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Abstract
The proliferation of location-based services and applications

has brought significant attention to data and location privacy.

While general secure computation and privacy-enhancing

techniques can partially address this problem, one outstand-

ing challenge is to provide near latency-free search and com-

patibility with mainstream geographic search techniques, es-

pecially the Discrete Global Grid Systems (DGGS). This

paper proposes a new construction, namely GridSE, for ef-

ficient and DGGS-compatible Secure Geographic Search

(SGS) with both backward and forward privacy. We first

formulate the notion of a semantic-secure primitive called

symmetric prefix predicate encryption (SP2E), for predicting

whether or not a keyword contains a given prefix, and pro-

vide a construction. Then we extend SP2E for dynamic pre-

fix symmetric searchable encryption (pSSE), namely GridSE,

which supports both backward and forward privacy. GridSE

only uses lightweight primitives including cryptographic

hash and XOR operations and is extremely efficient. Fur-

thermore, we provide a generic pSSE framework that en-

ables prefix search for traditional dynamic SSE that sup-

ports only full keyword search. Experimental results over

real-world geographic databases of sizes (by the number of

entries) from 103 to 107 and mainstream DGGS techniques

show that GridSE achieves a speedup of 150× - 5000×
on search latency and a saving of 99% on communication

overhead as compared to the state-of-the-art. Interestingly,

even compared to plaintext search, GridSE introduces only

1.4× extra computational cost and 0.9× additional commu-

nication cost. Source code of our scheme is available at

https://github.com/rykieguo1771/GridSE-RAM.

1 INTRODUCTION

With the increasing deployment of Internet of Things

(IoT) devices and the advent of next-generation wireless

and mobile communications, the demand for Geographic In-

formation Systems (GIS), particularly Location-Based Ser-

vices (LBS), and consequently Geographic Searches (GS),

has never been greater in various context-aware applications.

To deliver accurate LBS services, GS apps usually need

to collect fine-grained personal information such as users’

real-time locations and interests. For privacy concerns, data

stored in GS servers, which are usually hosted in the cloud,

shall be well protected, e.g., via encryption, as a preemptive

measure in light of data breaches. Secure Geographic Search

(SGS) thus emerges as a promising data protection technique

that supports GS over encrypted geographic data.

Existing GS systems, driven by various functionalities (not

limited to searches), have been deeply rooted on a so-called

Discrete Global Grid (DGG) [1] technique for structuring

and indexing two-dimensional spatial data (or higher dimen-

sion extension). DGG uses hierarchical tessellation of grids

to recursively partition the Earth’s surfaces into geometri-

cal cells which are then coded. A sequence of DGG cell

codes describe a hierarchical partition with progressively

finer resolution. As shown in Fig. 1, a cell code “dr5r7" rep-

resents a cell (sub-region) inside the grid of “dr5r" around

the Statue of Liberty. DGG systems (DGGS) can also pro-

vide indexes/APIs to support various GIS/LBS services such

as geographic search, distance comparison and spatial visu-

alization. In real-world systems, DGGS technologies such

as Niemeyer’s Geohash [2], Google S2 [3] and Uber H3 [4]

have been widely adopted.
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Figure 1: “dr5r" tags an area around the Statue of Liberty.

Cell code “dr5r7" tags an area inside “dr5r".

With DGGS, a GS database is indexed by the hierarchi-

cal cell codes. A geographic search is essentially to find a

prefix match between the indexed cell codes and the search

http://arxiv.org/abs/2408.07916v1
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request. To support SGS wherein both index and search re-

quest are encrypted, the problem can be formulated as the

general problem of secure prefix search.

One outstanding challenge with the design of SGS, how-

ever, is to assure near latency-free instant responses for

pleasant user experiences while compatible with existing

GIS/LBS techniques especially DGGS. Theoretically, many

advanced techniques, such as Fully Homomorphic Encryp-

tion (FHE) [5, 6] and Multi-Party Computation (MPC) [7],

could be employed to realize SGS by performing prefix

search over ciphertexts. However, current implementations

of these techniques are still far from practical when real-time

performances are of concern. For example, MPC requires

multiple rounds of interactions between client and server for

every single query. Current FHE-based secure search is rel-

atively more efficient but still requires thousands of seconds

per 10, 000 search tuples and a heavy communication cost

[5]. On the other hand, emerging privacy-enhancing tech-

niques such as Differential Privacy (DP) can be leveraged

for geo-indistinguishability [8] and hence a more efficient

SGS. However, such techniques are intrinsically lossy and

will cause the so-called lack-in-accuracy issue in geographic

services. One branch of privacy-preserving retrieval relies on

anonymous technologies like k-anonymity [9], which are con-

strained by data distribution.

Aiming at secure search over encrypted data, searchable

symmetric encryption (SSE) provides a generic but viable so-

lution. However, constructing SGS from existing SSE is by

no means trivial, especially considering the dynamics of GS

databases (e.g., insertion and deletion of entries) and the pri-

vacy implications caused by such dynamics. Specifically, ad-

ditional privacy, including forward privacy [10–13] and back-

ward privacy [12, 14, 15], shall be considered for dynamic

databases. Forward privacy is to ensure newly added data

cannot be linked to previous queries while backward privacy

further eliminates the link between a query and previously

deleted data. These metrics and their definitions construct a

strict framework for provable dynamic searchable security.

To our knowledge, the majority of existing SSE techniques

focused on keyword search rather than prefix search and thus

cannot support SGS, not to mention forward and backward

privacy. Few works such as Moataz et. al. [16] enable sub-

string search and provide a semantic-secure SSE but fail

to address forward privacy or backward privacy. Moreover,

their approach leverages Oblivious RAM (ORAM) which

incurs a high communication complexity (quadratic loga-

rithmic). For instance, considering a GS dataset of 105 en-

tries, conducting a single search under this scheme needs

at least hundreds of interactions which is far from practical

for GIS/LBS applications. Another line of research [17–21]

build a specialized index for SGS and all exhibit trade-offs

between efficiency, security and false-positive rates.

In this paper, we construct an efficient, secure and DGGS-

compatible SGS scheme that supports both forward privacy

and backward privacy. To this end, we first formally formu-

late a novel cryptographic primitive symmetric prefix predi-

cate encryption (SP2E) for predicating a prefix, i.e., evaluat-

ing whether a keyword contains a given prefix, and provide a

concrete construction. Based on SP2E, we design a new cryp-

tographic algorithm prefix symmetric searchable encryption

(pSSE), namely GridSE, for secure geographic search that

supports both forward and backward privacy. Interestingly,

the construction of GridSE involves only cryptographic hash

and XOR operations and is extremely light-weight. Regard-

ing the search complexity, GridSE only introduces an addi-

tional cost linearly proportional to the number of DGGS cells,

which is practically a constant in real systems and indepen-

dent to the global GS database size. Thus, GridSE is highly

applicable to large-scale GIS/LBS systems.

Our main contributions are summarized as follows:

• We construct an efficient, scalable and DGGS-

compatible SGS scheme GridSE that supports both

forward and backward privacy. Based on lightweight

cryptographic primitives, GridSE is able to offer near

real-time latency for large-scale geographic searches.

• We formulate and design a novel cryptographic prim-

itive - symmetric prefix predicate encryption (SP2E) -

for predicating prefixes. We prove that SP2E is secure

under the random oracle model. Based on SP2E, we

construct a new prefix SSE primitive pSSE which is for-

ward and backward secure. Both SP2E and pSSE are

generic primitives and can be of independent interests.

• We propose a generic dynamic pSSE framework based

on the key idea of GridSE. It supports forward and back-

ward privacy and is also compatible with traditional dy-

namic SSE that supports only full keyword search.

• Experiments on geographic databases with 103 - 107 en-

tries and major DGGS systems (including Niemeyer’s

Geohash, Google S2 and Uber H3) show that GridSE

achieves a speedup of 150× - 5000×, respectively,

in search latency and a saving of 99% in commu-

nication overhead as compared to the state-of-the-art

[16]. Even compared with plaintext geographic search,

GridSE only introduces 1.4× additional computational

cost and 0.9× additional communication cost.

The rest of this paper is organized as follows: Section 2

presents the background. Section 3 lists related works which

are followed by preliminaries in Section 4. The SP2E prim-

itive is introduced in Section 5. Section 6 presents our con-

struction of GridSE. The experimental evaluation is shown

in Section 7. We conclude this paper in Section 8.
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Figure 2: A geographic search framework

2 BACKGROUND

2.1 Geographic Search Framework

We consider a typical GIS/LBS application scenario with

three major entities - users, client and server. A server (e.g.,

AWS) is a cloud provider for computing or storage services;

a client is a GIS/LBS provider (e.g., yelp) that outsources its

data (after encryption) to the server while keeping some local

computation and storage capacity; users (e.g., mobile users)

are consumers who make geographic search requests to the

client to enjoy GIS/LBS services. We assume the client pre-

computes encrypted indexes and uploads them to the server

to assure search efficiency.

In real GIS/LBS systems, both SQL/relational and

NoSQL/non-relational databases are widely adopted. To en-

sure compatibility, we consider secure geographic search sce-

narios with both types of databases. In SQL databases, data is

organized in tables of columns (i.e., attributes) and rows (i.e.,

records). A record would be contributed by a user. NoSQL

databases, on the other hand, store data as JSON documents

which are composed of key-value pairs. For brevity, we use

block to denote either a record or a JSON document since

both of them can be indexed by a certain attribute. Each block

is assigned a unique identifier, as shown in Fig. 2.

We logically divide a database into two pools, data and

their indexes. Data (namely blocks) are indexed by their loca-

tions, and those sharing the same location are included under

the same key. To avoid ambiguity, we call a key for indexing

locations as index-key. For example, assume the index-key

w1 in Fig. 2 is associated with a certain geographic area on

Earth (e.g., New York City). When searching for w1, the data

such as id1, id2 located in this area will be returned. In this

work, we only focus on the location attribute (e.g., DGGS-

compatible geographical cell codes) and how to retrieve an

exact index-key over its encrypted form such that the queried

encrypted blocks will be returned correctly, securely and ef-

ficiently.

2.2 Discrete Global Grid System

A Discrete Global Grid System (DGGS) [1] partitions the

Earth areas into geometrical grids. Each grid can be further

recursively partitioned into smaller regions which are called

cells, with progressively finer resolution. For ease of calcula-

tion, each region or cell is represented by a point and assigned

an identifiable string which we refer to as a cell code. Each

cell can be associated with data objects (e.g., blocks as in Sec.

2.1) to facilitate geographical search. The recursive partition

means that the grid is hierarchical, so are the cell codes. A

longer cell code means a more precise geographical location

and its prefix represents a broader area around it. Different

DGGS systems may have different resolutions based on how

and the granularity of the partition.

Widely adopted DGGS techniques include Niemeyer’s

Geohash [2], Google S2 [3] and Uber H3 [4], to name a few.

They all decompose the globe into a hierarchy of regular geo-

metric cells. For example, GeoHash partitions Earth into rect-

angle cells while Google S2 uses square cells and Uber H3 is

based on hexagons. Geohash simply follows the hierarchical

partition where the grid is recursively divided into smaller

rectangular ones. S2 adopts so-called “roads" (for logical

parent-child relationship between nodes) inside a cell such

that points geographically close to each other are still close

in the database. When a point is accessed via its index, its

neighbours can also be accessed. These “roads" are coded in

the prefix of a cell code. A similar strategy is adopted by H3.

Taking the Statue of Liberty (Fig. 1) for instance, Geohash

uses cell code “dr5r7" for the sub-area (the right sub-figure

in Fig. 1) with a precision of 20km2. To search the similar

area, S2 uses “b0fdf9d", and it is 8a2a10 in H3. In Geohash,

the cell code of the highest resolution of 6 cm2 in that area

is “dr5r77kkekp9" with 12 levels (i.e., 12 letters) of preci-

sion. While in S2, it is “b0fdf9d0806a6787" for the highest

resolution of 0.74cm2 with a maximum of 16 levels. H3 uses

“8a2a10ffffffffff” with a maximum of 15 levels for a preci-

sion of 8950cm21. In essence, geographic search in DGGS is

implemented through prefix search no matter what partition-

ing and cell coding methods are used.

2.3 Geographic Search Through Prefix

Search

Consider an index-key w which is a cell code in a geo-

graphical database. Geographical search using another cell

code wp returns a match if and only if wp ⊑ w, i.e., wp is the

prefix of w. For example, when a tourist searches “best places

to visit in New York", it will return a list of specific places

such as “Empire State Building" and “Statue of Liberty".

Since the query location “New York" (i.e., wp) is broader

than “Empire State Building" or “Statue of Liberty" (i.e., w

that is used as an index-key in the geographical database), the

1This precision indicates the average hexagon area of H3 grids.



former is a prefix of the latter. Evaluating whether a search

query is a prefix of an index-key is straightforward and can

be illustrated as follows.
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Figure 3: Prefix search for index-key “dr5r77kkekp9"

Assume an index-key “dr5r77kkekp9”. Checking whether

dr5r7 is its prefix is simply to compare each character from

left to right in the order of d, then r, ..., and then 7, one by

one, as shown in Fig 3. It shall be noted that in SGS where

both search queries and index-keys (which are usually called

“keywords") are encrypted, the same prefix search process as

in Fig. 3 is performed but over encrypted characters.

3 RELATED WORK

Secure Geographic Search (SGS). The notion of Secure Ge-

ographic Search (SGS) was coined in 2014 by Ghinita and

Rughinis [18] for searching encrypted geographic data. This

work exploits Hidden Vector Encryption (HVE) to hierarchi-

cally encode and then encrypt data and queries to vectors,

each of which is of high dimension. Thereafter, variant so-

lutions [17, 19–23] have been proposed with improved effi-

ciency. For instance, ref. [19] is constructed on a domain-

based binary tree, and [20] on a Huffman encoding tree,

both for faster retrieving of HVE [24] instances. Ref. [17]

leverages Shen-Shi-Waters (SSW) encryption [25] to check

and verify inner products over vectors converted from data

and queries. However, the intrinsic complexities of HVE and

SSW hinder the run-time efficiency despite of the theoretical

faster-than-linear [17] and logarithmic [18–20] retrieve com-

plexities, respectively. For retrieve efficiency, ref. [21] intro-

duces a multi-level index mechanism based on bloom filters.

However, this work also inherits the security-efficiency trade-

off with bloom filters and offers a weaker security when

high efficiency is preferred. Ref. [22] exhibits the similar

issue and provides at most an equivalence of 17-bit secu-

rity though only lightweight primitives such as cryptographic

hash functions (based on the structure of [21]) and bloom

filters are used. Besides, both [21] and [22] require one ex-

tra interaction for a single query. The above solutions con-

sider a single server and follow the single server-client frame-

work. Ref. [23] adopts two non-colluding servers but over-

looks the leakage risk by simply clustering points by dis-

tance. Among these solutions, only [21] and [22] consider

compatibility with the DGGS technologies. However, none

of the existing solutions simultaneously satisfies the require-

ments of near real-time search latency, data dynamics, and

forward/backward privacy.

SSE and Dynamic SSE. The problem of SSE was first for-

mulated by Song et al. [26]. Since then, extensive research

has been focused on various aspects including query expres-

siveness [27,28], search security with controlled leakage [29]

and efficiency optimization [30, 31]. This family of SSE

schemes allow leakage that is modeled under the notion of

access pattern and search pattern, where the former reveals

the actually retrieved items of a query, and the latter leaks

previous queries related to the current one.

Stefanov et al. [32] first elaborated the notion of forward

and backward privacy for so-called dynamic SSE, i.e., SSE

that support data dynamics (i.e., data insertion and deletion).

After that, a number of dynamic SSE schemes [10–13] were

proposed but only supporting forward privacy, i.e, breaking

the link between newly added data and previous queries.

Zhang et. al. [33] further demonstrated a successful file-

injection attack when forward privacy is not assured. The no-

tion of backward privacy for dynamic SSE was first defined

by Bost et al. [12], i.e., limiting what the server can learn be-

tween newly deleted data and queries afterwards. It regulates

three different levels of leakages in the incremental (inclu-

sive) order, from the least of Type-I to the most of Type-III.

All these types allow the leakage of identifiers of documents

that match the keyword w that is currently being searched and

the time when they were inserted. Under this backward pri-

vacy framework, Bost et al. [12] and Ghareh Chamami et al.

[14] proposed dynamic SSE constructions with all the three

types of backward privacy, respectively. Sun et al. [34] pro-

posed a Type-III backward privacy scheme. Recently, three

Type-II schemes were proposed by Demertizs et al. [15, 35]

and Sun et al. [36]. In addition, Hoang et al. [37] proposed

a dynamic SSE framework particularly towards cloud data

storage-as-a-service infrastructures. All these schemes focus

on whole keyword search without supporting prefix search.

ORAM-TEE-based SSE. The leakage of access pattern has

drawn increasing attention as discussed by Garg et. al [38].

Although this issue can be mitigated by Oblivious Random

Access Machine (ORAM) [39] and its variants [40–42], de-

ploying ORAM in the network environment, especially for

searching data from remote cloud servers, incurs a signif-

icant bandwidth cost of at least poly-logarithmic complex-

ity [43,44]. To address this challenge, Hoang et. al [45] com-

bine ORAM with trusted execution environments (TEEs) to

alleviate the bandwidth constraints. This approach leverages

the trusted enclaves to store the oblivious structure and se-

cret keys. Consequently, the decryption of the data during

searches is executed within the enclave through I/O opera-

tions, rather than via communication with clients, reducing

the bandwidth overhead by around 100× [45]. Another work

[46] that adopts a similar methodology focuses on hiding

the leakage caused by dynamic updates through utilizing the

trusted components provided by TEE. Despite the great ad-

vancements, these works rely on a stronger security assump-

tion on the TEE and only support search on the whole key-

words.

Secure Substring Search (Prefix Search). Substring SSE



was first studied by Shen et al. [47] in the context of static

SSE. This construction is based on a suffix tree in which a

large extent of the tree structure will be disclosed. Following

this initial attempt, ref. [48] further reduces the storage cost

of [47] and enhances its security. Leontiadis et. al. [49] then

adopted Order-Preserving Encryption (OPE) for substring

search. Subsequently, ref. [50] utilizes the SGX technology

for substring search. The security of this approach hinges on

the security of trusted hardware. Notably, all these construc-

tions are for static SSE and leaks statistical information, e.g.,

the relation between suffix and prefix data. To support dy-

namic SSE, Moataz et. al. [51] utilize structure encryption

and inner product predicate for substring search and updates.

While accommodating updates, this method also leaks sta-

tistical information, such as the frequency of the same let-

ters. In contrast, without compromising statistical leakage,

ref. [16] utilizes a hierarchical ORAM tree structure to sup-

port substring search. Also, oblivious suffixes are organized

by this structure to simultaneously support data update op-

erations. However, this update introduces additional heavy

bandwidth overhead due to the ORAM environment. In addi-

tion, Mainardi et al. [52] exclusively supports offline model

for secure substring search. Other than these works, to our

best knowledge, the research on the problem of secure sub-

string or prefix search for dynamic SSE is very limited.

4 PRELIMINARIES

In this section, we define the basic cryptographic primi-

tives used in this work, including the syntax and security def-

initions of dynamic prefix symmetric searchable encryption

(pSSE) and forward/backward privacy.

4.1 Dynamic pSSE

Different from SSE, dynamic prefix symmetric searchable

encryption (pSSE) extends the capabilities of SSE by en-

abling prefix search, alongside the inherent properties of SSE.

Essentially, SSE can be viewed as a special case of pSSE

where the prefix is the entire keyword. Similar to dynamic

SSE, dynamic pSSE is pSSE that supports data dynamics

such as insertion and deletion. A dynamic pSSE scheme

Σ = (Setup,Search,Update) is comprised of one algorithm

and two protocols:

Setup(1λ)→ K,σ,EDB : It takes as input the security pa-

rameter λ and outputs K,σ and EDB, where K is a secret key,

σ is the client’s local state, and EDB is the (empty) encrypted

database that is to be sent to the server.

Search(K,σ,q;EDB) → DB(wp) : It is a protocol for

searching the database by the server. It gets inputs (K,σ,q)
from a client and EDB (including index) from the server. The

server outputs DB(wp) in the form of a result list Iwp . The re-

sult would be empty if wp 6⊑ w for any index-key w. In this

paper, we only consider search queries for a single prefix wp

of possibly multiple keywords (i.e., index-keys) w.

Update(K,σ,op, in;EDB) → K,σ,EDB : It is a proto-

col for inserting an entry to or deleting an entry from

the database. It takes as inputs EDB from a server and

(K,σ,op, in) from a client. Operation op can be add or del

and the input in is composed of a block B and its identifier id.

After the protocol, the input block B is added to or (logically)

removed from EDB while its identifier id is added to or (log-

ically) removed from its corresponding index. The protocol

may modify K,σ and EDB as needed.

Above APIs follow the definition of [12] with some minor

modifications. In this paper, we consider a database (SQL

or NoSQL) composed of index and data, where the data

is in the format of blocks. As discussed in Section 2.1, a

block is either a record in SQL database or a JSON docu-

ment in NoSQL database. In this work, EDB consists of two

encrypted pools - the encrypted indexes and the encrypted

blocks. We implicitly assume that after receiving the result

identifiers DB(wp), the client performs an additional round

to retrieve the actual blocks. For brevity, we omit this step in

our construction.

CORRECTNESS: A dynamic pSSE scheme Σ = (Setup,
Search,Update) is correct if it always returns the correct re-

sults, i.e., indices, for each query. The definition aligns with

the formal correctness definition of SSE in [29, 53].

SECURITY: The security of pSSE is captured by using a

real-world versus ideal-world experimentation [29, 32, 53].

An intuition is that an adversary can not distinguish between

the experiments REAL and IDEAL. The security model is pa-

rameterized by a leakage function L = {LSt p,LSrch,LU pt}
which captures the information learned by an adversarial

server. LSt p,LSrch and LU pt correspond to leakage during

setup, search and updates in respective. Informally, a secure

pSSE scheme with leakage L should reveal nothing about the

database DB except for this explicit leakage.

Definition 4.1 (Adaptive Security o f Dynamic pSSE). A dy-

namic pSSE scheme Σ is L-adaptively secure (with respect to

leakage function L) iff for all PPT adversary A that makes

polynomial number of queries q, there exists a stateful PPT

simulator Sim such that

|Pr[REAL
Σ
A (λ,q)= 1]−Pr[IDEAL

Σ
A,Sim(λ,q)= 1]| ≤ negl(λ), (1)

where REAL
Σ
A(λ,q) and IDEAL

Σ
A ,Sim(λ,q) are defined as fol-

lows:

• REAL
Σ
A(λ,q): The adversary A initially chooses

a database DB and gets back EDB by calling

Setup(1λ). Then A is allowed to adaptively per-

form search (resp. update) queries with input

q (resp. input (op, in))) and receives transcript

generated by calling Search(K,σ,q;EDB) (resp.

Update(K,σ,op, in;EDB)). Given these real tran-

scripts, the adversary A finally outputs a bit b.



• IDEAL
Σ
A ,Sim(λ,q): The adversary A initially selects a

database DB and gets back EDB generated by the

simulator S(LSt p(DB)). Then A is allowed to adap-

tively perform search (resp. update) queries with in-

put q (resp. input (op, in))) and receives transcript

generated by running S(LSrch(K,σ,q;EDB)) (resp.

S(LU pt (K,σ,op, in;EDB))). Given these simulated

transcripts, the adversary A finally outputs a bit b.

4.2 Forward and Backward Privacy of pSSE

Forward and backward privacy are two important proper-

ties of dynamic SSE that restrict what information is leaked

by the Update query, so are they in dynamic pSSE. The def-

inition of forward and backward privacy of SSE was first

proposed in [32] and then formulated by Bost et al. [11, 12].

In their works, the definition only considers queries on key-

word/document pairs, i.e., searching to find out whether a

keyword belongs to a certain document. In this paper, we

first formulate the definition of forward and backward pri-

vacy for a SQL (or NoSQL) database structures of index and

data. A search is to find out the blocks that are related to an

index-key w which is subject to a certain attribute. In brief,

forward privacy ensures previous search queries do not re-

veal any information about the retrieved blocks to be updated.

It hides whether an addition is about a new block or one that

has been previously searched for. Backward privacy limits

the information that the server can learn about blocks that

are added previously but deleted later during searches related

to them. It guarantees that the adversary cannot obtain ex-

tra information about the deleted blocks. For space limit, we

include the full definitions of forward/backward privacy for

keyword/block pairs in Appendix A, following similar defi-

nitions in [12].

4.3 Pseudorandom Function

Let G : K × X → Y be a function defined from X to

Y . G is a secure pseudorandom function (PRF) if for all

PPT adversaries A , its maximum advantage as AdvPRF
A ,G (λ)=

|Pr[AG(k,·)(1λ) = 1]−Pr[AF(·)(1λ) = 1]| is negligible in λ,

where F is a random function from X to Y , and k
$
←− K .

5 SYMMETRIC PREFIX PREDICATE EN-

CRYPTION

In this section, we present a novel cryptographic primitive,

symmetric prefix predicate encryption (SP2E). We begin with

the building block f -bit bounded symmetric encryption (SE-

f ) followed by the syntax, security, and concrete construction

of SP2E.

5.1 f -bit Bounded Symmetric Encryption

Let λ be a security parameter and G denote a pseudoran-

dom function with an output length l(λ). An f -bit bounded

symmetric encryption scheme SE- f with message space

M can be described as a 3-tuple (SE- f .Gen,SE- f .Enc,SE-

f .Dec). While the proposed scheme is derived from standard

symmetric encryption (SE), the difference is in SE- f , only a

f -bit interval is decrypted instead of the whole message. We

formalize the definition of SE- f as follows:

SE- f .Gen(1λ)→ k1,k2: On input a security parameter λ,

it outputs two random secret keys k1,k2 uniformly sampled

from key space K .

SE- f .Enc(k1,m)→ ct: On input a secret key k1 and mes-

sage m ∈M , it computes and outputs ciphertext ct as:

ct = G(k1,m)⊕m. (2)

where G(k1,m) is a PRF output that XOR the message m.

Note that |m|= |G(k1,m)|, ct ∈ {0,1}l(λ).

SE- f .Dec(k1,k2,ct)→ m′: On input k1,k2 and ct, it de-

crypts some chosen consecutive f bits among a length l(λ)
of the message m with the bit position starting from pos1 to

pos2, where 0 ≤ pos1 < pos2 < l(λ), pos2− pos1 = f . The

algorithm computes and outputs m′ as:

m′ = ct ⊕

(G(k2,m).sub(0, pos1) ‖ G(k1,m).sub(pos1, pos2) ‖

(G(k2,m).sub(pos2, l(λ))

(3)

where the method ct.sub(StartInx,EndInx) extracts the bits

from the StartInx-th position to the EndInx-th position in

a “left-closure right-open” manner, e.g. for ct = 100100,

x.sub(2,4) = 01.

CORRECTNESS:

m′.sub(pos1, pos2)

= SE- f .Dec(k1,k2,SE- f .Enc(k1,m)).sub(pos1, pos2)

= (ct⊕G(k1,m)).sub(pos1, pos2)

= (G(k1,m)⊕m⊕G(k1 ,m)).sub(pos1, pos2)

= m.sub(pos1, pos2).

(4)

SECURITY: The security of SE- f is defined by an IND-

CPA experiment presented in Fig. 4. The security definition

of SE- f is similar to the standard indistinguishability defi-

nition of symmetric encryption (SE) except for decryption,

where a segment of the message is decrypted in SE- f rather

than a complete message.

Definition 5.1 (Semantic Security of SE- f ). A symmetric en-

cryption scheme SE- f =(SE- f .Gen,SE- f .Enc,SE- f .Dec) is

IND-CPA secure if for any security parameter λ∈N and PPT

(probabilistic polynomial time) adversary A , the advantage

of A is negligible in λ. That is,

AdvIND−CPA
A,SE- f

(λ) =

∣

∣

∣

∣

Pr[ExptIND−CPA
A,SE- f

(λ) = 1]−
1

2

∣

∣

∣

∣

≤ negl(λ). (5)



ExptIND−CPA
A,SE- f

(λ) :

b
$
←− {0,1};k

$
←−K

(m0,m1,st)← A ′O
Enc
k (·)(1λ) s.t.

|m0|= |m1|

ct∗← SE- f .Enc(k,mb)

b′← AOEnc
k (·)(st,ct∗)

Return (b′ = b).

OEnc
k (m):

ct← SE- f .Enc(k,m)

Return ct.

Figure 4: IND-CPA security of SE- f

5.2 Syntax and Security of SP2E

A symmetric prefix predicate encryption scheme SP2E is

defined over a keyword space Λt where each character of a

keyword belongs to the alphabet Λ, and t is the maximum

length of a keyword. SP2E consists of a quintuple of PPT al-

gorithms (KeyGen,PreEnc,Enc,TKGen,PrefDec). The pre-

liminary encryption algorithm PreEnc encodes the keyword

as a fixed-length hash value which serves as a message, an in-

put of the encryption algorithm Enc, to compute the cipher-

text ct. The algorithm TKGen outputs a token, namely the

encrypted prefix. The prefix decryption algorithm PrefDec

identifies if the ciphertext ct contains a specific prefix with-

out revealing the keyword nor message. The definition is for-

malized as follows:

KeyGen(1λ, t)→ SK,MSK: On input a security parameter

λ and a maximum length t of a keyword, it generates a secret

key SK for encryption and a master secret key MSK that is

used as seed.

PreEnc(MSK,seq,w)→ m: On input MSK, a string key-

word w and a number seq that indicates an identical sequence

of w among keywords, the algorithm outputs a fixed-length

hash value m.

Enc(SK,m)→ ct,δ: On input SK and m, the algorithm

outputs a ciphertext ct and a local parameter δ that is stored

in the local state.

TKGen(SK,MSK,δ,seq,wp)→ k′: On input secret keys

SK, MSK, a local parameter δ, a number seq and a prefix wp,

it outputs a token k′.

PrefDec(k′,ct)→⊥ or wp ⊑ w: On input a token k′ and

ciphertext ct, it outputs ⊥ or wp ⊑ w.

CORRECTNESS: For security parameter λ, integer t ∈ N
∗,

(SK,MSK)←KeyGen(1λ, t) and a keyword w ∈Λt , SP2E is

correct if

Pr





PrefDec(k′,ct) ct,δ← Enc(SK,PreEnc(MSK,seq,w))
= : k′← TKGen(SK,MSK,δ,seq,wp),

wp ⊑ w wp ⊑ w





= 1.

(6)

SECURITY: The security of SP2E is defined by two ex-

periments, an IND-CPA experiment ExptIND−CPA
A ,SP2E.Enc

(λ)

for encryption and an IND- f -CPA experiment

Expt
IND− f−CPA

A ,SP2E.TKGen
(λ) for token generation. The security

definition of IND- f -CPA is similar to the standard IND-CPA

indistinguishability definition except for the specific f bits.

Concretely speaking, a PPT adversary has the ability to

access and query both oracles OEnc

SK (w) and OTKGen

SK,MSK,δ(wp)
with unlimited times after the adversary submits an input

w (or wp). The details of experiments are presented in Fig.

10 in Appendix B. The formal definition of encryption and

token security of SP2E is presented below.

Definition 5.2 (Encryption Security o f SP2E). A symmet-

ric prefix predicate encryption scheme SP2E is IND-CPA en-

cryption secure, if for all PPT adversary A , the advantage pf

A is negligible in λ. That is:

AdvIND-CPA
A,SP2E.Enc(λ) =

∣

∣

∣

∣

Pr[ExptIND-CPA
A,SP2E.Enc(λ) = 1]−

1

2

∣

∣

∣

∣

≤ negl(λ).

(7)

Definition 5.3 (Token Security o f SP2E). A symmetric pre-

fix predicate encryption scheme SP2E is IND- f -CPA token

secure, if for all PPT adversary A , the advantage pf A is neg-

ligible in λ. That is:

Adv
IND- f -CPA

A,SP2 E.TKGen
(λ) =

∣

∣

∣

∣

Pr[Expt
IND- f -CPA

A,SP2E.TKGen
(λ) = 1]−

1

2

∣

∣

∣

∣

≤ negl(λ).

(8)

According to the encryption and token security defined in

Def. 5.2& 5.3, we further define the adaptive security for

SP2E as follows:

ADAPTIVE SECURITY: We define the adaptive security

for SP2E scheme since a PPT adversary A is allowed to sub-

mit the chosen challenged keyword strings w0, w1 (or pre-

fixes wp0
, wp1

) adaptively at any point in time while the se-

curity is guaranteed.

Definition 5.4 (Adaptive Security o f SP2E). A symmetric

prefix predicate encryption scheme SP2E is IND- f -CPA se-

cure, if for all PPT adversary A , it has at a most negligible

advantage

Adv
IND- f -CPA
A,SP2 E

(λ) =MAX
(

|Pr[ExptIND-CPA
A,SP2E.Enc(λ) = 1]−

1

2
|,

|Pr[Expt
IND- f -CPA
A,SP2E.TKGen

(λ) = 1]−
1

2
|
)

≤ negl(λ).

(9)

5.3 Bit-wise Prefix Recognition SP2E from

PRF

In this part, we present the details of SP2E based

on a pseudorandom function (PRF) G : K × X → Y ,

a cryptographic hash function H : K × N
∗ → K and



an f -bit bounded symmetric encryption scheme SE- f =
(SE- f .Gen,SE- f .Enc,SE- f .Dec). Specifically, the proposed

scheme SP2E = (KeyGen,PreEnc,Enc,TKGen,PrefDec) is

constructed as follows:

KeyGen(1λ, t)→ SK,MSK: On input a security parame-

ter λ and a parameter t that denotes the maximum length

of a keyword, it uniformly samples secret keys sk1,sk2,

skc1
, ...,skc|Λ|

at random from the key space K . Each secret

key skci
uniquely associates with a character ci in the tex-

tual alphabet Λ, for 1 ≤ i ≤ |Λ|, and |Λ| is the total number

of distinct characters. A keyword is a string and all of its

characters are from Λ. This algorithm specifies a parameter

f for indicating the number of “certain bits” that are indi-

cators of a queried result. f is subject to 0 < f ≤
⌊

l(λ)
t−1

⌋

.

For simplicity, we denote the outputs with SK = {sk1,sk2},
MSK = {skc1

, ...,skc|Λ|
, f}.

PreEnc(MSK,seq,w)→m: It takes as input MSK, a key-

word w and a number seq that is the sequence of this w among

(distinct) keywords. It outputs the fixed-length hash value m

computed by following steps:

(1) Compute the length of a keyword w, |w|, i.e., the total

number of its characters.

(2) Pick up the associated key skwi
from MSK for each char-

acter of w in sequence. For example, if the i-th charac-

ter is a textual letter ′a′, then its associated key is sk′a′ ,

namely skwi
refers to sk′a′ in this case.

(3) Output m as

m =

|w|⊕

i=1

(

0(i−1) f ‖ H(skwi
‖ seq ‖ i)

)

.sub(0, l(λ)). (10)

Enc(SK,m)→ ct,δ: On input SK and m, by using the se-

cret key sk1 in SK, it computes the ciphertext as

ct = SE- f .Enc(sk1,m) = m⊕G(sk1,m), (11)

When the encryption is invoked, δ = G(sk1,m) must be

recorded in the local state. Note that δ is not public. Instead,

it is secretly held by the entity executing this algorithm, usu-

ally the client.

TKGen(SK,MSK,δ,seq,wp)→ k′: On input SK, MSK, a

local parameter δ, an identifier seq and a queried prefix wp, it

outputs a token k′ that will be used to evaluate if the message

of a ciphertext ct contains prefix wp. With both secret keys

sk1 and sk2 in SK, the algorithm computes k′ as:

(1) Calculate the length of the prefix wp, |wp|.

(2) Pick up the associated key skwpi
from MSK in sequence

for each character of wp.

(3) Set pos1 = (|wp|− 1) · f , pos2 = |wp| · f , and we have

pos2− pos1 = f . The parameters pos1 and pos2 are the

respective start and end bit-position of an f -bit segment.

(4) Output k′ as

k′ =

|wp|⊕

i=1

(

0(i−1) f ‖ H(skwpi
‖ seq ‖ i)

)

.sub(0, l(λ))

⊕
(

G(sk2,seq).sub(0, pos1) ‖ δ.sub(pos1, pos2) ‖

G(sk2,seq).sub(pos2, l(λ))
)

.

(12)

PrefDec(k′,ct)→⊥ or wp ⊑ w 2: On input a token k′ and

a ciphertext ct, it calculates that

r′ = k′⊕ct, and 0 f ?
= r′.sub(pos1, pos2) (13)

The algorithm evaluates whether there are consecutive f bits

valued with zero located in the segment [pos1, pos2) of the

result r′. We denote these f bits with 0 f . In brief, 0 f is an in-

dicator for a keyword. By verifying 0 f ?
= r′.sub(pos1, pos2),

the algorithm PrefDec can identify whether the the message

m contains the prefix wp. The algorithm outputs ⊥ if wp is

not a prefix of m. Otherwise, it outputs wp ⊑ w.

CORRECTNESS: The correctness of SP2E is derived from

that of PRF G and the symmetric encryption SE- f . That is

“wp ⊑ w : wp is a prefix of w” or

“wp 6⊑ w : wp is not a prefix of w”.

In the first case, the bits valued with zero (i.e., 0 f ) in the

output of SP2E decryption should be revealed such that a

keyword w having the queried prefix wp can be identified

correctly. To validate this, we expand the output of PrefDec,

namely k′⊕ ct. As shown in Fig. 11, If wp is a prefix of the

keyword, the f bits between pos1 and pos2 should all be zero.

As for the latter case of wp 6⊑ w, the output of SP2E decryp-

tion should be a completely indistinguishable value without

any consecutive bits valued at zero visible. We validate this

with more details and examples in Fig. 12 in Appendix D.

EXAMPLE ILLUSTRATION: We illustrate each algorithm

of SP2E with the example of the Statue of Liberty. Con-

sider a DGGS code w = “dr5r77” and a queried prefix

wp = “dr5r7”. With all the required parameters of KeyGen,

PreEnc computes the fixed-length hash value m according

to the inputs – a keyword w and its sequence seq. A fixed-

length string is obtained by XORing several hash substrings

that correspond to the characters of w (i.e., “dr5r77"), as de-

picted by a grey rectangular box in Fig. 5 (a). The encryption

algorithm Enc generates the ciphertext ct by XORing m with

a mask δ which is generated uniformly at random and stored

locally, as shown in Fig. 5 (b).

TKGen outputs an encrypted search token k′ for the query

prefix wp (i.e., “dr5r7"). As shown in Fig. 5 (c), k′ is com-

puted by XORing the hash substrings with a pseudorandom

2This decryption here is logically equivalent to the decryption SE- f .Dec

(sk1,sk2,ct)→m in Sec. 5.1. The message carried by a token k′ corresponds

to the mentioned m, that is
|wp |⊕
i=1

(

0(i−1) f ‖ H(skwpi
‖ seq ‖ i)

)

.sub(0, l(λ)).
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Figure 5: (a) m← PreEnc(MSK,seq,w) for w = “dr5r77”. (b) (ct,δ)← Enc(SK,m), where δ = G(sk1,seq).
(c) k′← TKGen(SK,MSK,δ,seq,wp) for wp = “dr5r7”, where η = G(sk2,seq).

(d) The PrefDec evaluation on ct for this w and wp.

string which is the concatenation of pseudo-random value η
and a local secret δ. The hash substrings are associated se-

quentially with the characters of wp. If SHA-256 is chosen

for producing the hash substrings, for example, the output

length l(λ) = 256.

With the input token k′ and a ciphertext ct, the prefix de-

cryption algorithm PrefDec examines whether the f bits in

the output (i.e., k′ ⊕ ct) at positions [pos1, pos2) are all ze-

ros. All zeros mean a keyword w matches a given prefix wp.

As shown in Fig. 5 (d), bits [4 f ,5 f ) of k′⊕ ct are all zeros,

which occurs due to the two same values δ.sub(pos1, pos2)
3

presented in k′ and ct, respectively.

5.4 Security Analysis

In this part, we show the proposed SP2E of being proven

IND- f -CPA secure in the random oracle model, under the

security of cryptographic hash function G, PRF F and f -bit

bounded symmetric encryption SE- f .

Theorem 5.5 (ADAPTIVE SECURITY). If G : K ×X → Y is

a secure PRF, H is a secure cryptographic hash function, H

is modeled with a random oracle, and SE- f is an IND-CPA

secure symmetric encryption, then the proposed SP2E is IND-

f -CPA secure in the random oracle model.

PROOF SKETCH: We prove the security of our SP2E

scheme through two parts, encryption security defined in Def.

5.2 and token security defined in Def. 5.3, for which we give

concrete proofs in respective via a series of games. Based on

both encryption and token security, the adaptive security of

SP2E in Def. 5.4 holds. To complete the proof, we consider

a sequence of hybrid games that differ from each other in

the challenge pre-encryption ciphertext and challenge token.

The first game in the sequence corresponds to the real IND- f -

CPA game for SP2E while the last hybrid one is the standard

IND-CPA game for the f -bit bounded symmetric encryption

3In Fig. 5 (c)-(d) we omit “sub” for simplicity, i.e., δ(pos1, pos2) =

δ.sub(pos1, pos2),η(0, pos1) = η.sub(0, pos1), etc.

SE- f . The overall advantage of A changes only by a negli-

gible amount between each successive hybrid game, and is

bounded by the advantage gained in IND- f -CPA game for

token generation, which is negligible, thereby establishing

Thm 5.5. Due to the limited space, the complete proof is pro-

vided in the extended version of this paper, which will be

available on Arxiv.

6 GridSE: Dynamic pSSE for Secure Geo-

graphic Search from SP2E

In this section, we present GridSE, a dynamic prefix sym-

metric searchable encryption (pSSE) based on symmetric

prefix predicate encryption (SP2E) for secure geographic

search.

6.1 Construction Details

GridSE follows the standard APIs of a standard dynamic

pSSE scheme as discussed in Sec 4.1. By adapting the defi-

nitions to a generic SQL or NoSQL database, we implement

a practical dynamic pSSE system for fast secure geographic

search over DGGS cells. Recall that the database is typically

organized by blocks, i.e., files/records. To support forward

and backward privacy, GridSE encrypts triplets of (w, id,op)
into two ciphertext components which are organized as key-

value pairs in a dictionary. The key stored in the dictionary

is the ciphertext of index-key w, namely the address which

indicates whether w is queried by a specific prefix during

searches. The value in the dictionary is a list associated with

w, consisting of one or multiple encrypted blocks (id,op).
The encryption of (id,op) is based on a mask generated by

PRF and encapsulates an update counter updtcnt that stores

the update times occurred on blocks under index-key w as

widely adopted for dynamic SSE. Note that data operations

are indicated using op= add/del, and any deletion operation

is logically recorded instead of executing a physical deletion

action.



However, a ciphertext of (id,op) generated only based on

updtcnt is not enough to achieve forward and backward pri-

vacy for dynamic pSSE. The blocks (i.e., (id,op)) associated

with different index-keys but with the same updtcnt will pro-

duce the same masks. To solve this issue, we introduce an ad-

ditional parameter, the sequence of index-keys seq that helps

to “tag" those blocks. In this way, each block is encrypted

based on a unique mask and every update operation access-

ing the encrypted blocks in GridSE appears randomly to the

server. Hence, the server cannot distinguish between inser-

tion and deletion, which achieves backward privacy. Since

each block is a separate triplet, the server cannot distinguish

a new keyword in a newly added block from a keyword con-

tained in the previously searched block, which achieves for-

ward privacy. To complete a search, after receiving the index-

keys for a prefix, the client can generate all masks for cor-

rectly decrypting each block. Notice that each index-key en-

crypted by SP2E corresponds to a DGGS cell code and can

identify the queried cells for the given prefix by the function

SP2E.PrefDec. GridSE hence enables efficient search while

supporting forward and backward privacy. Detailed construc-

tion of GridSE is as follows:

Setup(1λ) → KΣ,σ,EDB : On input a security parame-

ter λ, the client generates a local state σ and an empty en-

crypted database EDB. It obtains secret keys from sampling

K
$
←{0,1}λ and secret keys SK,MSK by invoking the Setup

algorithm of SP2E. Next, the client initiates an empty list

δ̂ and two maps (InxDict,UpdtCnt). δ̂ and UpdtCnt are

locally maintained while InxDict is sent to server. At last,

client outputs KΣ = (K,SK,MSK),σ = {UpdtCnt, δ̂} and

EDB.

Update(KΣ,σ,op = add/del, in = (w, id);EDB) →
KΣ,σ,EDB : In the update procedure, the client receives an

index-key w, an identifier id and operation op = add/del.

An input (add,w, id) means “add a block id in EDB and an

entry in InxDict for this block that has an index-key w”. The

client has access to the keys KΣ, the local state UpdtCnt

and δ̂, where δ̂ keeps the parameter δ that is produced once

invoking SP2E.Enc, and UpdtCnt stores for each distinct

index-key w a counter that denotes how many updates have

taken place on blocks in relation to w. First, the client checks

whether UpdtCnt[w] has been initialized or not. If not, he

sets the counter value of w to 0 (lines 1-4). Here, UpdtCnt

is the size of current sequence of index-keys which indicates

how many index-keys are currently in the dictionary. It

increases by 1 once a new distinct index-key is produced

with updates. Next, the client produces a key-value pair

(addr,δ) using the algorithm SP2E.Enc by encrypting a

given index-key and its current sequence. δ is kept local.

Notice that if a new but repeated index-key w is associated

with an update after it has been counted in UpdtCnt, the

newly produced address addr associated with this w will

be the same as the previous one due to the same sequence

and keys as the input (lines 5-7). The client then runs the

Algorithm 1: GridSE Σ : Setup(1λ,DB)

1: (EDB,σ)← Σ.Setup(1λ)

2: K
$
←{0,1}λ, SK,MSK← SP2E.Setup(1λ)

3: δ̂← empty list

4: UpdtCnt,InxDict← empty linked map

5: σ← UpdtCnt, δ̂
6: Return (K,SK,MSK),(UpdtCnt, δ̂),EDB

PRF G with key K and computes G(K,(seq,UpdtCnt[w]))
that is XORed with the message (id ‖ op), and this result

becomes an encrypted value val (line 8). The pair (addr,val)
is sent to the server which stores them by appending val into

InxDict[addr] or a newly produced InxDict[addr] (lines

9-13).

Search(KΣ,σ,wp;EDB)→ Iwp : While searching for the

index-keys with a certain prefix wp, the client first generates

a list of tokens T List. This token generation is submitted

to the respective SP2E layer, namely SP2E.TKGen. T List

is then sent to the server (lines 1-6). Recall that the corre-

sponding entries to this token are stored in InxDict on the

server, which enables the server to evaluate these entries with

the SP2E function SP2E.PrefDec. If SP2E.PrefDec indicates

“wp is a prefix for the current index-key w", the server ob-

tains the associated key-value pairs of w from the index and

puts the value and its sequence into Rwp . Specifically, The

server retrieves the key-value pairs matching the token T List

in InxDict and then sends them back to the client (lines 7-

17). Then, the client decrypts the returned result Rwp which

are composed of pseudorandom values. These values gen-

erated via PRF G during the previous updates for w are re-

covered to the original plaintext since G is a deterministic

function. Concretely, the client decrypts the received dictio-

nary Rwp by calculating the PRF values G(K,(seq, i)) and

XORing them with each element of valList in sequence for

i = 1, ..valList.size, where seq is the sequence of the key-

value pair in which the current valList locates in InxDict

(lines 18-25). In the end, the client returns a search result Iwp

containing all requested block identifiers which correspond

to the index-keys of a prefix wp.

Theorem 6.1. Assuming F is a secure PRF and SP2E

is IND-f-CPA secure, GridSE is an adaptively-secure

dynamic pSSE scheme of forward and Type-II back-

ward privacy with LU pdt (op,w, id) =⊥ and LSrch(wp) =
(TimeDB(wp),Update(wp)).

PROOF SKETCH: We prove the adaptive security of

GridSE by constructing a sequence of games and show that

the advantage of a PPT adversary against our protocol is neg-

ligible. Intuitively, the transcript (addr,val) sent to the server

is indistinguishable from uniformly random samples, which

is guaranteed by the construction. Notice that the value val

is computed by XORing the block/operation tuple (id||op)



Algorithm 2: GridSE Σ : Update

(KΣ,σ,op = add/del, in = (w, id);EDB)

Client:

1: if UpdtCnt[w] is NULL then

2: UpdtCnt[w] = 0

3: end if

4: UpdtCnt[w]++

5: seq = UpdtCnt.getMapSize()
6: addr,δ = SP2E.Enc(SK,SP2E.PreEnc(MSK,seq,w))
7: σ← δ

8: val = (id ‖ op)⊕ G(K,(seq,UpdtCnt[w]))
9: Returns (addr,val)

Server:

10: if InxDict.containsKey(addr) then

11: Set InxDict[addr]∪ val

12: else

13: Set InxDict[addr] = val

14: end if

with G(K,(seq,UpdtCnt[w])) generated by a pseudorandom

function G. In this way, the server cannot distinguish whether

an update is insertion or deletion, which means that the up-

date leakage is thwarted. Regarding backward privacy, notice

that when performing a search on prefix wp, the server can

retrieve the corresponding entries in InxDict with their se-

quences. Since these entries are encrypted by SP2E and an

additional pseudorandom function, the server can learn noth-

ing except the time when each update operation takes place

for wp. This means GridSE provides Type-II backward pri-

vacy as defined in Def. A. The complete proof is omitted in

this paper and will be available in the extended version in

Arxiv.

Remark for Efficiency. We first introduce the notations

for analyzing complexity. dw denotes the number of updates

on the distinct index-keys in InxDict. awp represents the

number of updates on a given prefix wp, which is equivalent

to the number of blocks contained in the result Iwp . We show

the computation, storage and communication complexity of

GridSE in Table 1 for the reference of the following empiri-

cal evaluations.

A search comprises a sequence of operations such as gen-

erating tokens in the client, sweeping index-keys in the server

and decrypting in the client. Particularly, it requires dw eval-

uations of InxDict in the server, and dw SP2E.TKGen invo-

cations and awp PRF instances for decryption in the client.

Recall that a SP2E.TKGen invocation introduces a PRF and

several hash instances while a SP2E.PrefDec invocation re-

quires a single XOR operation. Both of these invocations are

all evaluated with constant. Thus, the overall complexity of a

search operation is O(awp + dw). Regarding the communica-

tion cost of a search, it is O(awp) as the returned result size in

a list format is asymptotic awp . On the other hand, an update

requires O(1) for the communication overhead due to that

the client only submits a single entry to the server. After N

Algorithm 3: GridSE Σ : Search

(KΣ,σ,wp;EDB)

Client:

1: T List← {}
2: for i = 1 to UpdtCnt.size do

3: Ti = SP2E.TKGen(SK,MSK,δi, i,wp)
4: T List = T List ∪{Ti}

5: end for

6: Return T List

Server:

7: Rwp
← empty linked map

8: if InxDict.size 6= T List.size then

9: Abort

10: end if

11: for i = 1 to InxDict.size do

12: (addr,valList) = InxDict.getEntry(i)
13: if SP2E.PrefDec(T List[i],addr) == 0 f then

14: Set Rwp
[i] = valList

15: end if

16: end for

17: Return Rwp

Client:

18: Iwp
= {}

19: while Rwp
.hasNext() do

20: (seq,valList) = Rwp
.getNext()

21: for i = 1 to valList.size do

22: (id||op) = valList[i]⊕G(K,(seq, i))
23: end for

24: Iwp
= Iwp

∪ (id||op)
25: end while

updates have taken place, regarding the client keeps a local

list δ̂ of size dw, the local storage is merely O(dw). Finally,

GridSE takes an extra roundtrip to fetch the block identifiers

for wp if the actual blocks are necessary to be retrieved.

Recall that an index-key is associated exclusively with a

DGGS cell. The maximum value of dw does not exceed

the number of DGGS cells, which is a constant for a given

geographical region. A constant-constrained dw implies a

high search efficiency and tolerance of frequent updates in

GridSE. This performance advantage is ensured by two prop-

erties, the fixed pattern of cell partitioning and the fixed res-

olution of a cell in DGGS. For instance, given a database

located within the United States with a size up to 105, 106, or

107, the number of DGGS cells is stabilized at around 1615

with each cell in the 0.01km2 scale.

Cleaning Deleted Items. Allowing the size of EDB to

grow with each update including deletions is a common

strategy in building dynamic SSE [14, 35]. This simplifies

the deletions while reaching forward and backward privacy.

GridSE can mitigate this growth via a periodic “clean-up”

operation that has been adopted in previous schemes [14].

The "clean-up" operation involves the client to remove the

deleted identifiers in valList when he decrypts a search result

Rwp . The remaining identifiers are then re-encrypted and sent



Setup

• Same as Algorithm 1. Client returns (K,SK,MSK),
(UpdtCnt, δ̂),EDB.

Update

• Client computes < addr,val > and sends it to server, but main-

tain δ at local. These values are computed as:

- addr,δ = SP2E.Enc(SK,SP2E.PreEnc(MSK,seq,w)),

- val← Forward/Backward.Encseq,UpdtCnt[w](id,op),

where seq = (current) UpdtCnt.size.

• Server stores < addr,val > in a linked map.

Search

• Client generates token:

tk = SP2E.TKGen(SK,MSK,δi, i,wp) for i = 1, ...,dw.

• Server checks whether an index-key matches a prefix or not:

SP2E.PrefDec(tk,addr) == 0 f ,

If yes, obtains all associated vals related to addr, and sends

them back to client.

• Client decrypts vals.

Figure 6: A generic dynamic pSSE framework with

forward/backward privacy

back to the server. However, the deterministic encryption

over identifiers with the repeated input to PRFs would lead

to "identical" ciphertexts in valList which fail to protect pri-

vacy. "Identical" means the same ciphertexts as the previous

ones. Hence, as a countermeasure, we add a new counter as

input into the PRFs, which increments with every search cy-

cle. To guarantee the correct token generation and decryption

for subsequent searches, an additional counter map IncreCnt

is required to be maintained locally. This design retains the

same performance and backward privacy as GridSE. We omit

the details of this part in this paper due to the space limit.

6.2 Towards Generic Dynamic pSSE

The key idea of GridSE to achieve forward/backward pri-

vate dynamic pSSE is its utilization of SP2E as a building

block to support prefix search and its creation of a key-value

dictionary based on the encrypted triplets (w, id,op). These

techniques are also compatible with traditional dynamic SSE

schemes that support only full keyword search. In this sec-

tion, we provide a generic dynamic pSSE framework (Fig.

6) by leveraging the techniques in GridSE to enable pre-

fix search capabilities for forward/backward private dynamic

keyword SSE. In this framework, one vital requirement is

that the keywords with the same prefix need to be grouped

and associated with the same index-key in the key-value dic-

tionary. The framework consists of two main steps. First,

when searching for a specific prefix, the server will iden-

tify the corresponding index-keys for this prefix by execut-

ing the prefix predicate function SP2E.PrefDec over the en-

crypted index-keys, namely addr. Next, the clients decrypt

the blocks (i.e. files) returned from the server to obtain the

result. Note that the encryption (highlighted in Fig. 6) in our

framework is designated for forward/backward privacy and

can be varied according to different designs, such as PRF

used in ref. [12,14], puncturable PRF in ref. [12,34,36] or en-

cryption based on oblivious data structure in ref. [14,15,35].

While the framework allows different encryption, to enable

prefix search, the message encrypted must include two pa-

rameters – seq and UpdtCnt[w]), where UpdtCnt[w] stores

the update operations on blocks in relation to an index-key w,

and seq records the sequence of w in the index, hence mak-

ing every block unique without compromising forward and

backward privacy.

7 EXPERIMENTAL EVALUATION

In this section, we perform an in-depth analysis and re-

port the performance of our scheme GridSE, comparing it

with ST-ORAM [16], the state-of-the-art dynamic SSE for

substring and plaintext search.

Setup. We implemented GridSE in Java using the JPBC

[54] library for cryptographic operations, in particular, AES-

256 as the PRF. All schemes were executed on a single

machine while storing the database on RAM. We used an

EC2 i3.xlarge AWS instance (Intel Xeon 2.30GHz CPU and

30.5GB RAM). The WAN experiment was run on two ma-

chines with a 30ms roundtrip time.

Experiment Overview. The experiment is conducted

on the Gowalla location check-in dataset [55], a real-

world dataset containing 6,442,890 records contributed by

196,591 worldwide users from which we picked 63,369 dis-

tinct users within California by Google API. We tested for

various database sizes |DB|= 103-107 by randomly choosing

and duplicating users. The cell codes produced from differ-

ent DGGS methods are evaluated such as Niemeyer’s Geo-

hash [2], Google S2 [3] and Uber H3 [4]. The letters of a

cell code are from the textual alphabet. When building an

index, we standardize the area of each cell to be 0.01km2

which is equivalent to a neighboring range of 100m. Dif-

ferent DGGS methods yield various cell code lengths for a

fixed cell area. Query ranges are tested spanning from 100m

to 5km which associates the sizes from 100m2 to 100km2.

We considered variable result between 10-105 blocks. Un-

less otherwise specified, after blocks were inserted, we delete

at random 10% of the blocks matching the queried prefix,

which is to emulate the impact of deletions on performance.

All experimental values are the average obtained by 10 tri-

als. To be precise, a location is kept with five digits such as

(Long.= −97.66712,Lat.= 30.20155). This unit of digits

corresponds to 1m difference in reality.

Two parameters f and queried range are emphasized in

our experiments. The queried range varies between 5km and



Table 1: Complexity of GridSE.

Computation Time Storage Communication Size

Encryption Search Local State Ciphertext Update Search

O(N +dw) O(awp
+dw) O(dw) O(N +dw) O(1) O(awp

)

dw: the number of (distinct) index-keys in the encrypted index dictionary

InxDict at server; N: the total number of updates; awp
: the number of updates in

relation to the prefix wp.
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Figure 7: Computation time for (a) search vs. variable |DB|
sizes for result range 5km, (b) search vs. variable result

sizes, (c) search vs.% of deletions, (d) search under WAN

with 40ms latency. (b)-(d) are all for |DB|= 1M.

100m with the length of a queried prefix ranging from 5 to

10 characters. f is a parameter (in SP2E) indicating a queried

result valued of 16-20 bits w.r.t 256-bit AES ciphertexts.

7.1 Search Performance

We tested the computation time and communication size

impacted from different f , queried ranges, deletions and

WAN experiment for evaluating searches.

Computation Time. The computation time refers to the

time needed for a single geographic search. As depicted

in Fig. 7 (a)(b), GridSE and SOTA achieve nearly constant

search time as the database size varies while the search time

for both schemes slightly increases with the result size, as

more blocks need to be returned and decrypted.

Comparison with the State of the Art. It is noteworthy

that Fig. 7 (a) and (b) show a 150×−5000× speedup of our

scheme over ST-ORAM. This improvement is as expected,

given the fact that ST-ORAM needs to scan every possible

Table 2: Comparison evaluation for storage cost, search

time and communication size.

Scheme Local Storage Search Time Commu Size

Baseline (Plaintext) - 8.3ms 7.8KB

GridSE 30.7KB 20ms 15.3KB

ST-ORAM (SOTA) 424KB 5× 103ms 104KB

prefix within repeated tree structures, organized by every pos-

sible suffix (implemented with ORAM) which results in log-

arithmic cubical complexity. Instead, our solution leverages

efficient symmetric encryption, maintaining almost constant

complexity. Such improvement provides strong evidence for

the feasibility and scalability of GridSE. For example, with a

database of 1M blocks and a result size of 130, a geographic

search over ciphertexts (including decryption) requires only

20ms. Notably, the majority of the time is spent on the de-

cryption while the server only needs to perform the lookups.

This is proved by the unaffected performance with various

parameter f as shown in Fig. 7, e.g., a 4-bit difference in f

results in a negligible time difference of approximately 2ms

for an encrypted database size of |DB|= 1M. Moreover, it is

crucial to highlight the efficiency of GridSE, especially when

achieving both forward and backward privacy.

Deletion Impact. One interesting observation is the inde-

pendence of search time from the volume of deletions. As

shown in Fig. 7 (c)., as the percentage of previous deletion in-

creases from 0 to 50%, there is no notable variation in search

time for a fixed database size of 1M and fixed result size of

10K. This is because the deleted entries are not physically

removed from the index. Notice that “deletion” is recorded

in the parameter op stored within the index. Consequently,

the deletion only influences the phase after decryption, i.e.,

to pick up the block identifiers that have been added but not

yet deleted.

Experiment over WAN. To simulate the real-world sce-

nario, we measure the end-to-end search time with separate

server and client machines under the WAN setting. The la-

tency between the server and the client is around 40ms. Fig.

7 (d) depicts the search time, breaking down to computa-

tion and communication, for database size |DB| = 1M. The

data reported is for Niemeyer’s Geohash. Although com-

munication is the dominant overhead for both schemes, ST-

ORAM imposes much heavier communication overhead due

to the numerous interactive rounds with poly-logarithmic

sizes transferred to the server while in our scheme, only 1

round of communication is needed. From our experiments,

GridSE outperforms ST-ORAM by a factor of 67× in terms

of the result size.

Consider a database of size 106 with returned locations

size of 103. Under such conditions, GridSE’s performance

metrics would be 83ms for communication, 18ms for compu-

tation, and a client storage requirement of 30.7KB. This gives

us a clearer grasp of the practical feasibility of our scheme.
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Figure 8: Communication cost for (a) search vs. variable

|DB| sizes for result range 5km, (b) search vs. variable result

sizes for |DB|= 1M.
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Figure 9: Update of (a) computation time, (b)

communication size vs. variable |DB| sizes.

Communication Cost. Fig. 8 shows the communication

cost for a search under varying database sizes (a) and dif-

ferent result sizes (b). The communication cost grows lin-

early with the result size but is independent of the database

size. Compared with ST-ORAM, GridSE saves 99% commu-

nication cost. This is achieved because in our scheme, any

search contains only one round of communication between

the client and server. The client only needs to send one “to-

ken” (TList) which is nearly constant in size and receive the

result from the server. The communication cost can be fur-

ther optimized by requiring the server to send the encrypted

indexes back and then remove the deleted blocks, or asking

the client to submit a cleanup process after each search.

7.2 Update Performance

Fig. 9 (a) and (b) show the update time and communica-

tion size for one update operation (add or deletion of a block)

across varying database sizes, respectively. Notably, both the

update time and communication size are constant (5µs for

update time and 8 bytes for update size) and independent

of the database size. This is attributed to the constant com-

munication cost incurred by GridSE, where only a key-value

pair (addr,val) needs to be transmitted from client to server,

therefore highlighting the scalability of GridSE in real-world

GIS systems.

7.3 Comparison with Plaintext Search

To further evaluate the efficiency of GridSE, we compare

it with the plaintext prefix search for a database of size 106

and a result of 103. We implement this baseline via B-tree,

the default index in MySQL for common keyword searches

[56]. As shown in Table 2, GridSE incurs only 1.4× addi-

tional computation cost and 0.9× additional communication

overhead compared to the plaintext search. This is because

GridSE is built atop lightweight operations, e.g., XOR and

hash functions. Considering its privacy-enhancing features,

GridSE is promising in terms of real-time response.

8 Conclusion and Future Work

In this work, we propose GridSE, the first dynamic pre-

fix symmetric searchable encryption (pSSE) scheme that sup-

ports fast secure geographic search with data dynamics and

achieves backward and forward privacy simultaneously. We

first introduce a new cryptographic primitive SP2E for identi-

fying whether a keyword contains a given prefix based on

a lightweight cryptographic hash function. By leveraging

the lightweight cryptographic operations, GridSE built atop

SP2E introduces almost constant overhead within a given

geographical grid and is thus highly scalable. Experimental

results show that GridSE achieves 150× - 5000× speedup

as compared to the state of the art, and its performance is

close to plaintext search, proving its feasibility for large-scale

GIS/LBS systems.

Due to the constrained resources, we leave the implemen-

tation of GridSE in a real-world GIS/LBS system as a future

work. We also provide several potential research directions

here. While GridSE achieves the attractive prefix SSE for se-

cure geographic search, which can also be used as generic

prefix search primitive in other applications, a more versatile

version - substring SSE is of great interest to the commu-

nity but has not been supported yet. We point out that the

lightweightness of GridSE is made possible by leveraging

secure bit-wise operations. Combining such bit-level design

with more complicated data structures, such as trees, might

lead to a potential solution for substring SSE. In addition,

extending GridSE to the multi-client setting is also a chal-

lenging but appealing direction.
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Appendix A Definition for SSE For-

ward/Backward Privacy

Forward Privacy. Forward privacy ensures that an update

remains independent of past operations at the time this up-

date occurs. Namely, previous searches will not leak any in-

formation about the blocks to be updated. A forward private

scheme hides whether an addition is about a new block or

one that might have been previously searched for.

Definition A.1 (Forward Privacy o f Dynamic SSE). An L-

adaptively secure dynamic SSE scheme is forward private iff

the leakage function LU pdt can be written as:

LU pdt(op,w, id) = L ′U pdt (op, id) (14)

where L ′ is a stateless function, w is an index key, op is in-

sertion or deletion and id is a block identifier.

Backward Privacy. Backward privacy limits the informa-

tion that the server can learn about blocks which are previ-

ously added but later deleted during searches related to them.

In an ideal situation, the previously deleted blocks should not

revealed to the adversary, at least the identifiers [14]. To cap-

ture backward privacy, we first follow the notation of [12]

and then give the final definition.

Recall that an update is a tuple (u,op, in) where input in=
(w, id) with the modified block id, operation op = add/del,

and u is the timestamp. For an index-key w, TimeDB(w) is a

function that returns all timestamp/block-identifier pairs (of

matching index-key w) that have been added to DB but not

deleted later.

TimeDB(w) = {(u, id)|(u,add,(w, id)) ∈ Q

and ∀u′,(u′,del,(w, id)) /∈ Q},
(15)

where Q is a list of queries that have been executed. An el-

ement of Q indicates a query of the form (u,w) where u is

query timestamp, and w is the searched index-key.

The function Updates(w) returns the timestamp of all in-

sertion and deletion operations on w in the previous queries

Q. That is

Update(w) = {(u, id)|(u,add,(w, id)) ∈ Q

or (u,del,(w, id)) /∈ Q}.
(16)

DelHist(w) is a function of capturing previously deleted

entries, which returns the timestamp of all insertion and dele-

tion operations. The output of it reveals which deletion cor-

responds to which addition.

DelList(w) = {(uadd ,udel)|(u,add,(w, id)) ∈ Q

or (u,del,(w, id)) /∈ Q}.
(17)

From the above functions, we give the formal definition of

backward privacy with the three types of leakage, from Type-

I which reveals information the least to Type-III which leaks

the most. A parameter aw is introduced here, which indicates

the total number of updates associated with w.

Definition A.2 (Backward Privacy o f Dynamic SSE). An L-

adaptively secure dynamic SSE scheme is backward private:

BP-Type-I : iff LU pdt(op,w, id) = L ′(op), and

LSrch(w) = L ′′(TimeDB(w),aw).

BP-Type-II : iff LU pdt(op,w, id) = L ′(op,w), and

LSrch(w) = L ′′(TimeDB(w),Updates(w)).

BP-Type-III : iff LU pdt(op,w, id) = L ′(op,w), and

LSrch(w) = L ′′(TimeDB(w),DelHist(w)).

where L ′ and L ′′ are stateless functions.

Note that the above definition assumes the leakage of actu-

ally retrieving blocks will be allowed, namely the blocks that

currently contain an index-key w. Specifically, the function

TimeDB reveals the identifiers of the blocks matching w.

Appendix B Security Experiments of SP2E

Fig. 10 presents the security experiments for encryption

and token generation of SP2E in respective.

Appendix C Correctness of PrefDec if wp ⊑ w

Fig. 11 shows the output formula of PrefDec, that cor-

rectly exposes the bits 0 f if wp ⊑ w, for which we highlight

these bits using the color blue. The correctness of wp ⊑ w

is hold since there exists an indicator if the current keyword

w satisfies the prefix query requirement, and 0 f is such an

indicator.

Appendix D Correctness of PrefDec if wp 6⊑ w

If wp 6⊑ w, the correctness of PrefDec should guarantee

that the output of PrefDec is an indistinguishable value with-

out any indicator-bits, namely consecutive bits valued at zero.

We consider two cases under this condition of wp 6⊑w, one is

the first letters of wp are the prefix of w, but wp is not a pre-

fix of w, e.g., wp = “apps”,w= “apple”; and the other is any

composed parts of the sequence in wp is not a prefix of w, e.g.,

wp = “star”,w = “apple”. To formulate both cases, we intro-

duce a set J for denoting each sequence of the character of

the difference set wJ , that is {w−wp|wp} in wp. For instance,

wJ = ‘s’ and J = {4} if wp = “apps” and w = “apple”, be-

cause ‘s’ is the different letter in wp compared to w; and 4

indicates the sequence of ‘s’ in wp. We have 1 ≤ |J| ≤ |wp|,
and |J| is the size of J. The output of PrefDec if wp 6⊑ w can

be derived to the formula in Fig. 12. This formula shows that

there exists no indicator-bits exposed in the decrypted result.

Thus, the correctness of PrefDec for wp 6⊑ w is validated.



ExptIND−CPA
A,SP2E.Enc

(λ) :

(SK,MSK)← KeyGen(1λ, t); table U,V ← /0

(w0,w1,st)← A ′O
Enc
SK,seq(·,·)(1λ), s.t. |w0|, |w1| ≤ t

b
$
← {0,1};

ĉt← Enc(SK,PreEnc(MSK,seq,wb))

b′← AOEnc
SK,seq(·,·)(st, ĉt)

Return (b′ = b).

OEnc
SK,seq(w):

m← PreEnc(MSK,seq,w); ct,δ← Enc(SK,m)

U ←U ∪m,

V ←V ∪ (δ,seq)

Return ct.

Expt
IND− f−CPA

A,SP2E.TKGen
(λ) :

(SK,MSK)← Setup(1λ, t); table W ← /0

(wp0
,wp1

,st)← A
′OTKGen

SK,MSK,δ,seq
(·,·)(1λ), s.t. |wp0

|, |wp1
| ≤ t, |wp0

|= |wp1
|

b
$
← {0,1};

k̂′← TKGen(SK,MSK,δ,seq,wpb
)

b′← A
OTKGen

SK,MSK,δ,seq
(·,·)(st, k̂′)

Return (b′ = b).

OTKGen

SK,MSK,δ,id(wp):

k′← TKGen(SK,MSK,δ,seq,wp)

W ←W ∪ (δ,seq)

Return k′.

Figure 10: Semantic Security of Encryption and Token Generation in SP2E

k′⊕ct = 1: =

|wp|⊕

i=1

(

0(i−1) f ‖ H(skwpi
‖ seq ‖ i)

)

.sub(0, l(λ)⊕
(

η.sub(0, pos1) ‖ δ.(pos1, pos2) ‖ η.sub(pos2, l(λ))
)

⊕

|w|⊕

i=1

(

0(i−1) f ‖ H(skwi
‖ seq ‖ i)

)

.sub(0, l(λ))⊕
(

δ.sub(0, pos1) ‖ δ.(pos1, pos2) ‖ δ.sub(pos2, l(λ))
)

Note that : we have skwpi
= skwi

for 1≤ i≤ |wp|, if wp ⊑ w,

2: =

|w|⊕

i=|wp|+1

(

0(i−1) f ‖ H(skwi
‖ seq ‖ i)

)

.sub(0, l(λ))⊕
(

(η⊕δ).sub(0, pos1) ‖ 0 f ‖ (η⊕δ).sub(pos2, l(λ))
)

Note that : for simplicity,we denote the part before ′⊕′ as DH =

|w|⊕

i=|wp|+1

(

0(i−1) f ‖ H(skwi
‖ seq ‖ i)

)

,

3: = (η⊕δ).sub(0, pos1) ‖ 0 f ‖
(

DH ⊕ (η⊕δ)
)

.sub(pos2, l(λ))

(18)

Figure 11: Expanding the output k′⊕ ct of PrefDec if wp ⊑ w

k′⊕ct = 1: = Step 1 is as the same as the step 1 in Figure 11.

2: =
J⊕

i

(

0(i−1) f ‖
(

H(skwpi
‖ seq ‖ i)⊕H(skwi

‖ seq ‖ i)
)

)

.sub(0, l(λ))⊕

|w|⊕

i=|wp|+1

(

0(i−1) f ‖ H(skwi
‖ seq ‖ i)

)

.sub(0, l(λ))⊕
(

(η⊕δ).sub(0, pos1) ‖ 0 f ‖ (η⊕δ).sub(pos2, l(λ))
)

,

Note that : for simplicity, we denote SH =
J⊕

i

(

0(i−1) f ‖
(

H(skwpi
‖ seq ‖ i)⊕H(skwi

‖ seq ‖ i)
)

)

,

DH =

|w|⊕

i=|wp|+1

(

0(i−1) f ‖ H(skwi
‖ seq ‖ i)

)

and J is the sequence of wJ ,

3: =
(

SH ⊕ (η⊕δ)
)

.sub(0, pos1) ‖ SH .sub(pos1, pos2) ‖
(

(SH ⊕DH)⊕ (η⊕δ)
)

.sub(pos2, l(λ)).

(19)

Figure 12: Expanding the output k′⊕ ct of PrefDec if wp 6⊑ w



Appendix E Security Analysis of SP2E: Proof

for Thm 5.5

In the following, Gamei denotes the i-th game.

Game0: this is exactly the real security game of to-

ken security (Def. 5.3) between the challenger and a PPT

adversary A . More concretely, the challenger C executes

the setup algorithm and generates SK = (sk1,sk2),MSK =
(skc1

, · · · ,skc|Λ|
..., f ) where skci

is the secret key associated

with a character and |Λ| is the total number of characters in

alphabet Λ. Next, The challenger runs the pre-encryption and

encryption algorithm to generate the corresponding local pa-

rameter δ for each keyword w.

The challenger then responds to the token queries for pre-

fix wp from A . For each token query, the adversary sub-

mits the queried prefix wp for which the challenger com-

putes the corresponding δ and returns the token k′ by run-

ning TKGen(SK,MSK,δ,seq,wp). Then, the adversary sub-

mits two prefix wp0
and wp1

to challenger who flips a coin

at random to select b from {0,1}. The challenger generates

a token k̂′ for prefix wpb
and sends it to A . The adversary A

can further make a polynomial number of times queries to

the token generation oracle for any wp except wp0
and wp1

.

The adversary finally submits a guess b′. By the Def. 5.3, if a

cryptographic hash function is modeled as a random oracle,

we have that

Adv
IND- f -CPA
A,SP2E.TKGen

(λ) =

∣

∣

∣

∣

PrG0
[b′ = b]−

1

2

∣

∣

∣

∣

. (20)

Game1: the difference of this game with Game0 is that

each sub-value (except for the zero-prefix) of m is chosen

uniformly at random, rather than computed from calling the

hash function H. In this game, each sub-value is computed

as

(1) r1,r2, ....ri
$
←− K , where i = 1, · · · , |w|.

(2) subi = 0(i−1) f ‖ ri. Specifically, sub1 = r1.

The challenger then compute m∗ = ∑
|w|
i=1(subi) and answer

the queries with m∗ instead of m.

LEMMA E.1. Game1 and Game0 are computationally indis-

tinguishable in the random oracle model. That is

∣

∣PrG1
[b′ = b]−PrG0

[b′ = b]
∣

∣≤ AdvPRF
A ′,F (λ) (21)

Game2: it is the same as Game1, except that m∗ is replaced

by the first sub-value sampled uniformly at random, not the

sum of randomly sampled sub-values. That is

(1) sub1 = r1
$
←− K ,

The challenger then answers the token queries with m∗ =
sub1. This game is obviously identical to the previous one

under the random oracle model. Thus, it holds that

PrG2
[b′ = b] = PrG1

[b′ = b]. (22)

Game3: this game differs from Game2 when generating

the challenge token k̂′ given m and corresponding δ. To

simplify the notation, we re-write the token k̂′ in Game0
into two strings by applying the bounded- f representation.

That is, k̂′ = {k̂′1, k̂′2}, where k̂′1 = (m⊕ δ).sub(pos1, pos2)
is a f -bit string, and k̂′2 = (m⊕G(sk2,seq)).sub(0, pos1) ‖
(m⊕G(sk2,seq)).sub(pos2, l(λ)) is the remaining part of k̂′.

In this game, the challenger first samples k2 uniformly at

random from K instead of using G(sk2,m). Similarly, the

challenger samples k1 = H2(sk1,m
∗) where H2 : K ×N∗→

K is a hash function. The challenger then answers the to-

ken query and prepares the challenge token in the following

ways:

• For a token query for prefix wp, when m = m∗, the chal-

lenge outputs a token k̂′ = {k̂′1, k̂′2} where k̂′1 = (m∗⊕
k1).sub(pos1, pos2) and k̂′2 = (m∗⊕ k2).sub(0, pos1) ‖
(m∗ ⊕ k2).sub(pos2, l(λ)). Otherwise, the challenger

outputs k̂′ = TKGen(SK,MSK,G(sk1,m
∗),seq,wp).

• To generate the challenge token, the challenger

first random selects a bit b from {0,1}. The

challenger computes the token by invoking

TKGen(SK,MSK,G(sk1,m
∗),seq,wpb

)

LEMMA E.2. If F is a secure PRF and H is a one-way cryp-

tographic hash function, then Game3 and Game2 are compu-

tationally indistinguishable. That is

∣

∣PrG3
[b′ = b]−PrG2

[b′ = b]
∣

∣≤ AdvPRF
A,F (l(λ)− f )+AdvH

A,H ( f )
(23)

Note that the advantage of A on Game3 is negligible under

the IND-CPA security of the underlying symmetric encryp-

tion SE- f on f -bit bounded, for which we formally claim it

as



LEMMA E.3. If SE- f is an IND-CPA secure symmetric en-

cryption scheme, then it holds that

∣

∣

∣

∣

PrG3
[b′ = b]−

1

2

∣

∣

∣

∣

= AdvIND-CPA
A,SE- f (λ) (24)

Assuming that all lemmata hold, then we have

Adv
IND- f -CPA
A,SP2 E

(λ)

=MAX(AdvIND-CPA
A,SP2E.Enc(λ),Adv

IND- f -CPA

A,SP2E.TKGen
(λ))

= Adv
IND- f -CPA
A,SP2E.TKGen

(λ)

= |PrG0
[b′ = b]−

1

2
|

≤ |PrG1
[b′ = b]−PrG0

[b′ = b]|

+ |PrG2
[b′ = b]−PrG3

[b′ = b]|+ |PrG3
[b′ = b]−

1

2
|

≤ AdvPRF
A,F (l(λ)− f )+AdvH

A,H ( f )+AdvIND-CPA
A,SE- f (λ).

(25)

To hold the above deduction, we are required to validate all

lemmata. Lemma E.1 is straightforward to be proved by the

reduction from H and PRF to random oracle and validated by

the security of random oracle, showing that Game0, Game1
and Game2 are computationally indistinguishable. The re-

duction from Game2 to Game3 is validated through Lemma

E.2, for which the only difference from Game2 to Game3 is

the replacement for k′. As we stated in the above proof, the

component of k′ not bounded with f -bit is replaced by ran-

dom strings while that of k′ bounded with f -bit is by calling

H functions. By combining all the proofs, we can get that

the IND- f -CPA security of SP2E holds in the random oracle

model (cf. Theorem 5.5). In addition, though f -bit bounded,

our scheme achieves the requirement of adaptive security as

it does not require any limits on an adversary issuing queries

in the challenge phase.

Appendix F Security Analysis of GridSE:

Proof for Thm 6.1

As described in Appendix A, the backward privacy of dy-

namic SSE can be defined with different types of leakage.

We focus on Type-II backward privacy of GridSE which is

formally stated in Thm 6.1. The proof is similar to that of

Thm 3.1 in ref. [14]. The main difference is that the secu-

rity of GridSE is reduced to the adaptive security of SP2E

which is stated in Thm 5.5. We finish the proof by construct-

ing a simulator via a sequence of games and show that the

advantage of a PPT adversary against our protocol is negli-

gible. The behavior of our simulator Sim is described here.

For setup. Sim simply follows the setup algorithm defined in

GridSE. During an update query, the simulator generates the

transcript (addr,val) by sampling uniformly at random in the

range of corresponding PRF G. The simulator stores the en-

try I( j) = (addr,val, in) where j is the timestamp of the up-

date. If the index j does not correspond to a valid update, Sim

sets I( j) to be null. During a search, Sim receives the leak-

age function TimeDB(wp) and Update(wp). The simulator

infers from Update(wp) the timestamps of previous updates

related to the searched prefixes and sends the search results to

the server. Upon receiving, the simulator calls TimeDB(wp)
to retrieve the sets of documents that currently contain the

searched prefixes and sends them to the server. We now prove

the security of GridSE as follows:

Game0: This is exactly the same as the real SSE security

game described in Def 4.1. Thus, we have

Pr[REAL
Σ
A(λ,q) = 1] = Pr[Game0 = 1]

Game1: This is exactly the same as Game0 except

GK(I,BCnt[w]) which is computed by a PRF G and key K.

It is replaced by a value sampled uniformly at random from

the range of G. The indistinguishability between Game1 and

Game0 is guaranteed by the security of PRF. That is,

|Pr[Game1 = 1]−Pr[Game0 = 1]| ≤ AdvPRFA ,G(λ)

Game2: This is exactly the same as Game1 except the

value of addr. Instead of calling the pre-encryption and en-

cryption algorithms of SP2E, the value of addr is substituted

by a uniformly random sampled value in Y . A list I with

q entries is maintained with each entry I( j) = (addr,val, in)
for j = 1, · · · ,q indicating a valid update operation storing

the random values sampled together with the operation in-

put in = (w, id). For all j that does not correspond to an up-

date operation, the entries I( j) would be null. When perform-

ing a search for prefix wp, the game scans the list to identify

the entries that match the prefix restriction that wp ⊑ w and

sends the corresponding addr to the server to receive results.

It then scans I again to deduce Rwp the set of documents that

currently holds index-keys w with prefix wp and sends Rwp

to the server. The indistinguishability of Game2 and Game1
is guaranteed by the adaptive security of SP2E which has al-

ready been proved in Appendix E. Hence, we have

|Pr[Game2 = 1]−Pr[Game1 = 1]| ≤ d ·Adv
IND- f -CPA

A ,SP2E
(λ)

where d indicates the maximum length of a keyword.

Game3: This is exactly the same as IDEAL
PSSE with simu-

lator described above. The transcripts produced in this game

follow the same distribution as those generated in Game2
since the leakage functions correspond to the same values

that would be computed in Game2 and the value of val is

distributed uniformly at random. Thus, we have

Pr[REAL
Σ
A(λ,q) = 1]−Pr[IDEAL

Σ
A ,Sim(λ,q)]≤ AdvPRFA ,G(λ)

+d ·Adv
IND- f -CPA

A ,SP2E
(λ)

which completes the proof.
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