rollout policy
Value network
SL policy network
RL policy network

50 51 52 53 54 55 56 57 58 59

Training accuracy on KGS dataset (%)

0

10

20

30

40

50

60

70
128 �lters
192 �lters
256 �lters
384 �lters

A
lp

ha
G

o
w

in
 r

at
e

(%
)

a b

© 2016 Macmillan Publishers Limited. All rights reserved

	Mastering the game of Go with deep neural networks and tree search
	Authors
	Abstract
	Supervised learning of policy networks
	Reinforcement learning of policy networks
	Reinforcement learning of value networks
	Searching with policy and value networks
	Evaluating the playing strength of AlphaGo
	Discussion
	References
	Acknowledgements
	Author Contributions
	Figure 1 Neural network training pipeline and architecture.
	Figure 2 Strength and accuracy of policy and value networks.
	Figure 3 Monte Carlo tree search in AlphaGo.
	Figure 4 Tournament evaluation of AlphaGo.
	Figure 5 How AlphaGo (black, to play) selected its move in an informal game against Fan Hui.
	Figure 6 Games from the match between AlphaGo and the European champion, Fan Hui.
	Extended Data Table 1Details of match between AlphaGo and Fan Hui.
	Extended Data Table 2Input features for neural networks.
	Extended Data Table 3Supervised learning results for the policy network.
	Extended Data Table 4Input features for rollout and tree policy.
	Extended Data Table 5Parameters used by AlphaGo.
	Extended Data Table 6 Results of a tournament between different Go programs.
	Extended Data Table 7Results of a tournament between different variants of AlphaGo.
	Extended Data Table 8Results of a tournament between AlphaGo and distributed AlphaGo, testing scalability with hardware.
	Extended Data Table 9Cross-table of win rates in per cent between programs.
	Extended Data Table 10Cross-table of win rates in per cent between programs in the single-machine scalability study.
	Extended Data Table 11Cross-table of win rates in per cent between programs in the distributed scalability study.

