Linux QETH Implementation

Table of Contents

| (== (o TSSO 2
1] (oo 18 Tox 1 o] o PPN 2
Open Systems AdApLer (OSA). ... e e e e e e e e eeeeaaae 3
(@] [@ I 070 Ta)ile U = 110] o PSRRI 4
Linux Support of QDIO (OSD Channel) Features — Real Interfaces..............cccccoeiiiiinnins 4
Linux Support of QDIO (OSD Channel) Features — Emulated Interfaces......................... 6

L@ 1] 1 I 0 0 F= T o T 9
DeVice INFOrMEALION.......ooiiiieeeee e e e e e e e e es 9
oY L= I T o D | - T 9
OSAEXPreSS INTEITACE.oooeiiiieieeeeeeeeeeeeeeeeeeee ettt e s 11
DEVICE SHALUS. ... e e e e e nn e e e e eee 11

S T=T AT I 7 - TS 11
Identification Exchange — Establishing Transport Operations............cccccceeiiiiiiiiiiiiiiiineeeeeee 12
FUNCLION LeVel ProCeSSING.......cooiiiieiie et e e e e e e e e ees 14

L= To U= g Tt A U0] =T T 14
TOKEBINS. .. e e ettt e e e e e e tbn e e aeeee 15
Command Channel OPEratioNsS.............evviiiiiiiiiiiiiiiiiiiee ettt e e e e eeenneees 15
Command Channel Protocol Data UNitS.............cocuiiiiiiiiie e 16
Command Channel Requests and RESPONSES.........cccooveeiiiiiiiiiiie e 16
Maximum Transmission Unit (MTU) Size........cccooeiiiiiiiiiiiee e, 20

[P Assist COmMMANAS (IPA).....cooii e 20

[P ASSISt HEAUEo 21

[P ASSISt COMMANGAS. ... e e eeaeaans 21

[P ASSiSt REUIN COUES. ...ttt e e e e e e e e e e e e e e e e eeeeeennes 22
STARTLAN (OX01). ittt ee ettt e e e e e e e e e e e e eeaaaeeeseannnsreeeaaaaaaeeees 23

RS IO L I L I (00 17 T 24
SETVMAC (0x21), DELVMAC (0x22), SETGMAC (0x23) and DELGMAC (0x24).....24
SETVLAN (0x25) and DELVLAN (0X26).......ccccuuueiiieeeeeeeeeeiiieieee e e e s e e e 24

SETIP (0XB1) @nd DELIP(OXB7)...ccciieiiieteeeeeee ettt 24
SETADPPARMS (OXB8).....ceeiiiieeiiiiiiiiiiiiee e ettt e e e e e e e e e s e e e e e e eaaeeas 25
Query-Commands-Supported Sub-Command (0X00000001).......ccceeeeriiiurieneennnnnns 26

Set Promiscuous Mode Sub-Command (0x00000800).............eevumeummmmmmrrnerineeeenennns 26

Data Device BUffer FOrmMats.coooiioe e e e e e e e e e e eeees 28
Layer-2 BUffers.........oooo e, 28
Layer-2 BUffer FIAgS. ... 28
Layer-3 Buffers.........oooo e, 29
Layer-3 BUffer FIagS. ... 29
Layer-3 Extended BUffer FIags..........uuuiiiiiiiiiiiiiiiiieeeieeeeeeeee e 30
Layer-3 Buffers with TCP Segmentation Offload..............cccooiiiiiiiiiii s 30
OSA Logical StrUCKUIE.........coeieeieeeeeeeeeeeeeeee e 31
Appendix A - Linux QETH COMPONENTES.....ccooiieeiieeeieeeeeeeeeee e 33
DIV TS e 33

Harold Grovesteen 1 of 61 Version 0.1.2

Linux QETH Implementation

DAV ot AN (] oYU = PP 34

Linux OSA Layer-2 Ethernet Adapter Management...............ccoooeeiiiiiii e, 35

Step 1 — Kernel Initialization............ooo 35

SEEP 2 — 1/O PrODES. ... e e s 35

Step 3 — User Configuration..............ooiii e 36

Creating the Group DEVICE.........ccoooiiiiii 36

Configuring the Group DEVICE.uiiiiiiiiiii e 36

Setting the Group Device ONlINE.........ooooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee et 36

Step 4 — Bringing the Layer-2 Group Device Online...........ccccoiiiiiiiiiiiiiiieiin 37

Step 5 — Bringing the Layer-2 Ethernet Interface Up...........cccvvveveiiiiiiiiiiiiiiiceeeeeee, 38

Step 6 — Bringing the Layer-2 Ethernet Interface Down...........cccccooiiiiiiiiiiiiiiiiii, 39

Step 7 — Taking the Layer-2 Group Device Offlin€..........cooovvviiiiiiiiiiiiiiie 39

Read/Write Device Transport Channel Handling............coooiieeeeee 40

Appendix B - Module RelationShips........cooi e 41

Appendix C - LINUX STrUCLUIES.......ceieeeeeeeeeeeee ettt 54

STUCIUIE VAIUES........eeeeeeeee ettt e e e e e e e s e s bt eeeeeeeeeeeeannnnnennnns 54

drivers/s390/net/qeth_COre.N........ooo oo 54

geth_buffer_pool_eNtry..........ooooiiii i 54

QEEN_CANd. ... e e e e e ee 54

Appendix D - Linux Modules and DIIVEIS.........coiuiiiiiiiiiiiiies et e e e 56

Appendix E - LiNUX FUNCLIONS........coo o 57

NEY/QELN_COME M@IN.C...uueiiiiiiiiieeie b e e e e e e esa e e e eeeesnnnns 57

(o T=] 1 [oTe] t =Y 1 11 () RS 57

geth_core_hardsetup _Card().......coooeiieeiiie i 57

geth_Core_cClear_Card()......cooeeeeeeiee e 58

(o =) 1 g ool t= Y o] o] o Y=Y [N/ Tt= T TR 58

NEY/QELN_12 MAIN.C...eeeeeeee e 59

U aTed [0 o T 0= | I == TR 59

LiNUX SOUICE INVENTOIY......eeie ettt e e e e e e e e et e e e e e e a b s 60
Preface

This document, Linux QETH Implementation, is entirely based upon information made public
by IBM via web sites, IBM manuals, public presentations, for example, Share, and Linux
source code. At no time was access to any IBM proprietary or trade secret information used
in the creation of this document.

Introduction

This overview addresses two primary areas:
Open Systems Adapter Hardware
Linux QETH Components

Harold Grovesteen 2 of 61 Version 0.1.2

Linux QETH Implementation

Appendix A is an overview of how Linux QDIO Layer-2 operations are established. The

remaining appendices should be viewed a research notes created during this document's
preparation and are not necessarily complete. Their purposes were to assist the author in
understanding various aspects of the Linux implementation.

For a discussion of QDIO data transfers between the program and the adapter, refer the

document Linux QDIO.

A future version of this document will detail Layer-3 IP Assist command structures. Only
minimal documentation is provided in this version.

Open Systems Adapter (OSA)
Four versions of the OSA exist. Each supports one or more of four channel types:

OSD - Queued Direct Input/Output (QDIO). Also referred to as Internal QDIO (IQDIO)
when this channel type is emulated by a HiperSocket.

OSE - Non-queued Direct Input/Output (non-QDIO), LAN Channel Station emulation,
OSC — OSA-Express Integrated Console Controller and

OSN — Network Control Program (NCP) under Communication Controller for Linux

(CCL)

The following table identifies the channel types supported by the various network devices of
this class.

Network Device | OSD Channels | OSE Channels | OSC Channels | OSN Channels
OSA-2 no yes no no

OSA Express yes yes no no

OSA Express2 yes yes yes yes
OSA Express3 yes yes yes yes
HiperSocket yes no no no
Frame sizes associated with the different physical interface types:

Physical Interface 802.3 Frames DIX Frames Jumbo

Gigabit Ethernet 1492 1492 8992

10 Gigabit Ethernet 1492 1492 8992

Fast Ethernet 1492 1492 Not supported
1000Base-T Ethernet 1492 1492 8992

Harold Grovesteen

3 of 61

Version 0.1.2

Linux QETH Implementation

QDIO Configuration

The following options are configured as part of the hardware definition of the OSA Express
OSE (Ethernet) or Hipersocket interface:

Device numbers: three consecutive devices for read, write and data.
Port Number

Port Name

Maximum number of queues

Physical interface

Linux Support of QDIO (OSD Channel) Features — Real Interfaces

Reference: SC33-8411-03 Device Drivers, Features, and Commands, Development stream
(Kernel 2.6.31)

QDIO operates at either Layer-3 or Layer-2. The primary difference is how data is forwarded.
In Layer-3 mode, packets are forwarded based upon destination IP address. In Layer-2
mode, frames are forwarded based upon MAC address. The following table identifies which
features are available with which mode.

The following color coding is used in the diagram:
red — feature not applicable to Hercules
blue — potential feature for Hercules
yellow — feature differs between real device and z/VM emulation
green — features to be implemented by Hercules

QDIO Feature OSA OSA HiperSocket | HiperSocket
Layer 2 Layer 3 Layer 2 Layer 3
DMA with store-and-forward Express2 Express2 yes yes
DMA without store-and-forward Express3 Express3 no no
yes yes no no
Enhanced IP Network Availability (IPA)
ARP Takeover (IPv4 only) implicit no
IP broadcast support implicit yes
IP multicast support implicit yes
Internet Protocol version 4 (IPv4) implicit yes
Routing Driver Setup required no yes
hw SW hw
Layer-3 Virtual MAC Not applicable no yes

Harold Grovesteen 4 of 61 Version 0.1.2

Linux QETH Implementation

QDIO Feature Layerz | Layerd | Layerz | layers
ARP implicit no
ARP Cache management no no
Checksum offload - receive no no
Checksum offload - transmit ““ no no
Internet Protocol version 6 (IPv6) implicit yes
Routing Driver Setup no required no yes
sw swW sw no
Layer-3 Virtual MAC no yes
Neighbor Discovery implicit no
yes yes yes yes
no yes no no
yes no yes no
yes yes yes yes
Yes? yes
yes yes no
no required no yes
Yes by hw yes no yes
no yes no no
Note 2 Note 2 Note 2 Note 2
MAC Address (unique) yes yes
MAC Address (change) yes no
MAC Headers (send) yes faked
MAC Headers (receive) yes faked
Multi-port Support no no
no no
Non-IP Traffic implicit no
Priority Queuing no yes
Promiscuous Mode no “ no no
Proxy ARP Driver Setup no no yes
Receive buffer count yes yes
SNMP Support (Note 3)
yes yes no no
Harold Grovesteen 5 of 61 Version 0.1.2

Linux QETH Implementation

OSA OSA HiperSocket = HiperSocket
QDIO Feature Layer 2 Layer 3 Layer 2 Layer 3
yes yes no no
TCP Segmentation offload no no
Virtual IP Address (VIPA) Driver Setup no yes
yes no

Note 1: Layer-2 operation is protocol independent and therefore supports this feature.

Note 2: OSA for NCP mode is a third mode of operation for OSD subchannels, distinct from
either Layer-2 or Layer-3 modes.

Note 3: SNMP support utilizes the OSA/SF device on z/OS, defined as device type OSAD
rather than device type OSA. This protocol used on this device is proprietary. Linux uses an
open source SNMP subagent, osasnmpd provided by the s390-tools package. This subagent
needs to be reviewed to determine feasibility of implementation on Hercules.

Priority queuing sorts outgoing IP message traffic according to the priority assigned in the IP
header (using the IP Type of Service field). This is available only with z/OS environments.

With enhanced IP network availability, all home IP addresses are stored in the OSA. The
OSA-Express feature port then responds to ARP requests for own IP address, as well as for
other IP addresses active in the TCP/IP stack, in particular for virtual IP addresses.

ARP Takeover allows one OSA port to take over responsibility for an IP address by providing
a gratuitous ARP to update network forwarding tables of the new location of the MAC
address. TCP/IP drives this operation.

Linux Support of QDIO (OSD Channel) Features — Emulated Interfaces

Reference: SC33-8411-03 Device Drivers, Features, and Commands, Development stream
(Kernel 2.6.31)

Emulated interfaces are provided by z/\VM. QDIO operates at either Layer-3 or Layer-2. The
primary difference is how data is forwarded. In Layer-3 mode, packets are forwarded based
upon destination IP address. In Layer-2 mode, frames are forwarded based upon MAC
address. The following table identifies which features are available with which mode.

Emulated | Emulated | HiperSocket | HiperSocket
QDIO Feature OSA OSA Layer 2 Layer 3
Layer 2 Layer 3 | (Guest LAN) | (Guest LAN)
Layer operation Static (default) static static Static (default)

Harold Grovesteen 6 of 61 Version 0.1.2

Linux QETH Implementation

Emulated | Emulated | HiperSocket @ HiperSocket
QDIO Feature OSA OSA Layer 2 Layer 3
Layer 2 Layer 3 | (Guest LAN) | (Guest LAN)
ARP yes (note 1) No (hw) no no
ARP Cache management no yes no no
ARP Takeover no yes yes (note 1) no
Checksum offload (IPv4 only) yes no yes
Receive no no no no
Transmit no no no no
DMA with store-and-forward Express2 Express2 yes yes
DMA without store-and-forward Express3 Express3 no no
Dynamic LAN lIdle (z/OS only) no no no no
Enhanced IP Network Availability (IPA)
ARP Takeover no yes yes (note 1) no
IP broadcast support yes (note 1) yes yes (note 1) yes
IP multicast support yes (note 1) yes yes (note 1) yes
Internet Protocol version 4 (IPv4) yes (note 1) yes yes (note 1) yes
Broadcast yes yes yes yes
Multicast yes yes yes yes
Routing Driver Setup no required no required
VLAN Support swW hw hw hw
Layer-3 Virtual MAC no yes no yes
Internet Protocol version 6 (IPv6) yes (note 1) yes no no
Broadcast yes yes no no
Multicast yes yes no no
Routing Driver Setup no required no required
VLAN Support swW swW no no
Layer-3 Virtual MAC no yes no no
Jumbo Frame (8992 byte frame size) yes yes yes yes
Large Send for TCP/IP no no no no
Link aggregation yes no no no
LPAR-to-LPAR communications no no no no
Port Sharing no no no no
Data Connection (port) no no no no
Isolation
IP Takeover no required no yes
Harold Grovesteen 7 of 61 Version 0.1.2

Linux QETH Implementation

Emulated | Emulated | HiperSocket @ HiperSocket
QDIO Feature OSA OSA Layer 2 Layer 3
Layer 2 Layer 3 | (Guest LAN) | (Guest LAN)
Layer-2 to Layer-3 support no no no no
Primary/Secondary Router no no no no
OSA for NCP yes Note 2 Note 2
MAC Address (unique) yes (random) no yes yes
MAC Address (change) yes no no no
MAC Headers (send) yes faked faked faked
MAC Headers (receive) yes faked faked faked
Multi-port Support no no no no
Network Traffic Analyzer (z/OS only) no no no no
Neighbor Solicitation yes (note 1) yes no no
Non-IP Traffic yes (note 1) no no no
VLAN Support S no no no
Priority Queuing yes yes yes yes
Promiscuous Mode yes yes no no
Proxy ARP Driver Setup no required no required
QDIO Diag. Synch. (z/OS only) no no no no
Receive buffer count yes yes yes yes
Segmentation offload no no no no
SNMP Support (Note 3) no no no no
Virtual IP Address (VIPA) Driver Setup no required no required
VLAN Support for GVRP yes yes yes no

Note 1: Layer-2 operation is protocol independent and therefore supports this feature.
Note 2: OSA for NCP mode is a third mode of operation for OSD subchannels, distinct from

either Layer-2 or Layer-3 modes.

Note 3: SNMP support utilizes the OSA/SF device, defined as device type OSAD rather than
device type OSA. The protocol used on this device is proprietary.

Priority queuing sorts outgoing IP message traffic according to the priority assigned in the IP
header (using the IP Type of Service field). This is available only with z/OS environments.

With enhanced IP network availability, all home IP addresses are stored in the OSA. The
OSA-Express feature port then responds to ARP requests for own IP address, as well as for
other IP addresses active in the TCP/IP stack, in particular for virtual IP addresses.

ARP Takeover allows one OSA port to take over responsibility for an IP address by providing

Harold Grovesteen 8 of 61 Version 0.1.2

Linux QETH Implementation

a gratuitous ARP to update network forwarding tables of the new location of the MAC
address. TCP/IP drives this operation.

OSN Channels

OSN channels utilize the local routing between interfaces on the OSA Express2 or later
hardware to allow a SNA PU.T5 using channel data link control on an NCP channel interface
to communicate with a Linux resident NCP over another OSN configured interface. This
provides the appearance of a channel attached Communications Controller to the SNA
PU.TS.

The geth_I2 driver provides a command channel interface for Communications Controller for
Linux. This is likely implemented via a CC4L specific driver which calls the OSN related
functions within geth_I2 exposed by Linux EXPORT_SYMBOL statements. This interface
allows CCA4L to send its own OSA adapter commands and handle responses outside of the
geth_12 driver itself. A Linux network device is also created for CC4L usage for SNA PDU
transfers.

A Communications Controller ID (CCID) is used exclusively by OSN devices. The CCID is
placed in data transfer buffers. The CCID is likely used by the OSN channels for directing
data between the correct OSN group device in Linux and PU.T4 channel data link control
interface. Three IP Assist Layer-2 commands are associated with CCID management.

No further analysis of the OSN interface is currently provided.

Device Information
Control Unit Type: 0x1731
Control Unit Models:
0x01 — OSA Enhanced
0x05 — HiperSocket
0x06 — OSN
Device Type: 0x1732
Device Models:
0x01 — OSA Enhanced
0x05 — HiperSocket
0x06 — OSN

Model List Data
The known_device array in net/qeth_core_main lists the recognized QETH devices. The

Harold Grovesteen 9 of 61 Version 0.1.2

Linux QETH Implementation

recognition is based upon Sense ID data returned by the read device of the device group.
There are three entries each containing 10 integers. The values are set from the
QETH_MODELLIST_ARRAY definition in net/geth_core.h. The following table documents the
values provided.

Entry 0 1 2 3 4 5 6 7 8 9
Column| CU CU | Device | Device | Card Max
Desc. | Type | Model | Type | Model | Type Queues
[0] 0x1731| 0x01 0x1732| 0x01 10 1 Note 2 | Note 3 4 0
[11 |0x1731] Ox05 |0x1732| Ox05 | 1234 0 Note 6 | Note 7 4 0x103
[2] |0x1731] Ox06 |0x1732| 0x06 11 0 Note 2 | Note 3 4 0

Card type identification is based upon the device type, column 2, and device model, column
3. The card type, column 4, is moved into the card.info.type field. The maximum number of
queues is derived from column 8. The card.info.is_multicast_different field is set from column
9. Columns 6 and 7 provide information used during IDX_ACTIVATE processing.

Note 1 — QETH card types:

10 = OSA Express (QETH_CARD_TYPE_OSAE)

11 = NCP Channel (QETH_CARD_TYPE_OSN)

1234 = HiperSocket (QETH_CARD_TYPE_IQD)
Note 2: QETH_IDX_FUNC_LEVEL_OSAE_ENA_IPAT (0x0101)
Note 3: QETH_IDX_FUNC_LEVEL_OSAE_DIS_IPAT (0x0101)
Note 4: Maximum number of queues
Note 6: QETH_IDX_FUNC_LEVEL_IQD_ENA_IPAT (0x4108)
Note 7: QETH_IDX_FUNC_LEVEL_IQD_DIS_IPAT (0x5108)

Harold Grovesteen 10 of 61 Version 0.1.2

Linux QETH Implementation

OSA Express Interface

The OSA Express interface consists of three separate devices, each of which operates on its
own I/O subsystem subchannel and have assigned to it its own device number. Each of the
three devices has its own role in the overall OSA Express Interface:

Read device — Supports the submission of commands to the OSA Express
Write device — Provides responses from previously submitted commands

Data device — Transports network data between main storage and the network adapter
using QDIO queues.

The read and write devices must be configured with sequential device numbers, the write
device being the next in sequence beyond the read device's device number. Once the read
and write devices have successfully performed an IDENTIFICATION EXCHANGE with the
program, the two devices will act as a single command channel for the OSA Express adapter.

Validation that the correct data device is in use occurs during the OSA command channel
activation sequence when IDENTIFICATION EXCHANGE data is shared.

Refer to the Linux QDIO document for details on QDIO data device operation. The remainder
of this document describes the operation of the read and write devices.

The read and write devices respond to the following channel command words:
0x01 - WRITE
0x02 — READ
0x04 — SENSE — See below, “Sense Data” section
OxE4 - SENSE ID — See above “Device Information” section.

Device Status

Only unit exception and unit check are examined as device status error conditions related to
OSA QDIO devices. Sense Data, see below, should be examined for more information about
the condition when unit check is presented.

Unit exception is suspected of being used for signaling that a pending read on the read device
is not present when a write to the write device occurs. It might also be used to indicate more
generally any invalid channel state. Such states might be receiving an transport PDU before
the IDX_ACTIVATE has established the transport channel, or a WRITE or READ is issued to
a read device or write device, respectively, after the transport channel has been established.

Sense Data

Linux uses concurrent sense. How many of the bytes of the 32 available for concurrent sense

Harold Grovesteen 11 of 61 Version 0.1.2

Linux QETH Implementation

is unclear. Only bytes 0-3 are examined by Linux.

In a post on the Marist Linux for System z email list, 16 Dec 2010, a poster sent the output
from a OSA activation error with an invalid port name. Device dependent bit 6 of sense byte 0
was set to one in this case, which would have been in response to a ULP_ENABLE request
write CCW to the write device. This bit or any additional bits set in these four bytes, other
than the values identified below, are treated as device configuration errors. Configuration
errors are suspected of being reported during IDX_ACTIVATE handling. If this is the case,
then no IDX_ACTIVATE response would be provided.

Byte Name

0 Standard meaning Bit 0 ==1 -> A command reject has occurred

1 Resetting Event Byte Bit 0 ==1 -> A resetting event has occurred
2,3 AFFE Checked for OXAFFE, meaning undocumented

Identification Exchange — Establishing Transport Operations
The purpose of the Identification Exchange operations with the read and write devices is to

validate the set of devices the program is using are part of the same OSA configuration
group and

establish the full duplex transport channel for a correct set of devices.

An IDX_ACTIVATE_WRITE command is sent to the write device using a WRITE CCW to
activate the command channel write role of the write device.

An IDX_ACTIVATE_READ command is sent to the read device using a WRITE CCW to the
activate the command channel read role of the read device.

The structure of the 34-byte command channel transport operation activate command is as
follows. “SbP” indicates fields set by the program.

Disp. Size IDX_ACTIVATE_READ | IDX_ACTIVATE_WRITE Description

(hex) Request Template Request Template

+00 2 0x0000 0x0000

+02 2 0x8000 0x8000 Device directed command

+04 4 0x00000000 (SbP) 0x00000000 (SbP) Transport Header Sequence Number (Note 5)
+08 2 0x1901 0x1501 IDX_ACTIVATE type (READ or WRITE)

+0A | 1 0x01 0x01

+0B 1 0x8x 0x8x OSA Express Port number (with bit 0 set to 1)
+0C | 4 0x00000000 (SbP) 0x00000000 (SbP) Issuer rm_w token (0x00010103UL)

+10 2 0x0000 OxFFFF Function level (Note 1)

+12 4 0x00000000 0x00000000 Microcode level in response

Harold Grovesteen 12 of 61 Version 0.1.2

Linux QETH Implementation

Disp. Size IDX_ACTIVATE_READ | IDX_ACTIVATE_WRITE Description

(hex) Request Template Request Template P

+16 | 8 EBCDIC 'HALLOLE ' EBCDIC 'HALLOLE ' |EBCDIC Dataset name (Note 4)

+1E 2 0x0000 (SbP) 0x0000 (SbP) Data device device number (Note 6)

+20 1 0x00 (SbP) 0x00 (SbP) Data device Control Unit Address (Note 2)
+21 1 0x00 (SbP) 0x00 (SbP) Data device Unit Address (Note 3)

Note 1: Function level is derived from columns 6 and 7 in the model list data table.

Note 2: Data device control unit address is provided by the read device RCD CCW response
data. The control unit address is found in byte 31 of the /0O Device Node Element Descriptor.

Note 3: Data device unit address is provided by the read device RCD CCW response data.
The unit address is provided in byte 31 of the Emulation Node Element Descriptor.

Note 4: This name is a program supplied string used to identify the OSA adapter. Linux uses
the name 'HALLOLE “ or, in ECBDIC, X'C8C1D3D3D6D3C540”. Operating systems that
support VTAM style configurations may use a name supplied by the configuration node for the
adapter. This is not the port name, which is specified in an ULP_ENABLE request.

Note 5: The transport sequence number in the IDX_ACTIVATE_COMMAND has the effect of
establishing the sequence number while identifying its own sequence number. This number
will be incremented for the first and subsequent command channel requests.

Note 6: This is the data device number that the host expects to used with this OSA.

The responses is retrieved from the read or write device using a CCW count of 4096 with a
READ CCW command. The length actually read is not possible to determine. However, the
response data beyond byte 22, if any, is ignored by Linux.

Disp. Size IDX_ACTIVATE_READ IDX_ACTIVATE_WRITE Description or Comment
(hex) Response Response

+00 2 ignored ignored

+02 1 Bits 0,1: IDX response ignored See “IDX Response” below.

+03 1 ignored ignored

+04 1 0x22 => invalid porthame ignored IDX TERMINATE cause code

+05 3 ignored ignored

+08 1 Bits 6,7 == 10 Bits 6,7 == 10 Positive response

L . L . Non-positive response cause code.

o | 1| Qo oustely | 01 e oxivl | Gl BT Gy e
+0A 1 ignored ignored

+0B 1 Bit 0 == 1 implies no port ignored

name required
Harold Grovesteen 13 of 61 Version 0.1.2

Linux QETH Implementation

Disp. Size IDX_ACTIVATE_READ IDX_ACTIVATE_WRITE Description or Comment
(hex) Response Response P
+0C 4 |issuer_rm_r token response ignored Value used in other commands
+10 2 . Function level returned, |See “Function Level Processing”
Function level returned .
bit seven may be set to 1 | below.
+12 4 Microcode Level returned ignored Used for reporting purposes only

IDX Response: These two bits set to 1 indicates an IDX_TERMINATE has been received.
Normal response for these two bits is unclear. Suspect that the first bit means a response,
but this can not be validated.

Following a successful exchange of IDX_ACTIVATE_READ messages with the read device
and IDX_ACTIVATE_WRITE messages with the write device, the read and write devices
enter command channel operational mode.

Function Level Processing

It is impossible to determine through reverse engineering the meaning of these responses.
The code indicates these responses will be accepted. The request values suggest that at the
level of the IDX_ACTIVATE command, OSA Express devices always use a function level that
indicates IP take over assist is available. Whether IP take over assist is enabled or not is
determined in Linux by the sysfs attribute “ipato”.

Card Type IP TO |ACTIVATE_READ | ACTIVATE_READ | ACTIVATE_WRITE | ACTIVATE_WRITE
Assists Request Response Request Response
OSAExpress | disabled 0x0101 0x0201 0x0101 0x0201
OSA Express | enabled 0x0101 0x0201 0x0101 0x0201
Hipersocket disabled 0x5108 0x0408 0x5108 0x0408
Hipersocket enabled 0x4108 0x0408 0x4108 0x0408

Sequence Numbers
Multiple series of sequence numbers are maintained between the program and the OSA.

Transport Sequence Numbers — are used for all command channel requests and
corresponding responses.

PDU Sequence Numbers — are used with all Protocol Data Unit messages.

PDU ACK Sequence Numbers — are used to specify the expected response PDU
sequence number. Although, Linux does not manage PDU ACK sequence numbers or
increment them.

IP Assist Sequence Numbers — are used with all IP assists request and responses.
Linux performs no monitoring of sequence numbers in responses. In the case of Transport

Harold Grovesteen 14 of 61 Version 0.1.2

Linux QETH Implementation

Sequence, PDU Sequence and IP Assist Sequence numbers, Linux immediately increments
the sequence number following the placement of the current maintained sequence number
into the message. Hence, Linux is maintaining the “next” sequence number to be used.

Tokens

Tokens are four-byte unsigned values. The host provides tokens in some commands and the
adapter provides tokens used in other commands. The following table identifies the tokens
used.

Token Source Usage by Program
issrmr |IDX_ACTIVATE_READ response | CM_ENABLE request. CM_SETUP request
issrmw | Program, 0x00010103 IDX_ACTIVATE_READ command
cmfilw | Program, 0x00010108 CM_ENABLE request
cmfilr CM_ENABLE response Not used by program
cmconr |CM_SETUP response ULP_ENABLE request, ULP_SETUP request, DM_ACT request
ulpfilw | Program, 0x0001010B ULP_ENABLE request
ulpfilr ULP_ENABLE response ULP_SETUP request
ulpconw | Program, 0x0001010D ULP_SETUP request
ulpconr |ULP_SETUP response IPA command request, DM_ACT request

Program, 0x00010111 CM_SETUP request template

The actual role of the tokens is unclear. They may operate as simply data meaningful to
either the OSA implementation or the program implementation, similar in concept to the
interrupt parameter used in subchannel I/O operations. Three of the tokens provided by the
OSA adapter operate in the role of “destination tokens”. These three are identified above in
bold font.

Command Channel Operations
In command channel mode, the read and write devices restrict themselves to specific roles.

Write device — accepts command channel requests for processing when a WRITE
CCW command is issued to the device for the length of the command.

Read device — provides a command channel response when the next READ CCW is
presented to the device. Normally the program will initiate a READ CCW to the device
which will remain active while waiting for the next response. A HALT 1/O or CLEAR I/O
is required to terminate an active read waiting for data.

The first action taken upon entering command channel mode by the program is to issue a
READ CCW to the read device. Linux processing issues a READ CCW, with suppress-
length-indication set and a data length of 4096 bytes.

Harold Grovesteen 15 of 61 Version 0.1.2

Linux QETH Implementation

Command Channel Protocol Data Units

Command channel request has the following standard 64-byte Protocol Data Unit (PDU)
header. Inspection of the usage of the fields in channel command messages suggests that
there are in fact two areas of what Linux calls the IPA_PDU_HEADER: a transport header
and a true Protocol Data Unit Header. This is suggested by two factors:

In the “Transport Header” the length is the total message length including all headers
and a separate transport sequence number is maintained vs.

In the “Protocol Data Unit Header” the length of the PDU content is used, excluding
any headers, and separate sets of sequence numbers are maintained for the PDU and
the PDU acknowledgment.

Why the PDU content length occurs three time in the “Protocol Data Unit Header” is unclear.
The format could suggest that actually multiple PDU's in a single transport message are
possible.

Command Channel Requests and Responses

Of the three OSD subchannels required to support a OSA Express QDIO interface, the first
two are used to send commands to the adapter and receive responses to the commands.
The commands and command structures are defined in drivers/s390/net/qeth_core_mpc.h.
Linux manages the options using a bit map that identifies each command.

Six forms of requests and responses are used: CM_ENABLE, CM_SETUP, ULP_ENABLE,
ULP_SETUP, DM_ACT and IPA, Other than the IPA requests and responses, which have
their own structure, the requests and responses follow a similar pattern. Each contains
multiple “items”. Each item starts with a length field that includes itself. In the table below,
the items are highlighted with different colors. There appears to also be in use some
mechanism for describing the content of individual fields in each item. The scheme is not
obvious from the data, so fields suspected of providing this role are simply marked with
“desc’.

Locating the PDU response content is achieved by the following approach:
1. Locate the Response Header from the Transport Header length.

2. Add the Response Header length to the Transport Header length to locate the start of
the Protocol Data Unit header.

3. From the Protocol Data Unit header determine the total length of the headers
preceding the Protocol Data Unit content. This value can then be used to locate the
start of the Protocol Data Unit content from the start of the response.

This calculation is performed in Linux strictly for locating data within a response. Using these
values largely protects the program from changes that might occur in the header sizes in the
future or actual variances in the message headers of adapter responses.

The following table compares the template content for each form of request. All field contents
are in hex. “SbP” indicates the value is supplied by the program. “Resp” indicates a response

Harold Grovesteen 16 of 61 Version 0.1.2

Linux QETH Implementation

field that should be zeros in the template.

Disp.

(hex) Len. | CM_ENABLE | CM_SETUP | ULP_ENABLE | ULP_SETUP IPA DM_ACT
Transport Header

+00 1 100 00 00 00 00 00

+01 1 |EO EO EO EO EO EO

+02 2 0000 0000 0000 0000 0000 0000

+04 4 SbP (transeq) | SbP (transeq) | SbP (transeq) SbP (transeq) | SbP (transeq) SbP (transeq)

+08 2 0000 0000 0000 0000 0000 0000

+0A 2 |0014 (Note 5) 0014 (Note 5) | 0014 (Note 5) 0014 (Note 5) | 0014 (Note 5) | 0014 (Note 5)

+0C 2 0000 0000 0000 0000 0000 0000

+0E 2 0063 (Note 10) |0064 (Note 10) | 006B (Note 10) |006C (Note 10) | SbP (Note 10) |0055 (Note 10)

+10 4 110000001 10000001 10000001 10000001 10000001 10000001
Request/Response Header

+14 4 100000000 00000000 00000000 00000000 00000000 00000000

+18 1 |81(CM) 81 (CM) 41 (ULP) 41 (ULP) C1 (IPA)) 41 (ULP)

+19 1 |7E 7E 7E 7E SbP (Note 1) |7E

+1A 2 0001 0001 0001 0001 0001 0001

+1C 4 SbP (pduseq) | SbP (pduseq) | SbP (pduseq) SbP (pduseq) | SbP (pduseq) |SbP (pduseq)

+20 4 SbP (ackseq) | SbP (ackseq) SbP (ackseq) SbP (ackseq) SbP (ackseq) |SbP (pduseq)

+24 2 0024 (Note 6) |0024 (Note 6) |0024 (Note 6) 0024 (Note 6) | 0024 (Note 6) | 0024 (Note 6)

+26 2 0023 (Note 8) |0024 (Note 8) |002B (Note 8) 002C (Note 8) | SbP (Note 8) 0015 (Note 8)

+28 1 100 00 00 00 00 00

+29 2 0023 (Note 8) 0024 (Note 8) |002B (Note 8) 002C (Note 8) | SbP (Note 8) 002C (Note 8)

+2B 1 |05 05 05 05 05 05

+2C 4 SbP (issrmr) SbP (issrmr) SbP (cmconr) SbP (cmconr) | SbP (ulpconr) SbP (cmconr)

+30 4 100000000 00000000 00000000 00000000 00000000 00000000

+34 4 100000000 00000000 00000000 00000000 00000000 00000000
Protocol Data Unit Header

+38 2 0100 0100 0100 0100 0100 0100

+3A 2 0023 (Note 8) |0024 (Note 8) |002B (Note 8) 002C (Note 8) | SbP (Note 8) 0015 (Note 8)

+3C 2 0000 0000 0000 0000 0000 0000

+3E 2 | 0040 (Note 7) | 0040 (Note 7) | 0040 (Note 7) 0040 (Note 7) | 0040 (Note 7) | 0040 (Note 7)

Protocol Data Unit

+40 2 | 000C (itemlen) |000C (itemlen) |000C (itemlen) | 000C (itemlen) Note 9 000C (itemlen)

+42 2 |41 (CSAcmd) |41 (OSAcmd) |41 (OSAcmd) |41 (OSAcmd) 43 (QDIO cmd)

+43 1 |02 (ENABLE) 04 (SETUP) 02 (ENABLE) 04 (SETUP) 60 (ACTIVATE)

+44 2 0017 (Note 12) | 0018 (Note 12) |001F (Note 12) | 0020 (Note 12) 0009 (Note 12)

+46 2 0000 0000 0000 0000 0000

Harold Grovesteen

17 of 61

Version 0.1.2

Linux QETH Implementation

'(::::f(’)' Len. | CM_ENABLE | CM_SETUP | ULP_ENABLE | ULP_SETUP IPA DM_ACT
w48 | 4 00000000
+4C 2 | 000B (itemlen) 000B (itemlen) 0009 (itemlen)
+4E 1 |04 (desc) 04 (desc) 04 (desc)
+4F 1 |01 (desc) 01 (desc) 04 (desc)
+50 1 |7E SbP (Note 1) 05 (desc)
+51 1 |04 (desc) 04 (desc) SbP (ulpconr)
+52 1 |05 (desc) 05 (desc) SbP (ulpconr)
+53 2 SbP (cmfilw) / SbP (ulpfilw)/ SbP (ulpconr)
Resp (cmfilr) Resp (ulpfilr)
+55 | 2 | SbP (cmfilw)/ SbP (ulpfilw) /| 0009 (itemlen)
Resp (cmfilr) Resp (ulpfilr)
+57 | 2 0405 (desc)
+59 | 1 05 (desc)
+5A | 1 SbP (ulpfilr) /
Resp (ulpconr)
+58 | 1 SbP (ulpfilr) /
Resp (ulpconr)
+5C | 2 SbP (ulpfilr) /
Resp (ulpconr)
+5E 1
+5F 1
+60 1
+61 1
+62 1
+63 1
+64 2 0008 (item len)
+66 2 040B (desc)
+68 2 SbP (devno)
+6A 1 SbP (rcua)
+6B 1 Resp (Note 4) SbP (rcua)
Notes:

1. Protocol Type: 0x08 = Layer2, 0x03 = TCP/IP, 0xOA = NCP
2. If this item length field in the ULP_ENABLE response is greater than 24, then the link

type response is present in byte 107.

3. For Hipersocket only, Maximum MTU values: 0x4000=8192, 0x6000=16384,

0xA000=32768, OxFFFF=57344

Harold Grovesteen 18 of 61

Version 0.1.2

Linux QETH Implementation

4. This field, if present in the response, identifies the link type.

0x01= Fast (100 Mbps) Ethernet,

0x02 = High Speed Token Ring,

0x03 = Gigabit Ethernet,

0x04 = NCP,

0x10 = 10 gigabit Ethernet,

0x81 = LANE 100Mbps Ethernet,

0x82 = LANE Token Ring,

0x88 = LANE

0x90 = Native ATM
5. The length of the transport header. Linux only uses the low order byte of the halfword,
6. Request header length. Linux only uses the low-order byte of the halfword.

7. Total length of message headers. Hence displacement to the PDU content of the
message, that is, the actual request or response from the targeted destination (the
destination token). Linux only uses the low-order bytes of this length.

8. PDU content length. Length of the actual request or response data following the PDU
header.

9. IP Assist commands use a different format than the other PDU's. See the section “IP
Assist Commands (IPA)” for details.

10. Total length of the transport message.

11. Command data length. Length of the data following the initial command descriptor
item.

12.Combined length of all data items of a command. This value does not include the
length of the initial command descriptor item in which the value resides.

The handling of the information from one set of request and response to the next dictates that
the requests and responses must flow in a specific sequence once the IDX_ACTIVATE
exchanges have succeeded:

1. CM_ENABLE
2. CM_SETUP

3. ULP_ENABLE
4. ULP_SETUP

Various IPA commands may then follow. Activation is then finalized by the DM_ACT
request/response sequence. Additional IPA commands may then be initiated during the
process of creating the operational environment.

Harold Grovesteen 19 of 61 Version 0.1.2

Linux QETH Implementation

In addition to exchanging tokens, the primary role of these four exchanges by Linux is to
validate the following configuration information.

Protocol discipline (Layer-2 vs. Layer-3) — ULP_ENABLE
Port number — ULP_ENABLE

Port name, if required — ULP_ENABLE

QDIO queues operational - DM_ACT

Maximum Transmission Unit (MTU) Size

The adapter type is initially identified based upon the SENSE ID CCW response. This will
initially determine the maximum and initial default MTU for the adapter.

Card Type | Device Type |Device Model Maximum MTU Default MTU
OSA Express 0x1731 0x01 61440 1492
NCP 0x1731 0x05 61440 1500
Hipersocket 0x1731 0x06 57344 57344

For Hipersocket devices, the MTU values may be influenced by the ULP_ENABLE response.
For this reason, Linux does not establish the MTU until the ULP_ENABLE response has been
received.

While the MTU for the group device may be manipulated by an attribute, any settings are not
communicated to the adapter itself in Layer-2 mode. Only in Layer-3 mode is the MTU
communicated to the adapter to allow the adapter to properly fragment TCP segments.

IP Assist Commands (IPA)

The previous commands are exclusive to OSA Express operations. OSA Express
predecessor, OSA or LAN Channel Station, used a set of IP Assist commands. A portion of
the LCS header data is retained in OSA Express operation and a small subset of commands
are shared with LCS.

The structure geth_ipa_info (in geth_core.h) uses two bit maps: one for the supported
commands and one for the enabled commands. The structure geth_card contains three
instances of this structure (itself containing the two bit maps):

ipa4 — IPv4 assists (from QIPASSIST command with IPv4 protocol version)

ipa6 — IPv6 assists (from QIPASSIST command with IPv6 protocol version)

adp — adapter commands (from SETADPPARMS Query-Commands-Supported sub-
command)

IP Assist commands contain a standard IP Assist Header followed by the specific command
data for the respective command.

Harold Grovesteen 20 of 61 Version 0.1.2

Linux QETH Implementation

Each IP Assist command or response is part of a channel message and resides in the PDU
portion of the channel command message.

IP Assist Header
Fields shared with LCS are identified in jtalics.

Disp. Length Description Program Supplied Value

(hex)

+00 1 Command identifier See IPA Commands table below

+01 1 Initiator identifier 0x00 == Host initiated command (Note 1)
+02 2 IP Assist sequence number Next number, then increment (Note 2)
+04 2 Return code 0x0000 == positive response

+06 1 Adapter type 0x01

+07 1 Relative adapter number OSA port number

+08 1 Primary version number 0x02 for Layer 2 support, 0x01 otherwise
+09 1 Parameter count always 0x01 for Linux

+0A 2 Protocol version 0x0004 = |Pv4, 0x0006 = IPv6, or 0x0000
+0C 4 IP Assist supported Set to all zeros

+10 4 IP Assist enabled Set to all zeros

Note 1: This field identifies an IP assist reply when the message received contains either
0x00, for a host initiated request, or 0x81, for OSA initiated error reply. Normal OSA replies
will likely contain 0x01. The assumption is that the high-order bit being set from the OSA
adapter is a generic error response indicator. Linux only recognizes 0x81 and 0x00 as
initiator values that may trigger directly an error message. Some other value is required to
process the reply call back function, the assumption being that value is 0x01.

Note 2: Response sequence numbers are checked by Linux. The response sequence
number must match sequence number of the original IP Assist command request.

IP Assist Commands

Commands shared with LCS are identified in italics. The two columns for Layer-2 and Layer-
3 discipline identify the IP protocol version used in the IP Assist header with the command.
“---" indicates the command is not used in this discipline.

Name Identifier | Layer-2 | Layer-3 Description
UNKNOWN 0x00 - - Not surprisingly, not used by Linux
STARTLAN 0x01 0x0000 | 0x0000 | Start LAN operations
STOPLAN 0x02 - 0x0000 | Stop LAN operations
SETVMAC 0x21 IPv4 -—- Set Layer-2 MAC address

Harold Grovesteen 21 of 61 Version 0.1.2

Linux QETH Implementation

Name Identifier | Layer-2 | Layer-3 Description
DELVMAC 0x22 IPv4 - Delete Layer-2 MAC address (use physical NIC address)
SETGMAC 0x23 IPv4 -—- Set Layer-2 Group Multicast address
DELGMAC 0x24 IPv4 -—- Delete Layer-2 Group Multicast address
SETVLAN 0x25 IPv4 -—- Set Layer-2 VLAN
DELVLAN 0x26 IPv4 - Delete Layer-2 VLAN
SETCCID 0x41 -—- -—- Used with OSN (NCP) subchannel
DELCCID 0x42 - --- Used with OSN (NCP) subchannel
MODCCID 0x43 - - Used with OSN (NCP) subchannel
SETIP 0xB1 -—- IPv4/6 |Set Layer-3 IP unicast address
QIPASSIST 0xB2 - IPv4/6 |Query Layer-3 IP assist capability
SETASSPARMS 0xB3 -—- IPv4/6 | Set Layer-3 IP assist parameters
SETIPM 0xB4 - IPv4/6 | Set Layer-3 IP multicast address
DELIPM 0xB5 - IPv4/6 |Delete Layer-3 IP multicast address
SETRTG 0xB6 - IPv4/6 | Set Layer-3 routing information
DELIP 0xB7 - IPv4/6 | Delete Layer-3 IP unicast address
SETADPPARMS 0xB8 IPv4 IPv4 | Various adapter directed sub-commands
SETDIAGASS 0xB9 - 0x0000 | Set Layer-3 diagnostic assists
CREATEADDR 0xC3 - IPv6 |Create Layer-3 IPv6 address from Layer-2 MAC
DESTROYADDR 0xC4 - IPv6 | Destroy Layer-3 IPv6 address from Layer-2 MAC
REGLCLADDR 0xD1 - -—- Not used by Linux
UNREGLCLADDR | 0xD2 - - Not used by Linux

As can be seen from the above header's fields shared with LCS and those that are not, OSA
IP Assist command header explicitly identifies more information or changes the header field
sizes. ltis likely that the first thing that is done with the a command is to identify the logic that
processes the command. If the command processing logic requires any of the additional
header data or expects a specific parameter structure that differs from LCS, a different
command is required. OSA non-QDIO commands follow LCS rules with LCS IP assist

commands.

IP Assist Return Codes

IP Assist return codes are provided in the IP Assist header of the response to the program's
command. The following table describes the return code and the commands expected to

provide it.
Code Description Command
0x0000 Success All may provide this return code

Harold Grovesteen

22 of 61 Version 0.1.2

Linux QETH Implementation

Code Description Command

0x0001 Command not supported for Layer-2 or Layer-3

0x0002 Add address IP table full - IPv6

0x0003 IP Assist command failed — unknown reason Any

0x0004 Command not supported

0x0005 Hipersocket trace already active

0x0006 Invalid format

0x0008 IPv6 address already registered remote

0x0010 IPv6 address already registered locally

0x0011 IP Address not registerd

0x0012 No CCID's available

0x0013 CCID not found

0x0020 IP version incorrect Note 1

0x0040 LAN and frame mismatch

0x2003 Unsupported Layer-2 command

0x2005 Duplicate MAC Address SETVMAC, SETGMAC

0x2006 Layer-2 address table full SETVMAC, SETGMAC, SETVLAN

0x200A Duplicate with Layer 3 MAC SETVMAC

0x200C Layer-2 MAC not authorized by hypervisor SETVMAC

0x200D Layer-2 MAC not authorized by adapter SETVMAC

0x2015 Layer-2 invalid VLAN id DELVLAN

0x2016 Layer-2 duplicate VLAN id SETVLAN

0x2017 Layer-2 VLAN id not found DELVLAN
OxE001-OxEQQOD | Various Layer-3 related return codes

OxEOOE Unsupported assist sub-command SETADPPARMS

OxEOOF Multicast address already defined

0xE080 Layer-3 LAN offline Any

0xFO001 Invalid IP assist header protocol version Any (Note 1)

OxFFFF Unknown error Any

Note 1: In which scenario return code 0x0020 vs 0xF001 is unclear. Future analysis of IP
Assist Layer-3 messaging may make this clear.

STARTLAN (0x01)

Start LAN operations. Requires IP Assist Header protocol version to be set to 0x0000. No
command data is associated with STARTLAN. Successful completion will result in the driver

Harold Grovesteen

23 of 61

Version 0.1.2

Linux QETH Implementation

reporting to Linux that the network device carrier is “on.”

STOPLAN (0x02)

Stops LAN operations. Requires IP Assist Header protocol version to be to 0x0000. No
command data is associated with STOPLAN. Successful completion will result in the driver
reporting to Linux that the network device carrier is “off.” STOPLAN is only used with Layer-3
discipline.

SETVMAC (0x21), DELVMAC (0x22), SETGMAC (0x23) and DELGMAC (0x24)
Set or delete a MAC address.

Disp. (hex) Length Description
+14 4 Length of MAC Address (6)
+18 6 MAC Address

SETVMAC Return Codes: 0x2005, 0x2006, 0x200A, 0x200C, 0x200D
DELVMAC Return Codes: None
SETGMAC Return Codes: 0x2005, 0x2006, 0x200A, 0x200C, 0x200D
DELGMAC Return Codes: None

SETVLAN (0x25) and DELVLAN (0x26)
Add or delete a VLAN from the adapter interface.

Disp. (hex) Length Description
+14 2 VLAN Id

The IPA IP protocol version is set to IPV4 for this command.
SETVLAN Return Codes: 0x2006, 0x2016
DELVLAN Return Codes: 0x2015, 0x2017

SETIP (0xB1) and DELIP(0xB?)

Add or delete an IPv4 or IPv6 address. Which structure is in use is determined by the IP
Assist Header Protocol Version field.

For IPv4:
Disp. (hex) Length Description
+16 4 IPv4 address
+18 4 IPv4 subnet mask

Harold Grovesteen 24 of 61 Version 0.1.2

Linux QETH Implementation

Disp. (hex) Length Description
+1C 4 Flags
For IPv6:
Disp. (hex) Length Description
+14 16 IPv6 address
+24 16 IPv6 mask
+34 4 Flags

Only the byte of the 4-byte flags field is used by Linux:
0x00000000 — normal default setting for DELIP and SETIP
0x00000001 — SETIP VIPA flag (no gratuitous ARP)
0x00000002 — SETIP VIPA takeover flag (no failure on gratuitous ARP)
0x00000020 — DELIP address to be taken over
0x00000040 — DELIP VIPAflag
0x00000080 — DELIP address needs SETIP

SETADPPARMS (0xB8)

Performs a set of subcommands. A standard header is used for all subcommands as
described below. Support by the OSA is assumed for Layer-2 operations. This suggests this
adapter command was made available with version 2 OSA, a prerequisite for Layer-2
operations. In Layer-3 operations, the QIPASSIST command will indicate whether this

command is available or not.

Disp. (hex) Length Description
+14 4 Supported hardware commands
+18 4 reserved
+1C 2 SETADPPARMS Command length (this header plus sub-command data)
+1E 4 Sub-command code
+22 2 Sub-command return code (Note 1)
+24 1 Used total (always set to 0x01 by Linux)
+25 1 Sequence number (always set to 0x01 by Linux)
+26 4 reserved

Note 1: Linux treats the sub-command return code as if it were the IPA return code. So from

Harold Grovesteen

25 of 61 Version 0.1.2

Linux QETH Implementation

the list of recognized return codes it is not possible to identify the return codes truly returned
by a SETADPPARMS IPA command sub-command. Although, one return code stands out:
OXEOOE — unsupported assist sub command.

SETADPPARMS Return Codes: OxEOOE

Query-Commands-Supported Sub-Command (0x00000001)
Response indicates the LAN Type and supported SETADPPARMS sub-commands.

Disp. (hex) Length Description
+2A 4 Number of LAN types supported
+2E 1 LAN Type response (see Note 1)
+2F 1 reserved
+30 4 Supported commands bit map response (see Note 2)
+34 8 reserved

Note 1: If not zeros, this field contains the LAN Type response. It uses the same values as
Link Type in ULP_ENABLE extended response, Note 4 above.

Note 2: The sub commands are identical to the bit-map of supported commands. This bit
map is used to determine which commands may be issued. The following bit settings are
associated with the following commands:

0x00000001 — Query-Commands-Supported sub-command
0x00000002 — Alter MAC Address (Layer-3 only)

0x00000004 — Add/Delete Group Address — not used by Linux
0x00000008 — Add/Delete Functional Address — not used by Linux
0x00000010 — Set Addressing Mode — not used by Linux
0x00000020 — Set Config Parms — not used by Linux
0x00000040 — Set Config Parms Extended — not used by Linux
0x00000080 — Set Broadcast Mode (Layer-3 only)

0x00000100 — Send OSA Message — not used by Linux
0x00000200 — Set SNMP Control (Layer-3 only)

0x00000400 — Query Card Information — not used by Linux
0x00000800 — Set Promiscuous Mode

0x00002000 — Set Diagnostic Assists (Layer-3 only)
0x00010000 — Set Access Control

Harold Grovesteen 26 of 61 Version 0.1.2

Linux QETH Implementation

Set Promiscuous Mode Sub-Command (0x00000800)

Turn promiscuous mode on or off. A non-zero sub-command return code indicates that
promiscuous mode was unable to be initialized.

Disp. (hex)

Length

Description

+2A

4

Promiscuous mode: 0x00000000 == off, 0x00000001 == on

Promiscuous mode is used with multicast.

Harold Grovesteen

27 of 61 Version 0.1.2

Linux QETH Implementation

Data Device Buffer Formats

Four different buffer headers are used in QDIO data device buffers, identified by the first byte
of the buffer:

0x01 — Layer-3, see “Layer-3 Buffers” below,

0x02 — Layer-2, see “Layer-2 Buffers” below,

0x03 — Layer-3 with TCP Segmentation Offload, or
0x04 — OSN, not documented

Regardless of the card discipline, the Hipersocket trace will cause Layer-2 frames to be used
as well as Layer-3.

Layer-2 Buffers

Layer-2 buffers transfered over the QDIO interface contain a Layer-2 OSA header followed by
the Layer-2 frame content. The following is the structure of the Layer-2 OSA header.

Disp. (hex) | Length Name Description
+00 1 id 0x02 for Layer-2
+01 3 flags See “Layer-2 Buffer Flags” below
+04 1 portno Adapter port number
+05 1 hdr_length |0x20 (for 32-byte Layer-2 header)
+06 2 pkt_length |Length of MAC frame in buffer (not including hdr_length)
+08 2 seq_no Not used by Linux
+0A 2 vlan_id If byte 3 bit 3 is one, the VLAN id of the MAC frame, zeros otherwise
+0C 20 Reserved, must be zeros

z/VM VSWITCH relies upon the vian_id information in the Layer-2 buffer. Native OSA adapter
relies upon VLAN information in the Ethernet frame when the protocol is 0x8100 in the MAC
header.

Layer-2 Buffer Flags
Byte Bits Description
0 0-7 Not used, must be zeros
1 0-7 Not used, must be zeros
2 0-2 Not used, must be zeros
2 3 802.1Q VLAN information present in MAC frame

Harold Grovesteen 28 of 61 Version 0.1.2

Linux QETH Implementation

Byte Bits Description
2 4 Not used, must be zero
2 5 MAC frame is unicast
2 6 MAC frame is broadcast
2 7 MAC frame is multicast

Layer-3 Buffers

Layer-3 buffers transfered over the QDIO interface contain a Layer-3 OSA header followed by
the Layer-3 IP packet content. The following is the structure of the Layer-3 OSA header when
TCP Segmentation Offload is not in use.

Disp. (hex) | Length Name
+00 1 id 0x01 for Layer-3
+01 1 flags See “Layer-3 Buffer Flags” below
+02 2 in_cksum Inbound checksum
+04 4 token Not used by Linux
+08 2 length Packet size (not including this Layer-3 header)
+0A 1 vlan_prio Not used by Linux
+0B 1 ext_flags See “Layer-3 Extended Buffer Flags” below
+0C 2 vlan_id If ext_flags bit 5 ==1, contains VLAN id, otherwise zeros
+0E 2 frame_offset | Note 1
+10 16 dest_addr Destination Layer-3 address (IPv4 — bytes 2-5, IPv6 — bytes 2-9) Note 2

Note 1: The frame-offset likely differs between Layer-3 buffers with and without the TCP
Segmentation Offload feature. Because Linux does not use this value, it is not possible to
determine from where the offset is relative. It is likely from the start of the buffer.

Note 2: Because only data starting at byte 2 of the dest_addr field is used, it is possible that a
length field is present in the first two bytes indicating the size of the data present. If such a
field is actually present, Linux does not use it.

Layer-3 Buffer Flags
Byte Bits Description
0 0 ->1Pv4, 1 -> IPv6
0 1,2 Not used, must be zeros
3 Pass through packet

Harold Grovesteen 29 of 61 Version 0.1.2

Linux QETH Implementation

Byte Bits Description
0 4 Not used, must be zero
0 5-7 Cast Description:

000 ->no cast
100 -> multicast
101 -> broadcast
110 -> unicast
111 -> anycast

Layer-3 Extended Buffer Flags

Byte Bits Description
0 0 Not used, must be zero
0 1 0 -> TCP with TCP Segmentation Offload, 1 -> UDP
0 2 Transport checksum : 0 -> not checked by hardware, 1-> checked by hardware
0 3 Packet header checksum: 0 -> not checked by hardware, 1-> checked by hardware
0 4 External Source MAC address present in dest_addr bytes 2-15
0 5 VLAN Tag included in header (VLAN id in vlan_id field)
0 6 Token ID
0 7 VLAN ID in Frame (VLAN id in bytes 12 and 13 of dest_addr field)

Layer-3 Buffers with TCP Segmentation Offload

An additional header is inserted between the IP Layer-3 packet data and the Layer-3 Header.
To be documented with Layer-3 processing.

Harold Grovesteen 30 of 61 Version 0.1.2

Linux QETH Implementation

OSA Logical Structure

The following diagram gives a conceptual overview of the OSA QDIO functionality as exposed
to the program by the various messages and structures that participate in its operation. Three
interfaces are utilized:

A main storage interface for queue and queue related data transfers (in [fiagentd),
A CPU interface that provides communication between the CPU (in i), and
an Input/Output interface that uses CCW. The CCW's are in bold font.

Note that the details of the QDIO operations are documented separately in Linux QDIO.

The upper portion of the diagram represents the CEC and the lower portion represents the
OSA adapter that physically resides in an 1/O cage of the mainframe system.

Harold Grovesteen 31 of 61 Version 0.1.2

Linux QETH Implementation

Harold Grovesteen Version 0.1.2

Linux QETH Implementation

Appendix A - Linux QETH Components

The Queued Input/Output Ethernet facility operates with an Open System Adapter for network
access. Input and Output may be use either Layer 3 IP packets or Layer 2 Ethernet frames.
Packets or frames transmitted to or from an adapter connection use buffers. Each buffer is
referenced by a number between 0 and 255, inclusive.

The primary Linux network device structure, in | i nux/i ncl ude/ | i nux/ net devi ce. h, is
net_device. This structure contains a pointer to the mid-layer private data. For QETH, the
mid-layer private data is contained in the structure get h_car d defined in

drivers/s390/ net/geth_core. h.

The Linux QETH support is provided by four source modules:

drivers/s390/net/qeth_core_main.c

drivers/s390/net/qeth_core_mpc.c

drivers/s390/net/qeth_core sys.c — OSA sysfs attribute support

drivers/s390/net/qeth_I2_main.c

drivers/s390/net/qeth_I3_main.c

drivers/s390/net/qeth_I3_sys.c — OSA sysfs Layer-3 attribute support

Drivers

Three device drivers are used by the Linux QETH implementation:

ccwgroup

geth_l2 and

geth_13.
A set of driver functions are provided. The following table illustrates the relationships between
the drivers.

Function ccwgroup qeth_l2 qeth_I3

probe geth_core_probe _device |qeth |2 probe device geth_I3_probe_device
remove geth_core_remove_device | qeth_I2_remove_device geth_I3_remove_device
set_online geth_core_set_online geth_I2_set_online geth_I3_set online
set_offline (wrapper for geth_Ix) geth_12_set offline geth_I3_set offline
shutdown (wrapper for geth_Ix) geth_I2_shutdown geth_I3_shutdown
prepare (wrapper for geth_Ix) Not implemented Not implemented
complete (wrapper for geth_Ix) Not implemented Not implemented
freeze (wrapper for geth_Ix) geth_12_pm_suspend geth_I3_pm_suspend

Harold Grovesteen

33 of 61

Version 0.1.2

Linux QETH Implementation

Function ccwgroup geth_l|2 qeth_I3
thaw (wrapper for geth_Ix) geth_I2_pm_resume geth_I3_pm_resume
restore (wrapper for geth_Ix) geth_I2_pm_resume geth_I3_pm_resume

Device Attributes

Each group device has a set of attributes. The sysfs attribute management is provided by two
modules: geth_core_sys.c (layer 2 attributes and attributes common to both layer 2 and 3)
and geth_I3_sys.c (layer 3 specific attributes).

The following table describes the device attributes supported by qeth_core_sys.c.

Attribute Read Write

state card.state
card->lan_online

chpid card->info.chpid
if_ name QETH_CARD_IFNAME(card)
card_type geth_get_cardname_short
inbuf_size card->qdio.in_buf_size
portno card->info.portno card->info.portno
porthame card->info.portname_required card->info.portname

card->info.portname

priority_queueing

card->qdio.do_priority _queueing
card->qdio.default_out_queue

card->qdio.no_output_queues
card->qdio.do_priority _queueing
card->qdio.default_out_queue

buffer_count

card->qdio.in_buf_pool.buf_count

card->qdio.in_buf_pool.buf _count
geth_realloc_buffer_pool(card,cnt)

recover

geth_schedule_recovery(card)

performance_stats

card->options.performace_stats

card->options.performace_stats

layer2 card->option.layer2 card->discipline.ccwgdriver->remove(card->gdev)
geth_core_free_discipline(card)
geth_core_load_discipline(card)
card->discipline.ccwgdriver->probe(card->gdev)

isolation card->options.isolation card->options.isolation

blkt/total card->info.blkt.time_total card->info.blkt.time_total

blkt/inter card->info.blkt.inter_packet card->info.blkt.inter_packet

blkt/inter_jumbo card->info.blkt.inter_packet_jumbo | card->info.blkt.inter_packet_jumbo

The following table describes the attributes supported by geth_I3_sys.c.

Harold Grovesteen

34 of 61

Version 0.1.2

Linux QETH Implementation

Attribute Read Write

route4 card->options.route4 card->options.route4
geth_I3_setrouting_v4

route6 card->options.route6 card->options.route6

geth_I3_setrouting_v6

fake_broadcast

card->options.fake broadcast

card->options.fake_broadcast

broadcast_mode (Token-Ring)

card->options.broadcast_mode

card->options.broadcast_mode

canonical_macaddr (Token-Ring)

card->options.macaddr_mode

card->options.macaddr_mode

checksumming

card->options.checksum_type

geth_I3_set rx_csum(card,csum_type)

large_send

card->options.large_send

geth_I3_set large_send(card, type)

ipa_takeover/enable

card->ipato.enabled

card->ipato.enabled

ipa_takeover/invert4

card->ipato.invert4

card->ipato.invert4

ipa_takeover/add4

card->ipato.entries

geth_I3_add_ipato_entry(card,ipatoe)

ipa_takeover/del4

geth_I3 del_ipato_entry(card,proto,add
r,mask_bits)

ipa_takeover/invert6

card->ipato.invert6

card->ipato.invert6

ipa_takeover/add6

card->ipato.entries

geth_I3_add_ipato_entry(card,ipatoe)

ipa_takeover/del6

geth_I3 del_ipato_entry(card,proto,add
r,mask_bits)

vipa/add4 card->ip_list geth_I3_add_vipa(card,proto,addr)
viap/del4 geth_I3_del_vipa(card,proto,addr)
vipa/add6 card->ip_list geth_I3_add_vipa(card,proto,addr)
vipa/del6 geth_I3_del_vipa(card,proto,addr)
rxip/add4 card->ip_list geth_I3_add_rxip(card,proto,addr)
rxip/del4 geth_I3_del_rxip(card,proto,addr)

rxip/add6 card->ip_list geth_I3_add_rxip(card,proto,addr)
rxip/del6 geth_I3_del_rxip(card,proto,addr)

Linux OSA Layer-2 Ethernet Adapter Management

Step 1 - Kernel Initialization

During kernel initialization the various drivers and modules are registered with the Linux

kernel.

Step 2 - 1/0 Probes

The 1/O probe process identifies the type of device by means of the SENSE ID. The SENSE

Harold Grovesteen

35 of 61

Version 0.1.2

Linux QETH Implementation

ID information ties the subchannel to the appropriate ccw device driver. At this stage the OSA
devices will be associated with the qeth_ccw_driver. The devices are not yet part of a group.

Step 3 - User Configuration

Configuration of the adapter is performed by various values being written to the sysfs file
system thereby storing in the adapter structure the information for later reference. The
following steps are initiated by setting the group device online.

Refer to the appropriate Device Drivers, Features and Commands manual for details on user
configuration.

Bash scripts are provided to assist with this configuration. Such scripts convert the options
supplied by the user into sysfs attributes that are read or written.

Creating the Group Device

The first step is to create the root device from the read device as the groups root device. This
is accomplished by writing a string to the read devices “group” attribute the list of bus id's of
the individual device numbers of the participating subchannels. The group device is created
in ccwgroup.c/ccwgroup_create_from_string(). The group device is assigned to the
geth_core_ccwgroup_driver. When the group device is added it will automatically be probed
by the Linux driver core using the function geth_core_probe_device. This processing is
common to both Layer-2 and Layer-3 operation.

ccwgroup.c/ccwgroup_create_from_string
geth_core_probe_device()
geth_determine_card_type() - Read device previously queried SENSE ID data inspected
geth_core_create_device_attributes() - Create group sysfs attributes (geth_core_sys.c)
geth_determine_capabilities()

ccw_device_set_online() - Enable subchannel in SCHIB of the data device
(preferably with concurrent sense)

geth_read_conf_data() - Issue RCD to data device

qdio_get_ssqd_desc() - Issue CHSC to acquire queue descriptor

Configuring the Group Device

Additional attributes can now be written to the sysfs group device entry. One of the most
important is the one specifying the discipline to be used with the OSA: Layer-2 vs. Layer-3.
Layer-3 is the default discipline for the OSA. Setting the discipline must occur before the
group device is set online. Setting the discipline has the effect of identifying the group device
driver, “qgeth_I2” or “geth_I3”, for which the ccwgroup driver acts as a wrapper.

Setting the Group Device Online
Writing “1” to the group device “online” attribute has the effect of calling the set_online

Harold Grovesteen 36 of 61 Version 0.1.2

Linux QETH Implementation

function of either the geth_I2 or geth_I3 driver. This function triggers the next step in the
initialization process.

Step 4 - Bringing the Layer-2 Group Device Online

The following functions are driven by setting the group device on line. At the completion of
this step the network device has been created in Linux, ethO, for example. Further
initialization occurs through the Linux network device, for example, eth0, in step 5.

ccwgroup set_online()
geth_core_set_online()
geth_I2_probe_device()
geth_I2_set_online()
__qeth_I2_set_online()
I* Initialize Transport Operations */
geth_core_hardsetup_card()
ccw_device_set offline() - data device set offline
ccw_device_set offline() - write device set offline
ccw_device_set offline() - read device set offline
ccw_device_set_online() - read device set online
ccw_device_set_online() - write device set online
ccw_device_set_online() - data device set online
geth_qdio_clear_card()
qdio_cleanup() - CLEAR 1/O or HALT 1/O issued to data device
geth_idx_activate_channel() - IDX_ACTIVATE for read device
geth_idx_activate_channel() - IDX_ACTIVATE for write device
I* Transport Operation Initialized */
[* Setup Adapter Hardware */
geth_mpc_initialize()
geth_issue_next_read() - prime the channel read device
geth_cm_enable() - Send CM_ENABLE to channel
geth_cm_setup() - Send CM_SETUP to channel
geth_ulp_enable() - Send ULP_ENABLE to channel
geth_ulp_setup() - Send ULP_SETUP to channel
geth_alloc_qdio_buffers() - Allocate queues in storage
geth_qdio_establish()

qdio_initialize()

Harold Grovesteen 37 of 61 Version 0.1.2

Linux QETH Implementation

qdio_establish() - EQ to data device

geth_qdio_activate()

gdio_activate() - AQ to data device
geth_dm_act() - Send DM_ACT to channel
I* Adapter Hardware Setup Complete */

[* Setup Adapter Software */

geth_I2_setup_netdev — establish the Linux Ethernet device (ethn)

geth_I2_request_initial_mac

geth_query_setadapterparms — Send to channel
IPA_SETADP_QUERY_COMMANDS_SUPPORTED

FOR OSA: generate a random MAC address

FOR HYPERSOCKET OR GUEST LAN: query MAC with adapter command
geth_I2_send_setmac — Send to channel IPA_CMD_SETVMAC

geth_send_startlan — Send to channel IPA_CMD_STARTLAN

geth_set access_ctrl_online — If supported, Send to channel
IPA_SETADP_SET _ACCESS_CONTROL

For each VLAN in a list either send IPA_CMD_DELVLAN or IPA_CMD_SETVLAN
Initialize the QDIO processing — SIGA usage starts

I* Adapter Software Setup Complete */

At this point the physical interface is operational, although the logical interface is not. Packets
will not be sent from the IP stack because the interface is not UP and any packets received from
the network interface will be discarded, also because the interface is not UP.

Step 5 - Bringing the Layer-2 Ethernet Interface Up

Various attributes can be applied to the Ethernet interface, some of which are backed by the
geth_I2 or geth_I3 driver. A set of network device operations are supported by the qeth_I2
group driver. Various tools are used in user space to configure the interface: ifconfig, ethtool,
miitool, and multicast supporting applications.

Operation Tool Function Description
open ifconfig | geth_I12_open Does netif_start_queue (Linux processes frames)
stop ifconfig | geth 12 _stop Does netif_tx_disable (Linux sends no frames)
get_stats geth_get_stats
hard_start_xmit geth_I2_hard_start_xmit Sends a frame via data device QDIO.
validate_addr eth_validate_addr
set_multicast_list geth_12_set multicast_list
do_ioctl ethtool |qgeth_|2_do_ioctl
set_mac_address |ifconfig |geth_|2_set mac_address |Uses DELVMAC and SETVMAC

Harold Grovesteen

38 of 61 Version 0.1.2

Linux QETH Implementation

Operation Tool Function Description

change_mtu ifconfig | geth_change_mtu
vlan_rx_add_vid vconfig |geth _I2 vlan_rx_add _vid |Uses SETVLAN
vlan_rx_kill_vid veonfig | geth_I12_vlan_rx_kill_vid Uses DELVLAN

tx_timeout geth_tx_timeout Called by watchdog timer

Promiscuous mode is a network device flag set or reset by ifconfig. The SETADPPARMS Set
Promiscuous Mode Sub-command is used to change the adapter interface status.

Step 6 — Bringing the Layer-2 Ethernet Interface Down

When the Ethernet interface is taken down, Linux will call the network device stop function.
This has the effect of calling netif _tx_disable, causing Linux to cease sending frames to the
OSA group device. Linux will mark the network device as down. At this point the OSA group
device is still online. Frames from the network will continue to be received by the geth_ 2
driver. When the driver sees the network device as down, these inbound packets or frames
will be discarded.

Step 7 - Taking the Layer-2 Group Device Offline

When a value is written to the group device attribute online, managed by the ccwgroup driver
in cio/ccwgroup.c, the group driver set_online or set_offline function is called, depending upon
the value. By writing a “0” to online, the ccwgroup driver's set_offline function is called,
geth_12_offline.

geth_I12_set_offline()
__qeth_12_set offline()
netif_carrier_off() informs the network device that the phsyical interface is down
geth_12_stop card()
dev_close() closes the network device
geth_I2_send_delmac — Use DELVMAC to channel
geth_I2_process_vlans — with clear flag for all active VLANS
geth_I2_send_setdelvlan — Use DELVLAN to channel
geth_qdio_clear_card()
qdio_cleanup() - cleanup data device using CLEAR I/O
qdio_shutdown() - results in CLEAR 1/O to data device
Storage buffers freed
ccw_device_set_offline() - Data device set offline — SCHIB set to disabled
ccw_device_set offline() - Write device set offline — SCHIB set to disabled

ccw_device_set offline() - Read device set offline — SCHIB set to disabled

Harold Grovesteen 39 of 61 Version 0.1.2

Linux QETH Implementation

Inspection of the above indicates that, in addition to tearing down the configuration for the
OSA adapter, the state is appropriately reflected to the Ethernet device as well.

Read/Write Device Transport Channel Handling

Following the successful IDX_ACTIVATE sequence with both the read and write devices, the
two devices enter Transport Channel mode of operation. In transport mode, an adapter
request is sent to the adapter by issuing a WRITE CCW to the write device subchannel,
followed by the adapter completing the transfer of the response to storage and terminating
either a previously initiated READ CCW or the next READ CCW issued to the read device
subchannel.

The transmission of the adapter request is performed when the request is issued on the write
device. Normal operation has a READ CCW issued to the read device subchannel waiting for
completion most of the time. The time when this is not the case is immediately following the
completion of the READ CCW. During the handling of the interrupt, a new READ CCW will be
immediately issued to the read device. The driver, though must wait for the response from
the adapter. A common routine is used to send requests to the adapter. This routine will
either wait on a wait queue for the response to be presented or spin waiting for a time period
to expire by inspecting the current jiffy count.

Each command has a set of command specific functions that initialize the request and that
analyzes the response.

Harold Grovesteen 40 of 61 Version 0.1.2

Linux QETH Implementation

Appendix B - Module Relationships

The following table describes the relationship between the modules by identifying the
functions exposed as exported symbols. Exposed symbols are in bold font. Functions that
reference the exposed symbol are in regular font.

Line

core_main.c

12_main.c

I13_main.c

50

qeth_core_card_list

geth_I2_verify_device

geth_I3_verify_device

geth_I2_netdev_by devno

geth_core_probe_device

geth_core_remove_device

geth_core_init

52 | qgeth_core_header_cache
qgeth_I12_hard_start_xmit geth_I3_hard_start_xmit
__qgeth_clear_output_buffer
geth_core_init
geth_core_exit
181 |qeth_set_allowed_threads
geth_I2_stop_card geth_I3_stop_card
geth_12_remove_device geth_I3_remove_device
__qeth_I2_set_online __qeth_I3_set online
geth_I3_pm_suspend
geth_I3_pm_resume
195 | qgeth_threads_running
geth_wait_for_threads geth_I2_set multicast_list geth_I3_set multicast_list
geth_I2_remove_device geth_I3_remove_device
geth_I2_pm_suspend geth_I3_pm_suspend
207 |qeth_wait_for_threads
geth_I2_vlan_rx_add_vid
geth_I12_vlan_rx_kill_vid geth_I3_vlan_rx_kill_vid
geth_I2_set mac_address
214 | qeth_clear_working_pool_list
geth_realloc_buffer_pool qgeth_12_stop_card geth_I3_stop_card
398 |qgeth_clear_ipacmd_list

geth_send_control_data_cb

qgeth_12_stop_card

geth_I3_stop_card

Harold Grovesteen

41 of 61

Version 0.1.2

Linux QETH Implementation

Line

core_main.c

12_main.c

I13_main.c

geth_irq

473

geth_release_buffer

geth_clear_cmd_buffers

geth_osn_send_control_data

geth_send_control_data_cb

geth_idx_write_cb

geth_idx_read_cb

geth_prepare_control_data

geth_send_control_data

506

geth_wait_for_buffer

geth_cm_enable

geth_osn_assist

geth_cm_setup

geth_ulp_enable

geth_ulp_setup

geth_dm_act

geth_get_ipacmd_buffer

508

qeth_clear_cmd_buffers

geth_idx_activate_get_answer

qgeth_12_stop_card

geth_I3_stop_card

geth_idx_activate_channel

643

qeth_clear_thread_start_bit

geth_I2_recover

geth_I3_recover

654

qgeth_clear_thread_running_bit

geth_I2_recover

geth_I3_recover

684

qeth_do__run_thread

geth_I2_recover

geth_I3 recover

694

geth_schedule_recovery

geth_issue_next_read

geth_l2_qdio_input_handler

geth_I3_input_handler

geth_check ipa_data

geth_flush_buffers

geth_qdio_output_handler

geth_tx_timeout

core_sys.c/qeth_dev_recover_store

933

geth_clear_qdio_buffers

geth_|2_stop_card

geth_I3_stop_card

geth_|12_shutdown

geth_I3_shutdown

1279

qeth_qdio_clear_card

Harold Grovesteen

42 of 61

Version 0.1.2

Linux QETH Implementation

Line

core_main.c

12_main.c

I13_main.c

geth_mpc_initialize

geth_I2_stop_card

geth_I3_stop_card

geth_core_hardsetup_card

geth_I2_shutdown

geth_I3_shutdown

1630

geth_prepare_control_data

geth_send_control_data

geth_osn_send_control_data

1648

geth_send_control_data

geth_cm_enable

geth_I3_send_ipa_arp_cmd

geth_cm_setup

geth_ulp_enable

geth_ulp_setup

geth_dm_act

geth_send_ipa_cmd

geth_send_snmp_cmd

2227

qeth_print_status_message

__qgeth_I2_set online

__qgeth_I3_set online

2326

geth_init_input_buffer

qgeth_init_qdio_queues

2355

qeth_init_qdio_queues

__qeth_I2_set_online

__qeth_I3_set online

2427

qeth_get_ipacmd_buffer

geth_send_statstoplan

geth_I2_send_setdelvlan

geth_get adapter_cmd

geth_I2_send_setdelmac

geth_I3_send_setdelmc

geth_I3_send_setdelip

geth_I3_send_setrouting

geth_I3_get_setassparms_cm
d

geth_I3_query_ipassists

geth_I3_put_unique_id

geth_I3 iqd_read_initial_mac

geth_I3_get unique_id

2441

qeth_prepare_ipa_cmd

geth_send_ipa_cmd

geth_osn_send_ipa_cmd

2451

qeth_send_ipa_cmd

geth_send_statstoplan

geth_query_setadapterparms

Harold Grovesteen

43 of 61

Version 0.1.2

Linux QETH Implementation

Line

core_main.c

12_main.c

I13_main.c

geth_setad_promisc_mode

geth_setadpparms_change_macaddr

geth_setadpparms_set_access_ctrl

geth_I2_send_setdelvlan

geth_I2_send_setdelmac

geth_I3_send_setdelmc

geth_I3_send_setdelip

geth_I3_send_setrouting

geth_I3_send_setadp_mode

geth_I3_send_setassparms

geth_I3_query_ipassists

geth_I3_put_unique_id

geth_I3_iqd_read_initial_mac

geth_I3_get_unique_id

2487

qeth_send_startlan

__geth_I2_set online

__qgeth_I2_set online

2498

qeth_send_stoplan

geth_I3_stop card

2514

qeth_default_setadapterparms_cb

geth_query_setadapterparms_cb

geth_I3_send_setadp_mode

geth_setadp _promisc_mode cb

geth_setadpparms_change _macaddr

geth_setadpparms_set _access_ctrl cb

2545

geth_get_adapter_cmd

geth_query_setadpapterparms

geth_I3_send_setadp_mode

geth_setadp_promisc_mode

geth_setadpparms_change _macaddr

geth_setadpparms_set_access_ctrl

geth_snmp_command

2563

qeth_query_setadpterparms

geth_I2_request _initial_mac

geth_I3_setadpter_parms

2576

qeth_check_qdio_errors

geth_handle_send_error

geth_|12_qdio_input_handler

geth_I3_qdio_input_handler

2593

geth_queue_input_buffer

geth_I12_qdio_input_handler

geth_I3_qdio_input_handler

Harold Grovesteen

44 of 61

Version 0.1.2

Linux QETH Implementation

Line

core_main.c

12_main.c

I13_main.c

2881

qeth_qdio_output_handler

geth_I2_probe_device

geth_I3_probe_device

2922

qgeth_get_priority_queue

qgeth_I2_hard_start_xmit

geth_I3_hard_start_xmit

2960

geth_get_elemets_no

geth_I2_hard_start_xmit

geth_I3_hard_start_xmit

3096

qgeth_do_send_packet_fast

qgeth_I12_hard_start_xmit

geth_I3_hard_start_xmit

3150

qeth_do_send_packet

qgeth_I12_hard_start_xmit

geth_I3_hard_start_xmit

3256

qeth_setadp_promisc_mode

geth_|12_multicast_list

geth_I3_multicast_list

3283

qeth_change_mtu

geth_I2_netdev_ops

geth_I3_netdev_ops

geth_I3_osa_netdev_ops

3306

geth_get_stats

geth_I2_netdev_ops

geth_I3_netdev_ops

geth_I3_osa_netdev_ops

3337

qeth_setadpparms_change_macaddr

geth_I2_request_initial_mac

geth_I3_setadapter_parms

3481

qeth_set_access_ctrl_online

core_sys.c/qeth_dev_isolation_store

__geth_I2_set_online

geth_I3_start_ipassists

3508

qeth_tx_timeout

geth_I2_netdev_ops

geth_I3_netdev_ops

geth_I3_osa_netdev_ops

3518

qeth_mdio_read

geth_I2_do _ioctl

geth_I3_do_ioctl

3671

qeth_snmp_command

geth_I12_do _ioctl

geth I3 _do_ioctl

3848

qeth_core_hardsetup_card

__geth_I2_set_online

__qeth_I3_set online

3985

qeth_core_get_next_skb

geth_|2_process_inbound_b
uffer

geth_I3_process_inbound_buff
er

4103

geth_sbf_longtext

Harold Grovesteen

45 of 61

Version 0.1.2

Linux QETH Implementation

Line

core_main.c

12_main.c

I13_main.c

4431 |qeth_core_g

et_sset_count

geth_I2_ethtool ops

geth_I3_ethtool _ops

geth_I2_osn_ops

4442 |qeth_core_g

et_ethtool_stats

geth_I2_ethtool ops

geth_I3_ethtool _ops

geth_I2_osn_ops

4490 |qgeth_core_g

et_strings

geth_I2_ethtool _ops

geth_I3_ethtool_ops

geth_I2_osn_ops

4504 |qeth_core_g

et_drvinfo

geth_|12_ethtool_ops

geth_I3_ethtool_ops

qgeth_12_osn_ops

4522 |qeth_core_ethtool_get_settings

geth_I12_ethtool ops

geth_I3_ethtool_ops

geth_I2_osn_ops

47 | geth_dbf

1162

geth_l2_ccwgroup_driver

geth_core load_discipline

44

geth_I3_set large_send

geth_I3_sys.c/geth_I3_set _lar
ge_send

581

geth_I3_setrouting_v4

geth_I3_sys.c/geth_I3_dev_ro
ute_store

701

geth_I3_setrouting_v6

geth_I3_sys.c/geth_I3_dev_ro
ute_store

742

geth_I3_add_ipato_entry

geth_I3_sys.c/geth_I3_dev_ip
ato_add_store

768

geth_I3_ipato_entry

geth_I3_sys.c/geth_I3_del_ipa
to_entry

792

geth_I3_add_vipa

geth_I3_sys.c/geth_I3_dev vip

Harold Grovesteen

46 of 61

Version 0.1.2

Linux QETH Implementation

Line core_main.c 12_main.c I13_main.c
a_add_store

829 geth_I3_del_vipa
geth_I3_sys.c/geth_I3_dev vip
a_del_store

856 geth_I3_add_rxip
geth_I3_sys.c/geth _I3_dev_rxi
p_add_store

893 geth_I3_del_rxip
geth_I3_sys.c/geth _I3_dev_rxi
p_del_store

1468 geth_I3_set rx_csum

geth_I3_sys.c/geth _I3_dev_ch
ecksum_store

3431 qeth_I3_ccwgroup_driver

geth_core_load_discipline

The following diagram illustrates the relationship between key QETH structures. The table
provides a high level reference of the structures.

Structure Location Description
net_device i ncl ude/ | i nux/ net devi ce. h Generic network interface
device i ncl ude/ i nux/ devi ce Generic device
geth_card drivers/s390/ net/geth_core.h QDIO card resources
geth_channel drivers/s390/ net/geth_core.h Read/Write CCW support
ccw_device arch/ s390/i ncl ude/ asnm ccwdev. h |Generic CCW device
ccwgroup_device |ar ch/ s390/ i ncl ude/ asn ccwgr oup. h|Group device

Each of these structures is related to supporting Linux generic constructs, related driver
constructs or the generic s390 Common Device Support utilized by the driver.

Linux s390 Driver Common Device Support
net_device geth_card ccwgroup_device
device geth_channel ccw_device

Structure Usage by geth_core_main.c

Harold Grovesteen 47 of 61 Version 0.1.2

Linux QETH Implementation

Line Function net qgeth ccwgroup geth ccw
_device | _card _device _channel _device

109 |qeth_get _cardname (doc)

136 |qeth_get cardname_short

226 |qeth_alloc_buffer_pool (doc)

257 |qeth_realloc_buffer_pool (doc)

273 |qgeth_issue_next_read (doc)

303 |qgeth_alloc_reply (doc)

329 |qeth_issue_ipa_msg (doc)

344 |qgeth_ipa_cmd (doc)

398 |qgeth_clear_ipacmd_list

DV S DV WSOV~ DD

438 |geth_setup ccw

453 | _ qeth_get buffer

473 |geth_release_buffer

488 |qeth_get buffer

499 | qeth_wait_for_buffer

508 |qeth_clear_cmd_buffers

2=l 222/

519 |geth_send_control _data cb R
(doc)

=

598 |geth_setup channel

Py

702 |geth_get problem

P

749 | qgeth_check irb_error (doc)

785 |geth_irq

933 |qeth_clear_qdio_buffers (doc)

948 |geth_free buffer _pool

962 |geth_free _qdio_buffers

996 geth_is_1920_device data

1024 |geth_init_qdio_info (doc)

1036 | geth_set_initial_options (doc)

1079 |geth_setup_card (doc)

1125 |geth_core_sl_print (doc)

=mzz 222218 m

1134 |geth_alloc_card (doc)

Harold Grovesteen 48 of 61 Version 0.1.2

Linux QETH Implementation

Line Function net qgeth ccwgroup geth ccw
_device | _card _device _channel _device
1158 |geth_determine_card_type (doc) W read W
1188 | geth_clear_channel W R W
1212 |qeth_halt_channel w R w
1235 |geth_halt_channels R all R
1265 |geth_clear_halt_card R
1279 | qeth_qdio_clear_card (doc) w data R
1310 |geth_read_conf_data (doc) w data W
1358 |qeth_get_unitaddr (doc) w data
1380 |geth_init_tokens (doc) W
1389 |geth_init_func_level (doc) W
1410 |geth_idx_activitate_get _answer W W W
(doc)
1455 |qeth_idx_activate_channel (doc) W W data,
write W
1538 |geth_idx_write_cb (doc) R W write R
1576 | geth_idx_read_cb (doc) R w read R
1630 | qeth_prepare_control_data W
(doc)
1648 |geth_send_control_data (doc) w w write W
1740 |geth_cm_enable_cb (doc) W
1755 | geth_cm_enable (doc) R
1774 |geth_cm_setup_cb (doc) w
1790 |geth_cm_setup (doc) R
1811 |geth_get _initial_mtu_for_card R
(doc)
1846 | geth_get_mtu_out_of _mpc (doc) R
1856 |geth_get mtu_outof framesize
(doc)
1872 |geth_mtu_is_valid R
1887 |qeth_ulp_enable_cb (doc) W read
1930 | geth_ulp_enable (doc) R write
1965 |geth_ulp_setup_cb (doc) w read
Harold Grovesteen 49 of 61 Version 0.1.2

Linux QETH Implementation

Line Function net qgeth ccwgroup geth ccw
_device | _card _device _channel _device
1980 |geth_ulp_setup R write
2008 |geth_alloc_qgdio_buffers (doc) W
2076 |geth_create_qib_param_field R
(doc)
2089 |geth_create_qib_param_field bl R
kt (doc)
2102 |gqeth_qdio_activate (doc) R data
2108 |geth_dm_act (doc) R write,
read
2126 |qeth_mpc_initialize (doc) X
2185 |geth_print_status_with_portnam R
e (doc)
2206 |qeth_print_status_no_portname R
(doc)
2227 | qeth_print_status_message R
(doc)
2268 |qeth_initialize_working_pool_list R
(doc)
2280 |qeth_buffer_pool_entry (doc) X
2326 |qeth_init_input_buffer (doc) X
2355 | geth_init_qdio_queues (doc) R data
2407 |qeth_fill_ipacmd_header (doc) R
2427 |geth_get_ipacmd_buffer (doc) R write
2441 | geth_prepare_ipa_cmd (doc) R
2451 | geth_send_ipa_cmd (doc) write,
read
2475 |qeth_send_startstoplan (doc) R
2487 |geth_send_startlan (doc) R
2498 |gqeth_send_stoplan (doc) R
2514 | geth_default_setadapterparm
s_cb (doc)
2529 |qeth_query_setadapterparms_c
b (doc)

Harold Grovesteen 50 of 61 Version 0.1.2

Linux QETH Implementation

Line Function net qgeth ccwgroup geth ccw
_device | _card _device _channel _device
2545 | qeth_get_adapter_cmd (doc) R
2563 | geth_query_setadapterparms R write,
(doc) read
2576 |geth_check_qdio_errors (doc)
2593 | geth_queue_input_buffer data
(doc)
2657 \qeth_handle_send_errors (doc) R
2881 | qeth_qdio_output_handler W
(doc)
2922 |qeth_get_priority_queue (doc) R
2960 |geth_get_elements_no (doc) R
3096 |qeth_do_send_packets_fast R
(doc)
3150 |geth_do_send_packet (doc) R
3236 geth_setadp_promisc_mode_cb R
(doc)
3256 | geth_setadp_promisc_mode Write,
(doc) read
3283 |geth_change_mtu (doc) W R
3306 | geth_get_stats (doc) R R
3318 |geth_setadpparms_change _ma W
caddr_cb (doc)
3337 |geth_setadpparms_change_m R Write,
acaddr (doc) read
3358 |geth_setadpparms_set access__ W
ctrol_cb (doc)
3455 |geth_setadpparms_set _access__ R
ctrl (document)
3481 | geth_set_access_ctrl_online R
(doc)
3508 | geth_tx_timeout R
3518 |geth_mdio_read R
3583 |geth_send_ipa_snmp_cmd R Write,
(doc) read

Harold Grovesteen 51 of 61 Version 0.1.2

Linux QETH Implementation

Line Function net qgeth ccwgroup geth ccw
_device | _card _device _channel _device

3607 |geth_snmp_command_cb R

3671 |geth_snmp_command Write,

read

3730 geth_get_qdio_q_format (doc) R

3740 geth_qdio_establish (doc) R

3811 |geth_core free card W

3848 | geth_core_hardsetup _card W

(doc)

3985 qeth_core_get_next_skb (doc)

4147 |qeth_core_load_discipline (doc) W

4171 |qgeth_core_free_discipline (doc) W

4180 |geth_core_probe_device (doc) W R
4254 |qeth_core_remove_device (doc) w
4279 |qgeth _core_set online (doc) w 12/13
4302 |qeth_core_set_offline (doc) R 12/13
4308 geth_core_shutdown (doc) R 12/13
4316 |geth_core_prepare (doc) R 12/13
4325 |geth_core_complete (doc) R 12/13
4333 |qeth_core_freeze (doc) R 12/13
4342 |qgeth_core_thaw (doc) R 12/13
4351 |qgeth_core_restore (doc) R 12/13
4504 |geth_core_get_drvinfo (doc) R R

Harold Grovesteen 52 of 61 Version 0.1.2

Linux QETH Implementation

net _devi ce. private

+---> geth_card

device.platformdata-------------- +
|
V
geth_card. gdev------- >ccwgr oup_devi ce
ccwgroup_devi ce. cdev[0] [1] [2]
device.platformdata------------------ + | | |
I I
v I
read- - - >get h_channel - - - >ccw_devi ce<----+ | |
I I
device.platformdata------------------ + | |
I |
v |
write-->qgeth_channel --->ccw device<-------- + |
|
device.platformdata------------------ + |
| |
v I
dat a- - - >qet h_channel --->ccw device<------------ +

Initialization of the QETH driver is performed via net/qeth_I2_main.c/geth_I2_set_online. This
function is identified in the CCW group driver structure.

Linux QETH support has two major components:
the OSA card that uses standard subchannels and
the Queued input/output mechanisms.

Harold Grovesteen 53 of 61 Version 0.1.2

Linux QETH Implementation

Appendix C - Linux Structures

Structure Values
QDIO_MAX_QUEUES_PER_IRQ - 32
QDIO_MAX_BUFFERS_PER Q- 128
QDIO_MAX ELEMENTS PER_BUFFER - 16
SDIO_SBAL_SIZE - 256

drivers/s390/net/qeth_core.h

geth_buffer_pool_entry

Structure Key References
geth_buffer_pool_entry
list_head list
list_head init_list
elements * [QDIO_MAX_ELEMENTS_PER_BUFFER]
Pointers to the elements composing this
buffer.
geth_card

This structure has a one-to-one correspondence with the Linux IP layer interface structure.
The following summarizes the high-level components of this structure relating to QDIO.

Structure Key References

geth_card

ccwgroup

geth_channel read

geth_channel write

geth_channel data

geth_card_info info geth_get_unitaddr,
geth_ulp_enable cb,
geth_I2_setup_netdey,

Harold Grovesteen 54 of 61 Version 0.1.2

Linux QETH Implementation

Structure

Key References

geth_I3_setup_netdev

geth_card_options option

geth_I3 ipassists

geth_I3_probe _device
geth_I3_setrouting_v4
geth_I3_setrouting_v6
geth_I3_setadapter_hstr
geth_I3_default_setassparms_cb
geth_I3_query_ipassists_cb
geth_I3_start_ipa_checksum
geth_I3_start_ipa_tso

geth_qgdio_info qdio

geth_discipline discipline

Harold Grovesteen

55 of 61

Version 0.1.2

Linux QETH Implementation

Appendix D - Linux Modules and Drivers

The following Linux modules are related to QETH support in Linux (in drivers/s390):
cio/ccwgroup.c — Generic CCW group device bus driver: ccwgroup
cio/device.c — Generic individual CCW device bus driver: ccw
cio/qdio_main.c — Generic QDIO group driver
cio/qdio_setup.c — Establishes queues.
cio/qdio_thinint.c — Adapter Interrupt Facility handler (Linux thin interrupts)
net/qeth_core_main.c — QETH module
net/geth_I2_main.c — Layer 2 CCW group driver
net/qeth_I3_main.c — Layer 3 CCW group driver

Harold Grovesteen 56 of 61 Version 0.1.2

Linux QETH Implementation

Appendix E - Linux Functions

The following source modules support QDIO processing in Linux:
geth_core_main.c — geth generic module
geth_core_mpc.c
geth_core_sys.c
geth_I2_main.c — geth_I2 module, the CCW group device driver for Layer 2.
geth_I3_main.c — geth_I3 module, the CCW group device driver for Layer 3.
geth_I3_sys.c

net/qeth_core_main.c

static struct ccwgroup_driver qgeth_core _ccwgroup driver = {
.owmer = TH S _MODULE
.name = "qgeth",
.driver_id = OxD8C5E3CS,
. probe = geth_core_probe_devi ce,
.renove = geth_core_renove_devi ce,
.set_online = geth_core_set_online,
.set_offline = geth_core_set_offline,
. shutdown = geth_core_shut down,
. prepare = geth_core_prepare,
.conplete = geth_core_conpl ete,
.freeze = geth_core_freeze,
.thaw = geth_core_thaw,
.restore = qeth_core _restore,

b

geth_core_init()
cio/drivers.c/ccw_driver_register — registers the 'ccw ' bus driver
cio/ccwgroup.c/ccwgroup_driver_register — registers the ‘ccwgroup' bus driver
driver_create_file — create file 'group' in sysfs 'ccwgroup' directory
root_device_register — create root device in sysfs of 'geth’

geth_core_hardsetup_card()
geth_mpc_initialize
geth_qdio_establish

Harold Grovesteen 57 of 61 Version 0.1.2

Linux QETH Implementation

cio/qdio_main.c/qdio_get_ssqd_desc — issue CHSC to card data device

geth_core_clear_card()

geth_core_probe_device()
geth_determine_card_type
geth_is_1920 device
cio/device_ops.c/ccw_device_get _chp_desc

cio/chp.c/chp_get chp_desc

Harold Grovesteen 58 of 61 Version 0.1.2

Linux QETH Implementation

net/qeth_I2_main.c
struct ccwgroup_driver geth_12_ccwgroup_driver = {

b

.probe = geth_| 2 probe_devi ce,
.renove = qeth | 2 renove_device
.set_online = geth_|2 set _online,
.set_offline = qeth_|2_set_offline,
. Shutdown = geth_| 2_shut down,
.freeze = qeth_| 2_pm suspend,
.thaw = geth_| 2_pm resune

.restore = geth_| 2_pm resune,

Function Call Tree

geth_|2_set_online

__qgeth_|2_set_online

Harold Grovesteen 59 of 61

Version 0.1.2

Linux QETH Implementation

Linux Source Inventory

Various Linux components are provided in linux/drivers/s390. The following table identifies
the Linux components implemented by each source file.

Source File

Module
(module_init)

Subsystem
(subsys_initcall)

Device
Driver

Thin
Interurpt
Handler

Init
(__initcall)

cio/blacklist.c

cio_ignore
boot parm

cio/ccwgroup.c

Bus ccwgroup

cio/chp.c

cio_chp workq

cio/chsc.c

cio/chsc_sch.c

chsc device

cio/cio.c

cio/cmf.c

s390cmf boot
parm

cio/crw.c

device_ini
tcall

cio/css.c
ciol/idset.c

Bus css

cio/device.c
cio/device_fsm.c
cio/device_id.c
cio/device_ops.c
cio/device_pgid.c
cio/device_status.c
cio/fcx.c
cio/ioasm.h
cio/itcw.c
cio/scsw.c

Bus ccw

ciolisc.c

cio/qdio_thinint.c
cio/airqg.c
(AIF support)

QDIO
thin

net/geth_core_main.c
net/qeth_core_sys.c

“‘geth” ccw
driver reg.

Harold Grovesteen

60 of 61

Version 0.1.2

Linux QETH Implementation

Source File Module Subsystem Device Thin Init
(module_init) | (subsys_initcall)| Driver |Interurpt| (__initcall)
Handler
“qeth”
ccwgroup reg.
net/qeth_I2_main.c | stub geth L2
ccwgroup
net/qeth_I3_main.c |stub geth L3
net/qeth_I3_sys.c ccwgroup
net/qeth_core_mpc.c

Harold Grovesteen 61 of 61 Version 0.1.2

	Preface
	Introduction
	Open Systems Adapter (OSA)
	QDIO Configuration
	Linux Support of QDIO (OSD Channel) Features – Real Interfaces
	Linux Support of QDIO (OSD Channel) Features – Emulated Interfaces
	OSN Channels

	Device Information
	Model List Data

	OSA Express Interface
	Device Status
	Sense Data
	Identification Exchange – Establishing Transport Operations
	Function Level Processing
	Sequence Numbers
	Tokens

	Command Channel Operations
	Command Channel Protocol Data Units

	Command Channel Requests and Responses
	Maximum Transmission Unit (MTU) Size
	IP Assist Commands (IPA)
	IP Assist Header
	IP Assist Commands
	IP Assist Return Codes
	STARTLAN (0x01)
	STOPLAN (0x02)
	SETVMAC (0x21), DELVMAC (0x22), SETGMAC (0x23) and DELGMAC (0x24)
	SETVLAN (0x25) and DELVLAN (0x26)
	SETIP (0xB1) and DELIP(0xB7)
	SETADPPARMS (0xB8)
	Query-Commands-Supported Sub-Command (0x00000001)
	Set Promiscuous Mode Sub-Command (0x00000800)

	Data Device Buffer Formats
	Layer-2 Buffers
	Layer-2 Buffer Flags

	Layer-3 Buffers
	Layer-3 Buffer Flags
	Layer-3 Extended Buffer Flags

	Layer-3 Buffers with TCP Segmentation Offload

	OSA Logical Structure
	Appendix A - Linux QETH Components
	Drivers
	Device Attributes
	Linux OSA Layer-2 Ethernet Adapter Management
	Step 1 – Kernel Initialization
	Step 2 – I/O Probes
	Step 3 – User Configuration
	Creating the Group Device
	Configuring the Group Device
	Setting the Group Device Online

	Step 4 – Bringing the Layer-2 Group Device Online
	Step 5 – Bringing the Layer-2 Ethernet Interface Up
	Step 6 – Bringing the Layer-2 Ethernet Interface Down
	Step 7 – Taking the Layer-2 Group Device Offline

	Read/Write Device Transport Channel Handling

	Appendix B - Module Relationships
	Appendix C - Linux Structures
	Structure Values
	drivers/s390/net/qeth_core.h
	qeth_buffer_pool_entry
	qeth_card

	Appendix D - Linux Modules and Drivers
	Appendix E - Linux Functions
	net/qeth_core_main.c
	qeth_core_init()
	qeth_core_hardsetup_card()
	qeth_core_clear_card()
	qeth_core_probe_device()

	net/qeth_l2_main.c
	Function Call Tree

	Linux Source Inventory

