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Abstract—The growing complexity of circuit boards makes
manufacturing test increasingly expensive. In order to reduce test
cost, a number of test selection methods have been proposed in
the literature. However, only few of these methods can be applied
to black-box test-cost reduction. In this article, we propose a novel
black-box test selection method based on Bayesian networks
(BNs), which extract the strong relationship among tests. First,
the problem of reducing the black-box test cost is formulated
as a constrained optimization problem. Next, multiple structure
learning and transfer learning algorithms are implemented to
construct BN models. Based on these BN models, we propose
an iterative test selection method with a new metric, Bayesian
index, for test-cost reduction. In addition, averaging strategies are
applied to enhance the reduction performance. Finally, a robust
model selection framework is proposed to select the optimal BN
model for test-cost reduction. Two case studies with production
test data demonstrate that when no prior information is pro-
vided, our proposed approach effectively reduces the test cost by
up to 14.7%, compared to the state-of-the-art greedy algorithm.
Moreover, our proposed approach further reduces the test cost
by up to 7.1% when prior information is provided from similar
products.

Index Terms—Bayesian network (BN), black-box testing, test-
cost reduction, transfer learning.

I. INTRODUCTION

W ITH the aggressive technology scaling in very large-
scale integration (VLSI) manufacturing, the manufac-

turing cost per transistor has decreased steadily over the last
few decades [2], whereas the test cost per transistor has not
been reduced at the same rate. According to the interna-
tional technology roadmap for semiconductors (ITRSs), as
circuit boards become increasingly complex, test cost becomes
a large, and sometimes even dominant, portion of the overall
manufacturing cost [3]. Therefore, it is important to reduce
test cost and, consequently, improve profit margin for semi-
conductor manufacturing.
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In board testing, white-box testing and black-box test-
ing are two major parts, and are both required to ensure
a low defective parts per million (DPPM) rate for downstream
customers [4]. White-box testing (i.e., structural testing) is
based on fault models and depends on the specific board struc-
ture. It has been widely used over the past few decades due
to its low cost [5]. On the other hand, black-box testing (i.e.,
functional testing) is highly customized and it verifies whether
the functional specifications are met by the given board.
Although black-box testing is often expensive, it can detect
a number of manufacturing defects that can hardly be cov-
ered by white-box testing [5]. Moreover, with the increasing
complexity of circuit boards, it is extremely difficult or even
impossible to ensure a low DPPM with white-box testing only.
Hence, black-box testing is also necessary and has become one
of the major contributors to the overall test cost [6].

Because of the high cost of black-box testing, efficient meth-
ods need to be developed to reduce the test cost. There are
two major categories of methods for test-cost reduction in
general [7]: 1) test ordering and 2) test selection. For test
ordering, different tests are ordered based on their effective-
ness for detecting defects [8]. As such, most defects can be
detected in the early stage of testing, and only a small set of
tests is necessary for most defective boards. Nevertheless, test
ordering only reduces the test cost for defective boards. For
manufacturing processes with high yield, the overall test-cost
reduction is limited.

For test selection, a subset of most effective tests is selected
for detecting defects [10]. By applying this subset of tests,
most (or even all) defective boards can be detected. Owing to
its capability to reduce test cost for both defective and non-
defective boards, test selection is usually preferred over test
ordering [7]. A number of test selection methods have been
successfully proposed for the parametric test of analog and
mixed-signal circuits [11], [12], the wafer-probing and final
test of digital circuits [13]–[16] and the structural test of digital
circuits [10]. However, only few of these methods are appli-
cable to black-box test-cost reduction, and a greedy algorithm
has thus far been shown to be the most practical method to
ensure high defect coverage [10]. Nonetheless, in practice, this
greedy algorithm may suffer from overfitting because the num-
ber of defective boards is often limited for production with
high yield.

To address the aforementioned issues, we propose a new
and “customized” method for black-box test-cost reduction
based on the theory of Bayesian network (BN). Our proposed
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TABLE I
SUMMARY OF THE PROPOSED ALGORITHMS

Fig. 1. Relationships between proposed algorithms.

method carries two important contributions: 1) our problem
formulation addressing the overfitting issue is new and 2) it
is the first attempt in the testing community to develop a BN-
based method with adaptive model selection. The proposed
method is composed of a number of algorithms, as summa-
rized in Table I. Fig. 1 illustrates the relationship between
these algorithms and how our proposed method is organized.

Specifically, we propose a relationship analysis tool based
on BN models for black-box tests. To identify the rela-
tionship among tests, the BN models are constructed for
black-box tests with historical test data based on multiple
structure learning methods (e.g., constraint-based meth-
ods such as Algorithm 1 [23]–[26], score-based meth-
ods such as Algorithm 2 [27], [28], and hybrid methods
such as Algorithm 3 [29]). Model averaging techniques in
Algorithm 4 are adopted to facilitate robust learning for the
proposed BN models. In addition, if prior information (i.e.,
historical test data) from similar products is available, transfer
learning methods, such as Algorithms 5–7 are further applied
to improve the reliability of BN models.

Based on our proposed BN models, a black-box test-cost
reduction method is proposed in Algorithm 8. For each BN
model, a new metric, referred to as the Bayesian index, is
developed in this article to evaluate the efficiency of defect
coverage of each test, and a subset of K black-box tests with
the highest Bayesian index values is selected to meet the given
constraints on test cost. Next, to select the best BN model with
the most effective subset of tests, a robust model selection
algorithm in Algorithm 9 is proposed among all BN models
learned by multiple structure learning methods.

Our proposed test-cost reduction approach effectively allevi-
ates the overfitting problem posed by the conventional greedy
algorithm, because the BN models can be accurately learned
from a limited data set. As demonstrated by our experimen-
tal results based on production test data in Section VIII, the
proposed approach reduces test cost by up to 14.7%, compared
to the conventional greedy algorithm with no prior information
provided from similar products. When the transfer learning
methods are applied with test data from similar products, test
cost can be further reduced by up to 7.1%. For high-volume
production, even a 10% test-cost reduction is significant [16].

The remainder of this article is organized as follows. In
Section II, we review the background on board-level testing
and test-cost reduction. In Section III, we present the problem
formulation for black-box test-cost reduction. In Section IV,
we introduce the concept of BNs, and explain several basic
methods and the model averaging strategy to learn a BN model
from the given data set. In Section V, the transfer learning
methods for BN models are introduced to utilize the prior
information from similar products. In Section VI, we pro-
pose the test-cost reduction method based on a novel test-set
averaging strategy, and summarize our detailed implemen-
tation on model selection in Section VII. The experimental
results are presented in Section VIII. Finally, we conclude in
Section IX.

II. BACKGROUND

A. Board-Level Testing

In board-leveling testing, a thorough test strategy must be
conducted to ensure the reliability of products. After board
assembling, process testing is first applied to check if there
exists any process flaw or missing component. Next, white-box
testing is applied to detect the manufacturing defects caused by
soldering, board assembling, etc. After that, black-box testing
is applied to detect other manufacturing defects that cannot be
covered by white-box testing. Finally, burn-in testing is some-
times applied for products with high-reliability requirements.
Among all these steps, white-box testing and black-box test-
ing are the two most important ones and consume most test
cost [17].

White-box testing, also known as structural testing, has been
widely used over the past few decades [5]. It is usually based
on fault models and is often generated by an automatic test pat-
tern generation (ATPG) system. Therefore, its test process is
usually rapid and cost-effective. In addition, it often facilitates
precise and rapid fault diagnosis when sufficient test points
exist [9]. However, with the increasing complexity of circuit
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boards, it is extremely difficult or even impossible to ensure
a low DPPM with only white-box testing. Therefore, black-
box testing has become necessary for modern board-level
testing [5].

Black-box testing, also known as functional testing, verifies
whether the board under test meets the functional specifi-
cations. Compared to white-box testing, black-box testing
checks the input-to-output performance of the board instead
of individual elements (e.g., CMOS transistors, interconnects,
etc.) [17]. It is highly customized and often requires careful
design by senior test engineers owing to the controllability
and observability issues. In addition, black-box tests are often
not reusable when the packaging is changed. Thus, black-box
testing is far more expensive than white-box testing [17].

Despite its expensive cost, black-box testing is essential
when circuit boards become increasingly complex. If only
applying white-box testing, we may encounter from either
the under-testing problem with many undetected defects and
a high DPPM, or the over-testing problem with high yield
loss [18]. Therefore, to ensure a low DPPM and simulta-
neously a high yield, black-box testing should be applied
to detect the manufacturing defects that can hardly be cov-
ered by white-box testing. Due to its necessity and expensive
cost, black-box testing has become one of the major con-
tributors to the overall test cost [6], and there is a pressing
need to develop an efficient method to reduce the black-box
test cost.

B. Test-Cost Reduction

In general, the test-cost reduction methods can be classi-
fied into two broad categories [7]: 1) test ordering and 2) test
selection. The test ordering is a traditional test-cost reduction
method. In specific, multiple tests are ordered based on their
effectiveness for detecting defects [8]. As such, most defective
boards can be detected in the early test stage, and remaining
tests are unnecessary for these boards. Therefore, the overall
test time and test cost can be reduced.

Over the past few decades, several test ordering methods
have been proposed for both analog and digital integrated cir-
cuits (ICs) [8], [19]. However, these methods only reduce the
test cost for defective boards/circuits. In modern IC manu-
facturing with high yield, if the test cost were only reduced
for defective parts, the overall test-cost reduction would be
limited. Moreover, test ordering can only be applied for pro-
duction test, where diagnosis is not required [9]. Therefore,
test ordering is barely used alone for the test-cost reduction in
recent years.

To effectively reduce the test cost for products with high
manufacturing yield, various test selection methods are widely
used in recent years. The key idea is to select a subset of tests
that can detect defects most efficiently [10]. By applying this
subset, most (or even all) defective boards can be detected.
As this subset of tests is applied to all boards including non-
defective boards, the test cost reduction method is often more
effective than the test ordering approach. Owing to this fact,
test selection is usually preferred over test ordering [7].

A number of test selection methods have been proposed
in recent years. Chen and Orailoglu [7] proposed an adaptive
test strategy for parametric test selection of mixed-signal cir-
cuits. A probabilistic model is built for each test, and in the
light of correlation analysis, the optimal test subset is selected.
Ahmadi et al. [12] proposed an adaptive test selection flow for
parametric tests by considering the wafer-level process vari-
ations in analog/RF ICs. Wang et al. [13] proposed a cost
model for dynamic selection of the test configurations and pro-
cedures for 3-D ICs. Agrawal and Chakrabarty [14] proposed
a generic test-cost model for 3-D-stacked ICs, and based on
this model, an optimization method is proposed to effectively
select tests. Grady et al. [15] defined a score function to
evaluate each wafer-level test, and complete the wafer-level
test selection with this function. Liu et al. [16] developed
a fine-grained adaptive test strategy for chip-level final test. By
evaluating a machine-learning-based quality index (QI), chips
are classified into multiple quality levels, and then a proba-
bilistic model is built for adaptive test selection in each level.
Xue and Blanton [10] proposed a conventional greedy method
for structural test selection.

Although many test selection methods have been proposed,
few of these methods can be applied to black-box test-cost
reduction, since most of the aforementioned methods are
developed for parametric tests or for ICs with specific proper-
ties (e.g., specific packaging, 3-D structure, etc.) For black-box
testing, we need to treat the board/circuit as a black box with
only information from the pass/fail result of each test. To the
best of our knowledge, the greedy algorithm has thus far been
the most practical method to ensure high defect coverage [10].
This method formulates the test-cost reduction problem as
a budgeted maximum coverage problem (BMCP) [20], and
solves it by a greedy method. It first selects the test that is
most effective to detect the undetected defects and removes the
defective boards covered by this test. The aforementioned pro-
cess is repeated until the test-cost limit is reached. The greedy
method is fast and easy to implement. However, it may suffer
from overfitting, provided that the number of defective boards
is often limited for production with high yield. Therefore, an
alternative method is needed for robust black-box test-cost
reduction.

III. PROBLEM FORMULATION

As shown in Fig. 2, to reduce the black-box test cost by test
selection, a complete set of black-box tests must be applied
to a set of sample boards. As such, a test selection model can
be trained with the sample test data and the prior information
from similar products (if available). Using this model, a subset
of important tests is selected. By only applying this subset of
tests to other boards, we can reduce the black-box test cost.

Traditionally, this test selection problem can be formulated
as a BMCP [20]. Let T ={t1, t2, . . . , tM} denote a complete
set of black-box tests, and BTrain = {b1, b2, . . . , bNTrain} denote
the set of defective sample boards. Each black-box test tm is
capable of detecting a subset of defective boards BTrain,m ⊆
BTrain with the test cost (i.e., average test time per board) cm.
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Fig. 2. General flow of black-box test-cost reduction by test selection.

The problem of test selection can be formulated as

arg max
TOpt
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TOpt ⊆ T (1)

where | • | denotes the number of elements in a set

c
(

TOpt
) =

∑

tm∈TOpt

cm (2)

denotes the total test cost for testing TOpt, and cTh is
the maximum threshold for the total black-box test cost.
To solve BMCP, a conventional greedy algorithm is often
utilized [10], [20].

The BMCP formulation aims at maximizing the coverage
of the defective boards used for training the test selection
model. However, this formulation does not guarantee that the
maximum coverage will also be achieved when applying the
selected tests TOpt to other defective boards. The number of
defective boards is often limited, especially for production
with high yield, and the number of boards for training is
even less. Therefore, formulating the black-box test selection
as BMCP may cause the selected tests to overfit the training
boards and exhibit less coverage on other defective boards.

To address this overfitting problem in BMCP, we revise the
traditional formulation. Let BTest = {b1, b2, . . . , bNTest} denote
the set of defective boards to which only the selected test
set TOpt will be applied. BTest,m ⊆ BTest denotes the subset of
defective boards in BTest that can be detected by the black-box
test tm. The actual goal of test selection is to select a subset
TOpt of black-box tests to maximize the defect coverage on
BTest. To address this goal, the original BMCP formulation
can be revised as

arg max
TOpt

∣
∣
∣
∣
∣
∣

⋃

tm∈TOpt

BTest,m

∣
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∣
∣

s.t. c
(

TOpt
) ≤ cTh

TOpt ⊆ T. (3)

Nevertheless, solving the optimization problem in
(3) is nontrivial, because we cannot directly obtain any

information/data from BTest. Fortunately, BTrain and BTest
share common information even when the number of defective
boards is limited. In addition, similar products (if available)
can further provide valuable prior information to guide test
section. If we properly use the information/data from BTrain
and other similar products, we should obtain an approximate
solution to the problem in (3). In the sections that follow,
we will propose a novel methodology to extract the key
information from BTrain and other similar products to solve
the black-box test selection problem.

It is important to note that our problem formulation does
not consider the following scenarios.

1) Order Constraints: We do not consider any testing tasks
with order constraints, as it increases the number of
constraints for the resulting optimization problem and,
consequently, increases the complexity. We plan to fur-
ther attack such a multiconstraint optimization problem
in our future research.

2) Granularity of Black-Box Tests: We consider each black-
box test as an atomic component that cannot be further
divided into multiple subtests. In other words, each
black-box test is either tested with its all contents or not
tested. We will further explore the flexibility of forming
subtests (e.g., applying only 20% of each black-box test)
in our future research.

3) Streaming/Online Data: Our problem formulation is
batch-based, in which we use all historical data to learn
the optimal test set for future testing. If we need to
handle streaming/online data, we should reformulate the
problem with the complete data set by merging the new
data with the historical data. Such an approach is compu-
tationally expensive. In our future work, we will develop
efficient incremental/online learning methods [21] to
handle streaming/online data.

Despite these limitations, we are capable of handling
multiple different tests (e.g., a short black-box test and a long
one) that share similar contents. Our proposed method treats
them as different black-box test items. Based on our formu-
lation, we will select the optimal test items among them.
Considering memory test as an example, there may be many
different-yet-similar March-based algorithms (e.g., March X,
March A, March Y, etc. [4]) associated with different costs.
We consider them as different black-box test items and use the
proposed algorithm to select the optimal subset of these tests.

IV. BAYESIAN NETWORK

To solve the problem described by (3), we should first
extract useful information from the set BTrain of defec-
tive boards. As discussed in [13], the relationships among
tests contain important information for test-cost reduction.
Although the relationships among tests for BTrain are not iden-
tical to those for BTest, most strong relationships are shared
between BTrain and BTest. Hence, we need to train a model that
can identify the strong relationships among black-box tests.

In recent years, the BN model has been shown to be a prac-
tical and effective way to identify strong relationships among
random variables (i.e., black-box tests in our application) [22].
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Fig. 3. Example of a BN for five black-box tests.

If BN models can be trained with test data, the strong rela-
tionships among black-box tests can be extracted accurately.
Therefore, in this section, we introduce the definitions of BNs
on black-box tests and illustrate how to learn the BN structure.

A. Definitions

From the perspective of graph theory, the definition of a BN
can be given based on a directed acyclic graph (DAG). The
DAG is a finite graph G = (V, E), where all edges are directed,
and there is no directed cycle. The BN model is defined as
a network structure, a DAG G = (V, E), in which each vertex
vm ∈ V denotes a black-box test tm, and each edge em,n ∈ E
denotes the relationship between two tests tm and tn. When
there is an edge between two tests (e.g., tm and tn), it means
that they are highly correlated with each other. Namely, when
tm fails, tn may also fail with high probability.

From the perspective of probability theory, the BN model
can also be defined as a probability distribution P(T) over
a set of black-box tests T = {t1, t2, . . . , tM}. Based on the
edges em,n ∈ E in the DAG, P(T) can be decomposed into
a number of conditional probability distributions (CPDs) on
every test tm

P(T) =
M
∏

m=1

P(tm|TPr(tm);�(tm) ) (4)

where TPr(tm) denotes the set of parents of the test tm in the
DAG, and �(tm) denotes the set of parameters in the CPD of
the test tm. Next, we use an example to intuitively describe
how to calculate the CPD and �(tm).

Fig. 3 shows a simple example of BN for five black-box
tests: t1, t2, t3, t4, and t5. In this BN, t1 is the parent of both
t3 and t4. Both t2 and t3 are the parents of t5. t1 and t2 are
independent because either one is not an ancestor of the other
one, and they do not share any common ancestor

P(t1, t2) = P(t1) · P(t2). (5)

Similarly, t2 is independent of t3 and t4

P(t3, t4|t1 , t2) = P(t3, t4|t1 ). (6)

t3 and t4 are conditionally independent given t1 because t1 is
the only common ancestor of t3 and t4

P(t3, t4|t1 ) = P(t3|t1 ) · P(t4|t1 ). (7)

t5 and t1 are conditionally independent given t3 because t1 is
no longer an ancestor of t5 when removing t3. In addition, t5

TABLE II
CPT CORRESPONDING TO t5

and t4 are conditionally independent given t3 because t5 and t4
do not share any common ancestor when removing t3. Thus,
we have

P(t5|t1, t2, t3, t4 ) = P(t5|t2, t3 ). (8)

Therefore, P(T) can be decomposed as

P(T) = P(t1, t2, t3, t4, t5)

= P(t1, t2) · P(t3, t4|t1, t2 ) · P(t5|t1, t2, t3, t4 )

= P(t1, t2) · P(t3, t4|t1 ) · P(t5|t2, t3 )

= P(t1) · P(t2) · P(t3|t1 ) · P(t4|t1 ) · P(t5|t2, t3 ). (9)

For each tm, the CPD can be described as a conditional
probability table (CPT). For example, Table II is the CPT of t5,
describing the CPD P(t5|t2, t3) by four parameters are �(t5) =
{pa, pb, pc, pd}. To calculate these parameters, we only need
to count the frequencies of the corresponding cases observed
from the data set [22]. Consider a simple example

pb = P(t5 = 0|t2 = 0, t3 = 1) = Nt5,t2,t3(0, 0, 1)

Nt2,t3(0, 1)
(10)

where 0/1 denotes the pass/fail result of the black-box test,
and Nt2,t3 (0, 1) denotes the number of boards in BTrain that
pass the test t2 but fail the test t3.

B. Structure Learning

To extract the relationships among black-box tests, we
need to learn the BN structure. There are three popular cate-
gories of algorithms for structure learning: 1) constraint-based
algorithms [23]–[26]; 2) score-based algorithms [27], [28],
and 3) hybrid algorithms [29]. As the efficacy of these algo-
rithms is application-dependent [22], [30], we will adopt all
these algorithms in this article. In Section VII, we will further
introduce a model selection algorithm to automatically select
the best algorithm for a given application case.

1) Constraint-Based Structure Learning: Conditional inde-
pendence relationships (i.e., constraints) are first learned
among black-box tests from the training data. Next, the
most proper BN structure is obtained to meet these con-
straints. The aforementioned constraints are usually learned
by hypothesis testing based on mutual information to check
the conditional independency. Specifically, to check the con-
ditional independency between two black-box tests tm and
tn given a test set TS, the null hypothesis is proposed
as P(tm, tn|TS) = P(tm|TS).P(tn|TS). The test set TS is
referred to as the separation set in BNs because if the
hypothesis holds, tm and tn are separated by TS in the BN
structure [26].
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To decide whether to accept or reject this hypothesis, we
need to calculate the conditional mutual information

I(tm, tn|TS)

=
∑

i∈Rm
j∈Rn
k∈RS

Ntm,tn,Ts(i, j, k)

NTrain
log

(
Ntm,tn,Ts(i, j, k) · NTs(k)

Ntm,Ts(i, k) · Ntn,Ts(j, k)

)

(11)

where Rm, Rn, and RS are the sets containing all possible test
results for tm, tn, and TS, respectively, Ntm,tn,TS(i, j, k) denotes
the number of defective boards whose test results satisfy tm =
i, tn = j and TS = k, and Ntm,TS(i, k) denotes the number of
defective boards whose test results satisfy tm = i and TS = k,
etc. The decision D(tm, tn|TS) can be made as

D( tm, tn|TS) =
{

Accept, I( tm, tn|TS) ≤ ITh
Reject, I( tm, tn|TS) > ITh

(12)

where ITh is a threshold determined by the p-value pα chosen
for the hypothesis testing [31], [43]

pα = 1− χ2((|Rm − 1| · |Rm − 1| · |RS|), ITh). (13)

In (13), χ2(k, x) is the cumulative distribution function of x
for a chi-square distribution with k degrees of freedom. Once
pα is determined, ITh can be easily found by the chi-square
distribution [32]. We will further discuss how to choose an
appropriate value for pα in Section VII.

The decision D(tm, tn|TS) in (12) decides whether the edge
<tm, tn> should exist or not. If D(tm, tn|TS) = Accept, tm
and tn are conditionally independent given a separation set
TS and, consequently, the edge <tm, tn> should not exist. For
each pair of (tm, tn), we use the symbol TSep(tm, tn) to represent
the smallest set that satisfies D(tm, tn|TSep(tm, tn)) = Accept.

Based on the conditional independence tests, many
constraint-based structure learning algorithms have been
proposed [23]–[26]. Among them, the PC-stable algorithm
has been shown to be a state-of-the-art approach with both
great performance and stability [30], [33]. It is named after
Peter and Clark who originally proposed the constraint-based
learning algorithm [25]. The word “stable” means that the
result of the PC algorithm in [26] is independent of the
order of black-box tests recorded in the training data. In
this article, we will apply it to our constraint-based structure
learning.

To illustrate how the PC-stable algorithm works, an example
with 4 black-box tests, t1, t2, t3, and t4, is shown in Fig. 4.

1) Initialization: We initialize the skeleton of BN structure
as a complete undirected graph as shown in Fig. 4(a).

2) Learning Skeleton: We delete the edges based on condi-
tional independence tests in (12). Among all conditional
independence tests, we start from those with the empty
separation set TS = ∅, and then increase the size of
separation set until |TS| = M − 2. Following this order,
once we observe D(tm, tn|TS) = Accept, we can not only
delete the edge <tm, tn> but also learn TSep(tm, tn) = TS.
In this example, the decisions of all conditional inde-
pendence tests are summarized in Table III. According
to these decisions, the edge <t1, t2> is deleted because

Algorithm 1 PC-Stable Algorithm for BN Learning
1. Initialize G as a complete undirected graph.
2. For NSep = 0, 1, . . . , M − 2:
3. For each edge <tm, tn> in G:
4. If ∃ TS ⊆ T \{tm, tn} satisfying |TS| = NSep and

D(tm, tn | TS) = Accept:
5. Delete <tm, tn> from G.
6. TSep(tm, tn) = TS.
7. End If.
8. End For.
9. End For.

10. Determine the directions of all edges in G.

Fig. 4. Example of BN learning. (a) Initial skeleton of G that is a complete
undirected graph. (b) Skeleton G after deleting edges based on the condi-
tional independence tests given an empty separation set. (c) Skeleton G after
deleting edges based on the conditional independence tests given a separa-
tion set containing one black-box test. (d) DAG learned after determining the
directions of all edges.

D(t1, t2|∅) = Accept and TSep(t1, t2) = ∅ as shown
in Fig. 4(b). The edges <t1, t4> and <t2, t4> are
deleted because D(t1, t4|t3) = D(t2, t4|t3) = Accept and
TSep(t1, t4) = TSep(t2, t4) = {t3} as shown in Fig. 4(c).
The other edges <tm, tn> remain because tm and tn
cannot be separated by the set T\{tm, tn} as shown in
Table III.

3) Determining Edge Directions: The directions of edges
are determined with the information provided by
TSep(tm, tn) [25], [26]. As shown in Fig. 4(d), the direc-
tions of <t1, t3>, and <t2, t3> are determined as t1
→ t3 ← t2 because t3 does not belong to the separation
set TSep(t1, t2) = ∅. The direction of <t3, t4> is deter-
mined as t3 → t4 because t3 belongs to the separation
set TSep(t1, t4) = {t3}. If the edge <t3, t4> is set to the
opposite direction t4 → t3, the v-structure t1 → t3 ← t4
occurs, violating the fact that t3 ∈ TSep(t1, t4).

The aforementioned idea of PC-stable algorithm is sum-
marized in Algorithm 1. In most applications, the computa-
tional complexity of this algorithm is polynomial in M and
NTrain [22]. More implementation details can be found in [26].

2) Score-Based Structure Learning: A score function is
designed to evaluate the fitting quality, and an optimization
is solved to find the optimal BN structure with the highest
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TABLE III
CONDITIONAL INDEPENDENCE TESTS FOR THE EXAMPLE IN FIG. 4

score value. One of the widely used score functions is the
Bayesian information criterion (BIC) function [22], [34]

SBIC(G) =
M

∑

m=1

log P( tm|TPr(tm);�(tm))− DG

2
log NTrain

(14)

where

DG =
∣
∣
∣
∣
∣
∣

⋃

tm∈T

�(tm)

∣
∣
∣
∣
∣
∣

(15)

denotes the total number of parameters in the BN model.
A large DG implies a complex BN model, and vice versa.

There are two terms in the BIC function in (14). The
first term is the log-likelihood function, and the second term
denotes a penalty for model complexity. By maximizing the
BIC function, we achieve a balance between maximizing the
likelihood function and simplifying the model structure. As
such, the BN model is robust to overfitting, and only the strong
relationships between black-box tests are preserved.

Maximizing the BIC function approximates the
maximum-a-posteriori (MAP) estimation with uniform
prior distribution [34]. However, this MAP approximation
is based on the assumption that the number of training
boards is much greater than the number of black-box tests
(i.e., NTrain >> M) [28], [34]. For IC production with high
yield, the number of defective boards is often small, and this
assumption may not hold. To extend the BIC function to
small data set, an extended BIC (EBIC) function has been
proposed for BN structure learning [28]

SEBIC(G) =
M

∑

m=1

log P(tm|TPr(tm);�(tm))

− DG

2
log NTrain − DG log M. (16)

Compared to the traditional BIC function, the EBIC function
adds a penalty term that is proportional to logM. The theoret-
ical foundation of EBIC has been shown [28]. Moreover, if
NTrain >> M holds, we have log NTrain >> logM so that the
additional term in (16) is negligible and the EBIC function is
reduced to the BIC function in (14).

Once we confirm the score function S(·), we are capa-
ble of learning the BN structure by maximizing the score
function. A widely used method is the hill-climbing (HC)
algorithm [27]. In Algorithm 2, we summarize the major

Algorithm 2 HC for BN Learning
1. Choose an initial structure G, and set SMax = S(G).
2. Repeat:
3. For each G∗ in GNb(G):
4. If S(G∗) > S(G):
5. Set SMax = S(G∗) and G = G∗.
6. End If.
7. End For.
8. Until SMax does not increase further.

Algorithm 3 Hybrid Learning for BN Structure
1. For each tm in T:
2. Set TPrC(tm) = ∅.
3. Repeat
4. Select tMax with the maximum I(tm, tMax | TPrC(tm)).
5. If D(tm, tMax | TPrC(tm)) = Reject, stop iteration.
6. Set TPrC(tm) = TPrC(tm) ∪ {tMax}.
7. End Repeat.
8. End For.
9. Use the HC algorithm to find the optimal G∗ with the constraint

that all parents of tm belong to TPrC(tm).

steps of HC. Starting from an initial structure G, its neigh-
bor set GNb(G) is searched. The set GNb(G) contains all
possible structures with only one edge added, deleted, or
reversed on G. Next, G is refreshed by any G∗ with higher
score. The procedure is repeated until no structure G∗ with
higher score can be found. The computational complexity of
Algorithm 2 is O(KIter.M3.NTrain), where KIter is the num-
ber of iterations [20]. In our application, the algorithm usually
converges within 100 iterations.

3) Hybrid Structure Learning: To take advantage of both
constraint-based learning and score-based learning, an efficient
methodology has been proposed to appropriately combine
them together [29]. It is composed of two major steps: 1) the
restriction step that constrains the possible structures of the BN
model and 2) the maximization step that searches the optimal
structure among all possible structures.

In the restriction step, the mutual information in (11) and
the conditional independence test in (12) are used to calculate
the parent candidate set TPrC(tm) that contains all potential par-
ent nodes for the node tmin the BN model. Starting from an
empty set TPrC(tm), we iteratively select the test tMax with
the maximum mutual information I(tm, tMax|TPrC(tm)). The
iteration repeats until D(tm, tMax|TPrC(tm)) = Reject. Similar
to the constraint-based structure learning, the threshold for
D(tm, tMax|TPrC(tm)) in (12) is determined by appropriately
choosing the p-value pα in (13) [29], as will be discussed in
SectionVII. Next, in the maximization step, the score-based
HC algorithm is applied to find the optimal BN structure G∗
with the constraints that the parent nodes of tm must belong
to the parent candidate set TPrC(tm).

In Algorithm 3, we summarize the hybrid algorithm
used for structure learning. The computational complex-
ity of Algorithm 3 is identical to that of Algorithm 2.
However, Algorithm 3 often takes less computational time
than Algorithm 2 in most applications, because Algorithm 3
shrinks the search space by considering the parent candidate
sets so that the HC algorithm may converge more quickly [33].
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Algorithm 4 Model Averaging for BN Learning
1. Choose a structure learning algorithm.
2. For k = 1, 2, . . . , K:
3. Generate a new board set B∗k from BTrain by bootstrap

sampling.
4. Apply the given structure learning algorithm to learn the BN

structure Gk = (V, Ek) based on B∗k.
1) End For.
2) Estimate the confidence of each edge em,n by:

P
(

em,n
) = 1

K

K
∑

k=1

fTrue
(

em,n ∈ Ek
)

, (17)

where fTrue(em,n ∈ Ek) returns 1 if em,n ∈ Ek, and 0 otherwise.
5. Determine the confidence threshold pTh [37].
6. Select every edge em,n with P(em,n) > pTh. Use these edges

to construct G = (V, E).

More implementation details of Algorithm 3 can be found
in [29] and [33].

C. Model Averaging

The aforementioned structure learning algorithms are able
to accurately learn the BN structure of interest when the
amount of training data is large. However, for our applica-
tion of black-box testing, the number of training boards is
often limited compared to the number of black-box tests.
In this case, the structure learning algorithms can be unsta-
ble and inaccurate [22]. Even adding or deleting a small
amount of training data can lead to significant changes in the
learned structure (i.e., multiple edges can be added, deleted,
or reversed).

To obtain a more accurate and robust BN structure, a model
averaging strategy is usually applied to combine multiple BN
structures. These multiple BN structures are learned from
multiple subsets of the training data by using the same
structure learning algorithm (e.g., one of the three learning
algorithms in Section IV-B) [33], [35], [37]. In what follows,
we will describe this model averaging method in detail.

In Algorithm 4, we summarize the model averaging proce-
dure for BN learning. First, we choose one of the structure
learning algorithms described in Section IV-B, and it will be
used for all structure learning tasks in the following steps.
Next, a data set B∗k is generated by bootstrap sampling,
where NTrain samples are randomly drawn from BTrain with
replacement [36]. The given structure learning algorithm is
applied to B∗k to learn the BN structure: Gk = (V, Ek). These
two steps are repeated for K times to learn K different DAG
structures. With these K structures, we estimate the confidence
of each edge em,n defined by P(em,n) in (17), and deter-
mine a confidence threshold pTh by minimizing the difference
between the estimated confidence distribution and the ideal
distribution [37]. More details on how to determine pTh can be
found in [37]. Finally, every edge em,n with P(em,n) > pTh is
selected, forming the edge set E for the average DAG structure
G = (V, E).

The aforementioned model averaging algorithm combines
the DAG structures {Gk; k = 1, 2, . . . , K} learned with K dif-
ferent bootstrap sample sets. Only the edges existing in most

DAG structures are used to construct the average structure G.
Therefore, when K is sufficiently large, the average structure
with fewer noisy edges should be more robust than the struc-
ture learned without averaging. In Section VII, we will further
discuss how to appropriately choose the structure learning
algorithm in step 1 of Algorithm IV.

V. TRANSFER LEARNING

In practice, the number of defective boards is often limited
(e.g., for production with high yield), and it may be difficult
to learn a sufficiently accurate BN model by directly apply-
ing the structure learning methods presented in the previous
section. Especially for new products, the number of defective
boards may be even less than the number of black-box tests. In
these cases, additional information must be explored to learn
an accurate BN model.

Fortunately, for most new products, there are similar old
products (e.g., the previous generation of the same product,
the same category of products for different applications, etc.)
which share similarities with the new products. Besides, they
may be tested by the same black-box tests as the new products.
Thus, we can obtain abundant test data from these similar
products, and use them to enhance BN structure learning.

The aforementioned idea of utilizing information from simi-
lar data set is known as transfer learning in [38]. It has become
one of the cutting-edge topics in machine learning [39], and
several transfer learning methods for BN models have been
proposed in recent years [39]–[42].

In this section, we will focus on transfer learning only
from one similar product PSim, assuming that PSim has the
same black-box test set T as the new product PNew. We will
particularly discuss three popular methods: 1) constrained-
based transfer learning; 2) score-based transfer learning; and
3) hybrid transfer learning. In the future, we will work
on other complex transfer learning problems (e.g., learning
from multiple similar products, learning from products with
a different black-box test set T, etc.)

A. Constraint-Based Transfer Learning

Constraint-based transfer learning [41] has been particularly
developed for the constrain-based structure learning method
in Section IV-B. It revises the methodology for conditional
independence tests by incorporating valuable information from
the similar product PSim.

Let D(tm, tn|TS) denote the conditional independence test
decision for tm and tn given TS in the new product PNew, as
determined by (12). Let DSim(tm, tn|TS) denote the conditional
independence test decision in the similar product PSim. When
transfer learning is applied, the final conditional independence
test decision DTrans(tm, tn|TS) should combine the information
from both PNew and PSim. Toward this goal, we first intro-
duce two key terminologies: 1) the confidence parameter α

to describe the confidence level of the conditional indepen-
dence test on PNew or PSim and 2) the similarity measurement
parameter β to describe the similarity between PNew and PSim.

For the confidence parameter α, it should be large when the
amount of data used for independence test is large; otherwise,
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it should be small. It has been shown that the error of the inde-
pendence test based on mutual information is asymptotically
proportional to logN/2N, where N is the data set size [43].
Thus, the confidence parameters of the conditional indepen-
dence test on tm and tn given TS are defined for PNew and
PSim, respectively [41]

α(tm, tn|TS) = max
{

1− log NTrain
NTrain

· |TS|, 0
}

(18)

αSim(tm, tn|TS) = max
{

1− log NSim
NSim

· |TS|, 0
}

(19)

where NSim is the total number of defective boards in PSim. The
function max{·, 0} is used to keep α non-negative even when
|Ts| is extremely large and NTrain or NSim is extremely small.

The similarity measurement parameter β for tm and tn given
TS is defined as [41]

β(tm, tn|TS) = βG · βL(tm, tn|TS) (20)

where βG is the global similarity parameter, and βL(tm, tn |
TS) is the local similarity parameter. The global similarity βG

is defined as

βG = NCommon

NInd
(21)

where NInd is the number of independent pairs of black-
box tests in PNew, and NCommon is the number of common
independent pairs of black-box tests between PNew and PSim.
Here, the independencies are checked by (12) with TS as an
empty set.

On the other hand, the local similarity βL(tm, tn|TS)

depends on the conditional independence test decision for
tm and tn given TS. If D(tm, tn|TS) for PNew and DSim(tm,
tn | TS) for PSim are identical, the local similarity should
be high; otherwise, it should be low. βL(tm, tn | TS) is
defined as

βL(tm, tn|TS) =
{

1, D(tm, tn|TS) = DSim(tm, tn|TS)

0.5, D(tm, tn|TS) �= DSim(tm, tn|TS)
(22)

where the constants 1 and 0.5 are recommended by [41].
Next, we define the weight w for PNew and the weight wSim

for PSim

w(tm, tn|TS) = α(tm, tn|TS) (23)

wSim(tm, tn|TS) = αSim(tm, tn|TS) · β(tm, tn|TS). (24)

By considering these weights, the mutual information in (11)
is revised to combine the information from both PNew
and PSim

ITrans(tm, tn|TS)

=
∑

i∈Rm
j∈Rn
k∈RS

Wtm,tn,Ts
(i, j, k)

W
log

(

Wtm,tn,Ts
(i, j, k) ·WTs

(k)

Wtm,Ts
(i, k) ·Wtn,Ts

(j, k)

)

(25)

where

W = w(tm, tn|TS)NTrain+wSim(tm, tn|TS)NSim

(26)

Wtm,tn,Ts
(i, j, k) = w(tm, tn|TS) · Ntm,tn,Ts(i, j, k)

Algorithm 5 Constraint-Based Transfer Learning for BN
1. Initialize G as a complete undirected graph.
2. For NSep = 0, 1, . . . , M − 2:
3. For each edge <tm, tn> in G:
4. If ∃ TS ⊆ T \{tm, tn} satisfying |TS | = NSep and

DTrans(tm, tn | TS) = Accept:
5. Delete <tm, tn> from G.
6. TSep(tm, tn) = TS.
7. End If.
8. End For.
9. End For.

10. Determine the directions of all edges in G.

Algorithm 6 Score-Based Transfer Learning for BN
1. Choose the initial structure GTrans = GSim, and set SMax =

S(GSim).
2. Repeat:
3. For every G∗ in TNb(GTrans):
4. If S(G∗) > S(GTrans):
5. Set SMax = S(G∗) and GTrans = G∗.
6. End If.
7. End For.
8. Until SMax does not increase further.

+ wSim(tm, tn|TS) · NSim:tm,tn,Ts(i, j, k).

(27)

In (26) and (27), NSim:tm,tn,TS(i, j, k) denotes the number of
defective boards in PSim whose test results satisfy tm = i,
tn = j and TS = k. Similar to (26), we use weighted average
to calculate Wtm,TS(i, k), Wtn,TS(j, k), and WTS(k).

Finally, we revise (12) and make the decision on conditional
independence test with the mutual information in (25)

DTrans(tm, tn|TS) =
{

Accept, ITrans( tm, tn|TS) ≤ ITh
Reject, ITrans( tm, tn|TS) > ITh

. (28)

Replacing the decision D(tm, tn|TS) by DTrans(tm, tn|TS) in
step 4 of Algorithm 1, the constraint-based transfer learning
method is summarized in Algorithm 5.

B. Score-Based Transfer Learning

Score-based transfer learning [41] has been particularly
developed for the score-based structure learning method in
Section IV-B. The basic idea is to utilize the BN structure
GSim learned from PSim to initialize the structure learning on
PNew. In Algorithm 6, we summarize the score-based trans-
fer learning flow. Starting from GSim, the HC algorithm in
Algorithm 2 is applied to find the optimal BN structure with
maximum score value based on the training data of PNew.

Algorithm 6 is applicable to different choices of score
functions. Although other scored-based methods have been
proposed for transfer learning of BN structure [40], [42], these
methods often rely on a log-likelihood score function without
complexity penalty. For our application with small data set,
these conventional methods tend to overfit the data and show
poor performance [22]. Thus, we apply Algorithm 6 with
BIC/EBIC score function for score-based transfer learning in
this article.
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Algorithm 7 Hybrid Transfer Learning for BN
1. For each tm in T:
2. Set TPrC(tm) = ∅.
3. Repeat
4. Select tMax with the maximum ITrans(tm, tMax | TPrC(tm)).
5. If DTrans(tm, tMax | TPrC(tm)) = Reject, stop iteration.
6. Set TPrC(tm) = TPrC(tm) ∪ {tMax}.
7. End Repeat.
8. End For.
9. Use the HC algorithm to find the optimal G∗ with the constraint

that all parents of tm belong to TPrC(tm).

C. Hybrid Transfer Learning

To improve the hybrid learning algorithm in Section IV-B,
we propose a hybrid transfer learning method, as summarized
in Algorithm 7. Compared to Algorithm 3, the hybrid trans-
fer learning method combines the information from PSim and
PNew in the restriction step and calculates the parent candidate
set TPrC(tm) using the mutual information in (25) and the con-
ditional independence test in (28). In the maximization step,
the score-based HC algorithm is applied to find the optimal
BN structure G∗ with the constraints of TPrC(tm). Different
from Algorithm 6 that takes GSim learned from PSim as the
initial structure, we set the initial structure G as a null graph
because GSim may violate the constraints defined by TPrC(tm)
while the null graph does not suffer from this issue.

VI. TEST-COST REDUCTION

Once the BN models are built with test data from BTrain,
the strong relationships among different black-box tests are
encoded by the BN structure. The remaining problem is how
to utilize this information for black-box test-cost reduction. In
this section, we propose an iterative test selection method in
the light of BN models to solve the optimization problem in
(3). To enhance the performance, we further propose a test-set
averaging strategy for test selection.

A. Test Selection

To explain the proposed iterative test selection method, we
first introduce a key concept: Markov blanket in BNs [22]. For
each test tm, the Markov blanket TMB(tm) is defined as a set
containing the parent tests of tm, the children tests of tm, and
the tests sharing at least one child with tm. All tests out of the
set TMB(tm) are conditionally independent of tm, as stated by
the following theorem [22].

Theorem 1: Given the tests in the Markov blanket TMB(tm),
the test tm is conditionally independent of all other tests out
of the set TMB(tm).

Based on this property of Markov blanket, we define
a Bayesian index FBN for test selection

FBN(tm, TSel) = Ntm,TMB(tm)∩TSel(1, 0)

cm
(29)

where TSel is the set of black-box tests which is already
selected, the test cost cm can be chosen as the average test
time (second) of tm, 1 denotes the “fail” result for tm, and
0 is a vector of 0s representing the “pass” results for all the
tests in TMB(tm) ∩ TSel. Thus, the Bayesian index denotes the

Algorithm 8 Black-Box Test Selection
1. Build a BN model with the test data set BTrain.
2. Set TOpt =∅, and k = 0.
3. Repeat:
4. Calculate FBN(tm, TOpt) for each test tm.
5. If c(TOpt) + cm > cTh holds for every unselected test tm,

stop iteration.
6. Select the test tMax with the maximum FBN(tMax, TOpt) and

satisfying c(TOpt ∪ {tMax}) ≤ cTh.
7. Set TOpt = TOpt ∪ {tMax}, and k = k+ 1.
8. Until k > M.

Algorithm 9 Test-Set Averaging
1. Choose a structure learning algorithm.
2. For k = 1, 2, . . . , K:
3. Generate a new board set B∗k from BTrain by bootstrap

sampling.
4. Apply the given structure learning algorithm to learn the BN

structure Gk = (V, Ek) based on B∗k.
5. Apply Algorithm 8 on B∗k with Gk to learn the test set

TOpt,k.
6. End For.
7. Calculate the frequency fm of each test tm appeared in {TOpt,1,

TOpt,2, . . . , TOpt,K}.
8. Sort {f 1, f 2, . . . , fM} in descending order, and generate the

sorted index list {i1, i2, . . . , iM}.
9. Set TOpt = ∅.

10. For m = 1, 2, . . . , M:
11. If c(TOpt) + cim = cTh, set TOpt = TOpt ∪ {cim }.
12. End For.

number of defective boards in BTrain that can be detected per
second by the test tm while cannot be detected by previously
selected tests in TMB(tm). It implies the efficiency of applying
tm to detect the uncovered defective boards.

Algorithm 8 describes the steps associated with the
proposed black-box test selection method. First, a BN model
is built with the test data set BTrain using an aforementioned
structure learning algorithm in Sections IV or V. The selected
test set TOpt is initialized as an empty set. Next, the test tMax
with the maximum value of FBN(tMax, TOpt) and satisfying the
test-cost constraint is selected and added to TOpt. The selec-
tion is repeated until the condition c(TOpt) + cm > cTh holds
for every unselected test tm or all black-box tests are selected.

It is noteworthy that the conventional greedy algorithm is
a special case of our proposed approach with a fully connected
BN. For a fully connected BN, the Bayesian index in (29) can
be rephrased as

FGreedy(tm, TSel) = Ntm,TSel(1, 0)

cm
(30)

because the Markov blanket TMB(tm) equals T − {tm}.
Now, if we replace FBN(tm, TOpt) with FGreedy(tm, TOpt) in
Algorithm 8, Algorithm 8 will be reduced to the conventional
greedy algorithm. Because a fully connected BN keeps both
strong and weak relationships among tests, the conventional
greedy algorithm is likely to overfit the data.

B. Test-Set Averaging

Algorithm 8 is able to learn a stable and effective test set
TOpt. However, as training boards are often limited in our
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application, the learning outcome TOpt can be unstable. In
order to learn a robust TOpt, we propose a novel test-set averag-
ing strategy. It learns different test sets from different subsets
of training data and then combines these test sets to obtain
a stable result.

The test-set averaging strategy is summarized in
Algorithm 9. We first build K BN models with boot-
strapping and learn the selected test sets: {TOpt,1, TOpt,2, . . .,
TOpt,K}. Next, we identify the tests occurring most frequently
in {TOpt,1, TOpt,2, . . ., TOpt,K} and use these “frequent” tests
to form TOpt.

VII. MODEL SELECTION

In this article, we have introduced several different BN
learning algorithms and averaging strategies. None of them
would be optimal over all application scenarios. In order
to select the optimal method in a specific scenario (i.e.,
each specific product), a model selection algorithm is
needed.

Toward this goal, a cross validation (CV)-based model
selection framework is proposed. We first use J-fold CV [44]
to validate the performance of each test-cost reduction method
and then select the optimal one with the best validation
performance. Let {m1, m2, ..., mL} denote all available test-
cost reduction methods. We split the training dataset BTrain into
J folds, {BCV,1, BCV,1, . . ., BCV,J}, and define pDC(BCV,j,
ml) as the defect coverage on BCV,j by applying TOpt learned
from the other J−1 folds with the method ml. The validation
performance pDC(ml) is calculated as

pDC(ml) = 1

J

J
∑

j=1

pDC
(

BCV,j, ml
)

. (31)

We select the optimal method m∗ associated with the maxi-
mum pDC(m∗)

m∗ = arg max
ml∈{m1,m2,...,mL}

{pDC(ml)}. (32)

Finally, by applying this optimal method m∗ on the entire train-
ing dataset BTrain, we learn the optimal test set T∗Opt as the
final outcome.

When applying the aforementioned model selection
approach, we consider the following BN learning algorithms:
1) constraint-based learning; 2) constraint-based transfer learn-
ing; 3) score-based learning; 4) score-based transfer learning;
5) hybrid learning; and 6) hybrid transfer learning. In 1), 2),
5), and 6), the p-value pα in (13) corresponding to the thresh-
old ITh in (12) and (28) must be appropriately determined.
In this article, we choose the optimal pα among four possi-
ble candidates 0.01, 0.05, 0.1, and 0.2 [32] to maximize the
performance metric in (31).

In addition, we consider the following three averag-
ing strategies: 1) model averaging; 2) test-set averag-
ing; and 3) no averaging. Combining them with differ-
ent BN learning methods, our model selection algorithm
selects the best average strategy to learn the optimal test
set T∗Opt.

VIII. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of the
proposed test-cost reduction method using two case studies of
network products. Both case studies are implemented with pro-
duction test data. All experiments are performed on a computer
with 2.6-GHz CPU and 8-GB memory.

In both cases, a metric must be defined to assess the
effectiveness of test-cost reduction. Based on our problem for-
mulation in Section III, all black-box tests are applied to BTrain
for training the test selection model, and the selected test set
TOpt is applied to BTest. Thus, the effectiveness of test-cost
reduction is evaluated using the following metric:

rRed = 100% ·
[

1− NTrain · c(T)+ NTest · c
(

TOpt
)

(NTrain + NTest) · c(T)

]

. (33)

It denotes the ratio of test-cost reduction with respect to the
total test cost of applying all black-box tests on both BTrain
and BTest.

For validation purpose, all pass/fail information for our test-
ing samples is known. We first count how many failed boards
are not detected by our selected test set. To compute the
DPPM, we divide the aforementioned number by the total
number of boards under test. Although we cannot disclose this
total number because it carries proprietary information from
our industry partner, the total number is sufficiently large to
estimate the DPPM that is around 100 for both two network
products in experiments below.

A. Network Product #1

In this example, 30 functional tests are applied to one
network product PNew,1, and 147 defective boards are detected.
These tests check the memory functionality and take sev-
eral hours to finish for each board. The same tests are also
applied to a similar product PSim,1, and 206 defective boards
are detected. Because this network product is new and more
boards will be tested in the future, test reduction is of great
importance. For testing and comparison purposes, we include
50% of the defective boards in the set BTrain for training and
the other defective boards in the set BTest. When calculating
test-cost reduction (rRed), we assume that the same number
of boards will be manufactured for this network product in
the future with the same yield, and we add these new boards
to BTest. To remove random fluctuations of the experimen-
tal results, our experiments are repeated for 40 times with
different boards in BTrain and BTest by randomly shuffling
the data.

By training our test selection methods with multiple test-
cost thresholds (cTh’s) ranging from 0 to c(T) and applying
the selected test sets on BTest, we obtain the optimal test sets
with different DPPMs for six different methods.

1) Greedy: The conventional greedy algorithm in [10] is
applied.

2) Score_BIC: Algorithm 8 is applied with score-based BN
learning using the BIC score function in (14).

3) Score_EBIC: Algorithm 8 is applied with score-based
BN learning using the EBIC score function in (16).
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TABLE IV
TEST-COST REDUCTION RESULTS OF NETWORK PRODUCT #1 FOR GREEDY, SCORE_BIC, SCORE_EBIC, CONSTRAINT, HYBRID, AND MS_SINGLE

rRed rRed rRed rRed rRed rRed

TABLE V
TEST-COST REDUCTION RESULTS OF NETWORK PRODUCT #1 FOR GREEDY, MS_SINGLE, MS_TRANS, AND MS_MA_TRANS

rRed rRed rRed rRed

TABLE VI
TEST-COST REDUCTION RESULTS OF NETWORK PRODUCT #2 FOR GREEDY, SCORE_BIC, SCORE_EBIC, CONSTRAINT, HYBRID, AND MS_SINGLE

rRed rRed rRed rRed rRed rRed

4) Constraint: Algorithm 8 is applied with constrained-
based BN learning and pα = 0.5.

5) Hybrid: Algorithm 8 is applied with hybrid BN learning
and pα = 0.5.

6) MS_Single: The model selection algorithm in
Section VII is applied based on fivefold CV with-
out considering transfer learning, model averaging, or
test-set averaging.

To compare the efficacy among these six methods, we
show the test-cost reduction results (rRed) in Table IV. These
DPPMs are displayed as xAvg (±xStd), where xAvg and xStd
denote the mean and standard deviation of DPPM estimated
from 40 repeated runs, respectively. As shown in each row of
Table IV, Greedy offers the worst performance with the largest
DPPM and the least test-cost reduction (rRed). On the other
hand, MS_Single achieves the best performance among all
methods with the least DPPM and the largest test-cost reduc-
tion. In this example, MS_Single achieves up to 22.3%–7.6%
= 14.7% test-cost reduction over Greedy.

By further comparing Score_BIC, Score_EBIC, Constraint,
Hybrid, and MS_Single in Table IV, we have two impor-
tant observations. First, there is no single BN-based method
that consistently out-performs the others. Second, the
proposed model selection strategy (i.e., MS_Single) is able
to appropriately choose the optimal BN-based method in
each case.

Table V further compares Greedy and MS_Single with the
following two test-cost reduction approaches.

1) MS_Trans: Model selection is applied with transfer
learning, without considering model averaging or test-set
averaging.

2) MS_MA_Trans: Model selection is applied with transfer
learning, model averaging and test-set averaging.

The implementation of model selection is based on fivefold
CV. The parameter K is set to 100 for both model averaging
and test-set averaging. This value of K is sufficiently large to
ensure that the experimental results are stable for our industrial
data sets [36].

As shown in each row of Table V, MS_Trans offers larger
test-cost reduction than MS_Single with the same DPPM,
demonstrating the effectiveness of transfer learning based
on the similar product PSim,1. In addition, MS_MA_Trans
offers the best performance among all methods with the least
DPPM and the largest test-cost reduction, further demonstrat-
ing the effectiveness of our proposed averaging strategy. In
this example, MS_MA_Trans achieves up to 25.0%–17.9%
= 7.1% test-cost reduction over MS_Single. On the other
hand, MS_MA_Trans is most time-consuming among all these
approaches, and its runtime is less than 1 h given a fixed cTh
in our experiment.

B. Network Product #2

In this example, 21 functional tests are applied to one
network product PNew,2, and 414 defective boards are detected.
These tests check activation, query and other related functions.
They take several hours to finish for each board. The same tests
are also applied to a similar product PSim,2, and 473 defective
boards are detected. Since the number of defective boards in
this example is much greater than that in the previous example,
we only include 20% of the defective boards in the set BTrain
for training, and the other 80% defective boards in the set
BTest. Our experiments are repeated for 40 times with different
boards in BTrain and BTest by randomly shuffling the data.

We compare the test-cost reduction results for six dif-
ferent methods: 1) Greedy; 2) Score_BIC; 3) Score_EBIC;
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TABLE VII
TEST-COST REDUCTION RESULTS OF NETWORK PRODUCT #2 FOR GREEDY, MS_SINGLE, MS_TRANS, AND MS_MA_TRANS

rRed rRed rRed rRed

4) Constraint; 5) Hybrid; and 6) MS_Single (with fivefold
CV) in Table VI. Similar to the previous example, Greedy
offers the worst performance, while MS_Single achieves the
best performance. In this example, MS_Single achieves up to
34.5%–21.1% = 13.4% test-cost reduction over Greedy.

In Table VII, we further compare the test-cost reduction
for MS_Single, MS_Trans, and MS_MA_Trans, where five-
fold CV is applied for model selection. The parameter K is
set to 100 for both model averaging and test-set averaging.
MS_Trans offers larger test-cost reduction than MS_Single,
and MS_MA_Trans achieves the best performance among all
methods. In this experiment, MS_MA_Trans achieves up to
37.1%–31.1% = 6.0% test-cost reduction over MS_Single. On
the other hand, MS_MA_Trans is most time-consuming, and
its runtime is less than 1 h given a fixed cTh.

IX. CONCLUSION

We have presented a test selection method to reduce the cost
of black-box testing. First, to extract the strong relationships
among black-box tests, BN models have been constructed
using multiple structure learning algorithms. Transfer learning
algorithms are further adopted if prior information is pro-
vided from similar products. Next, based on these BN models,
an iterative test selection method-based upon a new metric,
Bayesian index, has been proposed for test-cost reduction.
Averaging strategies have also been proposed to enhance the
performance of test-cost reduction. Finally, a CV-based model
selection framework is proposed to select the optimal BN
model for test-cost reduction.

As demonstrated by two examples with production test data,
the proposed approach achieves up to 14.7% more test-cost
reduction than a conventional greedy method when no prior
information is provided. When considering prior information
from similar products, our proposed method can further reduce
the black-box test cost by up to 7.1%.
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