
PREPARED BY: LLMWARE.AI

AI-POWERED
PRODUCTIVITY WITH
AI PCS

LLMWARE.AI

PRODUCTIVITY
REVOLUTION

AI-POWERED

Inference Speed
of Mac M1, M3
and Dell Ultra
9/Intel AI PCs

WHY

8/27/2024

COMPARE

AI PCs will fuel
decentralization
of AI

We stand at the brink of an AI-powered
productivity revolution where we can put
the power of AI models in everyone’s
hands as a personal and business
productivity tool. Business users and
consumers will be able to access and to
use a wide range of AI-enabled workflows
with the safety and security of self-hosting
and private deployment on their personal
devices thanks to a new generation of
personal computers called AI PCs that are
designed to power efficient AI
acceleration and handle AI tasks locally.

In this white paper, we will show why AI
PCs are poised to play a significant role in
the miniaturization and decentralized
deployment of LLM technologies in the
next several years. We will evaluate and
compare the performance of several
popular AI PCs - Mac M1, M3 and Dell
Ultra 9/Intel - for inference speed and use
in Generative AI. In addition, we will
demonstrate how the combination of the
right software optimization such as AI
framework with the corresponding model
compilers that are mapped to the specific
hardware produces a significant
difference in inference speed and
usability of the hardware.

2

Dell Ultra/Intel
Laptop was up
to 51% faster
than Mac M1
and 37.5%
faster than
Mac M3

Laptop Inference
Speed Test Result

Our tests found that the Dell/Intel
laptop[1] performed up to 51% faster
compared to a Mac M1 and up to 37.5%
faster compared to a Mac M3 when the
appropriate AI framework and
inference optimization library is used,
in this case OpenVINO for Dell/Intel and
llama.cpp for Mac. Based on our
findings, when paired with the right
software optimization technique, Intel-
based AI PCs will enable a wide range of
potential use cases and generative AI
applications privately, locally and cost-
effectively over the next 12-24 months
and provide the best total value and
performance overall.

Correct software
optimization
technique is key to
delivering fastest
inference

3

Since the launch of ChatGPT in November
2022, API-based large language models
(>100 billion parameters) have dominated
the AI market. Recently, however, these
two emergent trends have converged to
create the perfect scenario to further
decentralized deployment of AI:

Small specialized models – high-
quality model bases specialized for
domain-specific, general business or
productivity assistant purposes; and

Quantization and packaging
technologies – compressing the size of
large models using bit-level
quantization to enable larger models
in smaller spaces without diminishing
the efficacy of the model.

Coupled with next generation laptop-
level GPU/CPU/NPU capabilities in AI PCs,
it is now possible to unlock the potential
to deploy these models with fast
inferencing performance on the PC or
laptop. These factors have created the
opportunity for the AI PC, currently
defined as a desktop or notebook
possessing a dedicated chipset or block
to run on-device AI workloads.[2]

There is tremendous optimism and
projected growth for AI PCs. In Q2 of
2024, 14% of the AI PCs shipped globally
were AI PCs, which doubled in growth
from 7% in Q1 of 2024.[3] The adoption
of AI PCs is projected to grow such that
by 2027, 60% of all PCs are expected to
be AI capable.[4] In the PC market in
general, in 2023, Apple shipped less than
10% of PCs across the entire market[5]
while Intel dominated this market with
78% of CPUs.[6]

AI PC OPPORTUNITY

AI PCs can run AI workloads

4

Given the proliferation of Intel-based PCs
and laptops that run on Microsoft Windows,
or “Wintel,” we explored (a) whether the
dominant and preferred method of
deploying LLMs via the GGUF format, which
is designed to optimize inferencing on Mac
Metal would be equally effective on Wintel
laptops; and (b) if the GGUF format does
not prove to be the right software
optimization technique for such Wintel
laptops, then what the performance
difference would be if paired with the
technique best suited for them.

We tested for “real world” performance on a
realistic, replicable test set and answering
the basic questions that are representative
of enterprise use cases. Specifically, we
sought to identify what types of models and
use cases are achievable in the short-term
where performance will be in an acceptable
range.

Key questions were:

How do Intel Ultra laptops compare with
Mac for inferencing AI models?

How to get the fastest inference
performance on each laptop?

What does this mean for future use
cases and potential adoption in the
enterprise over the next 12 – 24
months?

LY UPDATE

Since the emergence of the Llama open
source models from Meta, there has been a
tremendous acceleration in capabilities of
small language models (SLMs), ranging from
1B – 10B parameters over the course of the
last 18 months with other popular open
source models being launched such as
Mistral, Phi3 (Microsoft), Gemma (Google),
Qwen, Yi, StableLM, and others. These
models generally have the same
architecture as the larger models and are
trained with generally the same or
comparable training set. A good rule of
thumb is that these models aspire to have
80-90% of the capability for most tasks,
while operating at 1/10 to 1/100 of the cost.

The power of SLMs comes from pivoting
from the perspective of utilizing one large
frontier model that can perform any task, to
conceptualizing models as specialized for a
particular task while maximizing smaller
footprint, lower cost, more flexible
deployment options and speed of
finetuning. These attributes allow
enterprises to evolve from thinking of AI as
one big model to a decentralized
environment of dozens or even hundreds of
smaller, specialized task-based models,
each performing a specific business
function.

Each SLM may not have the capability of a
large frontier model, but by finetuning and
specializing the smaller model, the premise
is that it can operate comparably – or with
superiority – to the larger model at a
fraction of the cost and with much better
options for deploying flexibly and cost
effectively.

Background: Key Trends

SMALL LANGUAGE
MODELS ARE LOWER

COST AND OFFER
FLEXIBLE DEPLOYMENT

5

LY UPDATE

Model Name Model Family Model Parameters (Billion) Quantized Binary Size (GB)

bling-tiny-llama tiny-llama 1.1 0.67

bling-phi-3 phi-3-mini (microsoft) 3.8 2.4

dragon-llama-2 llama-2 (meta) 7.0 4.1

dragon-mistral mistral (mistral) 7.3 4.4

dragon-yi-9b yi (01-ai) 8.8 5.7

As a further observation, we have found
that in addition to GPU/NPU/CPU
processing capability, operational memory
is a very important variable for the AI PC,
and we expect and recommend most
enterprises to move to 32 GB for any
laptops in which they are looking to
initiate heavy use of AI models running
locally.

For purposes of our testing, we looked at various model sizes and the following models as representative:

We used our own finetuned version of each
of these model families that is optimized for
enterprise fact-based question-answering in
complex domains. This allowed us to
provide consistency to the model outputs
across the size range. For the purpose of
this evaluation, we did not focus on
accuracy of the models themselves as we
have published other work on accuracy by
model size, and where we have shown that
accuracy generally increases with size,
although the phi-3-mini is currently the
most accurate model in our testing at only
3.8B parameters.[7]

With models in this size range, we have
found that machines with at least 16 GB of
RAM can generally provide effective
inference, especially with smaller models,
e.g., tiny-llama (1.1B), but that 32 GB is a
significant improvement and allows much
faster inference and even the ability to
juggle two or more models concurrently in
memory, enabling ‘toggling’ between
different specialized models for different
tasks concurrently that is especially
important in AI agent workflow scenarios.

Memory is
important for
AI PCs

We recommend
most enterprises to
move to 32 GB for
heavy AI use

6

Once the model has been fully trained,
and is ready for deployment, the models
can be converted into other formats, such
as GGUF, ONNX, TensorRT, or OpenVINO,
which bring the benefit of “compiling” and
fixing the model graph which results in
faster performance. This usually removes
the Python dependency in using the
model (allowing embedding the model
into C++, Java, Go, Javascript and other
production applications), and then the
model inferencing packaging technology is
responsible for quantizing the model,
usually to 4 bits, which results in a
reduction in the model binary size of at
least 4-8X.

As recently as just 2-3 years ago, most
LLMs were kept in “floating point 32” in
which 4 bytes (of 8 bits each) were used to
represent a single floating point number
(e.g, one of the model parameters) and
would have a correlated memory
consumption. For example, the simple
math is that a model with 7 billion
parameters in floating point 32 would take
28 GB of memory.

 Increasingly, model fine-tuning and Pytorch
model packaging adapted to variants of
“floating point 16” in which 2 bytes are used
for each parameter, such that a
pytorch_model.bin file for a 7 billion
parameter model is usually approximately 14
GB.

Starting in 2023, a number of innovative
quantization approaches emerged to evolve
to 8-bit, and then to 4-bit, and even 2-bit.
There are a variety of statistical techniques
used, but the basic principle is to try to
“shrink” the size of each parameter to an
ever smaller representation without losing
much in quality in the output.

The rapid progression from a 28 GB file to ~4
GB file is the journey of model quantization
over the last 2 years, and a big part of the
reason that high-quality 7 billion parameter
models are accessible on standard laptops.

Today, the most popular quantizations are
generally 4-bit (although there are a minority
of 2-bit, 3-bit, and 5-bit). With 4-bit
quantization, a 7 billion parameter model
could be compressed to 3.5 GB. In most
cases, a “smart” quantization technique is
applied, which will reduce parameters to 4-
bit where possible, but will keep parameters
that may be more influential at 6-bit, 8-bit or
16-bit, such that often times in practice a 7
billion parameter quantized model will be ~4
GB.

Historically, model training and fine-tuning
has been the province of libraries such as
Pytorch and Tensorflow, which provide
strong underlying capabilities to manage
the backpropagation process (and other
specialized matrix operations) used in
model training. Today, virtually all of the
leading LLMs are packaged primarily in
Pytorch, and made available in this form for
downstream finetuning, which also usually
occurs in Pytorch (although there are a
growing number of alternatives).

Quantization and Packaging

ADVANCES IN QUANTIZATION
TECHNIQUES MAKE AI MODELS

ACCESSIBLE ON AI PCS

7

Throughout 2023, an influential open
source library, llama.cpp – and the
associated GGUF format, emerged as the
biggest beneficiary and catalyst of
quantizing and running smaller language
models on laptops and PCs. The stated
mission of llama.cpp was to build an
integrated inferencing engine, in C/C++,
that optimized LLM performance on
laptops and edge devices, especially for
Mac Metal [8]. In addition to llama.cpp,
there are a few other libraries to optimize
inferencing:

TensorRT has long been a model
compilation standard used by Nvidia to
optimize models on their GPUs, but is
not used much outside of the Nvidia
ecosystem.

ONNX and ONNX Runtime have
emerged as an important alternative in
the Windows ecosystem in particular,
offering many of the same approaches
as llama.cpp.

OpenVINO, sponsored by Intel, is
optimized for Intel chip technologies –
CPU, GPU and NPU.

We expect that there will continue to be a
heterogeneous environment for lower level
model inference packaging with adoption
among each of these standards with
increased optimizations for different
platforms.

Quantizations in Brief

llama.cpp/GGUF
Best for Macs and Nvidia

ONNX
Best for Windows
ecosystem

OpenVINO
Best for Intel chip
technologies

TensorRT
Best for Nvidia

8

 The last two questions generate larger
answers, and are usually a good quick test of
potential ‘saturation’ as the model runs, and
do take the longest time in the process. We
cap generation at 100 tokens maximum, with
the expectation of using the model as a
productivity tool.[9]

The full set of questions and answers can be
found at this link:

https://www.github.com/llmware-
ai/llmware/tree/main/examples/Models/blin
g_fast_start.py

Our open source library contains over 100
examples of how we use small language
models as a productivity tool for enterprise
use cases, an example of which can be found
here[10] which shows how small language
models can be used to extract text to query
external web sources to complete a complex
research report for financial analysis:

https://youtu.be/y4WvwHqRR60?si=FivOMgS-
CbVHSQ2r

We compared Mac M1,
Mac M3 and Dell

Inspiron Intel Ultra 9 for
Model Inference Speed

Performance Test

Using publicly-available and widely-used
laptops, and technologies that are all open
source and available for others to replicate,
our goal was to construct a baseline ‘real
world’ benchmark to evaluate the
effectiveness of end-to-end inferencing.

We used the following machines for our
testing that we purchased ourselves:

• Mac M1 (circa 2022) – with 32 GB of RAM –
this was the specification of a high-end Mac
with MSRP of $3499 in August 2022.

• Mac M3 Max (circa 2024) – with 36 GB of
RAM – this is a top of the line Mac with MSRP
of $3499 in March 2024.

• Dell Inspiron Intel Ultra9 (MeteorLake) with
32 GB of RAM, available from Dell directly for
$1099 MSRP in June 2024.

We constructed our test based on an open
source example file that we published almost
a year ago, which has the benefit of being
both widely-available, widely and consistently
used in our previous testing, and also avoids
any potential “cherry-picking” in the design to
potentially bias one of the technologies being
tested.

In this testing scenario, we aimed to
reproduce a Retrieval Augmented
Generation (RAG) scenario for fact-based
question-answering. The test consisted of 21
fact-based question-answering context
passages, across a wide range of business,
financial and general news topics, with
context passages ranging between 100 – 500
tokens, combined with a fact-based question,
and then answers typically in the range of 10-
100 tokens.

9

https://www.github.com/llmware-ai/llmware/tree/main/examples/Models/bling_fast_start.py
https://www.github.com/llmware-ai/llmware/tree/main/examples/Models/bling_fast_start.py
https://www.github.com/llmware-ai/llmware/tree/main/examples/Models/bling_fast_start.py
https://youtu.be/y4WvwHqRR60?si=FivOMgS-CbVHSQ2r
https://youtu.be/y4WvwHqRR60?si=FivOMgS-CbVHSQ2r

Machine Model Params (B) Quant Framework Processing (sec)

Ultra9-32GB bl ing-t iny- l lama 1.1 32 PyTorch 114.9

Ultra9-32GB bl ing-t iny- l lama 1.1 4_K_M GGUF 112.9

Ultra9-32GB bl ing-t iny- l lama 1.1 8-INT Optimum-Intel 93.5

Ultra9-32GB bl ing-t iny- l lama 1.1 int4 ONNX 65

Ultra9-32GB bl ing-t iny- l lama 1.1 int4 OpenVino (CPU) 54.5

Ultra9-32GB bl ing-t iny- l lama 1.1 int4 OpenVino (GPU) 15

 We have found that 4-bit quantization GGUF
(with a libllama.cpp compiled with both
Metal and Accelerate) is by a far the fastest
inferencing on a Mac laptop, so we only
considered GGUF as our inferencing
technology for the Mac in all of our tests.
GGUF is widely used and accessible with
large catalog of model support and for local
Mac inferencing, GGUF is a hands-down
winner as the fastest and easiest way to run
local models, using llama.cpp.

It was less clear to us what would be the
fastest inferencing approach on a Wintel
laptop and in fact, it was our initial testing
that disabused us of the naïve view that
GGUF would be the fastest on all platforms.

Fastest Inference on each Platform

Our main comparison is between a
representative state of the art (available) Mac
and a Windows laptop using Intel
technologies, with the goal of packaging the
model to achieve the fastest inference
performance on each machine.

By leveraging the Mac Accelerate and Metal
acceleration libraries, llama.cpp showed the
potential for a GPU-like inference
performance running locally on Mac M1 and
M3 laptops, with generally acceptable
performance standard of only a few seconds
per inference for real-world use cases with
smaller models.

Performance Result on Dell Ultra-9/Intel using Different Inference
Optimization Libraries
Here is the comparison of inference performance on the Dell Ultra-9/Intel laptop, using
consistently a 1.1 billion parameter tiny-llama model using our 21-question RAG test. The
processing time shows the total runtime for all 21 questions:

10

We found that the OpenVINO (GPU) version
of the model produces the fastest inference
time - 7.6x faster - compared to the PyTorch
version and 7.5x faster compared to the
GGUF version.

As is shown in our testing, GGUF had
negligible impact on inferencing models in
our Dell Ultra-9/Intel laptop. We tried
multiple ways to optimize GGUF (different
compile options in llama.cpp) but reached
the general conclusion pretty quickly that
GGUF is primarily optimized for Mac and
CUDA today, with Intel performance that is
only slightly better than using a naïve
Pytorch without any quantization.

We then saw significant improvement with
ONNX. Satisfied with the significant
performance gain, we originally planned to
only use ONNX until we started to do
testing with OpenVINO. We would still
consider ONNX a strong viable alternative
generally, especially as it has support for
pluggable ‘execution providers’, including
OpenVINO.

We then deployed OpenVINO with the Intel
GPU Plugin, and our testing clearly showed
that OpenVINO was by far superior for
Intel-based machines, with massive
performance improvements unlocked.

In each case, we took reasonable steps to
optimize the performance for the
underlying technology, but focused on
‘plain vanilla’ deployments and publicly-
available builds and instructions, in the
attempt to try to create a fair baseline of
comparison.

Dell Ultra-9/Intel
performed BEST with
OpenVINO (GPU)
framework

This preliminary evaluation showed us that
because OpenVINO produced such superior
results in our Dell Ultra9/Intel laptop, to
conduct a fair evaluation of inference speeds
on each of the laptops, we needed to use the
quantization format best suited to each
machine. Therefore, to frame the
performance test as “best” on Mac versus
“best” on Wintel, we decided to use these
versions of the models:

Mac – 4-bit GGUF
Dell/Intel – ‘int4’ OpenVINO on Intel GPU
(Ultra)

7.6x Faster than PyTorch

7.5x Faster than GGUF

Key is to match the right
software to hardware

11

RAG "bling_fast_start" example - 21 fact-based questions with different contexts and relatively short output generations

Model Name Model
Parameters (B)

Mac M1
(secs)

Mac M3
Max (secs)

Intel Ultra
(secs)

M3 vs M1
(%) Intel Ultra vs M1 Intel Ultra vs M3

bling-tiny-llama 1.1 31.30 23.27 15.27 25.67% 51.22% 34.38%

bling-phi-3 3.8 81.10 61.40 43.03 24.29% 46.94% 29.91%

dragon-llama2 7 128.30 97.65 75.93 23.89% 40.82% 22.24%

dragon-mistral 7.3 113.20 96.80 71.23 14.49% 37.07% 26.41%

dragon-yi-9b 8.8 172.50 143.75 89.80 16.67% 47.94% 37.53%

Results of the Performance Test

We ran the 21-question RAG performance
test three times with each model on each
platform, taking the average of those three
runs. We tried to keep the machines
relatively ‘clean’ only to ensure a fair baseline
comparison, but did not take any unusual
steps to set up a lab environment. As with
any hardware environment, there can be
saturations.

We found especially if many applications and
processes were running concurrently, this
could lead to saturations. As such, there is
possibility for variations in the results below,
but we found them to be consistent in a
narrow range once the environment was in a
relatively ‘clean’ state with minimal
background applications running.

In our testing, the Dell Ultra9/Intel laptop
performed up to 51% faster compared to a
Mac M1 and up to 37.5% faster compared to
a Mac M3. The biggest performance gains
compared to both Mac M1 and M3 were in
the 1B parameter and the 9B parameter LLM
sizes. The Dell Ultra9/Intel laptop also
significantly outperformed Mac M1 and M3
in every model size we tested, and in every
single run of our testing.

In addition, given that the Dell Ultra9/Intel
laptop was able to answer 21 questions in
15.27 seconds, we were able to get sub-
second response times for the bling-tiny-
llama model.

DELL ULTRA 9/INTEL LAPTOP
SIGNIFICANTLY OUTPERFORMED

MAC M1 AND M3 IN EVERY MODEL
SIZE WE TESTED

12

1. Intel laptop GPU performance is
surprisingly fast, once the right model
packaging and software optimization
technology is deployed to unlock the GPU
capability (OpenVINO).

2. GGUF is not universal to all inferencing,
and in fact, most enterprises will need to be
able to support multiple formats, including
OpenVINO and ONNX, to roll out self-hosted
and locally-deployed model applications
across their enterprise.

3. Price/performance – the Mac M3 Max
retails at $3499, and the Dell Inspiron Ultra 9
was $1099 in June 2024. On a price-to-
performance ratio, the Intel Ultra
performance is especially impressive and
surprising, and captures what is potentially
game-changing about the roll-out of the AI
PC – it can be the laptop of wide-spread
distributed use of generative AI in the
enterprise – cost-effectively and safely.

As long-time Mac users, we were surprised
at the performance we saw from the
Dell/Intel Ultra GPU, with notably faster
performance than both a Mac M1 (which is
our standard development machine) and
even a brand-new state of the art M3 Max.
The superior inference speed is particularly
remarkable considering the price to value
ratio, given that we purchased each of the
Macs for $3499 MSRP and the Dell/Intel
laptop for only $1099 MSRP. It was also
notable that the performance improvement
was generally greater as model size
increased.

As a quick rule of thumb, with 21 questions,
if a test took 43 seconds to complete, it
implies ~2 seconds per question. Similarly,
a 15 second response time is equivalent to
sub-second question answering with a
locally running LLM. As performance gets
into this range of <3-4 seconds per
question, the range of use cases widens
considerably in terms of acceptable user
experience.

On the contrary, on a Mac, using 7B
parameter models is often ‘border-line’ in
terms of user experience. In many use
cases, it is often too slow, and as a result,
we typically try to use tiny-llama, phi-3 and
stable-lm models. However, we believe that
the Intel Ultra performs fast enough on 7b
parameter models that they can be used
more comfortably in a wider range of use
cases – and even much larger models like
the yi-9B (which provides very high quality)
is also in an acceptable speed performance
range.

Conclusion

DELL INSPIRON ULTRA/INTEL WAS
ESPECIALLY IMPRESSIVE AND

SURPRISING BY BEING UP TO 51%
FASTER IN PERFORMANCE WHILE

LESS THAN 1/3 OF THE PRICE OF THE
MACS WE TESTED

Key Take-Aways

13

Explore how
LLMWare.ai can
help optimize your
AI workflow.
Contact us today.

Website:
llmware.ai

Contact:
Namee Oberst

With the ability to run high-speed inference of models up to 9B parameters on a
relatively standard issue enterprise-grade Wintel laptop, the AI PC is going to be a really
exciting platform and space to watch in 2025. While we continue to be fans of GGUF,
Mac and CUDA, we are shifting a lot of our efforts now to OpenVINO, ONNX and
optimizing for AI PCs in the run-up to Intel’s next generation Lunar Lake laptops to be
launched later this year.

Next Steps

[1] Laptop Specs: Dell Inspiron 14 Plus 7440, Installed RAM 32 GB, Intel Core Ultra 9 185H 2.50 Ghz Processor, Windows 11
[2] Canalys. “Now and Next for AI-Capable PCs.” January 2024, p.5
[3] Canalys. “14% of PCs Shipped Globally in Q2 were AI Capable.” August 13, 2024
[4] Canalys. “Now and Next for AI-Capable PCs.” January 2024, p.5
[5] https://www.statista.com/topics/10435/apple-mac/#topicOverview
[6] https://www.extremetech.com/computing/intel-holds-78-global-market-share-for-cpus-analyst
[7] We have not run this accuracy testing on the yi-9B, which we expect would perform at least comparably or better.
[8] https://llama-cpp-python.readthedocs.io/en/latest/install/macos/
[9]Out of Scope – we did not consider model loading time, which can vary between different technologies and platforms, but is usually
a ‘one time’ cost and is very environment I/O specific. We also did not consider multiple model use cases, which will be increasingly
important in AI PC productivity applications, but will save that for a future evaluation.
[10] https://github.com/llmware-ai/llmware/blob/main/examples/SLIM-Agents/custom_extract_and_lookup.py

Endnotes

Copyrighted by LLMWare.ai (by AI Bloks LLC)

14

http://llmware.ai/
https://calendly.com/noberst/discovery-call

