
Next.js Documentation
v15.0.0

Date: 2024-05-17

Table of Contents
1 - Introduction
2 - Getting Started
 2.1 - Installation
 2.2 - Next.js Project Structure
3 - App Router
 3.1 - Building Your Application
 3.1.1 - Routing Fundamentals
 3.1.1.1 - Defining Routes
 3.1.1.2 - Pages
 3.1.1.3 - Layouts and Templates
 3.1.1.4 - Linking and Navigating
 3.1.1.5 - Error Handling
 3.1.1.6 - Loading UI and Streaming
 3.1.1.7 - Redirecting
 3.1.1.8 - Route Groups
 3.1.1.9 - Project Organization and File Colocation
 3.1.1.10 - Dynamic Routes
 3.1.1.11 - Parallel Routes
 3.1.1.12 - Intercepting Routes
 3.1.1.13 - Route Handlers
 3.1.1.14 - Middleware
 3.1.1.15 - Internationalization
 3.1.2 - Data Fetching
 3.1.2.1 - Data Fetching, Caching, and Revalidating
 3.1.2.2 - Server Actions and Mutations
 3.1.2.3 - Patterns and Best Practices
 3.1.3 - Rendering
 3.1.3.1 - Server Components
 3.1.3.2 - Client Components
 3.1.3.3 - Server and Client Composition Patterns
 3.1.3.4 - Runtimes
 3.1.4 - Caching in Next.js
 3.1.5 - Styling
 3.1.5.1 - CSS Modules and Global Styles
 3.1.5.2 - Tailwind CSS
 3.1.5.3 - CSS-in-JS
 3.1.5.4 - Sass
 3.1.6 - Optimizations
 3.1.6.1 - Image Optimization
 3.1.6.2 - Video Optimization
 3.1.6.3 - Font Optimization
 3.1.6.4 - Metadata
 3.1.6.5 - Script Optimization
 3.1.6.6 - Bundle Analyzer
 3.1.6.7 - Lazy Loading
 3.1.6.8 - Analytics
 3.1.6.9 - Instrumentation
 3.1.6.10 - OpenTelemetry
 3.1.6.11 - Static Assets in `public`
 3.1.6.12 - Third Party Libraries
 3.1.6.13 - Memory Usage
 3.1.7 - Configuring
 3.1.7.1 - TypeScript
 3.1.7.2 - ESLint
 3.1.7.3 - Environment Variables
 3.1.7.4 - Absolute Imports and Module Path Aliases
 3.1.7.5 - Markdown and MDX
 3.1.7.6 - src Directory
 3.1.7.7 - Draft Mode
 3.1.7.8 - Content Security Policy
 3.1.8 - Testing
 3.1.8.1 - Setting up Vitest with Next.js

 3.1.8.2 - Setting up Jest with Next.js
 3.1.8.3 - Setting up Playwright with Next.js
 3.1.8.4 - Setting up Cypress with Next.js
 3.1.9 - Authentication
 3.1.10 - Deploying
 3.1.10.1 - Production Checklist
 3.1.10.2 - Static Exports
 3.1.11 - Upgrade Guide
 3.1.11.1 - Codemods
 3.1.11.2 - App Router Incremental Adoption Guide
 3.1.11.3 - Version 14
 3.1.11.4 - Migrating from Vite
 3.1.11.5 - Migrating from Create React App
 3.2 - API Reference
 3.2.1 - Components
 3.2.1.1 - Font Module
 3.2.1.2 - <Image>
 3.2.1.3 - <Link>
 3.2.1.4 - <Script>
 3.2.2 - File Conventions
 3.2.2.1 - Metadata Files API Reference
 3.2.2.1.1 - favicon, icon, and apple-icon
 3.2.2.1.2 - manifest.json
 3.2.2.1.3 - opengraph-image and twitter-image
 3.2.2.1.4 - robots.txt
 3.2.2.1.5 - sitemap.xml
 3.2.2.2 - default.js
 3.2.2.3 - error.js
 3.2.2.4 - instrumentation.js
 3.2.2.5 - layout.js
 3.2.2.6 - loading.js
 3.2.2.7 - mdx-components.js
 3.2.2.8 - middleware.js
 3.2.2.9 - not-found.js
 3.2.2.10 - page.js
 3.2.2.11 - Route Segment Config
 3.2.2.12 - route.js
 3.2.2.13 - template.js
 3.2.3 - Functions
 3.2.3.1 - cookies
 3.2.3.2 - draftMode
 3.2.3.3 - fetch
 3.2.3.4 - generateImageMetadata
 3.2.3.5 - Metadata Object and generateMetadata Options
 3.2.3.6 - generateSitemaps
 3.2.3.7 - generateStaticParams
 3.2.3.8 - generateViewport
 3.2.3.9 - headers
 3.2.3.10 - ImageResponse
 3.2.3.11 - NextRequest
 3.2.3.12 - NextResponse
 3.2.3.13 - notFound
 3.2.3.14 - permanentRedirect
 3.2.3.15 - redirect
 3.2.3.16 - revalidatePath
 3.2.3.17 - revalidateTag
 3.2.3.18 - unstable_cache
 3.2.3.19 - unstable_noStore
 3.2.3.20 - useParams
 3.2.3.21 - usePathname
 3.2.3.22 - useReportWebVitals
 3.2.3.23 - useRouter
 3.2.3.24 - useSearchParams
 3.2.3.25 - useSelectedLayoutSegment
 3.2.3.26 - useSelectedLayoutSegments

 3.2.3.27 - userAgent
 3.2.4 - next.config.js Options
 3.2.4.1 - appDir
 3.2.4.2 - assetPrefix
 3.2.4.3 - basePath
 3.2.4.4 - compress
 3.2.4.5 - crossOrigin
 3.2.4.6 - devIndicators
 3.2.4.7 - distDir
 3.2.4.8 - env
 3.2.4.9 - eslint
 3.2.4.10 - exportPathMap (Deprecated)
 3.2.4.11 - generateBuildId
 3.2.4.12 - generateEtags
 3.2.4.13 - headers
 3.2.4.14 - httpAgentOptions
 3.2.4.15 - images
 3.2.4.16 - Custom Next.js Cache Handler
 3.2.4.17 - instrumentationHook
 3.2.4.18 - logging
 3.2.4.19 - mdxRs
 3.2.4.20 - onDemandEntries
 3.2.4.21 - optimizePackageImports
 3.2.4.22 - output
 3.2.4.23 - pageExtensions
 3.2.4.24 - Partial Prerendering (experimental)
 3.2.4.25 - poweredByHeader
 3.2.4.26 - productionBrowserSourceMaps
 3.2.4.27 - reactStrictMode
 3.2.4.28 - redirects
 3.2.4.29 - rewrites
 3.2.4.30 - serverActions
 3.2.4.31 - serverExternalPackages
 3.2.4.32 - StaleTimes (experimental)
 3.2.4.33 - trailingSlash
 3.2.4.34 - transpilePackages
 3.2.4.35 - turbo (Experimental)
 3.2.4.36 - typedRoutes (experimental)
 3.2.4.37 - typescript
 3.2.4.38 - urlImports
 3.2.4.39 - webVitalsAttribution
 3.2.4.40 - Custom Webpack Config
 3.2.5 - create-next-app
 3.2.6 - Edge Runtime
 3.2.7 - Next.js CLI
4 - Pages Router
 4.1 - Building Your Application
 4.1.1 - Routing
 4.1.1.1 - Pages and Layouts
 4.1.1.2 - Dynamic Routes
 4.1.1.3 - Linking and Navigating
 4.1.1.4 - Redirecting
 4.1.1.5 - Custom App
 4.1.1.6 - Custom Document
 4.1.1.7 - API Routes
 4.1.1.8 - Custom Errors
 4.1.1.9 - Internationalization (i18n) Routing
 4.1.1.10 - Middleware
 4.1.2 - Rendering
 4.1.2.1 - Server-side Rendering (SSR)
 4.1.2.2 - Static Site Generation (SSG)
 4.1.2.3 - Automatic Static Optimization
 4.1.2.4 - Client-side Rendering (CSR)
 4.1.2.5 - Edge and Node.js Runtimes
 4.1.3 - Data Fetching

 4.1.3.1 - getStaticProps
 4.1.3.2 - getStaticPaths
 4.1.3.3 - Forms and Mutations
 4.1.3.4 - getServerSideProps
 4.1.3.5 - Incremental Static Regeneration (ISR)
 4.1.3.6 - Client-side Fetching
 4.1.4 - Styling
 4.1.4.1 - CSS Modules
 4.1.4.2 - Tailwind CSS
 4.1.4.3 - CSS-in-JS
 4.1.4.4 - Sass
 4.1.5 - Optimizations
 4.1.5.1 - Image Optimization
 4.1.5.2 - Font Optimization
 4.1.5.3 - Script Optimization
 4.1.5.4 - Static Assets
 4.1.5.5 - Bundle Analyzer
 4.1.5.6 - Analytics
 4.1.5.7 - Lazy Loading
 4.1.5.8 - Instrumentation
 4.1.5.9 - OpenTelemetry
 4.1.5.10 - Third Party Libraries
 4.1.6 - Configuring
 4.1.6.1 - TypeScript
 4.1.6.2 - ESLint
 4.1.6.3 - Environment Variables
 4.1.6.4 - Absolute Imports and Module Path Aliases
 4.1.6.5 - src Directory
 4.1.6.6 - Markdown and MDX
 4.1.6.7 - AMP
 4.1.6.8 - Babel
 4.1.6.9 - PostCSS
 4.1.6.10 - Custom Server
 4.1.6.11 - Draft Mode
 4.1.6.12 - Error Handling
 4.1.6.13 - Debugging
 4.1.6.14 - Preview Mode
 4.1.6.15 - Content Security Policy
 4.1.7 - Testing
 4.1.7.1 - Setting up Vitest with Next.js
 4.1.7.2 - Setting up Jest with Next.js
 4.1.7.3 - Setting up Playwright with Next.js
 4.1.7.4 - Setting up Cypress with Next.js
 4.1.8 - Authentication
 4.1.9 - Deploying
 4.1.9.1 - Production Checklist
 4.1.9.2 - Static Exports
 4.1.9.3 - Multi Zones
 4.1.9.4 - Continuous Integration (CI) Build Caching
 4.1.10 - Upgrading
 4.1.10.1 - Codemods
 4.1.10.2 - From Pages to App
 4.1.10.3 - Migrating from Vite
 4.1.10.4 - Migrating from Create React App
 4.1.10.5 - Version 14
 4.1.10.6 - Version 13
 4.1.10.7 - Version 12
 4.1.10.8 - Version 11
 4.1.10.9 - Version 10
 4.1.10.10 - Upgrading to Version 9
 4.2 - API Reference
 4.2.1 - Components
 4.2.1.1 - Font Module
 4.2.1.2 - <Head>
 4.2.1.3 - <Image> (Legacy)

 4.2.1.4 - <Image>
 4.2.1.5 - <Link>
 4.2.1.6 - <Script>
 4.2.2 - Functions
 4.2.2.1 - getInitialProps
 4.2.2.2 - getServerSideProps
 4.2.2.3 - getStaticPaths
 4.2.2.4 - getStaticProps
 4.2.2.5 - NextRequest
 4.2.2.6 - NextResponse
 4.2.2.7 - useAmp
 4.2.2.8 - useReportWebVitals
 4.2.2.9 - useRouter
 4.2.2.10 - userAgent
 4.2.3 - next.config.js Options
 4.2.3.1 - assetPrefix
 4.2.3.2 - basePath
 4.2.3.3 - bundlePagesRouterDependencies
 4.2.3.4 - compress
 4.2.3.5 - crossOrigin
 4.2.3.6 - devIndicators
 4.2.3.7 - distDir
 4.2.3.8 - env
 4.2.3.9 - eslint
 4.2.3.10 - exportPathMap
 4.2.3.11 - generateBuildId
 4.2.3.12 - generateEtags
 4.2.3.13 - headers
 4.2.3.14 - httpAgentOptions
 4.2.3.15 - images
 4.2.3.16 - instrumentationHook
 4.2.3.17 - onDemandEntries
 4.2.3.18 - optimizePackageImports
 4.2.3.19 - output
 4.2.3.20 - pageExtensions
 4.2.3.21 - poweredByHeader
 4.2.3.22 - productionBrowserSourceMaps
 4.2.3.23 - reactStrictMode
 4.2.3.24 - redirects
 4.2.3.25 - rewrites
 4.2.3.26 - Runtime Config
 4.2.3.27 - serverExternalPackages
 4.2.3.28 - trailingSlash
 4.2.3.29 - transpilePackages
 4.2.3.30 - turbo (experimental)
 4.2.3.31 - typescript
 4.2.3.32 - urlImports
 4.2.3.33 - webVitalsAttribution
 4.2.3.34 - Custom Webpack Config
 4.2.4 - create-next-app
 4.2.5 - Next.js CLI
 4.2.6 - Edge Runtime
5 - Architecture
 5.1 - Accessibility
 5.2 - Fast Refresh
 5.3 - Next.js Compiler
 5.4 - Supported Browsers
 5.5 - Turbopack
6 - Next.js Community
 6.1 - Docs Contribution Guide

1 - Introduction
Documentation path: /index

Description: Welcome to the Next.js Documentation.

Welcome to the Next.js documentation!

What is Next.js?

Next.js is a React framework for building full-stack web applications. You use React Components to build user interfaces, and Next.js
for additional features and optimizations.

Under the hood, Next.js also abstracts and automatically configures tooling needed for React, like bundling, compiling, and more. This
allows you to focus on building your application instead of spending time with configuration.

Whether you’re an individual developer or part of a larger team, Next.js can help you build interactive, dynamic, and fast React
applications.

Main Features

Some of the main Next.js features include:

Feature Description

Routing
A file-system based router built on top of Server Components that supports layouts, nested routing, loading states,
error handling, and more.

Rendering
Client-side and Server-side Rendering with Client and Server Components. Further optimized with Static and Dynamic
Rendering on the server with Next.js. Streaming on Edge and Node.js runtimes.

Data Fetching
Simplified data fetching with async/await in Server Components, and an extended fetch API for request
memoization, data caching and revalidation.

Styling Support for your preferred styling methods, including CSS Modules, Tailwind CSS, and CSS-in-JS

Optimizations Image, Fonts, and Script Optimizations to improve your application’s Core Web Vitals and User Experience.

TypeScript
Improved support for TypeScript, with better type checking and more efficient compilation, as well as custom
TypeScript Plugin and type checker.

How to Use These Docs

On the left side of the screen, you’ll find the docs navbar. The pages of the docs are organized sequentially, from basic to advanced, so
you can follow them step-by-step when building your application. However, you can read them in any order or skip to the pages that
apply to your use case.

On the right side of the screen, you’ll see a table of contents that makes it easier to navigate between sections of a page. If you need to
quickly find a page, you can use the search bar at the top, or the search shortcut (Ctrl+K or Cmd+K).

To get started, checkout the Installation guide.

App Router vs Pages Router

Next.js has two different routers: the App Router and the Pages Router. The App Router is a newer router that allows you to use React’s
latest features, such as Server Components and Streaming. The Pages Router is the original Next.js router, which allowed you to build
server-rendered React applications and continues to be supported for older Next.js applications.

At the top of the sidebar, you’ll notice a dropdown menu that allows you to switch between the App Router and the Pages Router
features. Since there are features that are unique to each directory, it’s important to keep track of which tab is selected.

The breadcrumbs at the top of the page will also indicate whether you’re viewing App Router docs or Pages Router docs.

Pre-Requisite Knowledge

Although our docs are designed to be beginner-friendly, we need to establish a baseline so that the docs can stay focused on Next.js
functionality. We’ll make sure to provide links to relevant documentation whenever we introduce a new concept.

To get the most out of our docs, it’s recommended that you have a basic understanding of HTML, CSS, and React. If you need to brush
up on your React skills, check out our React Foundations Course, which will introduce you to the fundamentals. Then, learn more about

file:///docs/app/building-your-application/routing
file:///docs/app/building-your-application/rendering
file:///docs/app/building-your-application/data-fetching
file:///docs/app/building-your-application/styling
file:///docs/app/building-your-application/optimizing
file:///docs/app/building-your-application/configuring/typescript
file:///docs/getting-started/installation
file:///learn/react-foundations

Next.js by building a dashboard application.

Accessibility

For optimal accessibility when using a screen reader while reading the docs, we recommend using Firefox and NVDA, or Safari and
VoiceOver.

Join our Community

If you have questions about anything related to Next.js, you’re always welcome to ask our community on GitHub Discussions, Discord,
Twitter, and Reddit.

file:///learn/dashboard-app
https://github.com/vercel/next.js/discussions
https://discord.com/invite/bUG2bvbtHy
https://twitter.com/nextjs
https://www.reddit.com/r/nextjs

2 - Getting Started
Documentation path: /01-getting-started/index

Description: Learn how to create full-stack web applications with Next.js.

2.1 - Installation
Documentation path: /01-getting-started/01-installation

Description: Create a new Next.js application with `create-next-app`. Set up TypeScript, styles, and configure your `next.config.js` file.

Related:

Title: Next Steps

Related Description: Learn about the files and folders in your Next.js project.

Links:

getting-started/project-structure

System Requirements:

Node.js 18.17 or later.
macOS, Windows (including WSL), and Linux are supported.

Automatic Installation

We recommend starting a new Next.js app using create-next-app, which sets up everything automatically for you. To create a
project, run:

Terminal (bash)

npx create-next-app@latest

On installation, you’ll see the following prompts:
Terminal (txt)

What is your project named? my-app
Would you like to use TypeScript? No / Yes
Would you like to use ESLint? No / Yes
Would you like to use Tailwind CSS? No / Yes
Would you like to use `src/` directory? No / Yes
Would you like to use App Router? (recommended) No / Yes
Would you like to customize the default import alias (@/*)? No / Yes
What import alias would you like configured? @/*

After the prompts, create-next-app will create a folder with your project name and install the required dependencies.

If you’re new to Next.js, see the project structure docs for an overview of all the possible files and folders in your application.

Good to know:

Next.js now ships with TypeScript, ESLint, and Tailwind CSS configuration by default.
You can optionally use a src directory in the root of your project to separate your application’s code from configuration
files.

Manual Installation

To manually create a new Next.js app, install the required packages:
Terminal (bash)

npm install next@latest react@latest react-dom@latest

Open your package.json file and add the following scripts:

package.json (json)

{
 "scripts": {
 "dev": "next dev",
 "build": "next build",
 "start": "next start",
 "lint": "next lint"
 }
}

These scripts refer to the different stages of developing an application:

dev: runs next dev to start Next.js in development mode.

https://nodejs.org/
file:///docs/app/api-reference/create-next-app
file:///docs/getting-started/project-structure
file:///docs/app/building-your-application/configuring/typescript
file:///docs/app/building-your-application/configuring/eslint
file:///docs/app/building-your-application/styling/tailwind-css
file:///docs/app/building-your-application/configuring/src-directory
file:///docs/app/api-reference/next-cli#development

build: runs next build to build the application for production usage.
start: runs next start to start a Next.js production server.
lint: runs next lint to set up Next.js’ built-in ESLint configuration.

Creating directories

Next.js uses file-system routing, which means the routes in your application are determined by how you structure your files.

The appapp directory

For new applications, we recommend using the App Router. This router allows you to use React’s latest features and is an evolution of
the Pages Router based on community feedback.

Create an app/ folder, then add a layout.tsx and page.tsx file. These will be rendered when the user visits the root of your
application (/).

Create a root layout inside app/layout.tsx with the required <html> and <body> tags:

app/layout.tsx (tsx)

export default function RootLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html lang="en">
 <body>{children}</body>
 </html>
)
}

app/layout.js (jsx)

export default function RootLayout({ children }) {
 return (
 <html lang="en">
 <body>{children}</body>
 </html>
)
}

Finally, create a home page app/page.tsx with some initial content:

app/page.tsx (tsx)

export default function Page() {
 return <h1>Hello, Next.js!</h1>
}

app/page.js (jsx)

export default function Page() {
 return <h1>Hello, Next.js!</h1>
}

Good to know: If you forget to create layout.tsx, Next.js will automatically create this file when running the development
server with next dev.

Learn more about using the App Router.

The pagespages directory (optional)

If you prefer to use the Pages Router instead of the App Router, you can create a pages/ directory at the root of your project.

file:///docs/app/api-reference/next-cli#build
file:///docs/app/api-reference/next-cli#production
file:///docs/app/api-reference/next-cli#lint
file:///docs/app
file:///docs/pages
file:///docs/app/building-your-application/routing/layouts-and-templates#root-layout-required
file:///docs/app/building-your-application/routing/defining-routes

Then, add an index.tsx file inside your pages folder. This will be your home page (/):

pages/index.tsx (tsx)

export default function Page() {
 return <h1>Hello, Next.js!</h1>
}

Next, add an _app.tsx file inside pages/ to define the global layout. Learn more about the custom App file.

pages/_app.tsx (tsx)

import type { AppProps } from 'next/app'

export default function App({ Component, pageProps }: AppProps) {
 return <Component {...pageProps} />
}

pages/_app.js (jsx)

export default function App({ Component, pageProps }) {
 return <Component {...pageProps} />
}

Finally, add a _document.tsx file inside pages/ to control the initial response from the server. Learn more about the custom
Document file.

pages/_document.tsx (tsx)

import { Html, Head, Main, NextScript } from 'next/document'

export default function Document() {
 return (
 <Html>
 <Head />
 <body>
 <Main />
 <NextScript />
 </body>
 </Html>
)
}

Learn more about using the Pages Router.

Good to know: Although you can use both routers in the same project, routes in app will be prioritized over pages. We
recommend using only one router in your new project to avoid confusion.

The publicpublic folder (optional)

Create a public folder to store static assets such as images, fonts, etc. Files inside public directory can then be referenced by your
code starting from the base URL (/).

Run the Development Server

1. Run npm run dev to start the development server.
2. Visit http://localhost:3000 to view your application.
3. Edit app/page.tsx (or pages/index.tsx) file and save it to see the updated result in your browser.

file:///docs/pages/building-your-application/routing/custom-app
file:///docs/pages/building-your-application/routing/custom-document
file:///docs/pages/building-your-application/routing/pages-and-layouts

2.2 - Next.js Project Structure
Documentation path: /01-getting-started/02-project-structure

Description: A list of folders and files conventions in a Next.js project

This page provides an overview of the project structure of a Next.js application. It covers top-level files and folders, configuration files,
and routing conventions within the app and pages directories.

Click the file and folder names to learn more about each convention.

Top-level folders

Top-level folders are used to organize your application’s code and static assets.

app App Router

pages Pages Router

public Static assets to be served

src Optional application source folder

Top-level files

Top-level files are used to configure your application, manage dependencies, run middleware, integrate monitoring tools, and define
environment variables.

Next.js

next.config.js Configuration file for Next.js

package.json Project dependencies and scripts

instrumentation.ts OpenTelemetry and Instrumentation file

middleware.ts Next.js request middleware

.env Environment variables

.env.local Local environment variables

.env.production Production environment variables

.env.development Development environment variables

.eslintrc.json Configuration file for ESLint

.gitignore Git files and folders to ignore

next-env.d.ts TypeScript declaration file for Next.js

tsconfig.json Configuration file for TypeScript

file:///docs/app/building-your-application/routing
file:///docs/pages/building-your-application/routing
file:///docs/app/building-your-application/optimizing/static-assets
file:///docs/app/building-your-application/configuring/src-directory
file:///docs/app/api-reference/next-config-js
file:///docs/getting-started/installation#manual-installation
file:///docs/app/building-your-application/optimizing/instrumentation
file:///docs/app/building-your-application/routing/middleware
file:///docs/app/building-your-application/configuring/environment-variables
file:///docs/app/building-your-application/configuring/environment-variables
file:///docs/app/building-your-application/configuring/environment-variables
file:///docs/app/building-your-application/configuring/environment-variables
file:///docs/app/building-your-application/configuring/eslint

jsconfig.json Configuration file for JavaScript

appapp Routing Conventions

The following file conventions are used to define routes and handle metadata in the app router.

Routing Files

layout .js .jsx .tsx Layout

page .js .jsx .tsx Page

loading .js .jsx .tsx Loading UI

not-found .js .jsx .tsx Not found UI

error .js .jsx .tsx Error UI

global-error .js .jsx .tsx Global error UI

route .js .ts API endpoint

template .js .jsx .tsx Re-rendered layout

default .js .jsx .tsx Parallel route fallback page

Nested Routes

folder Route segment

folder/folder Nested route segment

Dynamic Routes

[folder] Dynamic route segment

[...folder] Catch-all route segment

[[...folder]] Optional catch-all route segment

Route Groups and Private Folders

(folder) Group routes without affecting routing

_folder Opt folder and all child segments out of routing

Parallel and Intercepted Routes

@folder Named slot

(.)folder Intercept same level

(..)folder Intercept one level above

(..)(..)folder Intercept two levels above

(...)folder Intercept from root

file:///docs/app
file:///docs/app/api-reference/file-conventions/layout
file:///docs/app/api-reference/file-conventions/page
file:///docs/app/api-reference/file-conventions/loading
file:///docs/app/api-reference/file-conventions/not-found
file:///docs/app/api-reference/file-conventions/error
file:///docs/app/api-reference/file-conventions/error#global-errorjs
file:///docs/app/api-reference/file-conventions/route
file:///docs/app/api-reference/file-conventions/template
file:///docs/app/api-reference/file-conventions/default
file:///docs/app/building-your-application/routing#route-segments
file:///docs/app/building-your-application/routing#nested-routes
file:///docs/app/building-your-application/routing/dynamic-routes#convention
file:///docs/app/building-your-application/routing/dynamic-routes#catch-all-segments
file:///docs/app/building-your-application/routing/dynamic-routes#optional-catch-all-segments
file:///docs/app/building-your-application/routing/route-groups#convention
file:///docs/app/building-your-application/routing/colocation#private-folders
file:///docs/app/building-your-application/routing/parallel-routes#slots
file:///docs/app/building-your-application/routing/intercepting-routes#convention
file:///docs/app/building-your-application/routing/intercepting-routes#convention
file:///docs/app/building-your-application/routing/intercepting-routes#convention
file:///docs/app/building-your-application/routing/intercepting-routes#convention

Metadata File Conventions

App Icons

favicon .ico Favicon file

icon .ico .jpg .jpeg .png .svg App Icon file

icon .js .ts .tsx Generated App Icon

apple-icon .jpg .jpeg, .png Apple App Icon file

apple-icon .js .ts .tsx Generated Apple App Icon

Open Graph and Twitter Images

opengraph-image .jpg .jpeg .png .gif Open Graph image file

opengraph-image .js .ts .tsx Generated Open Graph image

twitter-image .jpg .jpeg .png .gif Twitter image file

twitter-image .js .ts .tsx Generated Twitter image

SEO

sitemap .xml Sitemap file

sitemap .js .ts Generated Sitemap

robots .txt Robots file

robots .js .ts Generated Robots file

pagespages Routing Conventions

The following file conventions are used to define routes in the pages router.

Special Files

_app .js .jsx .tsx Custom App

_document .js .jsx .tsx Custom Document

_error .js .jsx .tsx Custom Error Page

404 .js .jsx .tsx 404 Error Page

500 .js .jsx .tsx 500 Error Page

Routes

Folder convention

index .js .jsx .tsx Home page

folder/index .js .jsx .tsx Nested page

File convention

index .js .jsx .tsx Home page

file .js .jsx .tsx Nested page

file:///docs/app/api-reference/file-conventions/metadata/app-icons#favicon
file:///docs/app/api-reference/file-conventions/metadata/app-icons#icon
file:///docs/app/api-reference/file-conventions/metadata/app-icons#generate-icons-using-code-js-ts-tsx
file:///docs/app/api-reference/file-conventions/metadata/app-icons#apple-icon
file:///docs/app/api-reference/file-conventions/metadata/app-icons#generate-icons-using-code-js-ts-tsx
file:///docs/app/api-reference/file-conventions/metadata/opengraph-image#opengraph-image
file:///docs/app/api-reference/file-conventions/metadata/opengraph-image#generate-images-using-code-js-ts-tsx
file:///docs/app/api-reference/file-conventions/metadata/opengraph-image#twitter-image
file:///docs/app/api-reference/file-conventions/metadata/opengraph-image#generate-images-using-code-js-ts-tsx
file:///docs/app/api-reference/file-conventions/metadata/sitemap#sitemap-files-xml
file:///docs/app/api-reference/file-conventions/metadata/sitemap#generating-a-sitemap-using-code-js-ts
file:///docs/app/api-reference/file-conventions/metadata/robots#static-robotstxt
file:///docs/app/api-reference/file-conventions/metadata/robots#generate-a-robots-file
file:///docs/pages
file:///docs/pages/building-your-application/routing/custom-app
file:///docs/pages/building-your-application/routing/custom-document
file:///docs/pages/building-your-application/routing/custom-error#more-advanced-error-page-customizing
file:///docs/pages/building-your-application/routing/custom-error#404-page
file:///docs/pages/building-your-application/routing/custom-error#500-page
file:///docs/pages/building-your-application/routing/pages-and-layouts#index-routes
file:///docs/pages/building-your-application/routing/pages-and-layouts#index-routes
file:///docs/pages/building-your-application/routing/pages-and-layouts#index-routes
file:///docs/pages/building-your-application/routing/pages-and-layouts

Dynamic Routes

Folder convention

[folder]/index .js .jsx .tsx Dynamic route segment

[...folder]/index .js .jsx .tsx Catch-all route segment

[[...folder]]/index .js .jsx .tsx Optional catch-all route segment

File convention

[file] .js .jsx .tsx Dynamic route segment

[...file] .js .jsx .tsx Catch-all route segment

[[...file]] .js .jsx .tsx Optional catch-all route segment

file:///docs/pages/building-your-application/routing/dynamic-routes
file:///docs/pages/building-your-application/routing/dynamic-routes#catch-all-segments
file:///docs/pages/building-your-application/routing/dynamic-routes#optional-catch-all-segments
file:///docs/pages/building-your-application/routing/dynamic-routes
file:///docs/pages/building-your-application/routing/dynamic-routes#catch-all-segments
file:///docs/pages/building-your-application/routing/dynamic-routes#optional-catch-all-segments

3 - App Router
Documentation path: /02-app/index

Description: Use the new App Router with Next.js' and React's latest features, including Layouts, Server Components, Suspense, and
more.

The Next.js App Router introduces a new model for building applications using React’s latest features such as Server Components,
Streaming with Suspense, and Server Actions.

Get started with the App Router by creating your first page.

Frequently Asked Questions

How can I access the request object in a layout?

You intentionally cannot access the raw request object. However, you can access headers and cookies through server-only functions.
You can also set cookies.

Layouts do not rerender. They can be cached and reused to avoid unnecessary computation when navigating between pages. By
restricting layouts from accessing the raw request, Next.js can prevent the execution of potentially slow or expensive user code within
the layout, which could negatively impact performance.

This design also enforces consistent and predictable behavior for layouts across different pages, which simplifies development and
debugging.

Depending on the UI pattern you’re building, Parallel Routes allow you to render multiple pages in the same layout, and pages have
access to the route segments as well as the URL search params.

How can I access the URL on a page?

By default, pages are Server Components. You can access the route segments through the params prop and the URL search params
through the searchParams prop for a given page.

If you are using Client Components, you can use usePathname, useSelectedLayoutSegment, and useSelectedLayoutSegments for
more complex routes.

Further, depending on the UI pattern you’re building, Parallel Routes allow you to render multiple pages in the same layout, and pages
have access to the route segments as well as the URL search params.

How can I redirect from a Server Component?

You can use redirect to redirect from a page to a relative or absolute URL. redirect is a temporary (307) redirect, while
permanentRedirect is a permanent (308) redirect. When these functions are used while streaming UI, they will insert a meta tag to
emit the redirect on the client side.

How can I handle authentication with the App Router?

Here are some common authentication solutions that support the App Router:

NextAuth.js
Clerk
Lucia
Auth0
Stytch
Kinde
WorkOS
Or manually handling sessions or JWTs

How can I set cookies?

You can set cookies in Server Actions or Route Handlers using the cookies function.

Since HTTP does not allow setting cookies after streaming starts, you cannot set cookies from a page or layout directly. You can also set
cookies from Middleware.

How can I build multi-tenant apps?

If you are looking to build a single Next.js application that serves multiple tenants, we have built an example showing our
recommended architecture.

file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/routing/loading-ui-and-streaming#streaming-with-suspense
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/routing/layouts-and-templates
file:///docs/app/api-reference/functions/headers
file:///docs/app/api-reference/functions/cookies
file:///docs/app/building-your-application/routing/layouts-and-templates#layouts
file:///docs/app/building-your-application/routing/parallel-routes
file:///docs/app/api-reference/file-conventions/page#params-optional
file:///docs/app/api-reference/file-conventions/page#searchparams-optional
file:///docs/app/api-reference/functions/use-pathname
file:///docs/app/api-reference/functions/use-selected-layout-segment
file:///docs/app/api-reference/functions/use-selected-layout-segments
file:///docs/app/building-your-application/routing/parallel-routes
file:///docs/app/api-reference/functions/redirect
file:///docs/app/api-reference/functions/redirect
file:///docs/app/api-reference/functions/permanentRedirect
https://next-auth.js.org/configuration/nextjs#in-app-router
https://clerk.com/docs/quickstarts/nextjs
https://lucia-auth.com/getting-started/nextjs-app
https://github.com/auth0/nextjs-auth0#app-router
https://stytch.com/docs/example-apps/frontend/nextjs
https://kinde.com/docs/developer-tools/nextjs-sdk/
https://workos.com/docs/user-management
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations#cookies
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/api-reference/functions/cookies
file:///docs/app/building-your-application/routing/middleware#using-cookies
https://vercel.com/templates/next.js/platforms-starter-kit

How can I invalidate the App Router cache?

There are multiple layers of caching in Next.js, and thus, multiple ways to invalidate different parts of the cache. Learn more about
caching.

Are there any comprehensive, open-source applications built on the App Router?

Yes. You can view Next.js Commerce or the Platforms Starter Kit for two larger examples of using the App Router that are open-source.

Learn More

Routing Fundamentals
Data Fetching, Caching, and Revalidating
Forms and Mutations
Caching
Rendering Fundamentals
Server Components
Client Components

file:///docs/app/building-your-application/caching
https://vercel.com/templates/next.js/nextjs-commerce
https://vercel.com/templates/next.js/platforms-starter-kit
file:///docs/app/building-your-application/routing
file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/caching
file:///docs/app/building-your-application/rendering
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/rendering/client-components

3.1 - Building Your Application
Documentation path: /02-app/01-building-your-application/index

Description: Learn how to use Next.js features to build your application.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js provides the building blocks to create flexible, full-stack web applications. The guides in Building Your Application explain
how to use these features and how to customize your application’s behavior.

The sections and pages are organized sequentially, from basic to advanced, so you can follow them step-by-step when building your
Next.js application. However, you can read them in any order or skip to the pages that apply to your use case.

If you’re new to Next.js, we recommend starting with the Routing, Rendering, Data Fetching and Styling sections, as they introduce the
fundamental Next.js and web concepts to help you get started. Then, you can dive deeper into the other sections such as Optimizing
and Configuring. Finally, once you’re ready, checkout the Deploying and Upgrading sections.

If you’re new to Next.js, we recommend starting with the Routing, Rendering, Data Fetching and Styling sections, as they introduce the
fundamental Next.js and web concepts to help you get started. Then, you can dive deeper into the other sections such as Optimizing
and Configuring. Finally, once you’re ready, checkout the Deploying and Upgrading sections.

file:///docs/app/building-your-application/routing
file:///docs/app/building-your-application/rendering
file:///docs/app/building-your-application/data-fetching
file:///docs/app/building-your-application/styling
file:///docs/app/building-your-application/optimizing
file:///docs/app/building-your-application/configuring
file:///docs/app/building-your-application/deploying
file:///docs/app/building-your-application/upgrading
file:///docs/pages/building-your-application/routing
file:///docs/pages/building-your-application/rendering
file:///docs/pages/building-your-application/data-fetching
file:///docs/pages/building-your-application/styling
file:///docs/pages/building-your-application/optimizing
file:///docs/pages/building-your-application/configuring
file:///docs/pages/building-your-application/deploying
file:///docs/pages/building-your-application/upgrading

3.1.1 - Routing Fundamentals
Documentation path: /02-app/01-building-your-application/01-routing/index

Description: Learn the fundamentals of routing for front-end applications.

The skeleton of every application is routing. This page will introduce you to the fundamental concepts of routing for the web and how
to handle routing in Next.js.

Terminology

First, you will see these terms being used throughout the documentation. Here’s a quick reference:

Tree: A convention for visualizing a hierarchical structure. For example, a component tree with parent and children components, a
folder structure, etc.
Subtree: Part of a tree, starting at a new root (first) and ending at the leaves (last).
Root: The first node in a tree or subtree, such as a root layout.
Leaf: Nodes in a subtree that have no children, such as the last segment in a URL path.

URL Segment: Part of the URL path delimited by slashes.
URL Path: Part of the URL that comes after the domain (composed of segments).

The appapp Router

In version 13, Next.js introduced a new App Router built on React Server Components, which supports shared layouts, nested routing,
loading states, error handling, and more.

The App Router works in a new directory named app. The app directory works alongside the pages directory to allow for incremental
adoption. This allows you to opt some routes of your application into the new behavior while keeping other routes in the pages
directory for previous behavior. If your application uses the pages directory, please also see the Pages Router documentation.

file:///docs/app/building-your-application/rendering/server-components
file:///docs/pages/building-your-application/routing

Good to know: The App Router takes priority over the Pages Router. Routes across directories should not resolve to the same
URL path and will cause a build-time error to prevent a conflict.

By default, components inside app are React Server Components. This is a performance optimization and allows you to easily adopt
them, and you can also use Client Components.

Recommendation: Check out the Server page if you’re new to Server Components.

Roles of Folders and Files

Next.js uses a file-system based router where:

Folders are used to define routes. A route is a single path of nested folders, following the file-system hierarchy from the root
folder down to a final leaf folder that includes a page.js file. See Defining Routes.
Files are used to create UI that is shown for a route segment. See special files.

Route Segments

Each folder in a route represents a route segment. Each route segment is mapped to a corresponding segment in a URL path.

Nested Routes

To create a nested route, you can nest folders inside each other. For example, you can add a new /dashboard/settings route by
nesting two new folders in the app directory.

The /dashboard/settings route is composed of three segments:

/ (Root segment)
dashboard (Segment)
settings (Leaf segment)

File Conventions

Next.js provides a set of special files to create UI with specific behavior in nested routes:

file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/routing/defining-routes

layout
Shared UI for a segment and its children

page Unique UI of a route and make routes publicly accessible

loading Loading UI for a segment and its children

not-found Not found UI for a segment and its children

error Error UI for a segment and its children

global-error Global Error UI

route Server-side API endpoint

template Specialized re-rendered Layout UI

default Fallback UI for Parallel Routes

Good to know: .js, .jsx, or .tsx file extensions can be used for special files.

Component Hierarchy

The React components defined in special files of a route segment are rendered in a specific hierarchy:

layout.js
template.js
error.js (React error boundary)
loading.js (React suspense boundary)
not-found.js (React error boundary)
page.js or nested layout.js

In a nested route, the components of a segment will be nested inside the components of its parent segment.

file:///docs/app/building-your-application/routing/layouts-and-templates#layouts
file:///docs/app/building-your-application/routing/pages
file:///docs/app/building-your-application/routing/loading-ui-and-streaming
file:///docs/app/api-reference/file-conventions/not-found
file:///docs/app/building-your-application/routing/error-handling
file:///docs/app/building-your-application/routing/error-handling
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/routing/layouts-and-templates#templates
file:///docs/app/api-reference/file-conventions/default
file:///docs/app/building-your-application/routing/parallel-routes

Colocation

In addition to special files, you have the option to colocate your own files (e.g. components, styles, tests, etc) inside folders in the app
directory.

This is because while folders define routes, only the contents returned by page.js or route.js are publicly addressable.

Learn more about Project Organization and Colocation.

Advanced Routing Patterns

The App Router also provides a set of conventions to help you implement more advanced routing patterns. These include:

Parallel Routes: Allow you to simultaneously show two or more pages in the same view that can be navigated independently. You

file:///docs/app/building-your-application/routing/colocation
file:///docs/app/building-your-application/routing/parallel-routes

can use them for split views that have their own sub-navigation. E.g. Dashboards.
Intercepting Routes: Allow you to intercept a route and show it in the context of another route. You can use these when keeping the
context for the current page is important. E.g. Seeing all tasks while editing one task or expanding a photo in a feed.

These patterns allow you to build richer and more complex UIs, democratizing features that were historically complex for small teams
and individual developers to implement.

Next Steps

Now that you understand the fundamentals of routing in Next.js, follow the links below to create your first routes:

file:///docs/app/building-your-application/routing/intercepting-routes

3.1.1.1 - Defining Routes
Documentation path: /02-app/01-building-your-application/01-routing/01-defining-routes

Description: Learn how to create your first route in Next.js.

Related:

Title: Related

Related Description: Learn more about creating pages and layouts.

Links:

app/building-your-application/routing/pages

We recommend reading the Routing Fundamentals page before continuing.

This page will guide you through how to define and organize routes in your Next.js application.

Creating Routes

Next.js uses a file-system based router where folders are used to define routes.

Each folder represents a route segment that maps to a URL segment. To create a nested route, you can nest folders inside each other.

A special page.js file is used to make route segments publicly accessible.

In this example, the /dashboard/analytics URL path is not publicly accessible because it does not have a corresponding page.js
file. This folder could be used to store components, stylesheets, images, or other colocated files.

Good to know: .js, .jsx, or .tsx file extensions can be used for special files.

Creating UI

file:///docs/app/building-your-application/routing
file:///docs/app/building-your-application/routing#route-segments
file:///docs/app/building-your-application/routing#nested-routes
file:///docs/app/building-your-application/routing/pages

Special file conventions are used to create UI for each route segment. The most common are pages to show UI unique to a route, and
layouts to show UI that is shared across multiple routes.

For example, to create your first page, add a page.js file inside the app directory and export a React component:

app/page.tsx (tsx)

export default function Page() {
 return <h1>Hello, Next.js!</h1>
}

app/page.js (jsx)

export default function Page() {
 return <h1>Hello, Next.js!</h1>
}

file:///docs/app/building-your-application/routing#file-conventions
file:///docs/app/building-your-application/routing/pages
file:///docs/app/building-your-application/routing/layouts-and-templates#layouts

3.1.1.2 - Pages
Documentation path: /02-app/01-building-your-application/01-routing/02-pages

Description: Create your first page in Next.js

Related:

Title: Related

Related Description: No related description

Links:

app/building-your-application/routing/layouts-and-templates
app/building-your-application/routing/linking-and-navigating

A page is UI that is unique to a route. You can define a page by default exporting a component from a page.js file.

For example, to create your index page, add the page.js file inside the app directory:

app/page.tsx (tsx)

// `app/page.tsx` is the UI for the `/` URL
export default function Page() {
 return <h1>Hello, Home page!</h1>
}

app/page.js (jsx)

// `app/page.js` is the UI for the `/` URL
export default function Page() {
 return <h1>Hello, Home page!</h1>
}

Then, to create further pages, create a new folder and add the page.js file inside it. For example, to create a page for the /dashboard
route, create a new folder called dashboard, and add the page.js file inside it:

app/dashboard/page.tsx (tsx)

// `app/dashboard/page.tsx` is the UI for the `/dashboard` URL
export default function Page() {
 return <h1>Hello, Dashboard Page!</h1>
}

app/dashboard/page.js (jsx)

// `app/dashboard/page.js` is the UI for the `/dashboard` URL
export default function Page() {
 return <h1>Hello, Dashboard Page!</h1>
}

Good to know:

The .js, .jsx, or .tsx file extensions can be used for Pages.
A page is always the leaf of the route subtree.
A page.js file is required to make a route segment publicly accessible.
Pages are Server Components by default, but can be set to a Client Component.
Pages can fetch data. View the Data Fetching section for more information.

file:///docs/app/building-your-application/routing#terminology
file:///docs/app/building-your-application/routing#terminology
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/data-fetching

3.1.1.3 - Layouts and Templates
Documentation path: /02-app/01-building-your-application/01-routing/03-layouts-and-templates

Description: Create your first shared layout in Next.js.

The special files layout.js and template.js allow you to create UI that is shared between routes. This page will guide you through how
and when to use these special files.

Layouts

A layout is UI that is shared between multiple routes. On navigation, layouts preserve state, remain interactive, and do not re-render.
Layouts can also be nested.

You can define a layout by default exporting a React component from a layout.js file. The component should accept a children
prop that will be populated with a child layout (if it exists) or a page during rendering.

For example, the layout will be shared with the /dashboard and /dashboard/settings pages:

app/dashboard/layout.tsx (tsx)

export default function DashboardLayout({
 children, // will be a page or nested layout
}: {
 children: React.ReactNode
}) {
 return (
 <section>
 {/* Include shared UI here e.g. a header or sidebar */}
 <nav></nav>

 {children}
 </section>
)
}

app/dashboard/layout.js (jsx)

export default function DashboardLayout({
 children, // will be a page or nested layout
}) {
 return (
 <section>
 {/* Include shared UI here e.g. a header or sidebar */}
 <nav></nav>

 {children}
 </section>
)
}

Root Layout (Required)

The root layout is defined at the top level of the app directory and applies to all routes. This layout is required and must contain html
and body tags, allowing you to modify the initial HTML returned from the server.

file:///docs/app/building-your-application/routing/defining-routes#creating-routes

app/layout.tsx (tsx)

export default function RootLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html lang="en">
 <body>
 {/* Layout UI */}
 <main>{children}</main>
 </body>
 </html>
)
}

app/layout.js (jsx)

export default function RootLayout({ children }) {
 return (
 <html lang="en">
 <body>
 {/* Layout UI */}
 <main>{children}</main>
 </body>
 </html>
)
}

Nesting Layouts

By default, layouts in the folder hierarchy are nested, which means they wrap child layouts via their children prop. You can nest
layouts by adding layout.js inside specific route segments (folders).

For example, to create a layout for the /dashboard route, add a new layout.js file inside the dashboard folder:

app/dashboard/layout.tsx (tsx)

export default function DashboardLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return <section>{children}</section>
}

app/dashboard/layout.js (jsx)

export default function DashboardLayout({ children }) {
 return <section>{children}</section>
}

If you were to combine the two layouts above, the root layout (app/layout.js) would wrap the dashboard layout
(app/dashboard/layout.js), which would wrap route segments inside app/dashboard/*.

The two layouts would be nested as such:

Good to know:

.js, .jsx, or .tsx file extensions can be used for Layouts.
Only the root layout can contain <html> and <body> tags.
When a layout.js and page.js file are defined in the same folder, the layout will wrap the page.
Layouts are Server Components by default but can be set to a Client Component.
Layouts can fetch data. View the Data Fetching section for more information.
Passing data between a parent layout and its children is not possible. However, you can fetch the same data in a route more
than once, and React will automatically dedupe the requests without affecting performance.
Layouts do not have access to pathname (learn more). But imported Client Components can access the pathname using
usePathname hook.
Layouts do not have access to the route segments below itself. To access all route segments, you can use
useSelectedLayoutSegment or useSelectedLayoutSegments in a Client Component.
You can use Route Groups to opt specific route segments in and out of shared layouts.
You can use Route Groups to create multiple root layouts. See an example here.
Migrating from the pagespages directory: The root layout replaces the _app.js and _document.js files. View the migration
guide.

Templates

Templates are similar to layouts in that they wrap a child layout or page. Unlike layouts that persist across routes and maintain state,
templates create a new instance for each of their children on navigation. This means that when a user navigates between routes that
share a template, a new instance of the child is mounted, DOM elements are recreated, state is not preserved in Client Components,
and effects are re-synchronized.

There may be cases where you need those specific behaviors, and templates would be a more suitable option than layouts. For
example:

To resynchronize useEffect on navigation.
To reset the state of a child Client Components on navigation.

A template can be defined by exporting a default React component from a template.js file. The component should accept a
children prop.

file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/data-fetching
file:///docs/app/building-your-application/caching#request-memoization
file:///docs/app/api-reference/file-conventions/layout
file:///docs/app/api-reference/functions/use-pathname
file:///docs/app/api-reference/functions/use-selected-layout-segment
file:///docs/app/api-reference/functions/use-selected-layout-segments
file:///docs/app/building-your-application/routing/route-groups
file:///docs/app/building-your-application/routing/route-groups
file:///docs/app/building-your-application/routing/route-groups#creating-multiple-root-layouts
file:///docs/pages/building-your-application/routing/custom-app
file:///docs/pages/building-your-application/routing/custom-document
file:///docs/app/building-your-application/upgrading/app-router-migration#migrating-_documentjs-and-_appjs

app/template.tsx (tsx)

export default function Template({ children }: { children: React.ReactNode }) {
 return <div>{children}</div>
}

app/template.js (jsx)

export default function Template({ children }) {
 return <div>{children}</div>
}

In terms of nesting, template.js is rendered between a layout and its children. Here’s a simplified output:

Output (jsx)

<Layout>
 {/* Note that the template is given a unique key. */}
 <Template key={routeParam}>{children}</Template>
</Layout>

Examples

Metadata

You can modify the <head> HTML elements such as title and meta using the Metadata APIs.

Metadata can be defined by exporting a metadata object or generateMetadata function in a layout.js or page.js file.

app/page.tsx (tsx)

import type { Metadata } from 'next'

export const metadata: Metadata = {
 title: 'Next.js',
}

export default function Page() {
 return '...'
}

app/page.js (jsx)

export const metadata = {
 title: 'Next.js',
}

export default function Page() {
 return '...'
}

Good to know: You should not manually add <head> tags such as <title> and <meta> to root layouts. Instead, use the
Metadata API which automatically handles advanced requirements such as streaming and de-duplicating <head> elements.

Learn more about available metadata options in the API reference.

Active Nav Links

You can use the usePathname() hook to determine if a nav link is active.

Since usePathname() is a client hook, you need to extract the nav links into a Client Component, which can be imported into your
layout or template:

app/ui/nav-links.tsx (tsx)

file:///docs/app/building-your-application/optimizing/metadata
file:///docs/app/api-reference/functions/generate-metadata#the-metadata-object
file:///docs/app/api-reference/functions/generate-metadata#generatemetadata-function
file:///docs/app/api-reference/file-conventions/layout
file:///docs/app/api-reference/file-conventions/page
file:///docs/app/api-reference/functions/generate-metadata
file:///docs/app/api-reference/functions/generate-metadata
file:///docs/app/api-reference/functions/use-pathname

'use client'

import { usePathname } from 'next/navigation'
import Link from 'next/link'

export function NavLinks() {
 const pathname = usePathname()

 return (
 <nav>
 <Link className={`link ${pathname === '/' ? 'active' : ''}`} href="/">
 Home
 </Link>

 <Link
 className={`link ${pathname === '/about' ? 'active' : ''}`}
 href="/about"
 >
 About
 </Link>
 </nav>
)
}

app/ui/nav-links.js (jsx)

'use client'

import { usePathname } from 'next/navigation'
import Link from 'next/link'

export function Links() {
 const pathname = usePathname()

 return (
 <nav>
 <Link className={`link ${pathname === '/' ? 'active' : ''}`} href="/">
 Home
 </Link>

 <Link
 className={`link ${pathname === '/about' ? 'active' : ''}`}
 href="/about"
 >
 About
 </Link>
 </nav>
)
}

app/layout.tsx (tsx)

import { NavLinks } from '@/app/ui/nav-links'

export default function Layout({ children }: { children: React.ReactNode }) {
 return (
 <html lang="en">
 <body>
 <NavLinks />
 <main>{children}</main>
 </body>
 </html>
)
}

app/layout.js (jsx)

import { NavLinks } from '@/app/ui/nav-links'

export default function Layout({ children }) {
 return (
 <html lang="en">
 <body>
 <NavLinks />
 <main>{children}</main>
 </body>
 </html>

)
}

3.1.1.4 - Linking and Navigating
Documentation path: /02-app/01-building-your-application/01-routing/04-linking-and-navigating

Description: Learn how navigation works in Next.js, and how to use the Link Component and `useRouter` hook.

Related:

Title: Related

Related Description: No related description

Links:

app/building-your-application/caching
app/building-your-application/configuring/typescript

There are four ways to navigate between routes in Next.js:

Using the <Link> Component
Using the useRouter hook (Client Components)
Using the redirect function (Server Components)
Using the native History API

This page will go through how to use each of these options, and dive deeper into how navigation works.

<Link><Link> Component

<Link> is a built-in component that extends the HTML <a> tag to provide prefetching and client-side navigation between routes. It is
the primary and recommended way to navigate between routes in Next.js.

You can use it by importing it from next/link, and passing a href prop to the component:

app/page.tsx (tsx)

import Link from 'next/link'

export default function Page() {
 return <Link href="/dashboard">Dashboard</Link>
}

app/page.js (jsx)

import Link from 'next/link'

export default function Page() {
 return <Link href="/dashboard">Dashboard</Link>
}

There are other optional props you can pass to <Link>. See the API reference for more.

Examples

Linking to Dynamic Segments

When linking to dynamic segments, you can use template literals and interpolation to generate a list of links. For example, to generate
a list of blog posts:

app/blog/PostList.js (jsx)

import Link from 'next/link'

export default function PostList({ posts }) {
 return (

 {posts.map((post) => (
 <li key={post.id}>
 <Link href={`/blog/${post.slug}`}>{post.title}</Link>

))}

)
}

Checking Active Links

file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/api-reference/components/link
file:///docs/app/building-your-application/routing/dynamic-routes
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Template_literals

You can use usePathname() to determine if a link is active. For example, to add a class to the active link, you can check if the current
pathname matches the href of the link:

@/app/ui/nav-links.tsx (tsx)

'use client'

import { usePathname } from 'next/navigation'
import Link from 'next/link'

export function Links() {
 const pathname = usePathname()

 return (
 <nav>
 <Link className={`link ${pathname === '/' ? 'active' : ''}`} href="/">
 Home
 </Link>

 <Link
 className={`link ${pathname === '/about' ? 'active' : ''}`}
 href="/about"
 >
 About
 </Link>
 </nav>
)
}

@/app/ui/nav-links.tsx (jsx)

'use client'

import { usePathname } from 'next/navigation'
import Link from 'next/link'

export function Links() {
 const pathname = usePathname()

 return (
 <nav>
 <Link className={`link ${pathname === '/' ? 'active' : ''}`} href="/">
 Home
 </Link>

 <Link
 className={`link ${pathname === '/about' ? 'active' : ''}`}
 href="/about"
 >
 About
 </Link>
 </nav>
)
}

Scrolling to an idid

The default behavior of the Next.js App Router is to scroll to the top of a new route or to maintain the scroll position for
backwards and forwards navigation.

If you’d like to scroll to a specific id on navigation, you can append your URL with a # hash link or just pass a hash link to the href
prop. This is possible since <Link> renders to an <a> element.

<Link href="/dashboard#settings">Settings</Link>

// Output
Settings

Good to know:

Next.js will scroll to the Page if it is not visible in the viewport upon navigation.

Disabling scroll restoration

The default behavior of the Next.js App Router is to scroll to the top of a new route or to maintain the scroll position for
backwards and forwards navigation. If you’d like to disable this behavior, you can pass scroll={false} to the <Link> component,

file:///docs/app/api-reference/functions/use-pathname
file:///docs/app/building-your-application/routing/pages

or scroll: false to router.push() or router.replace().

// next/link
<Link href="/dashboard" scroll={false}>
 Dashboard
</Link>

// useRouter
import { useRouter } from 'next/navigation'

const router = useRouter()

router.push('/dashboard', { scroll: false })

useRouter()useRouter() hook

The useRouter hook allows you to programmatically change routes from Client Components.

app/page.js (jsx)

'use client'

import { useRouter } from 'next/navigation'

export default function Page() {
 const router = useRouter()

 return (
 <button type="button" onClick={() => router.push('/dashboard')}>
 Dashboard
 </button>
)
}

For a full list of useRouter methods, see the API reference.

Recommendation: Use the <Link> component to navigate between routes unless you have a specific requirement for using
useRouter.

redirectredirect function

For Server Components, use the redirect function instead.

app/team/[id]/page.tsx (tsx)

import { redirect } from 'next/navigation'

async function fetchTeam(id: string) {
 const res = await fetch('https://...')
 if (!res.ok) return undefined
 return res.json()
}

export default async function Profile({ params }: { params: { id: string } }) {
 const team = await fetchTeam(params.id)
 if (!team) {
 redirect('/login')
 }

 // ...
}

app/team/[id]/page.js (jsx)

import { redirect } from 'next/navigation'

async function fetchTeam(id) {
 const res = await fetch('https://...')
 if (!res.ok) return undefined
 return res.json()
}

export default async function Profile({ params }) {
 const team = await fetchTeam(params.id)

file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/api-reference/functions/use-router
file:///docs/app/building-your-application/rendering/server-components

 if (!team) {
 redirect('/login')
 }

 // ...
}

Good to know:

redirect returns a 307 (Temporary Redirect) status code by default. When used in a Server Action, it returns a 303 (See
Other), which is commonly used for redirecting to a success page as a result of a POST request.
redirect internally throws an error so it should be called outside of try/catch blocks.
redirect can be called in Client Components during the rendering process but not in event handlers. You can use the
useRouter hook instead.
redirect also accepts absolute URLs and can be used to redirect to external links.
If you’d like to redirect before the render process, use next.config.js or Middleware.

See the redirect API reference for more information.

Using the native History API

Next.js allows you to use the native window.history.pushState and window.history.replaceState methods to update the
browser’s history stack without reloading the page.

pushState and replaceState calls integrate into the Next.js Router, allowing you to sync with usePathname and useSearchParams.

window.history.pushStatewindow.history.pushState

Use it to add a new entry to the browser’s history stack. The user can navigate back to the previous state. For example, to sort a list of
products:

```tsx fileName=”app/ui/sort-products.tsx” switcher ‘use client’

import { useSearchParams } from ‘next/navigation’

export default function SortProducts() { const searchParams = useSearchParams()

function updateSorting(sortOrder: string) { const params = new URLSearchParams(searchParams.toString()) params.set(‘sort’, sortOrder)
window.history.pushState(null, ‘’, ?${params.toString()}) }

return ( <> updateSorting(‘asc’)}>Sort Ascending  updateSorting(‘desc’)}>Sort Descending  

) }

```jsx fileName="app/ui/sort-products.js" switcher
'use client'

import { useSearchParams } from 'next/navigation'

export default function SortProducts() {
 const searchParams = useSearchParams()

 function updateSorting(sortOrder) {
 const params = new URLSearchParams(searchParams.toString())
 params.set('sort', sortOrder)
 window.history.pushState(null, '', `?${params.toString()}`)
 }

 return (
 <>
 <button onClick={() => updateSorting('asc')}>Sort Ascending</button>
 <button onClick={() => updateSorting('desc')}>Sort Descending</button>
 </>
)
}

window.history.replaceStatewindow.history.replaceState

Use it to replace the current entry on the browser’s history stack. The user is not able to navigate back to the previous state. For
example, to switch the application’s locale:

```tsx fileName=”app/ui/locale-switcher.tsx” switcher ‘use client’

import { usePathname } from ‘next/navigation’

file:///docs/app/building-your-application/routing/redirecting#redirects-in-nextconfigjs
file:///docs/app/building-your-application/routing/redirecting#nextresponseredirect-in-middleware
file:///docs/app/api-reference/functions/redirect
https://developer.mozilla.org/en-US/docs/Web/API/History/pushState
https://developer.mozilla.org/en-US/docs/Web/API/History/replaceState
file:///docs/app/api-reference/functions/use-pathname
file:///docs/app/api-reference/functions/use-search-params


export function LocaleSwitcher() { const pathname = usePathname()

function switchLocale(locale: string) { // e.g. ‘/en/about’ or ‘/fr/contact’ const newPath = /${locale}${pathname}
window.history.replaceState(null, ‘’, newPath) }

return ( <> switchLocale(‘en’)}>English  switchLocale(‘fr’)}>French  

) }

```jsx fileName="app/ui/locale-switcher.js" switcher
'use client'

import { usePathname } from 'next/navigation'

export function LocaleSwitcher() {
 const pathname = usePathname()

 function switchLocale(locale) {
 // e.g. '/en/about' or '/fr/contact'
 const newPath = `/${locale}${pathname}`
 window.history.replaceState(null, '', newPath)
 }

 return (
 <>
 <button onClick={() => switchLocale('en')}>English</button>
 <button onClick={() => switchLocale('fr')}>French</button>
 </>
)
}

How Routing and Navigation Works

The App Router uses a hybrid approach for routing and navigation. On the server, your application code is automatically code-split by
route segments. And on the client, Next.js prefetches and caches the route segments. This means, when a user navigates to a new
route, the browser doesn’t reload the page, and only the route segments that change re-render - improving the navigation experience
and performance.

1. Code Splitting

Code splitting allows you to split your application code into smaller bundles to be downloaded and executed by the browser. This
reduces the amount of data transferred and execution time for each request, leading to improved performance.

Server Components allow your application code to be automatically code-split by route segments. This means only the code needed for
the current route is loaded on navigation.

2. Prefetching

Prefetching is a way to preload a route in the background before the user visits it.

There are two ways routes are prefetched in Next.js:

<Link><Link> component: Routes are automatically prefetched as they become visible in the user’s viewport. Prefetching happens when
the page first loads or when it comes into view through scrolling.
router.prefetch()router.prefetch(): The useRouter hook can be used to prefetch routes programmatically.

The <Link>’s default prefetching behavior (i.e. when the prefetch prop is left unspecified or set to null) is different depending on
your usage of loading.js. Only the shared layout, down the rendered “tree” of components until the first loading.js file, is
prefetched and cached for 30s. This reduces the cost of fetching an entire dynamic route, and it means you can show an instant loading
state for better visual feedback to users.

You can disable prefetching by setting the prefetch prop to false. Alternatively, you can prefetch the full page data beyond the
loading boundaries by setting the prefetch prop to true.

See the <Link> API reference for more information.

Good to know:

Prefetching is not enabled in development, only in production.

3. Caching

Next.js has an in-memory client-side cache called the Router Cache. As users navigate around the app, the React Server Component
Payload of prefetched route segments and visited routes are stored in the cache.

file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/api-reference/file-conventions/loading
file:///docs/app/building-your-application/routing/loading-ui-and-streaming#instant-loading-states
file:///docs/app/api-reference/components/link
file:///docs/app/building-your-application/caching#router-cache

This means on navigation, the cache is reused as much as possible, instead of making a new request to the server - improving
performance by reducing the number of requests and data transferred.

Learn more about how the Router Cache works and how to configure it.

4. Partial Rendering

Partial rendering means only the route segments that change on navigation re-render on the client, and any shared segments are
preserved.

For example, when navigating between two sibling routes, /dashboard/settings and /dashboard/analytics, the settings and
analytics pages will be rendered, and the shared dashboard layout will be preserved.

Without partial rendering, each navigation would cause the full page to re-render on the client. Rendering only the segment that
changes reduces the amount of data transferred and execution time, leading to improved performance.

5. Soft Navigation

Browsers perform a “hard navigation” when navigating between pages. The Next.js App Router enables “soft navigation” between
pages, ensuring only the route segments that have changed are re-rendered (partial rendering). This enables client React state to be
preserved during navigation.

6. Back and Forward Navigation

By default, Next.js will maintain the scroll position for backwards and forwards navigation, and re-use route segments in the Router
Cache.

7. Routing between pages/pages/ and app/app/

When incrementally migrating from pages/ to app/, the Next.js router will automatically handle hard navigation between the two. To
detect transitions from pages/ to app/, there is a client router filter that leverages probabilistic checking of app routes, which can
occasionally result in false positives. By default, such occurrences should be very rare, as we configure the false positive likelihood to be
0.01%. This likelihood can be customized via the experimental.clientRouterFilterAllowedRate option in next.config.js. It’s
important to note that lowering the false positive rate will increase the size of the generated filter in the client bundle.

Alternatively, if you prefer to disable this handling completely and manage the routing between pages/ and app/ manually, you can
set experimental.clientRouterFilter to false in next.config.js. When this feature is disabled, any dynamic routes in pages
that overlap with app routes won’t be navigated to properly by default.

file:///docs/app/building-your-application/caching#router-cache
file:///docs/app/building-your-application/caching#router-cache

3.1.1.5 - Error Handling
Documentation path: /02-app/01-building-your-application/01-routing/05-error-handling

Description: Handle runtime errors by automatically wrapping route segments and their nested children in a React Error Boundary.

Related:

Title: Related

Related Description: No related description

Links:

app/api-reference/file-conventions/error

The error.js file convention allows you to gracefully handle unexpected runtime errors in nested routes.

Automatically wrap a route segment and its nested children in a React Error Boundary.
Create error UI tailored to specific segments using the file-system hierarchy to adjust granularity.
Isolate errors to affected segments while keeping the rest of the application functional.
Add functionality to attempt to recover from an error without a full page reload.

Create error UI by adding an error.js file inside a route segment and exporting a React component:

app/dashboard/error.tsx (tsx)

'use client' // Error components must be Client Components

import { useEffect } from 'react'

export default function Error({
 error,
 reset,
}: {
 error: Error & { digest?: string }
 reset: () => void
}) {
 useEffect(() => {
 // Log the error to an error reporting service
 console.error(error)
 }, [error])

 return (
 <div>
 <h2>Something went wrong!</h2>
 <button
 onClick={
 // Attempt to recover by trying to re-render the segment
 () => reset()
 }
 >
 Try again
 </button>
 </div>
)
}

file:///docs/app/building-your-application/routing#nested-routes
https://react.dev/reference/react/Component#catching-rendering-errors-with-an-error-boundary

app/dashboard/error.js (jsx)

'use client' // Error components must be Client Components

import { useEffect } from 'react'

export default function Error({ error, reset }) {
 useEffect(() => {
 // Log the error to an error reporting service
 console.error(error)
 }, [error])

 return (
 <div>
 <h2>Something went wrong!</h2>
 <button
 onClick={
 // Attempt to recover by trying to re-render the segment
 () => reset()
 }
 >
 Try again
 </button>
 </div>
)
}

How error.jserror.js Works

error.js automatically creates a React Error Boundary that wraps a nested child segment or page.js component.
The React component exported from the error.js file is used as the fallback component.
If an error is thrown within the error boundary, the error is contained, and the fallback component is rendered.
When the fallback error component is active, layouts above the error boundary maintain their state and remain interactive, and
the error component can display functionality to recover from the error.

Recovering From Errors

The cause of an error can sometimes be temporary. In these cases, simply trying again might resolve the issue.

An error component can use the reset() function to prompt the user to attempt to recover from the error. When executed, the
function will try to re-render the Error boundary’s contents. If successful, the fallback error component is replaced with the result of the
re-render.

app/dashboard/error.tsx (tsx)

'use client'

https://react.dev/reference/react/Component#catching-rendering-errors-with-an-error-boundary

export default function Error({
 error,
 reset,
}: {
 error: Error & { digest?: string }
 reset: () => void
}) {
 return (
 <div>
 <h2>Something went wrong!</h2>
 <button onClick={() => reset()}>Try again</button>
 </div>
)
}

app/dashboard/error.js (jsx)

'use client'

export default function Error({ error, reset }) {
 return (
 <div>
 <h2>Something went wrong!</h2>
 <button onClick={() => reset()}>Try again</button>
 </div>
)
}

Nested Routes

React components created through special files are rendered in a specific nested hierarchy.

For example, a nested route with two segments that both include layout.js and error.js files are rendered in the following
simplified component hierarchy:

The nested component hierarchy has implications for the behavior of error.js files across a nested route:

Errors bubble up to the nearest parent error boundary. This means an error.js file will handle errors for all its nested child
segments. More or less granular error UI can be achieved by placing error.js files at different levels in the nested folders of a
route.
An error.js boundary will not handle errors thrown in a layout.js component in the same segment because the error
boundary is nested inside that layout’s component.

Handling Errors in Layouts

error.js boundaries do not catch errors thrown in layout.js or template.js components of the same segment. This intentional
hierarchy keeps important UI that is shared between sibling routes (such as navigation) visible and functional when an error occurs.

To handle errors within a specific layout or template, place an error.js file in the layout’s parent segment.

To handle errors within the root layout or template, use a variation of error.js called global-error.js.

Handling Errors in Root Layouts

file:///docs/app/building-your-application/routing#file-conventions
file:///docs/app/building-your-application/routing#component-hierarchy

The root app/error.js boundary does not catch errors thrown in the root app/layout.js or app/template.js component.

To specifically handle errors in these root components, use a variation of error.js called app/global-error.js located in the root
app directory.

Unlike the root error.js, the global-error.js error boundary wraps the entire application, and its fallback component replaces
the root layout when active. Because of this, it is important to note that global-error.js must define its own <html> and <body>
tags.

global-error.js is the least granular error UI and can be considered “catch-all” error handling for the whole application. It is unlikely
to be triggered often as root components are typically less dynamic, and other error.js boundaries will catch most errors.

Even if a global-error.js is defined, it is still recommended to define a root error.js whose fallback component will be rendered
within the root layout, which includes globally shared UI and branding.

app/global-error.tsx (tsx)

'use client'

export default function GlobalError({
 error,
 reset,
}: {
 error: Error & { digest?: string }
 reset: () => void
}) {
 return (
 <html>
 <body>
 <h2>Something went wrong!</h2>
 <button onClick={() => reset()}>Try again</button>
 </body>
 </html>
)
}

app/global-error.js (jsx)

'use client'

export default function GlobalError({ error, reset }) {
 return (
 <html>
 <body>
 <h2>Something went wrong!</h2>
 <button onClick={() => reset()}>Try again</button>
 </body>
 </html>
)
}

Good to know:

global-error.js is only enabled in production. In development, our error overlay will show instead.

Handling Server Errors

If an error is thrown inside a Server Component, Next.js will forward an Error object (stripped of sensitive error information in
production) to the nearest error.js file as the error prop.

Securing Sensitive Error Information

During production, the Error object forwarded to the client only includes a generic message and digest property.

This is a security precaution to avoid leaking potentially sensitive details included in the error to the client.

The message property contains a generic message about the error and the digest property contains an automatically generated hash
of the error that can be used to match the corresponding error in server-side logs.

During development, the Error object forwarded to the client will be serialized and include the message of the original error for easier
debugging.

3.1.1.6 - Loading UI and Streaming
Documentation path: /02-app/01-building-your-application/01-routing/06-loading-ui-and-streaming

Description: Built on top of Suspense, Loading UI allows you to create a fallback for specific route segments, and automatically stream
content as it becomes ready.

The special file loading.js helps you create meaningful Loading UI with React Suspense. With this convention, you can show an
instant loading state from the server while the content of a route segment loads. The new content is automatically swapped in once
rendering is complete.

Instant Loading States

An instant loading state is fallback UI that is shown immediately upon navigation. You can pre-render loading indicators such as
skeletons and spinners, or a small but meaningful part of future screens such as a cover photo, title, etc. This helps users understand
the app is responding and provides a better user experience.

Create a loading state by adding a loading.js file inside a folder.

app/dashboard/loading.tsx (tsx)

export default function Loading() {
 // You can add any UI inside Loading, including a Skeleton.
 return <LoadingSkeleton />
}

app/dashboard/loading.js (jsx)

export default function Loading() {
 // You can add any UI inside Loading, including a Skeleton.
 return <LoadingSkeleton />
}

https://react.dev/reference/react/Suspense

In the same folder, loading.js will be nested inside layout.js. It will automatically wrap the page.js file and any children below in
a <Suspense> boundary.

Good to know:

Navigation is immediate, even with server-centric routing.
Navigation is interruptible, meaning changing routes does not need to wait for the content of the route to fully load before
navigating to another route.
Shared layouts remain interactive while new route segments load.

Recommendation: Use the loading.js convention for route segments (layouts and pages) as Next.js optimizes this
functionality.

Streaming with Suspense

In addition to loading.js, you can also manually create Suspense Boundaries for your own UI components. The App Router supports
streaming with Suspense for both Node.js and Edge runtimes.

Good to know:

Some browsers buffer a streaming response. You may not see the streamed response until the response exceeds 1024
bytes. This typically only affects “hello world” applications, but not real applications.

What is Streaming?

To learn how Streaming works in React and Next.js, it’s helpful to understand Server-Side Rendering (SSR) and its limitations.

With SSR, there’s a series of steps that need to be completed before a user can see and interact with a page:

1. First, all data for a given page is fetched on the server.
2. The server then renders the HTML for the page.
3. The HTML, CSS, and JavaScript for the page are sent to the client.
4. A non-interactive user interface is shown using the generated HTML, and CSS.
5. Finally, React hydrates the user interface to make it interactive.

file:///docs/app/building-your-application/routing/linking-and-navigating#how-routing-and-navigation-works
https://react.dev/reference/react/Suspense
file:///docs/app/building-your-application/rendering/edge-and-nodejs-runtimes
https://bugs.webkit.org/show_bug.cgi?id=252413
https://react.dev/reference/react-dom/client/hydrateRoot#hydrating-server-rendered-html

These steps are sequential and blocking, meaning the server can only render the HTML for a page once all the data has been fetched.
And, on the client, React can only hydrate the UI once the code for all components in the page has been downloaded.

SSR with React and Next.js helps improve the perceived loading performance by showing a non-interactive page to the user as soon as
possible.

However, it can still be slow as all data fetching on server needs to be completed before the page can be shown to the user.

Streaming allows you to break down the page’s HTML into smaller chunks and progressively send those chunks from the server to the
client.

This enables parts of the page to be displayed sooner, without waiting for all the data to load before any UI can be rendered.

Streaming works well with React’s component model because each component can be considered a chunk. Components that have
higher priority (e.g. product information) or that don’t rely on data can be sent first (e.g. layout), and React can start hydration earlier.
Components that have lower priority (e.g. reviews, related products) can be sent in the same server request after their data has been
fetched.

Streaming is particularly beneficial when you want to prevent long data requests from blocking the page from rendering as it can
reduce the Time To First Byte (TTFB) and First Contentful Paint (FCP). It also helps improve Time to Interactive (TTI), especially on slower
devices.

Example

<Suspense> works by wrapping a component that performs an asynchronous action (e.g. fetch data), showing fallback UI (e.g. skeleton,
spinner) while it’s happening, and then swapping in your component once the action completes.

app/dashboard/page.tsx (tsx)

import { Suspense } from 'react'
import { PostFeed, Weather } from './Components'

export default function Posts() {
 return (
 <section>
 <Suspense fallback={<p>Loading feed...</p>}>
 <PostFeed />
 </Suspense>
 <Suspense fallback={<p>Loading weather...</p>}>

https://web.dev/ttfb/
https://web.dev/first-contentful-paint/
https://developer.chrome.com/en/docs/lighthouse/performance/interactive/

 <Weather />
 </Suspense>
 </section>
)
}

app/dashboard/page.js (jsx)

import { Suspense } from 'react'
import { PostFeed, Weather } from './Components'

export default function Posts() {
 return (
 <section>
 <Suspense fallback={<p>Loading feed...</p>}>
 <PostFeed />
 </Suspense>
 <Suspense fallback={<p>Loading weather...</p>}>
 <Weather />
 </Suspense>
 </section>
)
}

By using Suspense, you get the benefits of:

1. Streaming Server Rendering - Progressively rendering HTML from the server to the client.
2. Selective Hydration - React prioritizes what components to make interactive first based on user interaction.

For more Suspense examples and use cases, please see the React Documentation.

SEO

Next.js will wait for data fetching inside generateMetadata to complete before streaming UI to the client. This guarantees the first
part of a streamed response includes <head> tags.
Since streaming is server-rendered, it does not impact SEO. You can use the Rich Results Test tool from Google to see how your
page appears to Google’s web crawlers and view the serialized HTML (source).

Status Codes

When streaming, a 200 status code will be returned to signal that the request was successful.

The server can still communicate errors or issues to the client within the streamed content itself, for example, when using redirect or
notFound. Since the response headers have already been sent to the client, the status code of the response cannot be updated. This
does not affect SEO.

https://react.dev/reference/react/Suspense
file:///docs/app/api-reference/functions/generate-metadata
https://search.google.com/test/rich-results
https://web.dev/rendering-on-the-web/#seo-considerations
file:///docs/app/api-reference/functions/redirect
file:///docs/app/api-reference/functions/not-found

3.1.1.7 - Redirecting
Documentation path: /02-app/01-building-your-application/01-routing/07-redirecting

Description: Learn the different ways to handle redirects in Next.js.

Related:

Title: Related

Related Description: No related description

Links:

app/api-reference/functions/redirect
app/api-reference/functions/permanentRedirect
app/building-your-application/routing/middleware
app/api-reference/next-config-js/redirects

There are a few ways you can handle redirects in Next.js. This page will go through each available option, use cases, and how to
manage large numbers of redirects.

API Purpose Where Status Code

redirect Redirect user after a mutation or
event

Server Components, Server Actions,
Route Handlers

307 (Temporary) or 303
(Server Action)

permanentRedirect Redirect user after a mutation or
event

Server Components, Server Actions,
Route Handlers

308 (Permanent)

useRouter Perform a client-side navigation Event Handlers in Client Components N/A

redirects in
next.config.js

Redirect an incoming request based
on a path

next.config.js file 307 (Temporary) or 308
(Permanent)

NextResponse.redirect Redirect an incoming request based
on a condition

Middleware Any

API Purpose Where Status Code

useRouter Perform a client-side navigation Components N/A

redirects in
next.config.js Redirect an incoming request based on a path

next.config.js
file

307 (Temporary) or 308
(Permanent)

NextResponse.redirect Redirect an incoming request based on a
condition

Middleware Any

redirectredirect function

The redirect function allows you to redirect the user to another URL. You can call redirect in Server Components, Route Handlers,
and Server Actions.

redirect is often used after a mutation or event. For example, creating a post:

app/actions.tsx (tsx)

'use server'

import { redirect } from 'next/navigation'
import { revalidatePath } from 'next/cache'

export async function createPost(id: string) {
 try {
 // Call database
 } catch (error) {
 // Handle errors
 }

 revalidatePath('/posts') // Update cached posts
 redirect(`/post/${id}`) // Navigate to the new post page
}

file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations

app/actions.js (jsx)

'use server'

import { redirect } from 'next/navigation'
import { revalidatePath } from 'next/cache'

export async function createPost(id) {
 try {
 // Call database
 } catch (error) {
 // Handle errors
 }

 revalidatePath('/posts') // Update cached posts
 redirect(`/post/${id}`) // Navigate to the new post page
}

Good to know:

redirect returns a 307 (Temporary Redirect) status code by default. When used in a Server Action, it returns a 303 (See
Other), which is commonly used for redirecting to a success page as a result of a POST request.
redirect internally throws an error so it should be called outside of try/catch blocks.
redirect can be called in Client Components during the rendering process but not in event handlers. You can use the
useRouter hook instead.
redirect also accepts absolute URLs and can be used to redirect to external links.
If you’d like to redirect before the render process, use next.config.js or Middleware.

See the redirect API reference for more information.

permanentRedirectpermanentRedirect function

The permanentRedirect function allows you to permanently redirect the user to another URL. You can call permanentRedirect in
Server Components, Route Handlers, and Server Actions.

permanentRedirect is often used after a mutation or event that changes an entity’s canonical URL, such as updating a user’s profile
URL after they change their username:

app/actions.ts (tsx)

'use server'

import { permanentRedirect } from 'next/navigation'
import { revalidateTag } from 'next/cache'

export async function updateUsername(username: string, formData: FormData) {
 try {
 // Call database
 } catch (error) {
 // Handle errors
 }

 revalidateTag('username') // Update all references to the username
 permanentRedirect(`/profile/${username}`) // Navigate to the new user profile
}

app/actions.js (jsx)

'use server'

import { permanentRedirect } from 'next/navigation'
import { revalidateTag } from 'next/cache'

export async function updateUsername(username, formData) {
 try {
 // Call database
 } catch (error) {
 // Handle errors
 }

 revalidateTag('username') // Update all references to the username
 permanentRedirect(`/profile/${username}`) // Navigate to the new user profile
}

file:///docs/app/api-reference/functions/redirect
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations

Good to know:

permanentRedirect returns a 308 (permanent redirect) status code by default.
permanentRedirect also accepts absolute URLs and can be used to redirect to external links.
If you’d like to redirect before the render process, use next.config.js or Middleware.

See the permanentRedirect API reference for more information.

useRouter()useRouter() hook

If you need to redirect inside an event handler in a Client Component, you can use the push method from the useRouter hook. For
example:

app/page.tsx (tsx)

'use client'

import { useRouter } from 'next/navigation'

export default function Page() {
 const router = useRouter()

 return (
 <button type="button" onClick={() => router.push('/dashboard')}>
 Dashboard
 </button>
)
}

app/page.js (jsx)

'use client'

import { useRouter } from 'next/navigation'

export default function Page() {
 const router = useRouter()

 return (
 <button type="button" onClick={() => router.push('/dashboard')}>
 Dashboard
 </button>
)
}

If you need to redirect inside a component, you can use the push method from the useRouter hook. For example:

app/page.tsx (tsx)

import { useRouter } from 'next/router'

export default function Page() {
 const router = useRouter()

 return (
 <button type="button" onClick={() => router.push('/dashboard')}>
 Dashboard
 </button>
)
}

app/page.js (jsx)

import { useRouter } from 'next/router'

export default function Page() {
 const router = useRouter()

 return (
 <button type="button" onClick={() => router.push('/dashboard')}>
 Dashboard
 </button>
)
}

Good to know:

file:///docs/app/api-reference/functions/permanentRedirect

If you don’t need to programmatically navigate a user, you should use a <Link> component.

See the useRouter API reference for more information.

See the useRouter API reference for more information.

redirectsredirects in next.config.jsnext.config.js
The redirects option in the next.config.js file allows you to redirect an incoming request path to a different destination path. This
is useful when you change the URL structure of pages or have a list of redirects that are known ahead of time.

redirects supports path, header, cookie, and query matching, giving you the flexibility to redirect users based on an incoming
request.

To use redirects, add the option to your next.config.js file:

next.config.js (js)

module.exports = {
 async redirects() {
 return [
 // Basic redirect
 {
 source: '/about',
 destination: '/',
 permanent: true,
 },
 // Wildcard path matching
 {
 source: '/blog/:slug',
 destination: '/news/:slug',
 permanent: true,
 },
]
 },
}

See the redirects API reference for more information.

Good to know:

redirects can return a 307 (Temporary Redirect) or 308 (Permanent Redirect) status code with the permanent option.
redirects may have a limit on platforms. For example, on Vercel, there’s a limit of 1,024 redirects. To manage a large
number of redirects (1000+), consider creating a custom solution using Middleware. See managing redirects at scale for
more.
redirects runs before Middleware.

NextResponse.redirectNextResponse.redirect in Middleware

Middleware allows you to run code before a request is completed. Then, based on the incoming request, redirect to a different URL
using NextResponse.redirect. This is useful if you want to redirect users based on a condition (e.g. authentication, session
management, etc) or have a large number of redirects.

For example, to redirect the user to a /login page if they are not authenticated:

middleware.ts (tsx)

import { NextResponse, NextRequest } from 'next/server'
import { authenticate } from 'auth-provider'

export function middleware(request: NextRequest) {
 const isAuthenticated = authenticate(request)

 // If the user is authenticated, continue as normal
 if (isAuthenticated) {
 return NextResponse.next()
 }

 // Redirect to login page if not authenticated
 return NextResponse.redirect(new URL('/login', request.url))
}

export const config = {
 matcher: '/dashboard/:path*',
}

file:///docs/app/api-reference/components/link
file:///docs/app/api-reference/functions/use-router
file:///docs/pages/api-reference/functions/use-router
file:///docs/app/api-reference/next-config-js/redirects#path-matching
file:///docs/app/api-reference/next-config-js/redirects#header-cookie-and-query-matching
file:///docs/app/api-reference/next-config-js/redirects
file:///docs/app/building-your-application/routing/middleware

middleware.js (js)

import { NextResponse } from 'next/server'
import { authenticate } from 'auth-provider'

export function middleware(request) {
 const isAuthenticated = authenticate(request)

 // If the user is authenticated, continue as normal
 if (isAuthenticated) {
 return NextResponse.next()
 }

 // Redirect to login page if not authenticated
 return NextResponse.redirect(new URL('/login', request.url))
}

export const config = {
 matcher: '/dashboard/:path*',
}

Good to know:

Middleware runs after redirects in next.config.js and before rendering.

See the Middleware documentation for more information.

Managing redirects at scale (advanced)

To manage a large number of redirects (1000+), you may consider creating a custom solution using Middleware. This allows you to
handle redirects programmatically without having to redeploy your application.

To do this, you’ll need to consider:

1. Creating and storing a redirect map.
2. Optimizing data lookup performance.

Next.js Example: See our Middleware with Bloom filter example for an implementation of the recommendations below.

1. Creating and storing a redirect map

A redirect map is a list of redirects that you can store in a database (usually a key-value store) or JSON file.

Consider the following data structure:

{
 "/old": {
 "destination": "/new",
 "permanent": true
 },
 "/blog/post-old": {
 "destination": "/blog/post-new",
 "permanent": true
 }
}

In Middleware, you can read from a database such as Vercel’s Edge Config or Redis, and redirect the user based on the incoming
request:

middleware.ts (tsx)

import { NextResponse, NextRequest } from 'next/server'
import { get } from '@vercel/edge-config'

type RedirectEntry = {
 destination: string
 permanent: boolean
}

export async function middleware(request: NextRequest) {
 const pathname = request.nextUrl.pathname
 const redirectData = await get(pathname)

 if (redirectData && typeof redirectData === 'string') {
 const redirectEntry: RedirectEntry = JSON.parse(redirectData)
 const statusCode = redirectEntry.permanent ? 308 : 307
 return NextResponse.redirect(redirectEntry.destination, statusCode)

file:///docs/app/building-your-application/routing/middleware
https://redirects-bloom-filter.vercel.app/
file:///docs/app/building-your-application/routing/middleware
https://vercel.com/docs/storage/edge-config/get-started?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://vercel.com/docs/storage/vercel-kv?utm_source=next-site&utm_medium=docs&utm_campaign=next-website

 }

 // No redirect found, continue without redirecting
 return NextResponse.next()
}

middleware.js (js)

import { NextResponse } from 'next/server'
import { get } from '@vercel/edge-config'

export async function middleware(request) {
 const pathname = request.nextUrl.pathname
 const redirectData = await get(pathname)

 if (redirectData) {
 const redirectEntry = JSON.parse(redirectData)
 const statusCode = redirectEntry.permanent ? 308 : 307
 return NextResponse.redirect(redirectEntry.destination, statusCode)
 }

 // No redirect found, continue without redirecting
 return NextResponse.next()
}

2. Optimizing data lookup performance

Reading a large dataset for every incoming request can be slow and expensive. There are two ways you can optimize data lookup
performance:

Use a database that is optimized for fast reads, such as Vercel Edge Config or Redis.
Use a data lookup strategy such as a Bloom filter to efficiently check if a redirect exists before reading the larger redirects file or
database.

Considering the previous example, you can import a generated bloom filter file into Middleware, then, check if the incoming request
pathname exists in the bloom filter.

If it does, forward the request to a Route Handler API Routes which will check the actual file and redirect the user to the appropriate
URL. This avoids importing a large redirects file into Middleware, which can slow down every incoming request.

middleware.ts (tsx)

import { NextResponse, NextRequest } from 'next/server'
import { ScalableBloomFilter } from 'bloom-filters'
import GeneratedBloomFilter from './redirects/bloom-filter.json'

type RedirectEntry = {
 destination: string
 permanent: boolean
}

// Initialize bloom filter from a generated JSON file
const bloomFilter = ScalableBloomFilter.fromJSON(GeneratedBloomFilter as any)

export async function middleware(request: NextRequest) {
 // Get the path for the incoming request
 const pathname = request.nextUrl.pathname

 // Check if the path is in the bloom filter
 if (bloomFilter.has(pathname)) {
 // Forward the pathname to the Route Handler
 const api = new URL(
 `/api/redirects?pathname=${encodeURIComponent(request.nextUrl.pathname)}`,
 request.nextUrl.origin
)

 try {
 // Fetch redirect data from the Route Handler
 const redirectData = await fetch(api)

 if (redirectData.ok) {
 const redirectEntry: RedirectEntry | undefined =
 await redirectData.json()

 if (redirectEntry) {
 // Determine the status code
 const statusCode = redirectEntry.permanent ? 308 : 307

https://vercel.com/docs/storage/edge-config/get-started?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://vercel.com/docs/storage/vercel-kv?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://en.wikipedia.org/wiki/Bloom_filter
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/pages/building-your-application/routing/api-routes

 // Redirect to the destination
 return NextResponse.redirect(redirectEntry.destination, statusCode)
 }
 }
 } catch (error) {
 console.error(error)
 }
 }

 // No redirect found, continue the request without redirecting
 return NextResponse.next()
}

middleware.js (js)

import { NextResponse } from 'next/server'
import { ScalableBloomFilter } from 'bloom-filters'
import GeneratedBloomFilter from './redirects/bloom-filter.json'

// Initialize bloom filter from a generated JSON file
const bloomFilter = ScalableBloomFilter.fromJSON(GeneratedBloomFilter)

export async function middleware(request) {
 // Get the path for the incoming request
 const pathname = request.nextUrl.pathname

 // Check if the path is in the bloom filter
 if (bloomFilter.has(pathname)) {
 // Forward the pathname to the Route Handler
 const api = new URL(
 `/api/redirects?pathname=${encodeURIComponent(request.nextUrl.pathname)}`,
 request.nextUrl.origin
)

 try {
 // Fetch redirect data from the Route Handler
 const redirectData = await fetch(api)

 if (redirectData.ok) {
 const redirectEntry = await redirectData.json()

 if (redirectEntry) {
 // Determine the status code
 const statusCode = redirectEntry.permanent ? 308 : 307

 // Redirect to the destination
 return NextResponse.redirect(redirectEntry.destination, statusCode)
 }
 }
 } catch (error) {
 console.error(error)
 }
 }

 // No redirect found, continue the request without redirecting
 return NextResponse.next()
}

Then, in the Route Handler:
app/redirects/route.ts (tsx)

import { NextRequest, NextResponse } from 'next/server'
import redirects from '@/app/redirects/redirects.json'

type RedirectEntry = {
 destination: string
 permanent: boolean
}

export function GET(request: NextRequest) {
 const pathname = request.nextUrl.searchParams.get('pathname')
 if (!pathname) {
 return new Response('Bad Request', { status: 400 })
 }

 // Get the redirect entry from the redirects.json file

 const redirect = (redirects as Record<string, RedirectEntry>)[pathname]

 // Account for bloom filter false positives
 if (!redirect) {
 return new Response('No redirect', { status: 400 })
 }

 // Return the redirect entry
 return NextResponse.json(redirect)
}

app/redirects/route.js (js)

import { NextResponse } from 'next/server'
import redirects from '@/app/redirects/redirects.json'

export function GET(request) {
 const pathname = request.nextUrl.searchParams.get('pathname')
 if (!pathname) {
 return new Response('Bad Request', { status: 400 })
 }

 // Get the redirect entry from the redirects.json file
 const redirect = redirects[pathname]

 // Account for bloom filter false positives
 if (!redirect) {
 return new Response('No redirect', { status: 400 })
 }

 // Return the redirect entry
 return NextResponse.json(redirect)
}

Then, in the API Route:
pages/api/redirects.ts (tsx)

import type { NextApiRequest, NextApiResponse } from 'next'
import redirects from '@/app/redirects/redirects.json'

type RedirectEntry = {
 destination: string
 permanent: boolean
}

export default function handler(req: NextApiRequest, res: NextApiResponse) {
 const pathname = req.query.pathname
 if (!pathname) {
 return res.status(400).json({ message: 'Bad Request' })
 }

 // Get the redirect entry from the redirects.json file
 const redirect = (redirects as Record<string, RedirectEntry>)[pathname]

 // Account for bloom filter false positives
 if (!redirect) {
 return res.status(400).json({ message: 'No redirect' })
 }

 // Return the redirect entry
 return res.json(redirect)
}

pages/api/redirects.js (js)

import redirects from '@/app/redirects/redirects.json'

export default function handler(req, res) {
 const pathname = req.query.pathname
 if (!pathname) {
 return res.status(400).json({ message: 'Bad Request' })
 }

 // Get the redirect entry from the redirects.json file
 const redirect = redirects[pathname]

 // Account for bloom filter false positives

 if (!redirect) {
 return res.status(400).json({ message: 'No redirect' })
 }

 // Return the redirect entry
 return res.json(redirect)
}

Good to know:

To generate a bloom filter, you can use a library like bloom-filters.
You should validate requests made to your Route Handler to prevent malicious requests.

https://www.npmjs.com/package/bloom-filters

3.1.1.8 - Route Groups
Documentation path: /02-app/01-building-your-application/01-routing/08-route-groups

Description: Route Groups can be used to partition your Next.js application into different sections.

In the app directory, nested folders are normally mapped to URL paths. However, you can mark a folder as a Route Group to prevent
the folder from being included in the route’s URL path.

This allows you to organize your route segments and project files into logical groups without affecting the URL path structure.

Route groups are useful for:

Organizing routes into groups e.g. by site section, intent, or team.
Enabling nested layouts in the same route segment level:
Creating multiple nested layouts in the same segment, including multiple root layouts
Adding a layout to a subset of routes in a common segment

Convention

A route group can be created by wrapping a folder’s name in parenthesis: (folderName)

Examples

Organize routes without affecting the URL path

To organize routes without affecting the URL, create a group to keep related routes together. The folders in parenthesis will be omitted
from the URL (e.g. (marketing) or (shop).

Even though routes inside (marketing) and (shop) share the same URL hierarchy, you can create a different layout for each group by
adding a layout.js file inside their folders.

file:///docs/app/building-your-application/routing/layouts-and-templates

Opting specific segments into a layout

To opt specific routes into a layout, create a new route group (e.g. (shop)) and move the routes that share the same layout into the
group (e.g. account and cart). The routes outside of the group will not share the layout (e.g. checkout).

Creating multiple root layouts

To create multiple root layouts, remove the top-level layout.js file, and add a layout.js file inside each route group. This is useful
for partitioning an application into sections that have a completely different UI or experience. The <html> and <body> tags need to be
added to each root layout.

file:///docs/app/building-your-application/routing/layouts-and-templates#root-layout-required

In the example above, both (marketing) and (shop) have their own root layout.

Good to know:

The naming of route groups has no special significance other than for organization. They do not affect the URL path.
Routes that include a route group should not resolve to the same URL path as other routes. For example, since route
groups don’t affect URL structure, (marketing)/about/page.js and (shop)/about/page.js would both resolve to
/about and cause an error.
If you use multiple root layouts without a top-level layout.js file, your home page.js file should be defined in one of the
route groups, For example: app/(marketing)/page.js.
Navigating across multiple root layouts will cause a full page load (as opposed to a client-side navigation). For example,
navigating from /cart that uses app/(shop)/layout.js to /blog that uses app/(marketing)/layout.js will cause a
full page load. This only applies to multiple root layouts.

3.1.1.9 - Project Organization and File Colocation
Documentation path: /02-app/01-building-your-application/01-routing/09-colocation

Description: Learn how to organize your Next.js project and colocate files.

Related:

Title: Related

Related Description: No related description

Links:

app/building-your-application/routing/defining-routes
app/building-your-application/routing/route-groups
app/building-your-application/configuring/src-directory
app/building-your-application/configuring/absolute-imports-and-module-aliases

Apart from routing folder and file conventions, Next.js is unopinionated about how you organize and colocate your project files.

This page shares default behavior and features you can use to organize your project.

Safe colocation by default
Project organization features
Project organization strategies

Safe colocation by default

In the app directory, nested folder hierarchy defines route structure.

Each folder represents a route segment that is mapped to a corresponding segment in a URL path.

However, even though route structure is defined through folders, a route is not publicly accessible until a page.js or route.js file
is added to a route segment.

And, even when a route is made publicly accessible, only the content returned by page.js or route.js is sent to the client.

This means that project files can be safely colocated inside route segments in the app directory without accidentally being routable.

file:///docs/getting-started/project-structure#app-routing-conventions
file:///docs/app/building-your-application/routing#route-segments

Good to know:

This is different from the pages directory, where any file in pages is considered a route.
While you can colocate your project files in app you don’t have to. If you prefer, you can keep them outside the app
directory.

Project organization features

Next.js provides several features to help you organize your project.

Private Folders

Private folders can be created by prefixing a folder with an underscore: _folderName
This indicates the folder is a private implementation detail and should not be considered by the routing system, thereby opting the
folder and all its subfolders out of routing.

Since files in the app directory can be safely colocated by default, private folders are not required for colocation. However, they can be
useful for:

Separating UI logic from routing logic.
Consistently organizing internal files across a project and the Next.js ecosystem.
Sorting and grouping files in code editors.
Avoiding potential naming conflicts with future Next.js file conventions.

Good to know

While not a framework convention, you might also consider marking files outside private folders as “private” using the same
underscore pattern.
You can create URL segments that start with an underscore by prefixing the folder name with %5F (the URL-encoded form of
an underscore): %5FfolderName.
If you don’t use private folders, it would be helpful to know Next.js special file conventions to prevent unexpected naming
conflicts.

Route Groups

Route groups can be created by wrapping a folder in parenthesis: (folderName)
This indicates the folder is for organizational purposes and should not be included in the route’s URL path.

file:///docs/getting-started/project-structure#routing-files

Route groups are useful for:

Organizing routes into groups e.g. by site section, intent, or team.
Enabling nested layouts in the same route segment level:
Creating multiple nested layouts in the same segment, including multiple root layouts
Adding a layout to a subset of routes in a common segment

srcsrc Directory

Next.js supports storing application code (including app) inside an optional src directory. This separates application code from project
configuration files which mostly live in the root of a project.

Module Path Aliases

Next.js supports Module Path Aliases which make it easier to read and maintain imports across deeply nested project files.
app/dashboard/settings/analytics/page.js (jsx)

// before
import { Button } from '../../../components/button'

// after
import { Button } from '@/components/button'

Project organization strategies

file:///docs/app/building-your-application/routing/route-groups#organize-routes-without-affecting-the-url-path
file:///docs/app/building-your-application/routing/route-groups#creating-multiple-root-layouts
file:///docs/app/building-your-application/routing/route-groups#opting-specific-segments-into-a-layout
file:///docs/app/building-your-application/configuring/src-directory
file:///docs/app/building-your-application/configuring/absolute-imports-and-module-aliases

There is no “right” or “wrong” way when it comes to organizing your own files and folders in a Next.js project.

The following section lists a very high-level overview of common strategies. The simplest takeaway is to choose a strategy that works
for you and your team and be consistent across the project.

Good to know: In our examples below, we’re using components and lib folders as generalized placeholders, their naming has
no special framework significance and your projects might use other folders like ui, utils, hooks, styles, etc.

Store project files outside of appapp

This strategy stores all application code in shared folders in the root of your project and keeps the app directory purely for routing
purposes.

Store project files in top-level folders inside of appapp

This strategy stores all application code in shared folders in the root of the appapp directory.

Split project files by feature or route

This strategy stores globally shared application code in the root app directory and splits more specific application code into the route

segments that use them.

3.1.1.10 - Dynamic Routes
Documentation path: /02-app/01-building-your-application/01-routing/10-dynamic-routes

Description: Dynamic Routes can be used to programmatically generate route segments from dynamic data.

Related:

Title: Next Steps

Related Description: For more information on what to do next, we recommend the following sections

Links:

app/building-your-application/routing/linking-and-navigating
app/api-reference/functions/generate-static-params

When you don’t know the exact segment names ahead of time and want to create routes from dynamic data, you can use Dynamic
Segments that are filled in at request time or prerendered at build time.

Convention

A Dynamic Segment can be created by wrapping a folder’s name in square brackets: [folderName]. For example, [id] or [slug].

Dynamic Segments are passed as the params prop to layout, page, route, and generateMetadata functions.

Example

For example, a blog could include the following route app/blog/[slug]/page.js where [slug] is the Dynamic Segment for blog
posts.

app/blog/[slug]/page.tsx (tsx)

export default function Page({ params }: { params: { slug: string } }) {
 return <div>My Post: {params.slug}</div>
}

app/blog/[slug]/page.js (jsx)

export default function Page({ params }) {
 return <div>My Post: {params.slug}</div>
}

Route Example URL paramsparams

app/blog/[slug]/page.js /blog/a { slug: 'a' }

app/blog/[slug]/page.js /blog/b { slug: 'b' }

app/blog/[slug]/page.js /blog/c { slug: 'c' }

See the generateStaticParams() page to learn how to generate the params for the segment.

Good to know: Dynamic Segments are equivalent to Dynamic Routes in the pages directory.

Generating Static Params

The generateStaticParams function can be used in combination with dynamic route segments to statically generate routes at build
time instead of on-demand at request time.

app/blog/[slug]/page.tsx (tsx)

export async function generateStaticParams() {
 const posts = await fetch('https://.../posts').then((res) => res.json())

 return posts.map((post) => ({
 slug: post.slug,
 }))
}

app/blog/[slug]/page.js (jsx)

export async function generateStaticParams() {

file:///docs/app/api-reference/file-conventions/layout
file:///docs/app/api-reference/file-conventions/page
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/api-reference/functions/generate-metadata#generatemetadata-function
file:///docs/app/building-your-application/routing/dynamic-routes
file:///docs/app/building-your-application/routing/dynamic-routes
file:///docs/app/building-your-application/rendering/server-components#static-rendering-default

 const posts = await fetch('https://.../posts').then((res) => res.json())

 return posts.map((post) => ({
 slug: post.slug,
 }))
}

The primary benefit of the generateStaticParams function is its smart retrieval of data. If content is fetched within the
generateStaticParams function using a fetch request, the requests are automatically memoized. This means a fetch request with
the same arguments across multiple generateStaticParams, Layouts, and Pages will only be made once, which decreases build
times.

Use the migration guide if you are migrating from the pages directory.

See generateStaticParams server function documentation for more information and advanced use cases.

Catch-all Segments

Dynamic Segments can be extended to catch-all subsequent segments by adding an ellipsis inside the brackets [...folderName].

For example, app/shop/[...slug]/page.js will match /shop/clothes, but also /shop/clothes/tops,
/shop/clothes/tops/t-shirts, and so on.

Route Example URL paramsparams

app/shop/[...slug]/page.js /shop/a { slug: ['a'] }

app/shop/[...slug]/page.js /shop/a/b { slug: ['a', 'b'] }

app/shop/[...slug]/page.js /shop/a/b/c { slug: ['a', 'b', 'c'] }

Optional Catch-all Segments

Catch-all Segments can be made optional by including the parameter in double square brackets: [[...folderName]].

For example, app/shop/[[...slug]]/page.js will also match /shop, in addition to /shop/clothes, /shop/clothes/tops,
/shop/clothes/tops/t-shirts.

The difference between catch-all and optional catch-all segments is that with optional, the route without the parameter is also
matched (/shop in the example above).

Route Example URL paramsparams

app/shop/[[...slug]]/page.js /shop {}

app/shop/[[...slug]]/page.js /shop/a { slug: ['a'] }

app/shop/[[...slug]]/page.js /shop/a/b { slug: ['a', 'b'] }

app/shop/[[...slug]]/page.js /shop/a/b/c { slug: ['a', 'b', 'c'] }

TypeScript

When using TypeScript, you can add types for params depending on your configured route segment.

app/blog/[slug]/page.tsx (tsx)

export default function Page({ params }: { params: { slug: string } }) {
 return <h1>My Page</h1>
}

app/blog/[slug]/page.js (jsx)

export default function Page({ params }) {
 return <h1>My Page</h1>
}

Route paramsparams Type Definition

app/blog/[slug]/page.js { slug: string }

file:///docs/app/building-your-application/caching#request-memoization
file:///docs/app/building-your-application/upgrading/app-router-migration#dynamic-paths-getstaticpaths
file:///docs/app/api-reference/functions/generate-static-params

app/shop/[...slug]/page.js { slug: string[] }

app/shop/[[...slug]]/page.js { slug?: string[] }

app/[categoryId]/[itemId]/page.js { categoryId: string, itemId: string }

Route paramsparams Type Definition

Good to know: This may be done automatically by the TypeScript plugin in the future.

file:///docs/app/building-your-application/configuring/typescript#typescript-plugin

3.1.1.11 - Parallel Routes
Documentation path: /02-app/01-building-your-application/01-routing/11-parallel-routes

Description: Simultaneously render one or more pages in the same view that can be navigated independently. A pattern for highly
dynamic applications.

Related:

Title: Related

Related Description: No related description

Links:

app/api-reference/file-conventions/default

Parallel Routes allows you to simultaneously or conditionally render one or more pages within the same layout. They are useful for
highly dynamic sections of an app, such as dashboards and feeds on social sites.

For example, considering a dashboard, you can use parallel routes to simultaneously render the team and analytics pages:

Slots

Parallel routes are created using named slots. Slots are defined with the @folder convention. For example, the following file structure
defines two slots: @analytics and @team:

Slots are passed as props to the shared parent layout. For the example above, the component in app/layout.js now accepts the
@analytics and @team slots props, and can render them in parallel alongside the children prop:

app/layout.tsx (tsx)

export default function Layout({
 children,
 team,
 analytics,
}: {
 children: React.ReactNode
 analytics: React.ReactNode
 team: React.ReactNode
}) {
 return (
 <>
 {children}
 {team}
 {analytics}
 </>
)
}

app/layout.js (jsx)

export default function Layout({ children, team, analytics }) {
 return (
 <>
 {children}
 {team}
 {analytics}
 </>
)
}

However, slots are not route segments and do not affect the URL structure. For example, for /@analytics/views, the URL will be
/views since @analytics is a slot.

Good to know:

The children prop is an implicit slot that does not need to be mapped to a folder. This means app/page.js is equivalent
to app/@children/page.js.

Active state and navigation

By default, Next.js keeps track of the active state (or subpage) for each slot. However, the content rendered within a slot will depend on
the type of navigation:

Soft Navigation: During client-side navigation, Next.js will perform a partial render, changing the subpage within the slot, while
maintaining the other slot’s active subpages, even if they don’t match the current URL.
Hard Navigation: After a full-page load (browser refresh), Next.js cannot determine the active state for the slots that don’t match
the current URL. Instead, it will render a default.js file for the unmatched slots, or 404 if default.js doesn’t exist.

file:///docs/app/building-your-application/routing#route-segments
file:///docs/app/building-your-application/routing/linking-and-navigating#5-soft-navigation
file:///docs/app/building-your-application/routing/linking-and-navigating#4-partial-rendering

Good to know:

The 404 for unmatched routes helps ensure that you don’t accidentally render a parallel route on a page that it was not
intended for.

default.jsdefault.js

You can define a default.js file to render as a fallback for unmatched slots during the initial load or full-page reload.

Consider the following folder structure. The @team slot has a /settings page, but @analytics does not.

When navigating to /settings, the @team slot will render the /settings page while maintaining the currently active page for the
@analytics slot.

On refresh, Next.js will render a default.js for @analytics. If default.js doesn’t exist, a 404 is rendered instead.

Additionally, since children is an implicit slot, you also need to create a default.js file to render a fallback for children when
Next.js cannot recover the active state of the parent page.

useSelectedLayoutSegment(s)useSelectedLayoutSegment(s)

Both useSelectedLayoutSegment and useSelectedLayoutSegments accept a parallelRoutesKey parameter, which allows you
to read the active route segment within a slot.

app/layout.tsx (tsx)

'use client'

import { useSelectedLayoutSegment } from 'next/navigation'

export default function Layout({ auth }: { auth: React.ReactNode }) {
 const loginSegment = useSelectedLayoutSegment('auth')
 // ...
}

app/layout.js (jsx)

'use client'

import { useSelectedLayoutSegment } from 'next/navigation'

export default function Layout({ auth }) {
 const loginSegment = useSelectedLayoutSegment('auth')
 // ...
}

When a user navigates to app/@auth/login (or /login in the URL bar), loginSegment will be equal to the string "login".

file:///docs/app/api-reference/functions/use-selected-layout-segment
file:///docs/app/api-reference/functions/use-selected-layout-segments

Examples

Conditional Routes

You can use Parallel Routes to conditionally render routes based on certain conditions, such as user role. For example, to render a
different dashboard page for the /admin or /user roles:

app/dashboard/layout.tsx (tsx)

import { checkUserRole } from '@/lib/auth'

export default function Layout({
 user,
 admin,
}: {
 user: React.ReactNode
 admin: React.ReactNode
}) {
 const role = checkUserRole()
 return <>{role === 'admin' ? admin : user}</>
}

app/dashboard/layout.js (jsx)

import { checkUserRole } from '@/lib/auth'

export default function Layout({ user, admin }) {
 const role = checkUserRole()
 return <>{role === 'admin' ? admin : user}</>
}

Tab Groups

You can add a layout inside a slot to allow users to navigate the slot independently. This is useful for creating tabs.

For example, the @analytics slot has two subpages: /page-views and /visitors.

Within @analytics, create a layout file to share the tabs between the two pages:

app/@analytics/layout.tsx (tsx)

import Link from 'next/link'

export default function Layout({ children }: { children: React.ReactNode }) {
 return (
 <>
 <nav>
 <Link href="/page-views">Page Views</Link>
 <Link href="/visitors">Visitors</Link>
 </nav>
 <div>{children}</div>
 </>
)
}

app/@analytics/layout.js (jsx)

import Link from 'next/link'

export default function Layout({ children }: { children: React.ReactNode }) {
 return (
 <>
 <nav>
 <Link href="/page-views">Page Views</Link>
 <Link href="/visitors">Visitors</Link>
 </nav>
 <div>{children}</div>
 </>
)
}

Modals

Parallel Routes can be used together with Intercepting Routes to create modals. This allows you to solve common challenges when
building modals, such as:

Making the modal content shareable through a URL.
Preserving context when the page is refreshed, instead of closing the modal.
Closing the modal on backwards navigation rather than going to the previous route.
Reopening the modal on forwards navigation.

Consider the following UI pattern, where a user can open a login modal from a layout using client-side navigation, or access a separate
/login page:

file:///docs/app/building-your-application/routing/layouts-and-templates
file:///docs/app/building-your-application/routing/intercepting-routes

To implement this pattern, start by creating a /login route that renders your main login page.

app/login/page.tsx (tsx)

import { Login } from '@/app/ui/login'

export default function Page() {
 return <Login />
}

app/login/page.js (jsx)

import { Login } from '@/app/ui/login'

export default function Page() {
 return <Login />
}

Then, inside the @auth slot, add default.js file that returns null. This ensures that the modal is not rendered when it’s not active.

app/@auth/default.tsx (tsx)

export default function Default() {
 return null
}

app/@auth/default.js (jsx)

export default function Default() {
 return null
}

file:///docs/app/api-reference/file-conventions/default

Inside your @auth slot, intercept the /login route by updating the /(.)login folder. Import the <Modal> component and its children
into the /(.)login/page.tsx file:

app/@auth/(.)login/page.tsx (tsx)

import { Modal } from '@/app/ui/modal'
import { Login } from '@/app/ui/login'

export default function Page() {
 return (
 <Modal>
 <Login />
 </Modal>
)
}

app/@auth/(.)login/page.js (jsx)

import { Modal } from '@/app/ui/modal'
import { Login } from '@/app/ui/login'

export default function Page() {
 return (
 <Modal>
 <Login />
 </Modal>
)
}

Good to know:

The convention used to intercept the route, e.g. (.), depends on your file-system structure. See Intercepting Routes
convention.
By separating the <Modal> functionality from the modal content (<Login>), you can ensure any content inside the modal,
e.g. forms, are Server Components. See Interleaving Client and Server Components for more information.

Opening the modal

Now, you can leverage the Next.js router to open and close the modal. This ensures the URL is correctly updated when the modal is
open, and when navigating backwards and forwards.

To open the modal, pass the @auth slot as a prop to the parent layout and render it alongside the children prop.

app/layout.tsx (tsx)

import Link from 'next/link'

export default function Layout({
 auth,
 children,
}: {
 auth: React.ReactNode
 children: React.ReactNode
}) {
 return (
 <>
 <nav>
 <Link href="/login">Open modal</Link>
 </nav>
 <div>{auth}</div>
 <div>{children}</div>
 </>
)
}

app/layout.js (jsx)

import Link from 'next/link'

export default function Layout({ auth, children }) {
 return (
 <>
 <nav>
 <Link href="/login">Open modal</Link>
 </nav>
 <div>{auth}</div>
 <div>{children}</div>
 </>

file:///docs/app/building-your-application/routing/intercepting-routes#convention
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations#forms
file:///docs/app/building-your-application/rendering/composition-patterns#supported-pattern-passing-server-components-to-client-components-as-props

)
}

When the user clicks the <Link>, the modal will open instead of navigating to the /login page. However, on refresh or initial load,
navigating to /login will take the user to the main login page.

Closing the modal

You can close the modal by calling router.back() or by using the Link component.

app/ui/modal.tsx (tsx)

'use client'

import { useRouter } from 'next/navigation'

export function Modal({ children }: { children: React.ReactNode }) {
 const router = useRouter()

 return (
 <>
 <button
 onClick={() => {
 router.back()
 }}
 >
 Close modal
 </button>
 <div>{children}</div>
 </>
)
}

app/ui/modal.js (jsx)

'use client'

import { useRouter } from 'next/navigation'

export function Modal({ children }) {
 const router = useRouter()

 return (
 <>
 <button
 onClick={() => {
 router.back()
 }}
 >
 Close modal
 </button>
 <div>{children}</div>
 </>
)
}

When using the Link component to navigate away from a page that shouldn’t render the @auth slot anymore, we use a catch-all route
that returns null.

app/ui/modal.tsx (tsx)

import Link from 'next/link'

export function Modal({ children }: { children: React.ReactNode }) {
 return (
 <>
 <Link href="/">Close modal</Link>
 <div>{children}</div>
 </>
)
}

app/ui/modal.js (jsx)

import Link from 'next/link'

export function Modal({ children }) {

 return (
 <>
 <Link href="/">Close modal</Link>
 <div>{children}</div>
 </>
)
}

app/@auth/[...catchAll]/page.tsx (tsx)

export default function CatchAll() {
 return null
}

app/@auth/[...catchAll]/page.js (jsx)

export default function CatchAll() {
 return null
}

Good to know:

We use a catch-all route in our @auth slot to close the modal because of the behavior described in Active state and
navigation. Since client-side navigations to a route that no longer match the slot will remain visible, we need to match the
slot to a route that returns null to close the modal.
Other examples could include opening a photo modal in a gallery while also having a dedicated /photo/[id] page, or
opening a shopping cart in a side modal.
View an example of modals with Intercepted and Parallel Routes.

Loading and Error UI

Parallel Routes can be streamed independently, allowing you to define independent error and loading states for each route:

See the Loading UI and Error Handling documentation for more information.

https://github.com/vercel-labs/nextgram
file:///docs/app/building-your-application/routing/loading-ui-and-streaming
file:///docs/app/building-your-application/routing/error-handling

3.1.1.12 - Intercepting Routes
Documentation path: /02-app/01-building-your-application/01-routing/12-intercepting-routes

Description: Use intercepting routes to load a new route within the current layout while masking the browser URL, useful for advanced
routing patterns such as modals.

Related:

Title: Next Steps

Related Description: Learn how to use modals with Intercepted and Parallel Routes.

Links:

app/building-your-application/routing/parallel-routes

Intercepting routes allows you to load a route from another part of your application within the current layout. This routing paradigm
can be useful when you want to display the content of a route without the user switching to a different context.

For example, when clicking on a photo in a feed, you can display the photo in a modal, overlaying the feed. In this case, Next.js
intercepts the /photo/123 route, masks the URL, and overlays it over /feed.

However, when navigating to the photo by clicking a shareable URL or by refreshing the page, the entire photo page should render
instead of the modal. No route interception should occur.

Convention

Intercepting routes can be defined with the (..) convention, which is similar to relative path convention ../ but for segments.

You can use:

(.) to match segments on the same level
(..) to match segments one level above
(..)(..) to match segments two levels above

(...) to match segments from the root app directory

For example, you can intercept the photo segment from within the feed segment by creating a (..)photo directory.

Note that the (..) convention is based on route segments, not the file-system.

Examples

Modals

Intercepting Routes can be used together with Parallel Routes to create modals. This allows you to solve common challenges when
building modals, such as:

Making the modal content shareable through a URL.
Preserving context when the page is refreshed, instead of closing the modal.
Closing the modal on backwards navigation rather than going to the previous route.
Reopening the modal on forwards navigation.

Consider the following UI pattern, where a user can open a photo modal from a gallery using client-side navigation, or navigate to the
photo page directly from a shareable URL:

file:///docs/app/building-your-application/routing/parallel-routes

In the above example, the path to the photo segment can use the (..) matcher since @modal is a slot and not a segment. This means
that the photo route is only one segment level higher, despite being two file-system levels higher.

See the Parallel Routes documentation for a step-by-step example, or see our image gallery example.

Good to know:

Other examples could include opening a login modal in a top navbar while also having a dedicated /login page, or
opening a shopping cart in a side modal.

file:///docs/app/building-your-application/routing/parallel-routes#modals
https://github.com/vercel-labs/nextgram

3.1.1.13 - Route Handlers
Documentation path: /02-app/01-building-your-application/01-routing/13-route-handlers

Description: Create custom request handlers for a given route using the Web's Request and Response APIs.

Related:

Title: API Reference

Related Description: Learn more about the route.js file.

Links:

app/api-reference/file-conventions/route

Route Handlers allow you to create custom request handlers for a given route using the Web Request and Response APIs.

Good to know: Route Handlers are only available inside the app directory. They are the equivalent of API Routes inside the
pages directory meaning you do not need to use API Routes and Route Handlers together.

Convention

Route Handlers are defined in a route.js|ts file inside the app directory:

app/api/route.ts (ts)

export const dynamic = 'force-dynamic' // defaults to auto
export async function GET(request: Request) {}

app/api/route.js (js)

export const dynamic = 'force-dynamic' // defaults to auto
export async function GET(request) {}

Route Handlers can be nested inside the app directory, similar to page.js and layout.js. But there cannot be a route.js file at the
same route segment level as page.js.

Supported HTTP Methods

The following HTTP methods are supported: GET, POST, PUT, PATCH, DELETE, HEAD, and OPTIONS. If an unsupported method is called,
Next.js will return a 405 Method Not Allowed response.

Extended NextRequestNextRequest and NextResponseNextResponse APIs

In addition to supporting native Request and Response. Next.js extends them with NextRequest and NextResponse to provide
convenient helpers for advanced use cases.

Behavior

Caching

Route Handlers are cached by default when using the GET method with the Response object.

app/items/route.ts (ts)

export async function GET() {
 const res = await fetch('https://data.mongodb-api.com/...', {
 headers: {

https://developer.mozilla.org/docs/Web/API/Request
https://developer.mozilla.org/docs/Web/API/Response
file:///docs/pages/building-your-application/routing/api-routes
file:///docs/app/api-reference/file-conventions/route
https://developer.mozilla.org/docs/Web/HTTP/Methods
https://developer.mozilla.org/docs/Web/API/Request
https://developer.mozilla.org/docs/Web/API/Response
file:///docs/app/api-reference/functions/next-request
file:///docs/app/api-reference/functions/next-response

 'Content-Type': 'application/json',
 'API-Key': process.env.DATA_API_KEY,
 },
 })
 const data = await res.json()

 return Response.json({ data })
}

app/items/route.js (js)

export async function GET() {
 const res = await fetch('https://data.mongodb-api.com/...', {
 headers: {
 'Content-Type': 'application/json',
 'API-Key': process.env.DATA_API_KEY,
 },
 })
 const data = await res.json()

 return Response.json({ data })
}

TypeScript Warning: Response.json() is only valid from TypeScript 5.2. If you use a lower TypeScript version, you can use
NextResponse.json() for typed responses instead.

Opting out of caching

You can opt out of caching by:

Using the Request object with the GET method.
Using any of the other HTTP methods.
Using Dynamic Functions like cookies and headers.
The Segment Config Options manually specifies dynamic mode.

For example:
app/products/api/route.ts (ts)

export async function GET(request: Request) {
 const { searchParams } = new URL(request.url)
 const id = searchParams.get('id')
 const res = await fetch(`https://data.mongodb-api.com/product/${id}`, {
 headers: {
 'Content-Type': 'application/json',
 'API-Key': process.env.DATA_API_KEY!,
 },
 })
 const product = await res.json()

 return Response.json({ product })
}

app/products/api/route.js (js)

export async function GET(request) {
 const { searchParams } = new URL(request.url)
 const id = searchParams.get('id')
 const res = await fetch(`https://data.mongodb-api.com/product/${id}`, {
 headers: {
 'Content-Type': 'application/json',
 'API-Key': process.env.DATA_API_KEY,
 },
 })
 const product = await res.json()

 return Response.json({ product })
}

Similarly, the POST method will cause the Route Handler to be evaluated dynamically.

app/items/route.ts (ts)

export async function POST() {
 const res = await fetch('https://data.mongodb-api.com/...', {
 method: 'POST',
 headers: {

file:///docs/app/api-reference/functions/next-response#json

 'Content-Type': 'application/json',
 'API-Key': process.env.DATA_API_KEY!,
 },
 body: JSON.stringify({ time: new Date().toISOString() }),
 })

 const data = await res.json()

 return Response.json(data)
}

app/items/route.js (js)

export async function POST() {
 const res = await fetch('https://data.mongodb-api.com/...', {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 'API-Key': process.env.DATA_API_KEY,
 },
 body: JSON.stringify({ time: new Date().toISOString() }),
 })

 const data = await res.json()

 return Response.json(data)
}

Good to know: Like API Routes, Route Handlers can be used for cases like handling form submissions. A new abstraction for
handling forms and mutations that integrates deeply with React is being worked on.

Route Resolution

You can consider a route the lowest level routing primitive.

They do not participate in layouts or client-side navigations like page.
There cannot be a route.js file at the same route as page.js.

Page Route Result

app/page.js app/route.js Conflict

app/page.js app/api/route.js Valid

app/[user]/page.js app/api/route.js Valid

Each route.js or page.js file takes over all HTTP verbs for that route.

app/page.js (jsx)

export default function Page() {
 return <h1>Hello, Next.js!</h1>
}

// � Conflict
// `app/route.js`
export async function POST(request) {}

Examples

The following examples show how to combine Route Handlers with other Next.js APIs and features.

Revalidating Cached Data

You can revalidate cached data using the next.revalidate option:

app/items/route.ts (ts)

export async function GET() {
 const res = await fetch('https://data.mongodb-api.com/...', {
 next: { revalidate: 60 }, // Revalidate every 60 seconds
 })
 const data = await res.json()

file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating#revalidating-data
file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating#revalidating-data

 return Response.json(data)
}

app/items/route.js (js)

export async function GET() {
 const res = await fetch('https://data.mongodb-api.com/...', {
 next: { revalidate: 60 }, // Revalidate every 60 seconds
 })
 const data = await res.json()

 return Response.json(data)
}

Alternatively, you can use the revalidate segment config option:

export const revalidate = 60

Dynamic Functions

Route Handlers can be used with dynamic functions from Next.js, like cookies and headers.

Cookies

You can read or set cookies with cookies from next/headers. This server function can be called directly in a Route Handler, or
nested inside of another function.

Alternatively, you can return a new Response using the Set-Cookie header.

app/api/route.ts (ts)

import { cookies } from 'next/headers'

export async function GET(request: Request) {
 const cookieStore = cookies()
 const token = cookieStore.get('token')

 return new Response('Hello, Next.js!', {
 status: 200,
 headers: { 'Set-Cookie': `token=${token.value}` },
 })
}

app/api/route.js (js)

import { cookies } from 'next/headers'

export async function GET(request) {
 const cookieStore = cookies()
 const token = cookieStore.get('token')

 return new Response('Hello, Next.js!', {
 status: 200,
 headers: { 'Set-Cookie': `token=${token}` },
 })
}

You can also use the underlying Web APIs to read cookies from the request (NextRequest):

app/api/route.ts (ts)

import { type NextRequest } from 'next/server'

export async function GET(request: NextRequest) {
 const token = request.cookies.get('token')
}

app/api/route.js (js)

export async function GET(request) {
 const token = request.cookies.get('token')
}

Headers

You can read headers with headers from next/headers. This server function can be called directly in a Route Handler, or nested
inside of another function.

file:///docs/app/api-reference/file-conventions/route-segment-config#revalidate
file:///docs/app/api-reference/functions/cookies
file:///docs/app/api-reference/functions/headers
file:///docs/app/api-reference/functions/cookies
https://developer.mozilla.org/docs/Web/HTTP/Headers/Set-Cookie
file:///docs/app/api-reference/functions/next-request
file:///docs/app/api-reference/functions/headers

This headers instance is read-only. To set headers, you need to return a new Response with new headers.

app/api/route.ts (ts)

import { headers } from 'next/headers'

export async function GET(request: Request) {
 const headersList = headers()
 const referer = headersList.get('referer')

 return new Response('Hello, Next.js!', {
 status: 200,
 headers: { referer: referer },
 })
}

app/api/route.js (js)

import { headers } from 'next/headers'

export async function GET(request) {
 const headersList = headers()
 const referer = headersList.get('referer')

 return new Response('Hello, Next.js!', {
 status: 200,
 headers: { referer: referer },
 })
}

You can also use the underlying Web APIs to read headers from the request (NextRequest):

app/api/route.ts (ts)

import { type NextRequest } from 'next/server'

export async function GET(request: NextRequest) {
 const requestHeaders = new Headers(request.headers)
}

app/api/route.js (js)

export async function GET(request) {
 const requestHeaders = new Headers(request.headers)
}

Redirects

app/api/route.ts (ts)

import { redirect } from 'next/navigation'

export async function GET(request: Request) {
 redirect('https://nextjs.org/')
}

app/api/route.js (js)

import { redirect } from 'next/navigation'

export async function GET(request) {
 redirect('https://nextjs.org/')
}

Dynamic Route Segments

We recommend reading the Defining Routes page before continuing.

Route Handlers can use Dynamic Segments to create request handlers from dynamic data.
app/items/[slug]/route.ts (ts)

export async function GET(
 request: Request,
 { params }: { params: { slug: string } }
) {
 const slug = params.slug // 'a', 'b', or 'c'
}

app/items/[slug]/route.js (js)

file:///docs/app/api-reference/functions/next-request
file:///docs/app/building-your-application/routing/defining-routes
file:///docs/app/building-your-application/routing/dynamic-routes

export async function GET(request, { params }) {
 const slug = params.slug // 'a', 'b', or 'c'
}

Route Example URL paramsparams

app/items/[slug]/route.js /items/a { slug: 'a' }

app/items/[slug]/route.js /items/b { slug: 'b' }

app/items/[slug]/route.js /items/c { slug: 'c' }

URL Query Parameters

The request object passed to the Route Handler is a NextRequest instance, which has some additional convenience methods,
including for more easily handling query parameters.

app/api/search/route.ts (ts)

import { type NextRequest } from 'next/server'

export function GET(request: NextRequest) {
 const searchParams = request.nextUrl.searchParams
 const query = searchParams.get('query')
 // query is "hello" for /api/search?query=hello
}

app/api/search/route.js (js)

export function GET(request) {
 const searchParams = request.nextUrl.searchParams
 const query = searchParams.get('query')
 // query is "hello" for /api/search?query=hello
}

Streaming

Streaming is commonly used in combination with Large Language Models (LLMs), such as OpenAI, for AI-generated content. Learn more
about the AI SDK.

app/api/chat/route.ts (ts)

import { openai } from '@ai-sdk/openai'
import { StreamingTextResponse, streamText } from 'ai'

export async function POST(req) {
 const { messages } = await req.json()
 const result = await streamText({
 model: openai('gpt-4-turbo'),
 messages,
 })

 return new StreamingTextResponse(result.toAIStream())
}

app/api/chat/route.js (js)

import { openai } from '@ai-sdk/openai'
import { StreamingTextResponse, streamText } from 'ai'

export async function POST(req: Request) {
 const { messages } = await req.json()
 const result = await streamText({
 model: openai('gpt-4-turbo'),
 messages,
 })

 return new StreamingTextResponse(result.toAIStream())
}

These abstractions use the Web APIs to create a stream. You can also use the underlying Web APIs directly.
app/api/route.ts (ts)

// https://developer.mozilla.org/docs/Web/API/ReadableStream#convert_async_iterator_to_stream
function iteratorToStream(iterator: any) {

file:///docs/app/api-reference/functions/next-request#nexturl
https://sdk.vercel.ai/docs/introduction

 return new ReadableStream({
 async pull(controller) {
 const { value, done } = await iterator.next()

 if (done) {
 controller.close()
 } else {
 controller.enqueue(value)
 }
 },
 })
}

function sleep(time: number) {
 return new Promise((resolve) => {
 setTimeout(resolve, time)
 })
}

const encoder = new TextEncoder()

async function* makeIterator() {
 yield encoder.encode('<p>One</p>')
 await sleep(200)
 yield encoder.encode('<p>Two</p>')
 await sleep(200)
 yield encoder.encode('<p>Three</p>')
}

export async function GET() {
 const iterator = makeIterator()
 const stream = iteratorToStream(iterator)

 return new Response(stream)
}

app/api/route.js (js)

// https://developer.mozilla.org/docs/Web/API/ReadableStream#convert_async_iterator_to_stream
function iteratorToStream(iterator) {
 return new ReadableStream({
 async pull(controller) {
 const { value, done } = await iterator.next()

 if (done) {
 controller.close()
 } else {
 controller.enqueue(value)
 }
 },
 })
}

function sleep(time) {
 return new Promise((resolve) => {
 setTimeout(resolve, time)
 })
}

const encoder = new TextEncoder()

async function* makeIterator() {
 yield encoder.encode('<p>One</p>')
 await sleep(200)
 yield encoder.encode('<p>Two</p>')
 await sleep(200)
 yield encoder.encode('<p>Three</p>')
}

export async function GET() {
 const iterator = makeIterator()
 const stream = iteratorToStream(iterator)

 return new Response(stream)
}

Request Body

You can read the Request body using the standard Web API methods:

app/items/route.ts (ts)

export async function POST(request: Request) {
 const res = await request.json()
 return Response.json({ res })
}

app/items/route.js (js)

export async function POST(request) {
 const res = await request.json()
 return Response.json({ res })
}

Request Body FormData

You can read the FormData using the request.formData() function:

app/items/route.ts (ts)

export async function POST(request: Request) {
 const formData = await request.formData()
 const name = formData.get('name')
 const email = formData.get('email')
 return Response.json({ name, email })
}

app/items/route.js (js)

export async function POST(request) {
 const formData = await request.formData()
 const name = formData.get('name')
 const email = formData.get('email')
 return Response.json({ name, email })
}

Since formData data are all strings, you may want to use zod-form-data to validate the request and retrieve data in the format you
prefer (e.g. number).

CORS

You can set CORS headers for a specific Route Handler using the standard Web API methods:
app/api/route.ts (ts)

export const dynamic = 'force-dynamic' // defaults to auto

export async function GET(request: Request) {
 return new Response('Hello, Next.js!', {
 status: 200,
 headers: {
 'Access-Control-Allow-Origin': '*',
 'Access-Control-Allow-Methods': 'GET, POST, PUT, DELETE, OPTIONS',
 'Access-Control-Allow-Headers': 'Content-Type, Authorization',
 },
 })
}

app/api/route.js (js)

export const dynamic = 'force-dynamic' // defaults to auto

export async function GET(request) {
 return new Response('Hello, Next.js!', {
 status: 200,
 headers: {
 'Access-Control-Allow-Origin': '*',
 'Access-Control-Allow-Methods': 'GET, POST, PUT, DELETE, OPTIONS',
 'Access-Control-Allow-Headers': 'Content-Type, Authorization',
 },
 })
}

Good to know:

https://www.npmjs.com/zod-form-data

To add CORS headers to multiple Route Handlers, you can use Middleware or the next.config.js file.
Alternatively, see our CORS example package.

Webhooks

You can use a Route Handler to receive webhooks from third-party services:
app/api/route.ts (ts)

export async function POST(request: Request) {
 try {
 const text = await request.text()
 // Process the webhook payload
 } catch (error) {
 return new Response(`Webhook error: ${error.message}`, {
 status: 400,
 })
 }

 return new Response('Success!', {
 status: 200,
 })
}

app/api/route.js (js)

export async function POST(request) {
 try {
 const text = await request.text()
 // Process the webhook payload
 } catch (error) {
 return new Response(`Webhook error: ${error.message}`, {
 status: 400,
 })
 }

 return new Response('Success!', {
 status: 200,
 })
}

Notably, unlike API Routes with the Pages Router, you do not need to use bodyParser to use any additional configuration.

Non-UI Responses

You can use Route Handlers to return non-UI content. Note that sitemap.xml, robots.txt, app icons, and open graph images all
have built-in support.

app/rss.xml/route.ts (ts)

export const dynamic = 'force-dynamic' // defaults to auto

export async function GET() {
 return new Response(
 `<?xml version="1.0" encoding="UTF-8" ?>
<rss version="2.0">

<channel>
 <title>Next.js Documentation</title>
 <link>https://nextjs.org/docs</link>
 <description>The React Framework for the Web</description>
</channel>

</rss>`,
 {
 headers: {
 'Content-Type': 'text/xml',
 },
 }
)
}

app/rss.xml/route.js (js)

export const dynamic = 'force-dynamic' // defaults to auto

export async function GET() {
 return new Response(`<?xml version="1.0" encoding="UTF-8" ?>

file:///docs/app/building-your-application/routing/middleware#cors
file:///docs/app/api-reference/next-config-js/headers#cors
https://github.com/vercel/examples/blob/main/edge-functions/cors/lib/cors.ts
file:///docs/app/api-reference/file-conventions/metadata/sitemap#generating-a-sitemap-using-code-js-ts
file:///docs/app/api-reference/file-conventions/metadata/robots#generate-a-robots-file
file:///docs/app/api-reference/file-conventions/metadata/app-icons#generate-icons-using-code-js-ts-tsx
file:///docs/app/api-reference/file-conventions/metadata/opengraph-image

<rss version="2.0">

<channel>
 <title>Next.js Documentation</title>
 <link>https://nextjs.org/docs</link>
 <description>The React Framework for the Web</description>
</channel>

</rss>`)
}

Segment Config Options

Route Handlers use the same route segment configuration as pages and layouts.
app/items/route.ts (ts)

export const dynamic = 'auto'
export const dynamicParams = true
export const revalidate = false
export const fetchCache = 'auto'
export const runtime = 'nodejs'
export const preferredRegion = 'auto'

app/items/route.js (js)

export const dynamic = 'auto'
export const dynamicParams = true
export const revalidate = false
export const fetchCache = 'auto'
export const runtime = 'nodejs'
export const preferredRegion = 'auto'

See the API reference for more details.

file:///docs/app/api-reference/file-conventions/route-segment-config
file:///docs/app/api-reference/file-conventions/route-segment-config

3.1.1.14 - Middleware
Documentation path: /02-app/01-building-your-application/01-routing/14-middleware

Description: Learn how to use Middleware to run code before a request is completed.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Middleware allows you to run code before a request is completed. Then, based on the incoming request, you can modify the response
by rewriting, redirecting, modifying the request or response headers, or responding directly.

Middleware runs before cached content and routes are matched. See Matching Paths for more details.

Use Cases

Integrating Middleware into your application can lead to significant improvements in performance, security, and user experience. Some
common scenarios where Middleware is particularly effective include:

Authentication and Authorization: Ensure user identity and check session cookies before granting access to specific pages or API
routes.
Server-Side Redirects: Redirect users at the server level based on certain conditions (e.g., locale, user role).
Path Rewriting: Support A/B testing, feature rollouts, or legacy paths by dynamically rewriting paths to API routes or pages based
on request properties.
Bot Detection: Protect your resources by detecting and blocking bot traffic.
Logging and Analytics: Capture and analyze request data for insights before processing by the page or API.
Feature Flagging: Enable or disable features dynamically for seamless feature rollouts or testing.

Recognizing situations where middleware may not be the optimal approach is just as crucial. Here are some scenarios to be mindful of:

Complex Data Fetching and Manipulation: Middleware is not designed for direct data fetching or manipulation, this should be done
within Route Handlers or server-side utilities instead.
Heavy Computational Tasks: Middleware should be lightweight and respond quickly or it can cause delays in page load. Heavy
computational tasks or long-running processes should be done within dedicated Route Handlers.
Extensive Session Management: While Middleware can manage basic session tasks, extensive session management should be
managed by dedicated authentication services or within Route Handlers.
Direct Database Operations: Performing direct database operations within Middleware is not recommended. Database interactions
should done within Route Handlers or server-side utilities.

Convention

Use the file middleware.ts (or .js) in the root of your project to define Middleware. For example, at the same level as pages or app,
or inside src if applicable.

Note: While only one middleware.ts file is supported per project, you can still organize your middleware logic modularly.
Break out middleware functionalities into separate .ts or .js files and import them into your main middleware.ts file. This
allows for cleaner management of route-specific middleware, aggregated in the middleware.ts for centralized control. By
enforcing a single middleware file, it simplifies configuration, prevents potential conflicts, and optimizes performance by
avoiding multiple middleware layers.

Example

middleware.ts (ts)

import { NextResponse } from 'next/server'
import type { NextRequest } from 'next/server'

// This function can be marked `async` if using `await` inside
export function middleware(request: NextRequest) {
 return NextResponse.redirect(new URL('/home', request.url))
}

// See "Matching Paths" below to learn more
export const config = {
 matcher: '/about/:path*',
}

middleware.js (js)

import { NextResponse } from 'next/server'

// This function can be marked `async` if using `await` inside
export function middleware(request) {
 return NextResponse.redirect(new URL('/home', request.url))
}

// See "Matching Paths" below to learn more
export const config = {
 matcher: '/about/:path*',
}

Matching Paths

Middleware will be invoked for every route in your project. Given this, it’s crucial to use matchers to precisely target or exclude
specific routes. The following is the execution order:

1. headers from next.config.js
2. redirects from next.config.js
3. Middleware (rewrites, redirects, etc.)
4. beforeFiles (rewrites) from next.config.js
5. Filesystem routes (public/, _next/static/, pages/, app/, etc.)
6. afterFiles (rewrites) from next.config.js
7. Dynamic Routes (/blog/[slug])
8. fallback (rewrites) from next.config.js

There are two ways to define which paths Middleware will run on:

1. Custom matcher config
2. Conditional statements

Matcher

matcher allows you to filter Middleware to run on specific paths.

middleware.js (js)

export const config = {
 matcher: '/about/:path*',
}

You can match a single path or multiple paths with an array syntax:
middleware.js (js)

export const config = {
 matcher: ['/about/:path*', '/dashboard/:path*'],
}

The matcher config allows full regex so matching like negative lookaheads or character matching is supported. An example of a
negative lookahead to match all except specific paths can be seen here:

middleware.js (js)

export const config = {
 matcher: [
 /*
 * Match all request paths except for the ones starting with:
 * - api (API routes)
 * - _next/static (static files)
 * - _next/image (image optimization files)
 * - favicon.ico (favicon file)
 */
 '/((?!api|_next/static|_next/image|favicon.ico).*)',
],
}

You can also bypass Middleware for certain requests by using the missing or has arrays, or a combination of both:

middleware.js (js)

export const config = {
 matcher: [
 /*
 * Match all request paths except for the ones starting with:

 * - api (API routes)
 * - _next/static (static files)
 * - _next/image (image optimization files)
 * - favicon.ico (favicon file)
 */
 {
 source: '/((?!api|_next/static|_next/image|favicon.ico).*)',
 missing: [
 { type: 'header', key: 'next-router-prefetch' },
 { type: 'header', key: 'purpose', value: 'prefetch' },
],
 },

 {
 source: '/((?!api|_next/static|_next/image|favicon.ico).*)',
 has: [
 { type: 'header', key: 'next-router-prefetch' },
 { type: 'header', key: 'purpose', value: 'prefetch' },
],
 },

 {
 source: '/((?!api|_next/static|_next/image|favicon.ico).*)',
 has: [{ type: 'header', key: 'x-present' }],
 missing: [{ type: 'header', key: 'x-missing', value: 'prefetch' }],
 },
],
}

Good to know: The matcher values need to be constants so they can be statically analyzed at build-time. Dynamic values such
as variables will be ignored.

Configured matchers:

1. MUST start with /
2. Can include named parameters: /about/:path matches /about/a and /about/b but not /about/a/c
3. Can have modifiers on named parameters (starting with :): /about/:path* matches /about/a/b/c because * is zero or more. ? is

zero or one and + one or more
4. Can use regular expression enclosed in parenthesis: /about/(.*) is the same as /about/:path*

Read more details on path-to-regexp documentation.

Good to know: For backward compatibility, Next.js always considers /public as /public/index. Therefore, a matcher of
/public/:path will match.

Conditional Statements

middleware.ts (ts)

import { NextResponse } from 'next/server'
import type { NextRequest } from 'next/server'

export function middleware(request: NextRequest) {
 if (request.nextUrl.pathname.startsWith('/about')) {
 return NextResponse.rewrite(new URL('/about-2', request.url))
 }

 if (request.nextUrl.pathname.startsWith('/dashboard')) {
 return NextResponse.rewrite(new URL('/dashboard/user', request.url))
 }
}

middleware.js (js)

import { NextResponse } from 'next/server'

export function middleware(request) {
 if (request.nextUrl.pathname.startsWith('/about')) {
 return NextResponse.rewrite(new URL('/about-2', request.url))
 }

 if (request.nextUrl.pathname.startsWith('/dashboard')) {
 return NextResponse.rewrite(new URL('/dashboard/user', request.url))
 }

https://github.com/pillarjs/path-to-regexp#path-to-regexp-1

}

NextResponse

The NextResponse API allows you to:

redirect the incoming request to a different URL
rewrite the response by displaying a given URL
Set request headers for API Routes, getServerSideProps, and rewrite destinations
Set response cookies
Set response headers

To produce a response from Middleware, you can:

1. rewrite to a route (Page or Route Handler) that produces a response
2. return a NextResponse directly. See Producing a Response

To produce a response from Middleware, you can:

1. rewrite to a route (Page or Edge API Route) that produces a response
2. return a NextResponse directly. See Producing a Response

Using Cookies

Cookies are regular headers. On a Request, they are stored in the Cookie header. On a Response they are in the Set-Cookie header.
Next.js provides a convenient way to access and manipulate these cookies through the cookies extension on NextRequest and
NextResponse.

1. For incoming requests, cookies comes with the following methods: get, getAll, set, and delete cookies. You can check for the
existence of a cookie with has or remove all cookies with clear.

2. For outgoing responses, cookies have the following methods get, getAll, set, and delete.

middleware.ts (ts)

import { NextResponse } from 'next/server'
import type { NextRequest } from 'next/server'

export function middleware(request: NextRequest) {
 // Assume a "Cookie:nextjs=fast" header to be present on the incoming request
 // Getting cookies from the request using the `RequestCookies` API
 let cookie = request.cookies.get('nextjs')
 console.log(cookie) // => { name: 'nextjs', value: 'fast', Path: '/' }
 const allCookies = request.cookies.getAll()
 console.log(allCookies) // => [{ name: 'nextjs', value: 'fast' }]

 request.cookies.has('nextjs') // => true
 request.cookies.delete('nextjs')
 request.cookies.has('nextjs') // => false

 // Setting cookies on the response using the `ResponseCookies` API
 const response = NextResponse.next()
 response.cookies.set('vercel', 'fast')
 response.cookies.set({
 name: 'vercel',
 value: 'fast',
 path: '/',
 })
 cookie = response.cookies.get('vercel')
 console.log(cookie) // => { name: 'vercel', value: 'fast', Path: '/' }
 // The outgoing response will have a `Set-Cookie:vercel=fast;path=/` header.

 return response
}

middleware.js (js)

import { NextResponse } from 'next/server'

export function middleware(request) {
 // Assume a "Cookie:nextjs=fast" header to be present on the incoming request
 // Getting cookies from the request using the `RequestCookies` API

file:///docs/app/building-your-application/routing/layouts-and-templates
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/pages/building-your-application/routing/pages-and-layouts
file:///docs/pages/building-your-application/routing/api-routes

 let cookie = request.cookies.get('nextjs')
 console.log(cookie) // => { name: 'nextjs', value: 'fast', Path: '/' }
 const allCookies = request.cookies.getAll()
 console.log(allCookies) // => [{ name: 'nextjs', value: 'fast' }]

 request.cookies.has('nextjs') // => true
 request.cookies.delete('nextjs')
 request.cookies.has('nextjs') // => false

 // Setting cookies on the response using the `ResponseCookies` API
 const response = NextResponse.next()
 response.cookies.set('vercel', 'fast')
 response.cookies.set({
 name: 'vercel',
 value: 'fast',
 path: '/',
 })
 cookie = response.cookies.get('vercel')
 console.log(cookie) // => { name: 'vercel', value: 'fast', Path: '/' }
 // The outgoing response will have a `Set-Cookie:vercel=fast;path=/test` header.

 return response
}

Setting Headers

You can set request and response headers using the NextResponse API (setting request headers is available since Next.js v13.0.0).

middleware.ts (ts)

import { NextResponse } from 'next/server'
import type { NextRequest } from 'next/server'

export function middleware(request: NextRequest) {
 // Clone the request headers and set a new header `x-hello-from-middleware1`
 const requestHeaders = new Headers(request.headers)
 requestHeaders.set('x-hello-from-middleware1', 'hello')

 // You can also set request headers in NextResponse.rewrite
 const response = NextResponse.next({
 request: {
 // New request headers
 headers: requestHeaders,
 },
 })

 // Set a new response header `x-hello-from-middleware2`
 response.headers.set('x-hello-from-middleware2', 'hello')
 return response
}

middleware.js (js)

import { NextResponse } from 'next/server'

export function middleware(request) {
 // Clone the request headers and set a new header `x-hello-from-middleware1`
 const requestHeaders = new Headers(request.headers)
 requestHeaders.set('x-hello-from-middleware1', 'hello')

 // You can also set request headers in NextResponse.rewrite
 const response = NextResponse.next({
 request: {
 // New request headers
 headers: requestHeaders,
 },
 })

 // Set a new response header `x-hello-from-middleware2`
 response.headers.set('x-hello-from-middleware2', 'hello')
 return response
}

Good to know: Avoid setting large headers as it might cause 431 Request Header Fields Too Large error depending on your
backend web server configuration.

https://developer.mozilla.org/docs/Web/HTTP/Status/431

CORS

You can set CORS headers in Middleware to allow cross-origin requests, including simple and preflighted requests.
middleware.ts (tsx)

import { NextRequest, NextResponse } from 'next/server'

const allowedOrigins = ['https://acme.com', 'https://my-app.org']

const corsOptions = {
 'Access-Control-Allow-Methods': 'GET, POST, PUT, DELETE, OPTIONS',
 'Access-Control-Allow-Headers': 'Content-Type, Authorization',
}

export function middleware(request: NextRequest) {
 // Check the origin from the request
 const origin = request.headers.get('origin') ?? ''
 const isAllowedOrigin = allowedOrigins.includes(origin)

 // Handle preflighted requests
 const isPreflight = request.method === 'OPTIONS'

 if (isPreflight) {
 const preflightHeaders = {
 ...(isAllowedOrigin && { 'Access-Control-Allow-Origin': origin }),
 ...corsOptions,
 }
 return NextResponse.json({}, { headers: preflightHeaders })
 }

 // Handle simple requests
 const response = NextResponse.next()

 if (isAllowedOrigin) {
 response.headers.set('Access-Control-Allow-Origin', origin)
 }

 Object.entries(corsOptions).forEach(([key, value]) => {
 response.headers.set(key, value)
 })

 return response
}

export const config = {
 matcher: '/api/:path*',
}

middleware.js (jsx)

import { NextResponse } from 'next/server'

const allowedOrigins = ['https://acme.com', 'https://my-app.org']

const corsOptions = {
 'Access-Control-Allow-Methods': 'GET, POST, PUT, DELETE, OPTIONS',
 'Access-Control-Allow-Headers': 'Content-Type, Authorization',
}

export function middleware(request) {
 // Check the origin from the request
 const origin = request.headers.get('origin') ?? ''
 const isAllowedOrigin = allowedOrigins.includes(origin)

 // Handle preflighted requests
 const isPreflight = request.method === 'OPTIONS'

 if (isPreflight) {
 const preflightHeaders = {
 ...(isAllowedOrigin && { 'Access-Control-Allow-Origin': origin }),
 ...corsOptions,
 }
 return NextResponse.json({}, { headers: preflightHeaders })
 }

 // Handle simple requests
 const response = NextResponse.next()

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#simple_requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#preflighted_requests

 if (isAllowedOrigin) {
 response.headers.set('Access-Control-Allow-Origin', origin)
 }

 Object.entries(corsOptions).forEach(([key, value]) => {
 response.headers.set(key, value)
 })

 return response
}

export const config = {
 matcher: '/api/:path*',
}

Good to know: You can configure CORS headers for individual routes in Route Handlers.

Producing a Response

You can respond from Middleware directly by returning a Response or NextResponse instance. (This is available since Next.js v13.1.0)

middleware.ts (ts)

import type { NextRequest } from 'next/server'
import { isAuthenticated } from '@lib/auth'

// Limit the middleware to paths starting with `/api/`
export const config = {
 matcher: '/api/:function*',
}

export function middleware(request: NextRequest) {
 // Call our authentication function to check the request
 if (!isAuthenticated(request)) {
 // Respond with JSON indicating an error message
 return Response.json(
 { success: false, message: 'authentication failed' },
 { status: 401 }
)
 }
}

middleware.js (js)

import { isAuthenticated } from '@lib/auth'

// Limit the middleware to paths starting with `/api/`
export const config = {
 matcher: '/api/:function*',
}

export function middleware(request) {
 // Call our authentication function to check the request
 if (!isAuthenticated(request)) {
 // Respond with JSON indicating an error message
 return Response.json(
 { success: false, message: 'authentication failed' },
 { status: 401 }
)
 }
}

waitUntilwaitUntil and NextFetchEventNextFetchEvent

The NextFetchEvent object extends the native FetchEvent object, and includes the waitUntil() method.

The waitUntil() method takes a promise as an argument, and extends the lifetime of the Middleware until the promise settles. This is
useful for performing work in the background.

middleware.ts (ts)

import { NextResponse } from 'next/server'
import type { NextFetchEvent, NextRequest } from 'next/server'

export function middleware(req: NextRequest, event: NextFetchEvent) {
 event.waitUntil(

file:///docs/app/building-your-application/routing/route-handlers#cors
https://nextjs.org/blog/next-13-1#nextjs-advanced-middleware
https://developer.mozilla.org/docs/Web/API/FetchEvent
https://developer.mozilla.org/docs/Web/API/ExtendableEvent/waitUntil

 fetch('https://my-analytics-platform.com', {
 method: 'POST',
 body: JSON.stringify({ pathname: req.nextUrl.pathname }),
 })
)

 return NextResponse.next()
}

Advanced Middleware Flags

In v13.1 of Next.js two additional flags were introduced for middleware, skipMiddlewareUrlNormalize and
skipTrailingSlashRedirect to handle advanced use cases.

skipTrailingSlashRedirect disables Next.js redirects for adding or removing trailing slashes. This allows custom handling inside
middleware to maintain the trailing slash for some paths but not others, which can make incremental migrations easier.

next.config.js (js)

module.exports = {
 skipTrailingSlashRedirect: true,
}

middleware.js (js)

const legacyPrefixes = ['/docs', '/blog']

export default async function middleware(req) {
 const { pathname } = req.nextUrl

 if (legacyPrefixes.some((prefix) => pathname.startsWith(prefix))) {
 return NextResponse.next()
 }

 // apply trailing slash handling
 if (
 !pathname.endsWith('/') &&
 !pathname.match(/((?!\.well-known(?:\/.*)?)(?:[^/]+\/)*[^/]+\.\w+)/)
) {
 return NextResponse.redirect(
 new URL(`${req.nextUrl.pathname}/`, req.nextUrl)
)
 }
}

skipMiddlewareUrlNormalize allows for disabling the URL normalization in Next.js to make handling direct visits and client-
transitions the same. In some advanced cases, this option provides full control by using the original URL.

next.config.js (js)

module.exports = {
 skipMiddlewareUrlNormalize: true,
}

middleware.js (js)

export default async function middleware(req) {
 const { pathname } = req.nextUrl

 // GET /_next/data/build-id/hello.json

 console.log(pathname)
 // with the flag this now /_next/data/build-id/hello.json
 // without the flag this would be normalized to /hello
}

Runtime

Middleware currently only supports the Edge runtime. The Node.js runtime can not be used.

Version History

Version Changes

file:///docs/app/building-your-application/rendering/edge-and-nodejs-runtimes

v13.1.0 Advanced Middleware flags added

v13.0.0 Middleware can modify request headers, response headers, and send responses

v12.2.0 Middleware is stable, please see the upgrade guide

v12.0.9 Enforce absolute URLs in Edge Runtime (PR)

v12.0.0 Middleware (Beta) added

Version Changes

file:///docs/messages/middleware-upgrade-guide
https://github.com/vercel/next.js/pull/33410

3.1.1.15 - Internationalization
Documentation path: /02-app/01-building-your-application/01-routing/15-internationalization

Description: Add support for multiple languages with internationalized routing and localized content.

Next.js enables you to configure the routing and rendering of content to support multiple languages. Making your site adaptive to
different locales includes translated content (localization) and internationalized routes.

Terminology

Locale: An identifier for a set of language and formatting preferences. This usually includes the preferred language of the user and
possibly their geographic region.
en-US: English as spoken in the United States
nl-NL: Dutch as spoken in the Netherlands
nl: Dutch, no specific region

Routing Overview

It’s recommended to use the user’s language preferences in the browser to select which locale to use. Changing your preferred
language will modify the incoming Accept-Language header to your application.

For example, using the following libraries, you can look at an incoming Request to determine which locale to select, based on the
Headers, locales you plan to support, and the default locale.

middleware.js (js)

import { match } from '@formatjs/intl-localematcher'
import Negotiator from 'negotiator'

let headers = { 'accept-language': 'en-US,en;q=0.5' }
let languages = new Negotiator({ headers }).languages()
let locales = ['en-US', 'nl-NL', 'nl']
let defaultLocale = 'en-US'

match(languages, locales, defaultLocale) // -> 'en-US'

Routing can be internationalized by either the sub-path (/fr/products) or domain (my-site.fr/products). With this information,
you can now redirect the user based on the locale inside Middleware.

middleware.js (js)

import { NextResponse } from "next/server";

let locales = ['en-US', 'nl-NL', 'nl']

// Get the preferred locale, similar to the above or using a library
function getLocale(request) { ... }

export function middleware(request) {
 // Check if there is any supported locale in the pathname
 const { pathname } = request.nextUrl
 const pathnameHasLocale = locales.some(
 (locale) => pathname.startsWith(`/${locale}/`) || pathname === `/${locale}`
)

 if (pathnameHasLocale) return

 // Redirect if there is no locale
 const locale = getLocale(request)
 request.nextUrl.pathname = `/${locale}${pathname}`
 // e.g. incoming request is /products
 // The new URL is now /en-US/products
 return NextResponse.redirect(request.nextUrl)
}

export const config = {
 matcher: [
 // Skip all internal paths (_next)
 '/((?!_next).*)',
 // Optional: only run on root (/) URL
 // '/'
],

file:///docs/app/building-your-application/routing/middleware

}

Finally, ensure all special files inside app/ are nested under app/[lang]. This enables the Next.js router to dynamically handle
different locales in the route, and forward the lang parameter to every layout and page. For example:

app/[lang]/page.js (jsx)

// You now have access to the current locale
// e.g. /en-US/products -> `lang` is "en-US"
export default async function Page({ params: { lang } }) {
 return ...
}

The root layout can also be nested in the new folder (e.g. app/[lang]/layout.js).

Localization

Changing displayed content based on the user’s preferred locale, or localization, is not something specific to Next.js. The patterns
described below would work the same with any web application.

Let’s assume we want to support both English and Dutch content inside our application. We might maintain two different “dictionaries”,
which are objects that give us a mapping from some key to a localized string. For example:

dictionaries/en.json (json)

{
 "products": {
 "cart": "Add to Cart"
 }
}

dictionaries/nl.json (json)

{
 "products": {
 "cart": "Toevoegen aan Winkelwagen"
 }
}

We can then create a getDictionary function to load the translations for the requested locale:

app/[lang]/dictionaries.js (jsx)

import 'server-only'

const dictionaries = {
 en: () => import('./dictionaries/en.json').then((module) => module.default),
 nl: () => import('./dictionaries/nl.json').then((module) => module.default),
}

export const getDictionary = async (locale) => dictionaries[locale]()

Given the currently selected language, we can fetch the dictionary inside of a layout or page.
app/[lang]/page.js (jsx)

import { getDictionary } from './dictionaries'

export default async function Page({ params: { lang } }) {
 const dict = await getDictionary(lang) // en
 return <button>{dict.products.cart}</button> // Add to Cart
}

Because all layouts and pages in the app/ directory default to Server Components, we do not need to worry about the size of the
translation files affecting our client-side JavaScript bundle size. This code will only run on the server, and only the resulting HTML will
be sent to the browser.

Static Generation

To generate static routes for a given set of locales, we can use generateStaticParams with any page or layout. This can be global, for
example, in the root layout:

app/[lang]/layout.js (jsx)

export async function generateStaticParams() {
 return [{ lang: 'en-US' }, { lang: 'de' }]
}

file:///docs/app/building-your-application/rendering/server-components

export default function Root({ children, params }) {
 return (
 <html lang={params.lang}>
 <body>{children}</body>
 </html>
)
}

Resources

Minimal i18n routing and translations
next-intl
next-international
next-i18n-router
inlang

https://github.com/vercel/next.js/tree/canary/examples/app-dir-i18n-routing
https://next-intl-docs.vercel.app/docs/next-13
https://github.com/QuiiBz/next-international
https://github.com/i18nexus/next-i18n-router
https://inlang.com/c/nextjs

3.1.2 - Data Fetching
Documentation path: /02-app/01-building-your-application/02-data-fetching/index

Description: Learn how to fetch, cache, revalidate, and mutate data with Next.js.

3.1.2.1 - Data Fetching, Caching, and Revalidating
Documentation path: /02-app/01-building-your-application/02-data-fetching/01-fetching-caching-and-revalidating

Description: Learn how to fetch, cache, and revalidate data in your Next.js application.

Data fetching is a core part of any application. This page goes through how you can fetch, cache, and revalidate data in React and
Next.js.

There are four ways you can fetch data:

1. On the server, with fetch
2. On the server, with third-party libraries
3. On the client, via a Route Handler
4. On the client, with third-party libraries.

Fetching Data on the Server with fetchfetch
Next.js extends the native fetch Web API to allow you to configure the caching and revalidating behavior for each fetch request on the
server. React extends fetch to automatically memoize fetch requests while rendering a React component tree.

You can use fetch with async/await in Server Components, in Route Handlers, and in Server Actions.

For example:
app/page.tsx (tsx)

async function getData() {
 const res = await fetch('https://api.example.com/...')
 // The return value is *not* serialized
 // You can return Date, Map, Set, etc.

 if (!res.ok) {
 // This will activate the closest `error.js` Error Boundary
 throw new Error('Failed to fetch data')
 }

 return res.json()
}

export default async function Page() {
 const data = await getData()

 return <main></main>
}

app/page.js (jsx)

async function getData() {
 const res = await fetch('https://api.example.com/...')
 // The return value is *not* serialized
 // You can return Date, Map, Set, etc.

 if (!res.ok) {
 // This will activate the closest `error.js` Error Boundary
 throw new Error('Failed to fetch data')
 }

 return res.json()
}

export default async function Page() {
 const data = await getData()

 return <main></main>
}

Good to know:

Next.js provides helpful functions you may need when fetching data in Server Components such as cookies and headers.
These will cause the route to be dynamically rendered as they rely on request time information.
In Route handlers, fetch requests are not memoized as Route Handlers are not part of the React component tree.
In Server Actions, fetch requests are not cached (defaults cache: no-store).

https://developer.mozilla.org/docs/Web/API/Fetch_API
file:///docs/app/building-your-application/data-fetching/patterns#fetching-data-where-its-needed
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/api-reference/functions/cookies
file:///docs/app/api-reference/functions/headers
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations

To use async/await in a Server Component with TypeScript, you’ll need to use TypeScript 5.1.3 or higher and
@types/react 18.2.8 or higher.

Caching Data

Caching stores data so it doesn’t need to be re-fetched from your data source on every request.

By default, Next.js automatically caches the returned values of fetch in the Data Cache on the server. This means that the data can be
fetched at build time or request time, cached, and reused on each data request.

// 'force-cache' is the default, and can be omitted
fetch('https://...', { cache: 'force-cache' })

However, there are exceptions, fetch requests are not cached when:

Used inside a Server Action.
Used inside a Route Handler that uses the POST method.

What is the Data Cache?

The Data Cache is a persistent HTTP cache. Depending on your platform, the cache can scale automatically and be shared
across multiple regions.

Learn more about the Data Cache.

Revalidating Data

Revalidation is the process of purging the Data Cache and re-fetching the latest data. This is useful when your data changes and you
want to ensure you show the latest information.

Cached data can be revalidated in two ways:

Time-based revalidation: Automatically revalidate data after a certain amount of time has passed. This is useful for data that
changes infrequently and freshness is not as critical.
On-demand revalidation: Manually revalidate data based on an event (e.g. form submission). On-demand revalidation can use a
tag-based or path-based approach to revalidate groups of data at once. This is useful when you want to ensure the latest data is
shown as soon as possible (e.g. when content from your headless CMS is updated).

Time-based Revalidation

To revalidate data at a timed interval, you can use the next.revalidate option of fetch to set the cache lifetime of a resource (in
seconds).

fetch('https://...', { next: { revalidate: 3600 } })

Alternatively, to revalidate all fetch requests in a route segment, you can use the Segment Config Options.

layout.js | page.js (jsx)

export const revalidate = 3600 // revalidate at most every hour

If you have multiple fetch requests in a statically rendered route, and each has a different revalidation frequency. The lowest time will
be used for all requests. For dynamically rendered routes, each fetch request will be revalidated independently.

Learn more about time-based revalidation.

On-demand Revalidation

Data can be revalidated on-demand by path (revalidatePath) or by cache tag (revalidateTag) inside a Server Action or Route
Handler.

Next.js has a cache tagging system for invalidating fetch requests across routes.

1. When using fetch, you have the option to tag cache entries with one or more tags.
2. Then, you can call revalidateTag to revalidate all entries associated with that tag.

For example, the following fetch request adds the cache tag collection:

app/page.tsx (tsx)

export default async function Page() {
 const res = await fetch('https://...', { next: { tags: ['collection'] } })
 const data = await res.json()
 // ...
}

file:///docs/app/building-your-application/caching#data-cache
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/routing/route-handlers
https://developer.mozilla.org/docs/Web/HTTP/Caching
https://vercel.com/docs/infrastructure/data-cache
file:///docs/app/building-your-application/caching#data-cache
file:///docs/app/api-reference/file-conventions/route-segment-config
file:///docs/app/building-your-application/caching#time-based-revalidation
file:///docs/app/api-reference/functions/revalidatePath
file:///docs/app/api-reference/functions/revalidateTag
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/routing/route-handlers

app/page.js (jsx)

export default async function Page() {
 const res = await fetch('https://...', { next: { tags: ['collection'] } })
 const data = await res.json()
 // ...
}

You can then revalidate this fetch call tagged with collection by calling revalidateTag in a Server Action:

app/actions.ts (ts)

'use server'

import { revalidateTag } from 'next/cache'

export default async function action() {
 revalidateTag('collection')
}

app/actions.js (js)

'use server'

import { revalidateTag } from 'next/cache'

export default async function action() {
 revalidateTag('collection')
}

Learn more about on-demand revalidation.

Error handling and revalidation

If an error is thrown while attempting to revalidate data, the last successfully generated data will continue to be served from the cache.
On the next subsequent request, Next.js will retry revalidating the data.

Opting out of Data Caching

fetch requests are not cached if:

The cache: 'no-store' is added to fetch requests.
The revalidate: 0 option is added to individual fetch requests.
The fetch request is inside a Router Handler that uses the POST method.
The fetch request comes after the usage of headers or cookies.
The const dynamic = 'force-dynamic' route segment option is used.
The fetchCache route segment option is configured to skip cache by default.
The fetch request uses Authorization or Cookie headers and there’s an uncached request above it in the component tree.

Individual fetchfetch Requests

To opt out of caching for individual fetch requests, you can set the cache option in fetch to 'no-store'. This will fetch data
dynamically, on every request.

layout.js | page.js (js)

fetch('https://...', { cache: 'no-store' })

View all the available cache options in the fetch API reference.

Multiple fetchfetch Requests

If you have multiple fetch requests in a route segment (e.g. a Layout or Page), you can configure the caching behavior of all data
requests in the segment using the Segment Config Options.

However, we recommend configuring the caching behavior of each fetch request individually. This gives you more granular control
over the caching behavior.

Fetching data on the Server with third-party libraries

In cases where you’re using a third-party library that doesn’t support or expose fetch (for example, a database, CMS, or ORM client),
you can configure the caching and revalidating behavior of those requests using the Route Segment Config Option and React’s cache
function.

file:///docs/app/building-your-application/caching#on-demand-revalidation
file:///docs/app/api-reference/functions/fetch
file:///docs/app/api-reference/file-conventions/route-segment-config
file:///docs/app/api-reference/file-conventions/route-segment-config

Whether the data is cached or not will depend on whether the route segment is statically or dynamically rendered. If the segment is
static (default), the output of the request will be cached and revalidated as part of the route segment. If the segment is dynamic, the
output of the request will not be cached and will be re-fetched on every request when the segment is rendered.

You can also use the experimental unstable_cache API.

Example

In the example below:

The React cache function is used to memoize data requests.
The revalidate option is set to 3600 in the Layout and Page segments, meaning the data will be cached and revalidated at most
every hour.

app/utils.ts (ts)

import { cache } from 'react'

export const getItem = cache(async (id: string) => {
 const item = await db.item.findUnique({ id })
 return item
})

app/utils.js (js)

import { cache } from 'react'

export const getItem = cache(async (id) => {
 const item = await db.item.findUnique({ id })
 return item
})

Although the getItem function is called twice, only one query will be made to the database.

app/item/[id]/layout.tsx (tsx)

import { getItem } from '@/utils/get-item'

export const revalidate = 3600 // revalidate the data at most every hour

export default async function Layout({
 params: { id },
}: {
 params: { id: string }
}) {
 const item = await getItem(id)
 // ...
}

app/item/[id]/layout.js (jsx)

import { getItem } from '@/utils/get-item'

export const revalidate = 3600 // revalidate the data at most every hour

export default async function Layout({ params: { id } }) {
 const item = await getItem(id)
 // ...
}

app/item/[id]/page.tsx (tsx)

import { getItem } from '@/utils/get-item'

export const revalidate = 3600 // revalidate the data at most every hour

export default async function Page({
 params: { id },
}: {
 params: { id: string }
}) {
 const item = await getItem(id)
 // ...
}

app/item/[id]/page.js (jsx)

import { getItem } from '@/utils/get-item'

file:///docs/app/building-your-application/rendering/server-components#server-rendering-strategies
file:///docs/app/api-reference/functions/unstable_cache
file:///docs/app/building-your-application/caching#request-memoization

export const revalidate = 3600 // revalidate the data at most every hour

export default async function Page({ params: { id } }) {
 const item = await getItem(id)
 // ...
}

Fetching Data on the Client with Route Handlers

If you need to fetch data in a client component, you can call a Route Handler from the client. Route Handlers execute on the server and
return the data to the client. This is useful when you don’t want to expose sensitive information to the client, such as API tokens.

See the Route Handler documentation for examples.

Server Components and Route Handlers

Since Server Components render on the server, you don’t need to call a Route Handler from a Server Component to fetch data.
Instead, you can fetch the data directly inside the Server Component.

Fetching Data on the Client with third-party libraries

You can also fetch data on the client using a third-party library such as SWR or TanStack Query. These libraries provide their own APIs
for memoizing requests, caching, revalidating, and mutating data.

Future APIs:

use is a React function that accepts and handles a promise returned by a function. Wrapping fetch in use is currently not
recommended in Client Components and may trigger multiple re-renders. Learn more about use in the React docs.

file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/routing/route-handlers
https://swr.vercel.app/
https://tanstack.com/query/latest
https://react.dev/reference/react/use

3.1.2.2 - Server Actions and Mutations
Documentation path: /02-app/01-building-your-application/02-data-fetching/02-server-actions-and-mutations

Description: Learn how to handle form submissions and data mutations with Next.js.

Related:

Title: Related

Related Description: Learn how to configure Server Actions in Next.js

Links:

app/api-reference/next-config-js/serverActions

Server Actions are asynchronous functions that are executed on the server. They can be used in Server and Client Components to
handle form submissions and data mutations in Next.js applications.

� Watch: Learn more about forms and mutations with Server Actions → YouTube (10 minutes).

Convention

A Server Action can be defined with the React "use server" directive. You can place the directive at the top of an async function to
mark the function as a Server Action, or at the top of a separate file to mark all exports of that file as Server Actions.

Server Components

Server Components can use the inline function level or module level "use server" directive. To inline a Server Action, add "use
server" to the top of the function body:

app/page.tsx (tsx)

// Server Component
export default function Page() {
 // Server Action
 async function create() {
 'use server'

 // ...
 }

 return (
 // ...
)
}

app/page.jsx (jsx)

// Server Component
export default function Page() {
 // Server Action
 async function create() {
 'use server'

 // ...
 }

 return (
 // ...
)
}

Client Components

Client Components can only import actions that use the module-level "use server" directive.

To call a Server Action in a Client Component, create a new file and add the "use server" directive at the top of it. All functions
within the file will be marked as Server Actions that can be reused in both Client and Server Components:

app/actions.ts (tsx)

'use server'

export async function create() {
 // ...

https://youtu.be/dDpZfOQBMaU?si=cJZHlUu_jFhCzHUg
https://react.dev/reference/react/use-server

}

app/actions.js (js)

'use server'

export async function create() {
 // ...
}

app/ui/button.tsx (tsx)

import { create } from '@/app/actions'

export function Button() {
 return (
 // ...
)
}

app/ui/button.js (jsx)

import { create } from '@/app/actions'

export function Button() {
 return (
 // ...
)
}

You can also pass a Server Action to a Client Component as a prop:

<ClientComponent updateItem={updateItem} />

app/client-component.jsx (jsx)

'use client'

export default function ClientComponent({ updateItem }) {
 return <form action={updateItem}>{/* ... */}</form>
}

Behavior

Server actions can be invoked using the action attribute in a <form> element:
Server Components support progressive enhancement by default, meaning the form will be submitted even if JavaScript hasn’t
loaded yet or is disabled.
In Client Components, forms invoking Server Actions will queue submissions if JavaScript isn’t loaded yet, prioritizing client
hydration.
After hydration, the browser does not refresh on form submission.
Server Actions are not limited to <form> and can be invoked from event handlers, useEffect, third-party libraries, and other form
elements like <button>.
Server Actions integrate with the Next.js caching and revalidation architecture. When an action is invoked, Next.js can return both
the updated UI and new data in a single server roundtrip.
Behind the scenes, actions use the POST method, and only this HTTP method can invoke them.
The arguments and return value of Server Actions must be serializable by React. See the React docs for a list of serializable
arguments and values.
Server Actions are functions. This means they can be reused anywhere in your application.
Server Actions inherit the runtime from the page or layout they are used on.
Server Actions inherit the Route Segment Config from the page or layout they are used on, including fields like maxDuration.

Examples

Forms

React extends the HTML <form> element to allow Server Actions to be invoked with the action prop.

When invoked in a form, the action automatically receives the FormData object. You don’t need to use React useState to manage
fields, instead, you can extract the data using the native FormData methods:

app/invoices/page.tsx (tsx)

file:///docs/app/building-your-application/caching
https://react.dev/reference/react/use-server#serializable-parameters-and-return-values
file:///docs/app/building-your-application/rendering/edge-and-nodejs-runtimes
file:///docs/app/api-reference/file-conventions/route-segment-config
https://developer.mozilla.org/docs/Web/HTML/Element/form
https://developer.mozilla.org/docs/Web/API/FormData/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData#instance_methods

export default function Page() {
 async function createInvoice(formData: FormData) {
 'use server'

 const rawFormData = {
 customerId: formData.get('customerId'),
 amount: formData.get('amount'),
 status: formData.get('status'),
 }

 // mutate data
 // revalidate cache
 }

 return <form action={createInvoice}>...</form>
}

app/invoices/page.jsx (jsx)

export default function Page() {
 async function createInvoice(formData) {
 'use server'

 const rawFormData = {
 customerId: formData.get('customerId'),
 amount: formData.get('amount'),
 status: formData.get('status'),
 }

 // mutate data
 // revalidate cache
 }

 return <form action={createInvoice}>...</form>
}

Good to know:

Example: Form with Loading & Error States
When working with forms that have many fields, you may want to consider using the entries() method with JavaScript’s
Object.fromEntries(). For example: const rawFormData = Object.fromEntries(formData). One thing to note is
that the formData will include additional $ACTION_ properties.
See React <form> documentation to learn more.

Passing Additional Arguments

You can pass additional arguments to a Server Action using the JavaScript bind method.

```tsx filename=”app/client-component.tsx” highlight={6} switcher ‘use client’

import { updateUser } from ‘./actions’

export function UserProfile({ userId }: { userId: string }) { const updateUserWithId = updateUser.bind(null, userId)

return (

 Update User Name

) }

```jsx filename="app/client-component.js" highlight={6} switcher
'use client'

import { updateUser } from './actions'

export function UserProfile({ userId }) {
 const updateUserWithId = updateUser.bind(null, userId)

 return (
 <form action={updateUserWithId}>
 <input type="text" name="name" />
 <button type="submit">Update User Name</button>
 </form>
)
}

https://github.com/vercel/next.js/tree/canary/examples/next-forms
https://developer.mozilla.org/en-US/docs/Web/API/FormData/entries
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/fromEntries
https://react.dev/reference/react-dom/components/form#handle-form-submission-with-a-server-action

The Server Action will receive the userId argument, in addition to the form data:

app/actions.js (js)

'use server'

export async function updateUser(userId, formData) {
 // ...
}

Good to know:

An alternative is to pass arguments as hidden input fields in the form (e.g. <input type="hidden" name="userId"
value={userId} />). However, the value will be part of the rendered HTML and will not be encoded.
.bind works in both Server and Client Components. It also supports progressive enhancement.

Pending states

You can use the React useFormStatus hook to show a pending state while the form is being submitted.

useFormStatus returns the status for a specific <form>, so it must be defined as a child of the <form><form> element.
useFormStatus is a React hook and therefore must be used in a Client Component.

app/submit-button.tsx (tsx)

'use client'

import { useFormStatus } from 'react-dom'

export function SubmitButton() {
 const { pending } = useFormStatus()

 return (
 <button type="submit" disabled={pending}>
 Add
 </button>
)
}

app/submit-button.jsx (jsx)

'use client'

import { useFormStatus } from 'react-dom'

export function SubmitButton() {
 const { pending } = useFormStatus()

 return (
 <button type="submit" disabled={pending}>
 Add
 </button>
)
}

<SubmitButton /> can then be nested in any form:

app/page.tsx (tsx)

import { SubmitButton } from '@/app/submit-button'
import { createItem } from '@/app/actions'

// Server Component
export default async function Home() {
 return (
 <form action={createItem}>
 <input type="text" name="field-name" />
 <SubmitButton />
 </form>
)
}

app/page.jsx (jsx)

import { SubmitButton } from '@/app/submit-button'
import { createItem } from '@/app/actions'

// Server Component

https://react.dev/reference/react-dom/hooks/useFormStatus

export default async function Home() {
 return (
 <form action={createItem}>
 <input type="text" name="field-name" />
 <SubmitButton />
 </form>
)
}

Server-side validation and error handling

We recommend using HTML validation like required and type="email" for basic client-side form validation.

For more advanced server-side validation, you can use a library like zod to validate the form fields before mutating the data:
app/actions.ts (tsx)

'use server'

import { z } from 'zod'

const schema = z.object({
 email: z.string({
 invalid_type_error: 'Invalid Email',
 }),
})

export default async function createUser(formData: FormData) {
 const validatedFields = schema.safeParse({
 email: formData.get('email'),
 })

 // Return early if the form data is invalid
 if (!validatedFields.success) {
 return {
 errors: validatedFields.error.flatten().fieldErrors,
 }
 }

 // Mutate data
}

app/actions.js (jsx)

'use server'

import { z } from 'zod'

const schema = z.object({
 email: z.string({
 invalid_type_error: 'Invalid Email',
 }),
})

export default async function createsUser(formData) {
 const validatedFields = schema.safeParse({
 email: formData.get('email'),
 })

 // Return early if the form data is invalid
 if (!validatedFields.success) {
 return {
 errors: validatedFields.error.flatten().fieldErrors,
 }
 }

 // Mutate data
}

Once the fields have been validated on the server, you can return a serializable object in your action and use the React
useActionState hook to show a message to the user.

By passing the action to useActionState, the action’s function signature changes to receive a new prevState or initialState
parameter as its first argument.
useActionState is a React hook and therefore must be used in a Client Component.

app/actions.ts (tsx)

https://zod.dev/
https://react.dev/reference/react/useActionState

'use server'

export async function createUser(prevState: any, formData: FormData) {
 // ...
 return {
 message: 'Please enter a valid email',
 }
}

app/actions.js (jsx)

'use server'

export async function createUser(prevState, formData) {
 // ...
 return {
 message: 'Please enter a valid email',
 }
}

Then, you can pass your action to the useActionState hook and use the returned state to display an error message.

app/ui/signup.tsx (tsx)

'use client'

import { useActionState } from 'react'
import { createUser } from '@/app/actions'

const initialState = {
 message: '',
}

export function Signup() {
 const [state, formAction] = useActionState(createUser, initialState)

 return (
 <form action={formAction}>
 <label htmlFor="email">Email</label>
 <input type="text" id="email" name="email" required />
 {/* ... */}
 <p aria-live="polite" className="sr-only">
 {state?.message}
 </p>
 <button>Sign up</button>
 </form>
)
}

app/ui/signup.js (jsx)

'use client'

import { useActionState } from 'react'
import { createUser } from '@/app/actions'

const initialState = {
 message: '',
}

export function Signup() {
 const [state, formAction] = useActionState(createUser, initialState)

 return (
 <form action={formAction}>
 <label htmlFor="email">Email</label>
 <input type="text" id="email" name="email" required />
 {/* ... */}
 <p aria-live="polite" className="sr-only">
 {state?.message}
 </p>
 <button>Sign up</button>
 </form>
)
}

Good to know:

Before mutating data, you should always ensure a user is also authorized to perform the action. See Authentication and
Authorization.

Optimistic updates

You can use the React useOptimistic hook to optimistically update the UI before the Server Action finishes, rather than waiting for
the response:

app/page.tsx (tsx)

'use client'

import { useOptimistic } from 'react'
import { send } from './actions'

type Message = {
 message: string
}

export function Thread({ messages }: { messages: Message[] }) {
 const [optimisticMessages, addOptimisticMessage] = useOptimistic<
 Message[],
 string
 >(messages, (state, newMessage) => [...state, { message: newMessage }])

 return (
 <div>
 {optimisticMessages.map((m, k) => (
 <div key={k}>{m.message}</div>
))}
 <form
 action={async (formData: FormData) => {
 const message = formData.get('message')
 addOptimisticMessage(message)
 await send(message)
 }}
 >
 <input type="text" name="message" />
 <button type="submit">Send</button>
 </form>
 </div>
)
}

app/page.jsx (jsx)

'use client'

import { useOptimistic } from 'react'
import { send } from './actions'

export function Thread({ messages }) {
 const [optimisticMessages, addOptimisticMessage] = useOptimistic(
 messages,
 (state, newMessage) => [...state, { message: newMessage }]
)

 return (
 <div>
 {optimisticMessages.map((m) => (
 <div>{m.message}</div>
))}
 <form
 action={async (formData) => {
 const message = formData.get('message')
 addOptimisticMessage(message)
 await send(message)
 }}
 >
 <input type="text" name="message" />
 <button type="submit">Send</button>
 </form>
 </div>
)
}

Nested elements

https://react.dev/reference/react/useOptimistic

You can invoke a Server Action in elements nested inside <form> such as <button>, <input type="submit">, and <input
type="image">. These elements accept the formAction prop or event handlers.

This is useful in cases where you want to call multiple server actions within a form. For example, you can create a specific <button>
element for saving a post draft in addition to publishing it. See the React <form> docs for more information.

Programmatic form submission

You can trigger a form submission using the requestSubmit() method. For example, when the user presses ⌘ + Enter, you can listen
for the onKeyDown event:

app/entry.tsx (tsx)

'use client'

export function Entry() {
 const handleKeyDown = (e: React.KeyboardEvent<HTMLTextAreaElement>) => {
 if (
 (e.ctrlKey || e.metaKey) &&
 (e.key === 'Enter' || e.key === 'NumpadEnter')
) {
 e.preventDefault()
 e.currentTarget.form?.requestSubmit()
 }
 }

 return (
 <div>
 <textarea name="entry" rows={20} required onKeyDown={handleKeyDown} />
 </div>
)
}

app/entry.jsx (jsx)

'use client'

export function Entry() {
 const handleKeyDown = (e) => {
 if (
 (e.ctrlKey || e.metaKey) &&
 (e.key === 'Enter' || e.key === 'NumpadEnter')
) {
 e.preventDefault()
 e.currentTarget.form?.requestSubmit()
 }
 }

 return (
 <div>
 <textarea name="entry" rows={20} required onKeyDown={handleKeyDown} />
 </div>
)
}

This will trigger the submission of the nearest <form> ancestor, which will invoke the Server Action.

Non-form Elements

While it’s common to use Server Actions within <form> elements, they can also be invoked from other parts of your code such as event
handlers and useEffect.

Event Handlers

You can invoke a Server Action from event handlers such as onClick. For example, to increment a like count:

app/like-button.tsx (tsx)

'use client'

import { incrementLike } from './actions'
import { useState } from 'react'

export default function LikeButton({ initialLikes }: { initialLikes: number }) {
 const [likes, setLikes] = useState(initialLikes)

https://react.dev/reference/react-dom/components/form#handling-multiple-submission-types
https://developer.mozilla.org/en-US/docs/Web/API/HTMLFormElement/requestSubmit

 return (
 <>
 <p>Total Likes: {likes}</p>
 <button
 onClick={async () => {
 const updatedLikes = await incrementLike()
 setLikes(updatedLikes)
 }}
 >
 Like
 </button>
 </>
)
}

app/like-button.js (jsx)

'use client'

import { incrementLike } from './actions'
import { useState } from 'react'

export default function LikeButton({ initialLikes }) {
 const [likes, setLikes] = useState(initialLikes)

 return (
 <>
 <p>Total Likes: {likes}</p>
 <button
 onClick={async () => {
 const updatedLikes = await incrementLike()
 setLikes(updatedLikes)
 }}
 >
 Like
 </button>
 </>
)
}

To improve the user experience, we recommend using other React APIs like useOptimistic and useTransition to update the UI
before the Server Action finishes executing on the server, or to show a pending state.

You can also add event handlers to form elements, for example, to save a form field onChange:

app/ui/edit-post.tsx (tsx)

'use client'

import { publishPost, saveDraft } from './actions'

export default function EditPost() {
 return (
 <form action={publishPost}>
 <textarea
 name="content"
 onChange={async (e) => {
 await saveDraft(e.target.value)
 }}
 />
 <button type="submit">Publish</button>
 </form>
)
}

For cases like this, where multiple events might be fired in quick succession, we recommend debouncing to prevent unnecessary
Server Action invocations.

useEffectuseEffect

You can use the React useEffect hook to invoke a Server Action when the component mounts or a dependency changes. This is useful
for mutations that depend on global events or need to be triggered automatically. For example, onKeyDown for app shortcuts, an
intersection observer hook for infinite scrolling, or when the component mounts to update a view count:

app/view-count.tsx (tsx)

'use client'

https://react.dev/reference/react/useOptimistic
https://react.dev/reference/react/useTransition
https://react.dev/reference/react/useEffect

import { incrementViews } from './actions'
import { useState, useEffect } from 'react'

export default function ViewCount({ initialViews }: { initialViews: number }) {
 const [views, setViews] = useState(initialViews)

 useEffect(() => {
 const updateViews = async () => {
 const updatedViews = await incrementViews()
 setViews(updatedViews)
 }

 updateViews()
 }, [])

 return <p>Total Views: {views}</p>
}

app/view-count.js (jsx)

'use client'

import { incrementViews } from './actions'
import { useState, useEffect } from 'react'

export default function ViewCount({ initialViews }: { initialViews: number }) {
 const [views, setViews] = useState(initialViews)

 useEffect(() => {
 const updateViews = async () => {
 const updatedViews = await incrementViews()
 setViews(updatedViews)
 }

 updateViews()
 }, [])

 return <p>Total Views: {views}</p>
}

Remember to consider the behavior and caveats of useEffect.

Error Handling

When an error is thrown, it’ll be caught by the nearest error.js or <Suspense> boundary on the client. We recommend using
try/catch to return errors to be handled by your UI.

For example, your Server Action might handle errors from creating a new item by returning a message:
app/actions.ts (ts)

'use server'

export async function createTodo(prevState: any, formData: FormData) {
 try {
 // Mutate data
 } catch (e) {
 throw new Error('Failed to create task')
 }
}

app/actions.js (js)

'use server'

export async function createTodo(prevState, formData) {
 try {
 // Mutate data
 } catch (e) {
 throw new Error('Failed to create task')
 }
}

Good to know:

Aside from throwing the error, you can also return an object to be handled by useActionState. See Server-side validation

https://react.dev/reference/react/useEffect#caveats
file:///docs/app/building-your-application/routing/error-handling

and error handling.

Revalidating data

You can revalidate the Next.js Cache inside your Server Actions with the revalidatePath API:

app/actions.ts (ts)

'use server'

import { revalidatePath } from 'next/cache'

export async function createPost() {
 try {
 // ...
 } catch (error) {
 // ...
 }

 revalidatePath('/posts')
}

app/actions.js (js)

'use server'

import { revalidatePath } from 'next/cache'

export async function createPost() {
 try {
 // ...
 } catch (error) {
 // ...
 }

 revalidatePath('/posts')
}

Or invalidate a specific data fetch with a cache tag using revalidateTag:

app/actions.ts (ts)

'use server'

import { revalidateTag } from 'next/cache'

export async function createPost() {
 try {
 // ...
 } catch (error) {
 // ...
 }

 revalidateTag('posts')
}

app/actions.js (js)

'use server'

import { revalidateTag } from 'next/cache'

export async function createPost() {
 try {
 // ...
 } catch (error) {
 // ...
 }

 revalidateTag('posts')
}

Redirecting

If you would like to redirect the user to a different route after the completion of a Server Action, you can use redirect API. redirect
needs to be called outside of the try/catch block:

app/actions.ts (ts)

file:///docs/app/building-your-application/caching
file:///docs/app/api-reference/functions/revalidatePath
file:///docs/app/api-reference/functions/revalidateTag
file:///docs/app/api-reference/functions/redirect

'use server'

import { redirect } from 'next/navigation'
import { revalidateTag } from 'next/cache'

export async function createPost(id: string) {
 try {
 // ...
 } catch (error) {
 // ...
 }

 revalidateTag('posts') // Update cached posts
 redirect(`/post/${id}`) // Navigate to the new post page
}

app/actions.js (js)

'use server'

import { redirect } from 'next/navigation'
import { revalidateTag } from 'next/cache'

export async function createPost(id) {
 try {
 // ...
 } catch (error) {
 // ...
 }

 revalidateTag('posts') // Update cached posts
 redirect(`/post/${id}`) // Navigate to the new post page
}

Cookies

You can get, set, and delete cookies inside a Server Action using the cookies API:

app/actions.ts (ts)

'use server'

import { cookies } from 'next/headers'

export async function exampleAction() {
 // Get cookie
 const value = cookies().get('name')?.value

 // Set cookie
 cookies().set('name', 'Delba')

 // Delete cookie
 cookies().delete('name')
}

app/actions.js (js)

'use server'

import { cookies } from 'next/headers'

export async function exampleAction() {
 // Get cookie
 const value = cookies().get('name')?.value

 // Set cookie
 cookies().set('name', 'Delba')

 // Delete cookie
 cookies().delete('name')
}

See additional examples for deleting cookies from Server Actions.

Security

file:///docs/app/api-reference/functions/cookies
file:///docs/app/api-reference/functions/cookies#deleting-cookies

Authentication and authorization

You should treat Server Actions as you would public-facing API endpoints, and ensure that the user is authorized to perform the action.
For example:

app/actions.ts (tsx)

'use server'

import { auth } from './lib'

export function addItem() {
 const { user } = auth()
 if (!user) {
 throw new Error('You must be signed in to perform this action')
 }

 // ...
}

Closures and encryption

Defining a Server Action inside a component creates a closure where the action has access to the outer function’s scope. For example,
the publish action has access to the publishVersion variable:

app/page.tsx (tsx)

export default async function Page() {
 const publishVersion = await getLatestVersion();

 async function publish() {
 "use server";
 if (publishVersion !== await getLatestVersion()) {
 throw new Error('The version has changed since pressing publish');
 }
 ...
 }

 return (
 <form>
 <button formAction={publish}>Publish</button>
 </form>
);
}

app/page.js (jsx)

export default async function Page() {
 const publishVersion = await getLatestVersion();

 async function publish() {
 "use server";
 if (publishVersion !== await getLatestVersion()) {
 throw new Error('The version has changed since pressing publish');
 }
 ...
 }

 return (
 <form>
 <button formAction={publish}>Publish</button>
 </form>
);
}

Closures are useful when you need to capture a snapshot of data (e.g. publishVersion) at the time of rendering so that it can be used
later when the action is invoked.

However, for this to happen, the captured variables are sent to the client and back to the server when the action is invoked. To prevent
sensitive data from being exposed to the client, Next.js automatically encrypts the closed-over variables. A new private key is generated
for each action every time a Next.js application is built. This means actions can only be invoked for a specific build.

Good to know: We don’t recommend relying on encryption alone to prevent sensitive values from being exposed on the client.
Instead, you should use the React taint APIs to proactively prevent specific data from being sent to the client.

Overwriting encryption keys (advanced)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
file:///docs/app/building-your-application/data-fetching/patterns#preventing-sensitive-data-from-being-exposed-to-the-client

When self-hosting your Next.js application across multiple servers, each server instance may end up with a different encryption key,
leading to potential inconsistencies.

To mitigate this, you can overwrite the encryption key using the process.env.NEXT_SERVER_ACTIONS_ENCRYPTION_KEY
environment variable. Specifying this variable ensures that your encryption keys are persistent across builds, and all server instances
use the same key.

This is an advanced use case where consistent encryption behavior across multiple deployments is critical for your application. You
should consider standard security practices such key rotation and signing.

Good to know: Next.js applications deployed to Vercel automatically handle this.

Allowed origins (advanced)

Since Server Actions can be invoked in a <form> element, this opens them up to CSRF attacks.

Behind the scenes, Server Actions use the POST method, and only this HTTP method is allowed to invoke them. This prevents most CSRF
vulnerabilities in modern browsers, particularly with SameSite cookies being the default.

As an additional protection, Server Actions in Next.js also compare the Origin header to the Host header (or X-Forwarded-Host). If
these don’t match, the request will be aborted. In other words, Server Actions can only be invoked on the same host as the page that
hosts it.

For large applications that use reverse proxies or multi-layered backend architectures (where the server API differs from the production
domain), it’s recommended to use the configuration option serverActions.allowedOrigins option to specify a list of safe origins.
The option accepts an array of strings.

next.config.js (js)

/** @type {import('next').NextConfig} */
module.exports = {
 experimental: {
 serverActions: {
 allowedOrigins: ['my-proxy.com', '*.my-proxy.com'],
 },
 },
}

Learn more about Security and Server Actions.

Additional resources

For more information on Server Actions, check out the following React docs:

"use server"
<form>
useFormStatus
useActionState
useOptimistic

https://developer.mozilla.org/en-US/docs/Glossary/CSRF
https://web.dev/articles/samesite-cookies-explained
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Host
file:///docs/app/api-reference/next-config-js/serverActions
https://nextjs.org/blog/security-nextjs-server-components-actions
https://react.dev/reference/react/use-server
https://react.dev/reference/react-dom/components/form
https://react.dev/reference/react-dom/hooks/useFormStatus
https://react.dev/reference/react/useActionState
https://react.dev/reference/react/useOptimistic

3.1.2.3 - Patterns and Best Practices
Documentation path: /02-app/01-building-your-application/02-data-fetching/03-patterns

Description: Learn about common data fetching patterns in React and Next.js.

There are a few recommended patterns and best practices for fetching data in React and Next.js. This page will go over some of the
most common patterns and how to use them.

Fetching data on the server

Whenever possible, we recommend fetching data on the server with Server Components. This allows you to:

Have direct access to backend data resources (e.g. databases).
Keep your application more secure by preventing sensitive information, such as access tokens and API keys, from being exposed to
the client.
Fetch data and render in the same environment. This reduces both the back-and-forth communication between client and server, as
well as the work on the main thread on the client.
Perform multiple data fetches with single round-trip instead of multiple individual requests on the client.
Reduce client-server waterfalls.
Depending on your region, data fetching can also happen closer to your data source, reducing latency and improving performance.

Then, you can mutate or update data with Server Actions.

Fetching data where it’s needed

If you need to use the same data (e.g. current user) in multiple components in a tree, you do not have to fetch data globally, nor
forward props between components. Instead, you can use fetch or React cache in the component that needs the data without
worrying about the performance implications of making multiple requests for the same data.

This is possible because fetch requests are automatically memoized. Learn more about request memoization

Good to know: This also applies to layouts, since it’s not possible to pass data between a parent layout and its children.

Streaming

Streaming and Suspense are React features that allow you to progressively render and incrementally stream rendered units of the UI to
the client.

With Server Components and nested layouts, you’re able to instantly render parts of the page that do not specifically require data, and
show a loading state for parts of the page that are fetching data. This means the user does not have to wait for the entire page to load
before they can start interacting with it.

To learn more about Streaming and Suspense, see the Loading UI and Streaming and Suspense pages.

https://vercel.com/blog/how-react-18-improves-application-performance
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/caching#request-memoization
https://react.dev/reference/react/Suspense
file:///docs/app/building-your-application/routing/layouts-and-templates
file:///docs/app/building-your-application/routing/loading-ui-and-streaming
file:///docs/app/building-your-application/routing/loading-ui-and-streaming
file:///docs/app/building-your-application/routing/loading-ui-and-streaming#streaming-with-suspense

Parallel and sequential data fetching

When fetching data inside React components, you need to be aware of two data fetching patterns: Parallel and Sequential.

With sequential data fetching, requests in a route are dependent on each other and therefore create waterfalls. There may be
cases where you want this pattern because one fetch depends on the result of the other, or you want a condition to be satisfied
before the next fetch to save resources. However, this behavior can also be unintentional and lead to longer loading times.
With parallel data fetching, requests in a route are eagerly initiated and will load data at the same time. This reduces client-server
waterfalls and the total time it takes to load data.

Sequential Data Fetching

If you have nested components, and each component fetches its own data, then data fetching will happen sequentially if those data
requests are different (this doesn’t apply to requests for the same data as they are automatically memoized).

For example, the Playlists component will only start fetching data once the Artist component has finished fetching data because
Playlists depends on the artistID prop:

app/artist/[username]/page.tsx (tsx)

// ...

async function Playlists({ artistID }: { artistID: string }) {
 // Wait for the playlists
 const playlists = await getArtistPlaylists(artistID)

 return (

 {playlists.map((playlist) => (
 <li key={playlist.id}>{playlist.name}
))}

)
}

export default async function Page({
 params: { username },
}: {
 params: { username: string }
}) {
 // Wait for the artist
 const artist = await getArtist(username)

 return (
 <>
 <h1>{artist.name}</h1>
 <Suspense fallback={<div>Loading...</div>}>
 <Playlists artistID={artist.id} />
 </Suspense>
 </>
)
}

app/artist/[username]/page.js (jsx)

// ...

async function Playlists({ artistID }) {
 // Wait for the playlists

file:///docs/app/building-your-application/caching#request-memoization

 const playlists = await getArtistPlaylists(artistID)

 return (

 {playlists.map((playlist) => (
 <li key={playlist.id}>{playlist.name}
))}

)
}

export default async function Page({ params: { username } }) {
 // Wait for the artist
 const artist = await getArtist(username)

 return (
 <>
 <h1>{artist.name}</h1>
 <Suspense fallback={<div>Loading...</div>}>
 <Playlists artistID={artist.id} />
 </Suspense>
 </>
)
}

In cases like this, you can use loading.js (for route segments) or React <Suspense> (for nested components) to show an instant
loading state while React streams in the result.

This will prevent the whole route from being blocked by data fetching, and the user will be able to interact with the parts of the page
that are not blocked.

Blocking Data Requests:

An alternative approach to prevent waterfalls is to fetch data globally, at the root of your application, but this will block
rendering for all route segments beneath it until the data has finished loading. This can be described as “all or nothing” data
fetching. Either you have the entire data for your page or application, or none.

Any fetch requests with await will block rendering and data fetching for the entire tree beneath it, unless they are wrapped in a
<Suspense> boundary or loading.js is used. Another alternative is to use parallel data fetching or the preload pattern.

Parallel Data Fetching

To fetch data in parallel, you can eagerly initiate requests by defining them outside the components that use the data, then calling them
from inside the component. This saves time by initiating both requests in parallel, however, the user won’t see the rendered result until
both promises are resolved.

In the example below, the getArtist and getArtistAlbums functions are defined outside the Page component, then called inside
the component, and we wait for both promises to resolve:

app/artist/[username]/page.tsx (tsx)

import Albums from './albums'

async function getArtist(username: string) {
 const res = await fetch(`https://api.example.com/artist/${username}`)
 return res.json()
}

async function getArtistAlbums(username: string) {
 const res = await fetch(`https://api.example.com/artist/${username}/albums`)
 return res.json()
}

export default async function Page({
 params: { username },
}: {
 params: { username: string }
}) {
 // Initiate both requests in parallel
 const artistData = getArtist(username)
 const albumsData = getArtistAlbums(username)

 // Wait for the promises to resolve
 const [artist, albums] = await Promise.all([artistData, albumsData])

 return (
 <>

file:///docs/app/building-your-application/routing/loading-ui-and-streaming
file:///docs/app/building-your-application/routing/loading-ui-and-streaming#streaming-with-suspense

 <h1>{artist.name}</h1>
 <Albums list={albums}></Albums>
 </>
)
}

app/artist/[username]/page.js (jsx)

import Albums from './albums'

async function getArtist(username) {
 const res = await fetch(`https://api.example.com/artist/${username}`)
 return res.json()
}

async function getArtistAlbums(username) {
 const res = await fetch(`https://api.example.com/artist/${username}/albums`)
 return res.json()
}

export default async function Page({ params: { username } }) {
 // Initiate both requests in parallel
 const artistData = getArtist(username)
 const albumsData = getArtistAlbums(username)

 // Wait for the promises to resolve
 const [artist, albums] = await Promise.all([artistData, albumsData])

 return (
 <>
 <h1>{artist.name}</h1>
 <Albums list={albums}></Albums>
 </>
)
}

To improve the user experience, you can add a Suspense Boundary to break up the rendering work and show part of the result as soon
as possible.

Preloading Data

Another way to prevent waterfalls is to use the preload pattern. You can optionally create a preload function to further optimize
parallel data fetching. With this approach, you don’t have to pass promises down as props. The preload function can also have any
name as it’s a pattern, not an API.

components/Item.tsx (tsx)

import { getItem } from '@/utils/get-item'

export const preload = (id: string) => {
 // void evaluates the given expression and returns undefined
 // https://developer.mozilla.org/docs/Web/JavaScript/Reference/Operators/void
 void getItem(id)
}
export default async function Item({ id }: { id: string }) {
 const result = await getItem(id)
 // ...
}

components/Item.js (jsx)

import { getItem } from '@/utils/get-item'

export const preload = (id) => {
 // void evaluates the given expression and returns undefined
 // https://developer.mozilla.org/docs/Web/JavaScript/Reference/Operators/void
 void getItem(id)
}
export default async function Item({ id }) {
 const result = await getItem(id)
 // ...
}

app/item/[id]/page.tsx (tsx)

import Item, { preload, checkIsAvailable } from '@/components/Item'

file:///docs/app/building-your-application/routing/loading-ui-and-streaming

export default async function Page({
 params: { id },
}: {
 params: { id: string }
}) {
 // starting loading item data
 preload(id)
 // perform another asynchronous task
 const isAvailable = await checkIsAvailable()

 return isAvailable ? <Item id={id} /> : null
}

app/item/[id]/page.js (jsx)

import Item, { preload, checkIsAvailable } from '@/components/Item'

export default async function Page({ params: { id } }) {
 // starting loading item data
 preload(id)
 // perform another asynchronous task
 const isAvailable = await checkIsAvailable()

 return isAvailable ? <Item id={id} /> : null
}

Using React cachecache, server-onlyserver-only, and the Preload Pattern

You can combine the cache function, the preload pattern, and the server-only package to create a data fetching utility that can be
used throughout your app.

utils/get-item.ts (ts)

import { cache } from 'react'
import 'server-only'

export const preload = (id: string) => {
 void getItem(id)
}

export const getItem = cache(async (id: string) => {
 // ...
})

utils/get-item.js (js)

import { cache } from 'react'
import 'server-only'

export const preload = (id) => {
 void getItem(id)
}

export const getItem = cache(async (id) => {
 // ...
})

With this approach, you can eagerly fetch data, cache responses, and guarantee that this data fetching only happens on the server.

The utils/get-item exports can be used by Layouts, Pages, or other components to give them control over when an item’s data is
fetched.

Good to know:

We recommend using the server-only package to make sure server data fetching functions are never used on the client.

Preventing sensitive data from being exposed to the client

We recommend using React’s taint APIs, taintObjectReference and taintUniqueValue, to prevent whole object instances or
sensitive values from being passed to the client.

To enable tainting in your application, set the Next.js Config experimental.taint option to true:

next.config.js (js)

module.exports = {

file:///docs/app/building-your-application/rendering/composition-patterns#keeping-server-only-code-out-of-the-client-environment
file:///docs/app/building-your-application/rendering/composition-patterns#keeping-server-only-code-out-of-the-client-environment
https://react.dev/reference/react/experimental_taintObjectReference
https://react.dev/reference/react/experimental_taintUniqueValue

 experimental: {
 taint: true,
 },
}

Then pass the object or value you want to taint to the experimental_taintObjectReference or
experimental_taintUniqueValue functions:

app/utils.ts (ts)

import { queryDataFromDB } from './api'
import {
 experimental_taintObjectReference,
 experimental_taintUniqueValue,
} from 'react'

export async function getUserData() {
 const data = await queryDataFromDB()
 experimental_taintObjectReference(
 'Do not pass the whole user object to the client',
 data
)
 experimental_taintUniqueValue(
 "Do not pass the user's address to the client",
 data,
 data.address
)
 return data
}

app/utils.js (js)

import { queryDataFromDB } from './api'
import {
 experimental_taintObjectReference,
 experimental_taintUniqueValue,
} from 'react'

export async function getUserData() {
 const data = await queryDataFromDB()
 experimental_taintObjectReference(
 'Do not pass the whole user object to the client',
 data
)
 experimental_taintUniqueValue(
 "Do not pass the user's address to the client",
 data,
 data.address
)
 return data
}

app/page.tsx (tsx)

import { getUserData } from './data'

export async function Page() {
 const userData = getUserData()
 return (
 <ClientComponent
 user={userData} // this will cause an error because of taintObjectReference
 address={userData.address} // this will cause an error because of taintUniqueValue
 />
)
}

app/page.js (jsx)

import { getUserData } from './data'

export async function Page() {
 const userData = await getUserData()
 return (
 <ClientComponent
 user={userData} // this will cause an error because of taintObjectReference
 address={userData.address} // this will cause an error because of taintUniqueValue
 />
)

}

Learn more about Security and Server Actions.

https://nextjs.org/blog/security-nextjs-server-components-actions

3.1.3 - Rendering
Documentation path: /02-app/01-building-your-application/03-rendering/index

Description: Learn the differences between Next.js rendering environments, strategies, and runtimes.

Rendering converts the code you write into user interfaces. React and Next.js allow you to create hybrid web applications where parts
of your code can be rendered on the server or the client. This section will help you understand the differences between these rendering
environments, strategies, and runtimes.

Fundamentals

To start, it’s helpful to be familiar with three foundational web concepts:

The Environments your application code can be executed in: the server and the client.
The Request-Response Lifecycle that’s initiated when a user visits or interacts with your application.
The Network Boundary that separates server and client code.

Rendering Environments

There are two environments where web applications can be rendered: the client and the server.

The client refers to the browser on a user’s device that sends a request to a server for your application code. It then turns the
response from the server into a user interface.
The server refers to the computer in a data center that stores your application code, receives requests from a client, and sends
back an appropriate response.

Historically, developers had to use different languages (e.g. JavaScript, PHP) and frameworks when writing code for the server and the
client. With React, developers can use the same language (JavaScript), and the same framework (e.g. Next.js or your framework of
choice). This flexibility allows you to seamlessly write code for both environments without context switching.

However, each environment has its own set of capabilities and constraints. Therefore, the code you write for the server and the client is
not always the same. There are certain operations (e.g. data fetching or managing user state) that are better suited for one environment
over the other.

Understanding these differences is key to effectively using React and Next.js. We’ll cover the differences and use cases in more detail on
the Server and Client Components pages, for now, let’s continue building on our foundation.

Request-Response Lifecycle

Broadly speaking, all websites follow the same Request-Response Lifecycle:

1. User Action: The user interacts with a web application. This could be clicking a link, submitting a form, or typing a URL directly into
the browser’s address bar.

2. HTTP Request: The client sends an HTTP request to the server that contains necessary information about what resources are being
requested, what method is being used (e.g. GET, POST), and additional data if necessary.

3. Server: The server processes the request and responds with the appropriate resources. This process may take a couple of steps like
routing, fetching data, etc.

4. HTTP Response: After processing the request, the server sends an HTTP response back to the client. This response contains a

file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/rendering/client-components
https://developer.mozilla.org/docs/Web/HTTP

status code (which tells the client whether the request was successful or not) and requested resources (e.g. HTML, CSS, JavaScript,
static assets, etc).

5. Client: The client parses the resources to render the user interface.
6. User Action: Once the user interface is rendered, the user can interact with it, and the whole process starts again.

A major part of building a hybrid web application is deciding how to split the work in the lifecycle, and where to place the Network
Boundary.

Network Boundary

In web development, the Network Boundary is a conceptual line that separates the different environments. For example, the client
and the server, or the server and the data store.

{/ Diagram: Network Boundary /}

In React, you choose where to place the client-server network boundary wherever it makes the most sense.

Behind the scenes, the work is split into two parts: the client module graph and the server module graph. The server module graph
contains all the components that are rendered on the server, and the client module graph contains all components that are rendered
on the client.

{/ Diagram: Client and Server Module Graphs /}

It may be helpful to think about module graphs as a visual representation of how files in your application depend on each other.

{/ For example, if you have a file called Page.jsx that imports a file called Button.jsx on the server, the module graph would look
something like this: - Diagram - /}

You can use the React "use client" convention to define the boundary. There’s also a "use server" convention, which tells React
to do some computational work on the server.

Building Hybrid Applications

When working in these environments, it’s helpful to think of the flow of the code in your application as unidirectional. In other words,
during a response, your application code flows in one direction: from the server to the client.

{/ Diagram: Response flow /}

If you need to access the server from the client, you send a new request to the server rather than re-use the same request. This makes
it easier to understand where to render your components and where to place the Network Boundary.

In practice, this model encourages developers to think about what they want to execute on the server first, before sending the result to
the client and making the application interactive.

This concept will become clearer when we look at how you can interleave client and server components in the same component tree.

file:///docs/app/building-your-application/rendering/composition-patterns

3.1.3.1 - Server Components
Documentation path: /02-app/01-building-your-application/03-rendering/01-server-components

Description: Learn how you can use React Server Components to render parts of your application on the server.

Related:

Title: Related

Related Description: Learn how Next.js caches data and the result of static rendering.

Links:

app/building-your-application/caching

React Server Components allow you to write UI that can be rendered and optionally cached on the server. In Next.js, the rendering
work is further split by route segments to enable streaming and partial rendering, and there are three different server rendering
strategies:

Static Rendering
Dynamic Rendering
Streaming

This page will go through how Server Components work, when you might use them, and the different server rendering strategies.

Benefits of Server Rendering

There are a couple of benefits to doing the rendering work on the server, including:

Data Fetching: Server Components allow you to move data fetching to the server, closer to your data source. This can improve
performance by reducing time it takes to fetch data needed for rendering, and the number of requests the client needs to make.
Security: Server Components allow you to keep sensitive data and logic on the server, such as tokens and API keys, without the risk
of exposing them to the client.
Caching: By rendering on the server, the result can be cached and reused on subsequent requests and across users. This can
improve performance and reduce cost by reducing the amount of rendering and data fetching done on each request.
Performance: Server Components give you additional tools to optimize performance from the baseline. For example, if you start
with an app composed of entirely Client Components, moving non-interactive pieces of your UI to Server Components can reduce
the amount of client-side JavaScript needed. This is beneficial for users with slower internet or less powerful devices, as the browser
has less client-side JavaScript to download, parse, and execute.
Initial Page Load and First Contentful Paint (FCP): On the server, we can generate HTML to allow users to view the page
immediately, without waiting for the client to download, parse and execute the JavaScript needed to render the page.
Search Engine Optimization and Social Network Shareability: The rendered HTML can be used by search engine bots to index
your pages and social network bots to generate social card previews for your pages.
Streaming: Server Components allow you to split the rendering work into chunks and stream them to the client as they become
ready. This allows the user to see parts of the page earlier without having to wait for the entire page to be rendered on the server.

Using Server Components in Next.js

By default, Next.js uses Server Components. This allows you to automatically implement server rendering with no additional
configuration, and you can opt into using Client Components when needed, see Client Components.

How are Server Components rendered?

On the server, Next.js uses React’s APIs to orchestrate rendering. The rendering work is split into chunks: by individual route segments
and Suspense Boundaries.

Each chunk is rendered in two steps:

1. React renders Server Components into a special data format called the React Server Component Payload (RSC Payload).
2. Next.js uses the RSC Payload and Client Component JavaScript instructions to render HTML on the server.

{/ Rendering Diagram /}

Then, on the client:

1. The HTML is used to immediately show a fast non-interactive preview of the route - this is for the initial page load only.
2. The React Server Components Payload is used to reconcile the Client and Server Component trees, and update the DOM.
3. The JavaScript instructions are used to hydrate Client Components and make the application interactive.

https://web.dev/fcp/
file:///docs/app/building-your-application/rendering/client-components
https://react.dev/reference/react/Suspense
https://react.dev/reference/react-dom/client/hydrateRoot

What is the React Server Component Payload (RSC)?

The RSC Payload is a compact binary representation of the rendered React Server Components tree. It’s used by React on the
client to update the browser’s DOM. The RSC Payload contains:

The rendered result of Server Components
Placeholders for where Client Components should be rendered and references to their JavaScript files
Any props passed from a Server Component to a Client Component

Server Rendering Strategies

There are three subsets of server rendering: Static, Dynamic, and Streaming.

Static Rendering (Default)

{/ Static Rendering Diagram /}

With Static Rendering, routes are rendered at build time, or in the background after data revalidation. The result is cached and can be
pushed to a Content Delivery Network (CDN). This optimization allows you to share the result of the rendering work between users and
server requests.

Static rendering is useful when a route has data that is not personalized to the user and can be known at build time, such as a static
blog post or a product page.

Dynamic Rendering

{/ Dynamic Rendering Diagram /}

With Dynamic Rendering, routes are rendered for each user at request time.

Dynamic rendering is useful when a route has data that is personalized to the user or has information that can only be known at
request time, such as cookies or the URL’s search params.

Dynamic Routes with Cached Data

In most websites, routes are not fully static or fully dynamic - it’s a spectrum. For example, you can have an e-commerce page
that uses cached product data that’s revalidated at an interval, but also has uncached, personalized customer data.

In Next.js, you can have dynamically rendered routes that have both cached and uncached data. This is because the RSC
Payload and data are cached separately. This allows you to opt into dynamic rendering without worrying about the
performance impact of fetching all the data at request time.

Learn more about the full-route cache and Data Cache.

Switching to Dynamic Rendering

During rendering, if a dynamic function or uncached data request is discovered, Next.js will switch to dynamically rendering the whole
route. This table summarizes how dynamic functions and data caching affect whether a route is statically or dynamically rendered:

Dynamic Functions Data Route

No Cached Statically Rendered

Yes Cached Dynamically Rendered

No Not Cached Dynamically Rendered

Yes Not Cached Dynamically Rendered

In the table above, for a route to be fully static, all data must be cached. However, you can have a dynamically rendered route that uses
both cached and uncached data fetches.

As a developer, you do not need to choose between static and dynamic rendering as Next.js will automatically choose the best
rendering strategy for each route based on the features and APIs used. Instead, you choose when to cache or revalidate specific data,
and you may choose to stream parts of your UI.

Dynamic Functions

Dynamic functions rely on information that can only be known at request time such as a user’s cookies, current requests headers, or
the URL’s search params. In Next.js, these dynamic functions are:

cookies()cookies() and headers()headers(): Using these in a Server Component will opt the whole route into dynamic rendering at request time.
searchParamssearchParams: Using the searchParams prop on a Page will opt the page into dynamic rendering at request time.

file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating#revalidating-data
https://developer.mozilla.org/docs/Glossary/CDN
file:///docs/app/building-your-application/caching#full-route-cache
file:///docs/app/building-your-application/caching#data-cache
file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating#opting-out-of-data-caching
file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating
file:///docs/app/api-reference/functions/cookies
file:///docs/app/api-reference/functions/headers
file:///docs/app/api-reference/file-conventions/page#searchparams-optional
file:///docs/app/api-reference/file-conventions/page

Using any of these functions will opt the whole route into dynamic rendering at request time.

Streaming

Streaming enables you to progressively render UI from the server. Work is split into chunks and streamed to the client as it becomes
ready. This allows the user to see parts of the page immediately, before the entire content has finished rendering.

Streaming is built into the Next.js App Router by default. This helps improve both the initial page loading performance, as well as UI
that depends on slower data fetches that would block rendering the whole route. For example, reviews on a product page.

You can start streaming route segments using loading.js and UI components with React Suspense. See the Loading UI and Streaming
section for more information.

file:///docs/app/building-your-application/routing/loading-ui-and-streaming
file:///docs/app/building-your-application/routing/loading-ui-and-streaming

3.1.3.2 - Client Components
Documentation path: /02-app/01-building-your-application/03-rendering/02-client-components

Description: Learn how to use Client Components to render parts of your application on the client.

Client Components allow you to write interactive UI that is prerendered on the server and can use client JavaScript to run in the
browser.

This page will go through how Client Components work, how they’re rendered, and when you might use them.

Benefits of Client Rendering

There are a couple of benefits to doing the rendering work on the client, including:

Interactivity: Client Components can use state, effects, and event listeners, meaning they can provide immediate feedback to the
user and update the UI.
Browser APIs: Client Components have access to browser APIs, like geolocation or localStorage.

Using Client Components in Next.js

To use Client Components, you can add the React "use client" directive at the top of a file, above your imports.

"use client" is used to declare a boundary between a Server and Client Component modules. This means that by defining a "use
client" in a file, all other modules imported into it, including child components, are considered part of the client bundle.

```tsx filename=”app/counter.tsx” highlight={1} switcher ‘use client’

import { useState } from ‘react’

export default function Counter() { const [count, setCount] = useState(0)

return (

You clicked {count} times

setCount(count + 1)}>Click me

) }

```jsx filename="app/counter.js" highlight={1} switcher
'use client'

import { useState } from 'react'

export default function Counter() {
 const [count, setCount] = useState(0)

 return (
 <div>
 <p>You clicked {count} times</p>
 <button onClick={() => setCount(count + 1)}>Click me</button>
 </div>
)
}

The diagram below shows that using onClick and useState in a nested component (toggle.js) will cause an error if the "use
client" directive is not defined. This is because, by default, all components in the App Router are Server Components where these
APIs are not available. By defining the "use client" directive in toggle.js, you can tell React to enter the client boundary where
these APIs are available.

https://github.com/reactwg/server-components/discussions/4
https://developer.mozilla.org/docs/Web/API/Geolocation_API
https://developer.mozilla.org/docs/Web/API/Window/localStorage
https://react.dev/reference/react/use-client
file:///docs/app/building-your-application/rendering#network-boundary

Defining multiple use clientuse client entry points:

You can define multiple “use client” entry points in your React Component tree. This allows you to split your application into
multiple client bundles.

However, "use client" doesn’t need to be defined in every component that needs to be rendered on the client. Once you
define the boundary, all child components and modules imported into it are considered part of the client bundle.

How are Client Components Rendered?

In Next.js, Client Components are rendered differently depending on whether the request is part of a full page load (an initial visit to
your application or a page reload triggered by a browser refresh) or a subsequent navigation.

Full page load

To optimize the initial page load, Next.js will use React’s APIs to render a static HTML preview on the server for both Client and Server
Components. This means, when the user first visits your application, they will see the content of the page immediately, without having
to wait for the client to download, parse, and execute the Client Component JavaScript bundle.

On the server:

1. React renders Server Components into a special data format called the React Server Component Payload (RSC Payload), which
includes references to Client Components.

2. Next.js uses the RSC Payload and Client Component JavaScript instructions to render HTML for the route on the server.

Then, on the client:

1. The HTML is used to immediately show a fast non-interactive initial preview of the route.
2. The React Server Components Payload is used to reconcile the Client and Server Component trees, and update the DOM.
3. The JavaScript instructions are used to hydrate Client Components and make their UI interactive.

What is hydration?

file:///docs/app/building-your-application/rendering/server-components#what-is-the-react-server-component-payload-rsc
https://react.dev/reference/react-dom/client/hydrateRoot

Hydration is the process of attaching event listeners to the DOM, to make the static HTML interactive. Behind the scenes,
hydration is done with the hydrateRoot React API.

Subsequent Navigations

On subsequent navigations, Client Components are rendered entirely on the client, without the server-rendered HTML.

This means the Client Component JavaScript bundle is downloaded and parsed. Once the bundle is ready, React will use the RSC
Payload to reconcile the Client and Server Component trees, and update the DOM.

Going back to the Server Environment

Sometimes, after you’ve declared the "use client" boundary, you may want to go back to the server environment. For example, you
may want to reduce the client bundle size, fetch data on the server, or use an API that is only available on the server.

You can keep code on the server even though it’s theoretically nested inside Client Components by interleaving Client and Server
Components and Server Actions. See the Composition Patterns page for more information.

https://react.dev/reference/react-dom/client/hydrateRoot
file:///docs/app/building-your-application/rendering/server-components#what-is-the-react-server-component-payload-rsc
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/rendering/composition-patterns

3.1.3.3 - Server and Client Composition Patterns
Documentation path: /02-app/01-building-your-application/03-rendering/03-composition-patterns

Description: Recommended patterns for using Server and Client Components.

When building React applications, you will need to consider what parts of your application should be rendered on the server or the
client. This page covers some recommended composition patterns when using Server and Client Components.

When to use Server and Client Components?

Here’s a quick summary of the different use cases for Server and Client Components:

What do you need to do? Server Component Client Component

Fetch data

Access backend resources (directly)

Keep sensitive information on the server (access tokens, API keys, etc)

Keep large dependencies on the server / Reduce client-side JavaScript

Add interactivity and event listeners (onClick(), onChange(), etc)

Use State and Lifecycle Effects (useState(), useReducer(), useEffect(), etc)

Use browser-only APIs

Use custom hooks that depend on state, effects, or browser-only APIs

Use React Class components

Server Component Patterns

Before opting into client-side rendering, you may wish to do some work on the server like fetching data, or accessing your database or
backend services.

Here are some common patterns when working with Server Components:

Sharing data between components

When fetching data on the server, there may be cases where you need to share data across different components. For example, you
may have a layout and a page that depend on the same data.

Instead of using React Context (which is not available on the server) or passing data as props, you can use fetch or React’s cache
function to fetch the same data in the components that need it, without worrying about making duplicate requests for the same data.
This is because React extends fetch to automatically memoize data requests, and the cache function can be used when fetch is not
available.

Learn more about memoization in React.

Keeping Server-only Code out of the Client Environment

Since JavaScript modules can be shared between both Server and Client Components modules, it’s possible for code that was only ever
intended to be run on the server to sneak its way into the client.

For example, take the following data-fetching function:
lib/data.ts (ts)

export async function getData() {
 const res = await fetch('https://external-service.com/data', {
 headers: {
 authorization: process.env.API_KEY,
 },
 })

 return res.json()
}

lib/data.js (js)

export async function getData() {

https://react.dev/reference/react/Component
https://react.dev/learn/passing-data-deeply-with-context
file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating#fetching-data-on-the-server-with-fetch
file:///docs/app/building-your-application/caching#request-memoization

 const res = await fetch('https://external-service.com/data', {
 headers: {
 authorization: process.env.API_KEY,
 },
 })

 return res.json()
}

At first glance, it appears that getData works on both the server and the client. However, this function contains an API_KEY, written
with the intention that it would only ever be executed on the server.

Since the environment variable API_KEY is not prefixed with NEXT_PUBLIC, it’s a private variable that can only be accessed on the
server. To prevent your environment variables from being leaked to the client, Next.js replaces private environment variables with an
empty string.

As a result, even though getData() can be imported and executed on the client, it won’t work as expected. And while making the
variable public would make the function work on the client, you may not want to expose sensitive information to the client.

To prevent this sort of unintended client usage of server code, we can use the server-only package to give other developers a build-
time error if they ever accidentally import one of these modules into a Client Component.

To use server-only, first install the package:

Terminal (bash)

npm install server-only

Then import the package into any module that contains server-only code:
lib/data.js (js)

import 'server-only'

export async function getData() {
 const res = await fetch('https://external-service.com/data', {
 headers: {
 authorization: process.env.API_KEY,
 },
 })

 return res.json()
}

Now, any Client Component that imports getData() will receive a build-time error explaining that this module can only be used on the
server.

The corresponding package client-only can be used to mark modules that contain client-only code – for example, code that accesses
the window object.

Using Third-party Packages and Providers

Since Server Components are a new React feature, third-party packages and providers in the ecosystem are just beginning to add the
"use client" directive to components that use client-only features like useState, useEffect, and createContext.

Today, many components from npm packages that use client-only features do not yet have the directive. These third-party components
will work as expected within Client Components since they have the "use client" directive, but they won’t work within Server
Components.

For example, let’s say you’ve installed the hypothetical acme-carousel package which has a <Carousel /> component. This
component uses useState, but it doesn’t yet have the "use client" directive.

If you use <Carousel /> within a Client Component, it will work as expected:

app/gallery.tsx (tsx)

'use client'

import { useState } from 'react'
import { Carousel } from 'acme-carousel'

export default function Gallery() {
 let [isOpen, setIsOpen] = useState(false)

 return (
 <div>
 <button onClick={() => setIsOpen(true)}>View pictures</button>

 {/* Works, since Carousel is used within a Client Component */}

 {isOpen && <Carousel />}
 </div>
)
}

app/gallery.js (jsx)

'use client'

import { useState } from 'react'
import { Carousel } from 'acme-carousel'

export default function Gallery() {
 let [isOpen, setIsOpen] = useState(false)

 return (
 <div>
 <button onClick={() => setIsOpen(true)}>View pictures</button>

 {/* Works, since Carousel is used within a Client Component */}
 {isOpen && <Carousel />}
 </div>
)
}

However, if you try to use it directly within a Server Component, you’ll see an error:
app/page.tsx (tsx)

import { Carousel } from 'acme-carousel'

export default function Page() {
 return (
 <div>
 <p>View pictures</p>

 {/* Error: `useState` can not be used within Server Components */}
 <Carousel />
 </div>
)
}

app/page.js (jsx)

import { Carousel } from 'acme-carousel'

export default function Page() {
 return (
 <div>
 <p>View pictures</p>

 {/* Error: `useState` can not be used within Server Components */}
 <Carousel />
 </div>
)
}

This is because Next.js doesn’t know <Carousel /> is using client-only features.

To fix this, you can wrap third-party components that rely on client-only features in your own Client Components:
app/carousel.tsx (tsx)

'use client'

import { Carousel } from 'acme-carousel'

export default Carousel

app/carousel.js (jsx)

'use client'

import { Carousel } from 'acme-carousel'

export default Carousel

Now, you can use <Carousel /> directly within a Server Component:

app/page.tsx (tsx)

import Carousel from './carousel'

export default function Page() {
 return (
 <div>
 <p>View pictures</p>

 {/* Works, since Carousel is a Client Component */}
 <Carousel />
 </div>
)
}

app/page.js (jsx)

import Carousel from './carousel'

export default function Page() {
 return (
 <div>
 <p>View pictures</p>

 {/* Works, since Carousel is a Client Component */}
 <Carousel />
 </div>
)
}

We don’t expect you to need to wrap most third-party components since it’s likely you’ll be using them within Client Components.
However, one exception is providers, since they rely on React state and context, and are typically needed at the root of an application.
Learn more about third-party context providers below.

Using Context Providers

Context providers are typically rendered near the root of an application to share global concerns, like the current theme. Since React
context is not supported in Server Components, trying to create a context at the root of your application will cause an error:

app/layout.tsx (tsx)

import { createContext } from 'react'

// createContext is not supported in Server Components
export const ThemeContext = createContext({})

export default function RootLayout({ children }) {
 return (
 <html>
 <body>
 <ThemeContext.Provider value="dark">{children}</ThemeContext.Provider>
 </body>
 </html>
)
}

app/layout.js (jsx)

import { createContext } from 'react'

// createContext is not supported in Server Components
export const ThemeContext = createContext({})

export default function RootLayout({ children }) {
 return (
 <html>
 <body>
 <ThemeContext.Provider value="dark">{children}</ThemeContext.Provider>
 </body>
 </html>
)
}

To fix this, create your context and render its provider inside of a Client Component:
app/theme-provider.tsx (tsx)

'use client'

import { createContext } from 'react'

https://react.dev/learn/passing-data-deeply-with-context

export const ThemeContext = createContext({})

export default function ThemeProvider({
 children,
}: {
 children: React.ReactNode
}) {
 return <ThemeContext.Provider value="dark">{children}</ThemeContext.Provider>
}

app/theme-provider.js (jsx)

'use client'

import { createContext } from 'react'

export const ThemeContext = createContext({})

export default function ThemeProvider({ children }) {
 return <ThemeContext.Provider value="dark">{children}</ThemeContext.Provider>
}

Your Server Component will now be able to directly render your provider since it’s been marked as a Client Component:
app/layout.tsx (tsx)

import ThemeProvider from './theme-provider'

export default function RootLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html>
 <body>
 <ThemeProvider>{children}</ThemeProvider>
 </body>
 </html>
)
}

app/layout.js (jsx)

import ThemeProvider from './theme-provider'

export default function RootLayout({ children }) {
 return (
 <html>
 <body>
 <ThemeProvider>{children}</ThemeProvider>
 </body>
 </html>
)
}

With the provider rendered at the root, all other Client Components throughout your app will be able to consume this context.

Good to know: You should render providers as deep as possible in the tree – notice how ThemeProvider only wraps
{children} instead of the entire <html> document. This makes it easier for Next.js to optimize the static parts of your Server
Components.

Advice for Library Authors

In a similar fashion, library authors creating packages to be consumed by other developers can use the "use client" directive to
mark client entry points of their package. This allows users of the package to import package components directly into their Server
Components without having to create a wrapping boundary.

You can optimize your package by using ‘use client’ deeper in the tree, allowing the imported modules to be part of the Server
Component module graph.

It’s worth noting some bundlers might strip out "use client" directives. You can find an example of how to configure esbuild to
include the "use client" directive in the React Wrap Balancer and Vercel Analytics repositories.

Client Components

https://github.com/shuding/react-wrap-balancer/blob/main/tsup.config.ts#L10-L13
https://github.com/vercel/analytics/blob/main/packages/web/tsup.config.js#L26-L30

Moving Client Components Down the Tree

To reduce the Client JavaScript bundle size, we recommend moving Client Components down your component tree.

For example, you may have a Layout that has static elements (e.g. logo, links, etc) and an interactive search bar that uses state.

Instead of making the whole layout a Client Component, move the interactive logic to a Client Component (e.g. <SearchBar />) and
keep your layout as a Server Component. This means you don’t have to send all the component Javascript of the layout to the client.

app/layout.tsx (tsx)

// SearchBar is a Client Component
import SearchBar from './searchbar'
// Logo is a Server Component
import Logo from './logo'

// Layout is a Server Component by default
export default function Layout({ children }: { children: React.ReactNode }) {
 return (
 <>
 <nav>
 <Logo />
 <SearchBar />
 </nav>
 <main>{children}</main>
 </>
)
}

app/layout.js (jsx)

// SearchBar is a Client Component
import SearchBar from './searchbar'
// Logo is a Server Component
import Logo from './logo'

// Layout is a Server Component by default
export default function Layout({ children }) {
 return (
 <>
 <nav>
 <Logo />
 <SearchBar />
 </nav>
 <main>{children}</main>
 </>
)
}

Passing props from Server to Client Components (Serialization)

If you fetch data in a Server Component, you may want to pass data down as props to Client Components. Props passed from the Server
to Client Components need to be serializable by React.

If your Client Components depend on data that is not serializable, you can fetch data on the client with a third party library or on the
server via a Route Handler.

Interleaving Server and Client Components

When interleaving Client and Server Components, it may be helpful to visualize your UI as a tree of components. Starting with the root
layout, which is a Server Component, you can then render certain subtrees of components on the client by adding the "use client"
directive.

{/ Diagram - interleaving /}

Within those client subtrees, you can still nest Server Components or call Server Actions, however there are some things to keep in
mind:

During a request-response lifecycle, your code moves from the server to the client. If you need to access data or resources on the
server while on the client, you’ll be making a new request to the server - not switching back and forth.
When a new request is made to the server, all Server Components are rendered first, including those nested inside Client
Components. The rendered result (RSC Payload) will contain references to the locations of Client Components. Then, on the client,
React uses the RSC Payload to reconcile Server and Client Components into a single tree.

{/ Diagram /}

Since Client Components are rendered after Server Components, you cannot import a Server Component into a Client Component

https://react.dev/reference/react/use-server#serializable-parameters-and-return-values
file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating#fetching-data-on-the-client-with-third-party-libraries
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/routing/layouts-and-templates#root-layout-required
file:///docs/app/building-your-application/rendering/server-components#what-is-the-react-server-component-payload-rsc

module (since it would require a new request back to the server). Instead, you can pass a Server Component as props to a Client
Component. See the unsupported pattern and supported pattern sections below.

Unsupported Pattern: Importing Server Components into Client Components

The following pattern is not supported. You cannot import a Server Component into a Client Component:

```tsx filename=”app/client-component.tsx” switcher highlight={4,17} ‘use client’

// You cannot import a Server Component into a Client Component. import ServerComponent from ‘./Server-Component’

export default function ClientComponent({ children, }: { children: React.ReactNode }) { const [count, setCount] = useState(0)

return ( <> setCount(count + 1)}>{count}

  <ServerComponent />

) }

```jsx filename="app/client-component.js" switcher highlight={3,13}
'use client'

// You cannot import a Server Component into a Client Component.
import ServerComponent from './Server-Component'

export default function ClientComponent({ children }) {
 const [count, setCount] = useState(0)

 return (
 <>
 <button onClick={() => setCount(count + 1)}>{count}</button>

 <ServerComponent />
 </>
)
}

Supported Pattern: Passing Server Components to Client Components as Props

The following pattern is supported. You can pass Server Components as a prop to a Client Component.

A common pattern is to use the React children prop to create a “slot” in your Client Component.

In the example below, <ClientComponent> accepts a children prop:

```tsx filename=”app/client-component.tsx” switcher highlight={6,15} ‘use client’

import { useState } from ‘react’

export default function ClientComponent({ children, }: { children: React.ReactNode }) { const [count, setCount] = useState(0)

return ( <> setCount(count + 1)}>{count}  {children} 

) }

```jsx filename="app/client-component.js" switcher highlight={5,12}
'use client'

import { useState } from 'react'

export default function ClientComponent({ children }) {
 const [count, setCount] = useState(0)

 return (
 <>
 <button onClick={() => setCount(count + 1)}>{count}</button>

 {children}
 </>
)
}

<ClientComponent> doesn’t know that children will eventually be filled in by the result of a Server Component. The only
responsibility <ClientComponent> has is to decide where children will eventually be placed.

In a parent Server Component, you can import both the <ClientComponent> and <ServerComponent> and pass
<ServerComponent> as a child of <ClientComponent>:

```tsx filename=”app/page.tsx” highlight={11} switcher // This pattern works: // You can pass a Server Component as a child or prop of a
// Client Component. import ClientComponent from ‘./client-component’ import ServerComponent from ‘./server-component’



// Pages in Next.js are Server Components by default export default function Page() { return ( ) }

```jsx filename="app/page.js" highlight={11} switcher
// This pattern works:
// You can pass a Server Component as a child or prop of a
// Client Component.
import ClientComponent from './client-component'
import ServerComponent from './server-component'

// Pages in Next.js are Server Components by default
export default function Page() {
 return (
 <ClientComponent>
 <ServerComponent />
 </ClientComponent>
)
}

With this approach, <ClientComponent> and <ServerComponent> are decoupled and can be rendered independently. In this case,
the child <ServerComponent> can be rendered on the server, well before <ClientComponent> is rendered on the client.

Good to know:

The pattern of “lifting content up” has been used to avoid re-rendering a nested child component when a parent component
re-renders.
You’re not limited to the children prop. You can use any prop to pass JSX.

3.1.3.4 - Runtimes
Documentation path: /02-app/01-building-your-application/03-rendering/04-edge-and-nodejs-runtimes

Description: Learn about the switchable runtimes (Edge and Node.js) in Next.js.

Related:

Title: Related

Related Description: View the Edge Runtime API reference.

Links:

app/api-reference/edge

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js has two server runtimes you can use in your application:

The Node.js Runtime (default) which has access to all Node.js APIs and compatible packages from the ecosystem.
The Edge Runtime which contains a more limited set of APIs.

Use Cases

The Node.js runtime is used for rendering your application.
The Edge runtime is used for Middleware (routing rules like redirects, rewrites, and setting headers).

Caveats

The Edge runtime does not support all Node.js APIs. Some packages will not work. Learn more about the unsupported APIs in the
Edge Runtime.
The Edge runtime does not support Incremental Static Regeneration (ISR).
Both runtimes can support streaming depending on your deployment infrastructure.

file:///docs/app/api-reference/edge
file:///docs/app/api-reference/edge#unsupported-apis
file:///docs/app/building-your-application/routing/loading-ui-and-streaming

3.1.4 - Caching in Next.js
Documentation path: /02-app/01-building-your-application/04-caching/index

Description: An overview of caching mechanisms in Next.js.

Next.js improves your application’s performance and reduces costs by caching rendering work and data requests. This page provides an
in-depth look at Next.js caching mechanisms, the APIs you can use to configure them, and how they interact with each other.

Good to know: This page helps you understand how Next.js works under the hood but is not essential knowledge to be
productive with Next.js. Most of Next.js’ caching heuristics are determined by your API usage and have defaults for the best
performance with zero or minimal configuration.

Overview

Here’s a high-level overview of the different caching mechanisms and their purpose:

Mechanism What Where Purpose Duration

Request
Memoization

Return values of
functions

Server Re-use data in a React Component tree Per-request lifecycle

Data Cache Data Server
Store data across user requests and
deployments

Persistent (can be
revalidated)

Full Route Cache HTML and RSC payload Server
Reduce rendering cost and improve
performance

Persistent (can be
revalidated)

Router Cache RSC Payload Client Reduce server requests on navigation User session or time-based

By default, Next.js will cache as much as possible to improve performance and reduce cost. This means routes are statically rendered
and data requests are cached unless you opt out. The diagram below shows the default caching behavior: when a route is statically
rendered at build time and when a static route is first visited.

Caching behavior changes depending on whether the route is statically or dynamically rendered, data is cached or uncached, and
whether a request is part of an initial visit or a subsequent navigation. Depending on your use case, you can configure the caching
behavior for individual routes and data requests.

Request Memoization

React extends the fetch API to automatically memoize requests that have the same URL and options. This means you can call a fetch
function for the same data in multiple places in a React component tree while only executing it once.

For example, if you need to use the same data across a route (e.g. in a Layout, Page, and multiple components), you do not have to
fetch data at the top of the tree, and forward props between components. Instead, you can fetch data in the components that need it
without worrying about the performance implications of making multiple requests across the network for the same data.

app/example.tsx (tsx)

async function getItem() {
 // The `fetch` function is automatically memoized and the result
 // is cached
 const res = await fetch('https://.../item/1')
 return res.json()
}

// This function is called twice, but only executed the first time
const item = await getItem() // cache MISS

// The second call could be anywhere in your route
const item = await getItem() // cache HIT

app/example.js (jsx)

async function getItem() {
 // The `fetch` function is automatically memoized and the result
 // is cached
 const res = await fetch('https://.../item/1')
 return res.json()
}

// This function is called twice, but only executed the first time
const item = await getItem() // cache MISS

// The second call could be anywhere in your route
const item = await getItem() // cache HIT

How Request Memoization Works

While rendering a route, the first time a particular request is called, its result will not be in memory and it’ll be a cache MISS.
Therefore, the function will be executed, and the data will be fetched from the external source, and the result will be stored in
memory.
Subsequent function calls of the request in the same render pass will be a cache HIT, and the data will be returned from memory
without executing the function.
Once the route has been rendered and the rendering pass is complete, memory is “reset” and all request memoization entries are
cleared.

Good to know:

Request memoization is a React feature, not a Next.js feature. It’s included here to show how it interacts with the other
caching mechanisms.
Memoization only applies to the GET method in fetch requests.
Memoization only applies to the React Component tree, this means:
It applies to fetch requests in generateMetadata, generateStaticParams, Layouts, Pages, and other Server
Components.
It doesn’t apply to fetch requests in Route Handlers as they are not a part of the React component tree.
For cases where fetch is not suitable (e.g. some database clients, CMS clients, or GraphQL clients), you can use the React
cache function to memoize functions.

Duration

The cache lasts the lifetime of a server request until the React component tree has finished rendering.

Revalidating

Since the memoization is not shared across server requests and only applies during rendering, there is no need to revalidate it.

Opting out

Memoization only applies to the GET method in fetch requests, other methods, such as POST and DELETE, are not memoized. This
default behavior is a React optimization and we do not recommend opting out of it.

To manage individual requests, you can use the signal property from AbortController. However, this will not opt requests out of
memoization, rather, abort in-flight requests.

app/example.js (js)

const { signal } = new AbortController()
fetch(url, { signal })

Data Cache

Next.js has a built-in Data Cache that persists the result of data fetches across incoming server requests and deployments. This is
possible because Next.js extends the native fetch API to allow each request on the server to set its own persistent caching semantics.

https://developer.mozilla.org/en-US/docs/Web/API/AbortController/signal
https://developer.mozilla.org/en-US/docs/Web/API/AbortController

Good to know: In the browser, the cache option of fetch indicates how a request will interact with the browser’s HTTP cache,
in Next.js, the cache option indicates how a server-side request will interact with the server’s Data Cache.

By default, data requests that use fetch are cached. You can use the cache and next.revalidate options of fetch to configure the
caching behavior.

How the Data Cache Works

The first time a fetch request is called during rendering, Next.js checks the Data Cache for a cached response.
If a cached response is found, it’s returned immediately and memoized.
If a cached response is not found, the request is made to the data source, the result is stored in the Data Cache, and memoized.
For uncached data (e.g. { cache: 'no-store' }), the result is always fetched from the data source, and memoized.
Whether the data is cached or uncached, the requests are always memoized to avoid making duplicate requests for the same data
during a React render pass.

Differences between the Data Cache and Request Memoization

While both caching mechanisms help improve performance by re-using cached data, the Data Cache is persistent across
incoming requests and deployments, whereas memoization only lasts the lifetime of a request.

With memoization, we reduce the number of duplicate requests in the same render pass that have to cross the network
boundary from the rendering server to the Data Cache server (e.g. a CDN or Edge Network) or data source (e.g. a database or
CMS). With the Data Cache, we reduce the number of requests made to our origin data source.

Duration

The Data Cache is persistent across incoming requests and deployments unless you revalidate or opt-out.

Revalidating

Cached data can be revalidated in two ways, with:

Time-based Revalidation: Revalidate data after a certain amount of time has passed and a new request is made. This is useful for
data that changes infrequently and freshness is not as critical.
On-demand Revalidation: Revalidate data based on an event (e.g. form submission). On-demand revalidation can use a tag-based
or path-based approach to revalidate groups of data at once. This is useful when you want to ensure the latest data is shown as
soon as possible (e.g. when content from your headless CMS is updated).

Time-based Revalidation

To revalidate data at a timed interval, you can use the next.revalidate option of fetch to set the cache lifetime of a resource (in
seconds).

// Revalidate at most every hour
fetch('https://...', { next: { revalidate: 3600 } })

Alternatively, you can use Route Segment Config options to configure all fetch requests in a segment or for cases where you’re not
able to use fetch.

How Time-based Revalidation Works

The first time a fetch request with revalidate is called, the data will be fetched from the external data source and stored in the
Data Cache.
Any requests that are called within the specified timeframe (e.g. 60-seconds) will return the cached data.
After the timeframe, the next request will still return the cached (now stale) data.
Next.js will trigger a revalidation of the data in the background.
Once the data is fetched successfully, Next.js will update the Data Cache with the fresh data.
If the background revalidation fails, the previous data will be kept unaltered.

This is similar to stale-while-revalidate behavior.

On-demand Revalidation

Data can be revalidated on-demand by path (revalidatePath) or by cache tag (revalidateTag).

How On-Demand Revalidation Works

https://web.dev/stale-while-revalidate/

The first time a fetch request is called, the data will be fetched from the external data source and stored in the Data Cache.
When an on-demand revalidation is triggered, the appropriate cache entries will be purged from the cache.
This is different from time-based revalidation, which keeps the stale data in the cache until the fresh data is fetched.
The next time a request is made, it will be a cache MISS again, and the data will be fetched from the external data source and
stored in the Data Cache.

Opting out

For individual data fetches, you can opt out of caching by setting the cache option to no-store. This means data will be fetched
whenever fetch is called.

// Opt out of caching for an individual `fetch` request
fetch(`https://...`, { cache: 'no-store' })

Alternatively, you can also use the Route Segment Config options to opt out of caching for a specific route segment. This will affect all
data requests in the route segment, including third-party libraries.

// Opt out of caching for all data requests in the route segment
export const dynamic = 'force-dynamic'

Note: Data Cache is currently only available in pages/routes, not middleware. Any fetches done inside of your middleware will
be uncached by default.

Vercel Data Cache

If your Next.js application is deployed to Vercel, we recommend reading the Vercel Data Cache documentation for a better
understanding of Vercel specific features.

Full Route Cache

Related terms:

You may see the terms Automatic Static Optimization, Static Site Generation, or Static Rendering being used
interchangeably to refer to the process of rendering and caching routes of your application at build time.

Next.js automatically renders and caches routes at build time. This is an optimization that allows you to serve the cached route instead
of rendering on the server for every request, resulting in faster page loads.

To understand how the Full Route Cache works, it’s helpful to look at how React handles rendering, and how Next.js caches the result:

https://vercel.com/docs/infrastructure/data-cache

1. React Rendering on the Server

On the server, Next.js uses React’s APIs to orchestrate rendering. The rendering work is split into chunks: by individual routes segments
and Suspense boundaries.

Each chunk is rendered in two steps:

1. React renders Server Components into a special data format, optimized for streaming, called the React Server Component
Payload.

2. Next.js uses the React Server Component Payload and Client Component JavaScript instructions to render HTML on the server.

This means we don’t have to wait for everything to render before caching the work or sending a response. Instead, we can stream a
response as work is completed.

What is the React Server Component Payload?

The React Server Component Payload is a compact binary representation of the rendered React Server Components tree. It’s
used by React on the client to update the browser’s DOM. The React Server Component Payload contains:

The rendered result of Server Components
Placeholders for where Client Components should be rendered and references to their JavaScript files
Any props passed from a Server Component to a Client Component

To learn more, see the Server Components documentation.

2. Next.js Caching on the Server (Full Route Cache)

The default behavior of Next.js is to cache the rendered result (React Server Component Payload and HTML) of a route on the server.
This applies to statically rendered routes at build time, or during revalidation.

3. React Hydration and Reconciliation on the Client

At request time, on the client:

1. The HTML is used to immediately show a fast non-interactive initial preview of the Client and Server Components.
2. The React Server Components Payload is used to reconcile the Client and rendered Server Component trees, and update the DOM.
3. The JavaScript instructions are used to hydrate Client Components and make the application interactive.

4. Next.js Caching on the Client (Router Cache)

The React Server Component Payload is stored in the client-side Router Cache - a separate in-memory cache, split by individual route
segment. This Router Cache is used to improve the navigation experience by storing previously visited routes and prefetching future
routes.

5. Subsequent Navigations

file:///docs/app/building-your-application/rendering/server-components
https://react.dev/reference/react-dom/client/hydrateRoot

On subsequent navigations or during prefetching, Next.js will check if the React Server Components Payload is stored in the Router
Cache. If so, it will skip sending a new request to the server.

If the route segments are not in the cache, Next.js will fetch the React Server Components Payload from the server, and populate the
Router Cache on the client.

Static and Dynamic Rendering

Whether a route is cached or not at build time depends on whether it’s statically or dynamically rendered. Static routes are cached by
default, whereas dynamic routes are rendered at request time, and not cached.

This diagram shows the difference between statically and dynamically rendered routes, with cached and uncached data:

Learn more about static and dynamic rendering.

Duration

By default, the Full Route Cache is persistent. This means that the render output is cached across user requests.

Invalidation

There are two ways you can invalidate the Full Route Cache:

Revalidating Data: Revalidating the Data Cache, will in turn invalidate the Router Cache by re-rendering components on the server
and caching the new render output.
Redeploying: Unlike the Data Cache, which persists across deployments, the Full Route Cache is cleared on new deployments.

Opting out

You can opt out of the Full Route Cache, or in other words, dynamically render components for every incoming request, by:

Using a Dynamic Function: This will opt the route out from the Full Route Cache and dynamically render it at request time. The
Data Cache can still be used.

file:///docs/app/building-your-application/rendering/server-components#server-rendering-strategies
file:///docs/app/building-your-application/caching#revalidating

Using the dynamic = 'force-dynamic'dynamic = 'force-dynamic' or revalidate = 0revalidate = 0 route segment config options: This will skip the Full Route
Cache and the Data Cache. Meaning components will be rendered and data fetched on every incoming request to the server. The
Router Cache will still apply as it’s a client-side cache.
Opting out of the Data Cache: If a route has a fetch request that is not cached, this will opt the route out of the Full Route
Cache. The data for the specific fetch request will be fetched for every incoming request. Other fetch requests that do not opt
out of caching will still be cached in the Data Cache. This allows for a hybrid of cached and uncached data.

Router Cache

Related Terms:

You may see the Router Cache being referred to as Client-side Cache or Prefetch Cache. While Prefetch Cache refers to the
prefetched route segments, Client-side Cache refers to the whole Router cache, which includes both visited and prefetched
segments. This cache specifically applies to Next.js and Server Components, and is different to the browser’s bfcache, though it
has a similar result.

Next.js has an in-memory client-side cache that stores the React Server Component Payload, split by individual route segments, for the
duration of a user session. This is called the Router Cache.

How the Router Cache Works

As a user navigates between routes, Next.js caches visited route segments and prefetches the routes the user is likely to navigate to
(based on <Link> components in their viewport).

This results in an improved navigation experience for the user:

Instant backward/forward navigation because visited routes are cached and fast navigation to new routes because of prefetching
and partial rendering.
No full-page reload between navigations, and React state and browser state are preserved.

Difference between the Router Cache and Full Route Cache:

https://web.dev/bfcache/
file:///docs/app/building-your-application/routing/linking-and-navigating#2-prefetching
file:///docs/app/building-your-application/routing/linking-and-navigating#4-partial-rendering

The Router Cache temporarily stores the React Server Component Payload in the browser for the duration of a user session,
whereas the Full Route Cache persistently stores the React Server Component Payload and HTML on the server across multiple
user requests.

While the Full Route Cache only caches statically rendered routes, the Router Cache applies to both statically and dynamically
rendered routes.

Duration

The cache is stored in the browser’s temporary memory. Two factors determine how long the router cache lasts:

Session: The cache persists across navigation. However, it’s cleared on page refresh.
Automatic Invalidation Period: The cache of an individual segment is automatically invalidated after a specific time. The duration
depends on how the resource was prefetched:
Default Prefetching (prefetch={null} or unspecified): 30 seconds
Full Prefetching: (prefetch={true} or router.prefetch): 5 minutes

While a page refresh will clear all cached segments, the automatic invalidation period only affects the individual segment from the time
it was prefetched.

Note: There is experimental support for configuring these values, available as of v14.2.0.

Invalidation

There are two ways you can invalidate the Router Cache:

In a Server Action:
Revalidating data on-demand by path with (revalidatePath) or by cache tag with (revalidateTag)
Using cookies.set or cookies.delete invalidates the Router Cache to prevent routes that use cookies from becoming stale (e.g.
authentication).
Calling router.refresh will invalidate the Router Cache and make a new request to the server for the current route.

Opting out

It’s not possible to opt out of the Router Cache. However, you can invalidate it by calling router.refresh, revalidatePath, or
revalidateTag (see above). This will clear the cache and make a new request to the server, ensuring the latest data is shown.

You can also opt out of prefetching by setting the prefetch prop of the <Link> component to false. However, this will still
temporarily store the route segments for 30s to allow instant navigation between nested segments, such as tab bars, or back and
forward navigation. Visited routes will still be cached.

Cache Interactions

When configuring the different caching mechanisms, it’s important to understand how they interact with each other:

Data Cache and Full Route Cache

Revalidating or opting out of the Data Cache will invalidate the Full Route Cache, as the render output depends on data.
Invalidating or opting out of the Full Route Cache does not affect the Data Cache. You can dynamically render a route that has both
cached and uncached data. This is useful when most of your page uses cached data, but you have a few components that rely on
data that needs to be fetched at request time. You can dynamically render without worrying about the performance impact of re-
fetching all the data.

Data Cache and Client-side Router cache

Revalidating the Data Cache in a Route Handler will not immediately invalidate the Router Cache as the Route Handler isn’t tied to
a specific route. This means Router Cache will continue to serve the previous payload until a hard refresh, or the automatic
invalidation period has elapsed.
To immediately invalidate the Data Cache and Router cache, you can use revalidatePath or revalidateTag in a Server Action.

APIs

The following table provides an overview of how different Next.js APIs affect caching:

API Router Cache Full Route Cache Data Cache React Cache

file:///docs/app/api-reference/components/link#prefetch
file:///docs/app/api-reference/next-config-js/staleTimes
https://github.com/vercel/next.js/releases/tag/v14.2.0
file:///docs/app/api-reference/functions/revalidatePath
file:///docs/app/api-reference/functions/revalidateTag
file:///docs/app/api-reference/functions/cookies#cookiessetname-value-options
file:///docs/app/api-reference/functions/cookies#deleting-cookies
file:///docs/app/api-reference/functions/use-router
file:///docs/app/api-reference/functions/use-router
file:///docs/app/api-reference/functions/revalidatePath
file:///docs/app/api-reference/functions/revalidateTag
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations

<Link prefetch>
Cache

router.prefetch Cache

router.refresh Revalidate

fetch Cache Cache

fetch options.cache Cache or Opt out

fetch options.next.revalidate Revalidate Revalidate

fetch options.next.tags Cache Cache

revalidateTag Revalidate (Server Action) Revalidate Revalidate

revalidatePath Revalidate (Server Action) Revalidate Revalidate

const revalidate Revalidate or Opt out Revalidate or Opt out

const dynamic Cache or Opt out Cache or Opt out

cookies Revalidate (Server Action) Opt out

headers, searchParams Opt out

generateStaticParams Cache

React.cache Cache

unstable_cache Cache

API Router Cache Full Route Cache Data Cache React Cache

<Link><Link>

By default, the <Link> component automatically prefetches routes from the Full Route Cache and adds the React Server Component
Payload to the Router Cache.

To disable prefetching, you can set the prefetch prop to false. But this will not skip the cache permanently, the route segment will
still be cached client-side when the user visits the route.

Learn more about the <Link> component.

router.prefetchrouter.prefetch

The prefetch option of the useRouter hook can be used to manually prefetch a route. This adds the React Server Component Payload
to the Router Cache.

See the useRouter hook API reference.

router.refreshrouter.refresh

The refresh option of the useRouter hook can be used to manually refresh a route. This completely clears the Router Cache, and
makes a new request to the server for the current route. refresh does not affect the Data or Full Route Cache.

The rendered result will be reconciled on the client while preserving React state and browser state.

See the useRouter hook API reference.

fetchfetch

Data returned from fetch is automatically cached in the Data Cache.

// Cached by default. `force-cache` is the default option and can be omitted.
fetch(`https://...`, { cache: 'force-cache' })

See the fetch API Reference for more options.

fetch options.cachefetch options.cache

You can opt out individual fetch requests of data caching by setting the cache option to no-store:

file:///docs/app/api-reference/functions/unstable_cache
file:///docs/app/api-reference/components/link
file:///docs/app/api-reference/functions/use-router
file:///docs/app/api-reference/functions/use-router
file:///docs/app/api-reference/functions/fetch

// Opt out of caching
fetch(`https://...`, { cache: 'no-store' })

Since the render output depends on data, using cache: 'no-store' will also skip the Full Route Cache for the route where the fetch
request is used. That is, the route will be dynamically rendered every request, but you can still have other cached data requests in the
same route.

See the fetch API Reference for more options.

fetch options.next.revalidatefetch options.next.revalidate

You can use the next.revalidate option of fetch to set the revalidation period (in seconds) of an individual fetch request. This will
revalidate the Data Cache, which in turn will revalidate the Full Route Cache. Fresh data will be fetched, and components will be re-
rendered on the server.

// Revalidate at most after 1 hour
fetch(`https://...`, { next: { revalidate: 3600 } })

See the fetch API reference for more options.

fetch options.next.tagsfetch options.next.tags and revalidateTagrevalidateTag

Next.js has a cache tagging system for fine-grained data caching and revalidation.

1. When using fetch or unstable_cache, you have the option to tag cache entries with one or more tags.
2. Then, you can call revalidateTag to purge the cache entries associated with that tag.

For example, you can set a tag when fetching data:

// Cache data with a tag
fetch(`https://...`, { next: { tags: ['a', 'b', 'c'] } })

Then, call revalidateTag with a tag to purge the cache entry:

// Revalidate entries with a specific tag
revalidateTag('a')

There are two places you can use revalidateTag, depending on what you’re trying to achieve:

1. Route Handlers - to revalidate data in response of a third party event (e.g. webhook). This will not invalidate the Router Cache
immediately as the Router Handler isn’t tied to a specific route.

2. Server Actions - to revalidate data after a user action (e.g. form submission). This will invalidate the Router Cache for the associated
route.

revalidatePathrevalidatePath

revalidatePath allows you manually revalidate data and re-render the route segments below a specific path in a single operation.
Calling the revalidatePath method revalidates the Data Cache, which in turn invalidates the Full Route Cache.

revalidatePath('/')

There are two places you can use revalidatePath, depending on what you’re trying to achieve:

1. Route Handlers - to revalidate data in response to a third party event (e.g. webhook).
2. Server Actions - to revalidate data after a user interaction (e.g. form submission, clicking a button).

See the revalidatePath API reference for more information.

revalidatePathrevalidatePath vs. router.refreshrouter.refresh:

Calling router.refresh will clear the Router cache, and re-render route segments on the server without invalidating the Data
Cache or the Full Route Cache.

The difference is that revalidatePath purges the Data Cache and Full Route Cache, whereas router.refresh() does not
change the Data Cache and Full Route Cache, as it is a client-side API.

Dynamic Functions

Dynamic functions like cookies and headers, and the searchParams prop in Pages depend on runtime incoming request
information. Using them will opt a route out of the Full Route Cache, in other words, the route will be dynamically rendered.

file:///docs/app/api-reference/functions/fetch
file:///docs/app/api-reference/functions/fetch
file:///docs/app/api-reference/functions/unstable_cache
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/api-reference/functions/revalidatePath

cookiescookies

Using cookies.set or cookies.delete in a Server Action invalidates the Router Cache to prevent routes that use cookies from
becoming stale (e.g. to reflect authentication changes).

See the cookies API reference.

Segment Config Options

The Route Segment Config options can be used to override the route segment defaults or when you’re not able to use the fetch API
(e.g. database client or 3rd party libraries).

The following Route Segment Config options will opt out of the Data Cache and Full Route Cache:

const dynamic = 'force-dynamic'
const revalidate = 0

See the Route Segment Config documentation for more options.

generateStaticParamsgenerateStaticParams

For dynamic segments (e.g. app/blog/[slug]/page.js), paths provided by generateStaticParams are cached in the Full Route
Cache at build time. At request time, Next.js will also cache paths that weren’t known at build time the first time they’re visited.

You can disable caching at request time by using export const dynamicParams = false option in a route segment. When this
config option is used, only paths provided by generateStaticParams will be served, and other routes will 404 or match (in the case of
catch-all routes).

See the generateStaticParams API reference.

React cachecache function

The React cache function allows you to memoize the return value of a function, allowing you to call the same function multiple times
while only executing it once.

Since fetch requests are automatically memoized, you do not need to wrap it in React cache. However, you can use cache to
manually memoize data requests for use cases when the fetch API is not suitable. For example, some database clients, CMS clients, or
GraphQL clients.

utils/get-item.ts (tsx)

import { cache } from 'react'
import db from '@/lib/db'

export const getItem = cache(async (id: string) => {
 const item = await db.item.findUnique({ id })
 return item
})

utils/get-item.js (jsx)

import { cache } from 'react'
import db from '@/lib/db'

export const getItem = cache(async (id) => {
 const item = await db.item.findUnique({ id })
 return item
})

file:///docs/app/api-reference/functions/cookies
file:///docs/app/api-reference/file-conventions/route-segment-config
file:///docs/app/building-your-application/routing/dynamic-routes
file:///docs/app/building-your-application/routing/dynamic-routes#catch-all-segments
file:///docs/app/api-reference/functions/generate-static-params

3.1.5 - Styling
Documentation path: /02-app/01-building-your-application/05-styling/index

Description: Learn the different ways you can style your Next.js application.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js supports different ways of styling your application, including:

Global CSS: Simple to use and familiar for those experienced with traditional CSS, but can lead to larger CSS bundles and difficulty
managing styles as the application grows.
CSS Modules: Create locally scoped CSS classes to avoid naming conflicts and improve maintainability.
Tailwind CSS: A utility-first CSS framework that allows for rapid custom designs by composing utility classes.
Sass: A popular CSS preprocessor that extends CSS with features like variables, nested rules, and mixins.
CSS-in-JS: Embed CSS directly in your JavaScript components, enabling dynamic and scoped styling.

Learn more about each approach by exploring their respective documentation:

3.1.5.1 - CSS Modules and Global Styles
Documentation path: /02-app/01-building-your-application/05-styling/01-css-modules

Description: Style your Next.js Application with CSS Modules, Global Styles, and external stylesheets.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Examples
- [Basic CSS Example](https://github.com/vercel/next.js/tree/canary/examples/basic-css)

Next.js supports different types of stylesheets, including:

CSS Modules
Global Styles
External Stylesheets

CSS Modules

Next.js has built-in support for CSS Modules using the .module.css extension.

CSS Modules locally scope CSS by automatically creating a unique class name. This allows you to use the same class name in different
files without worrying about collisions. This behavior makes CSS Modules the ideal way to include component-level CSS.

Example

CSS Modules can be imported into any file inside the app directory:

app/dashboard/layout.tsx (tsx)

import styles from './styles.module.css'

export default function DashboardLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return <section className={styles.dashboard}>{children}</section>
}

app/dashboard/layout.js (jsx)

import styles from './styles.module.css'

export default function DashboardLayout({ children }) {
 return <section className={styles.dashboard}>{children}</section>
}

app/dashboard/styles.module.css (css)

.dashboard {
 padding: 24px;
}

For example, consider a reusable Button component in the components/ folder:

First, create components/Button.module.css with the following content:

Button.module.css (css)

/*
You do not need to worry about .error {} colliding with any other `.css` or
`.module.css` files!
*/
.error {
 color: white;
 background-color: red;
}

Then, create components/Button.js, importing and using the above CSS file:

components/Button.js (jsx)

import styles from './Button.module.css'

export function Button() {
 return (
 <button
 type="button"
 // Note how the "error" class is accessed as a property on the imported
 // `styles` object.
 className={styles.error}
 >
 Destroy
 </button>
)
}

CSS Modules are only enabled for files with the .module.css.module.css and .module.sass.module.sass extensions.

In production, all CSS Module files will be automatically concatenated into many minified and code-split .css files. These .css files
represent hot execution paths in your application, ensuring the minimal amount of CSS is loaded for your application to paint.

Global Styles

Global styles can be imported into any layout, page, or component inside the app directory.

Good to know: This is different from the pages directory, where you can only import global styles inside the _app.js file.

For example, consider a stylesheet named app/global.css:

body {
 padding: 20px 20px 60px;
 max-width: 680px;
 margin: 0 auto;
}

Inside the root layout (app/layout.js), import the global.css stylesheet to apply the styles to every route in your application:

app/layout.tsx (tsx)

// These styles apply to every route in the application
import './global.css'

export default function RootLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html lang="en">
 <body>{children}</body>
 </html>
)
}

app/layout.js (jsx)

// These styles apply to every route in the application
import './global.css'

export default function RootLayout({ children }) {
 return (
 <html lang="en">
 <body>{children}</body>
 </html>
)
}

To add a stylesheet to your application, import the CSS file within pages/_app.js.

For example, consider the following stylesheet named styles.css:

styles.css (css)

body {
 font-family: 'SF Pro Text', 'SF Pro Icons', 'Helvetica Neue', 'Helvetica',
 'Arial', sans-serif;
 padding: 20px 20px 60px;
 max-width: 680px;
 margin: 0 auto;
}

Create a pages/_app.js file if not already present. Then, import the styles.css file.

pages/_app.js (jsx)

import '../styles.css'

// This default export is required in a new `pages/_app.js` file.
export default function MyApp({ Component, pageProps }) {
 return <Component {...pageProps} />
}

These styles (styles.css) will apply to all pages and components in your application. Due to the global nature of stylesheets, and to
avoid conflicts, you may only import them inside pages/_app.jspages/_app.js.

In development, expressing stylesheets this way allows your styles to be hot reloaded as you edit them—meaning you can keep
application state.

In production, all CSS files will be automatically concatenated into a single minified .css file. The order that the CSS is concatenated
will match the order the CSS is imported into the _app.js file. Pay special attention to imported JS modules that include their own CSS;
the JS module’s CSS will be concatenated following the same ordering rules as imported CSS files. For example:

import '../styles.css'
// The CSS in ErrorBoundary depends on the global CSS in styles.css,
// so we import it after styles.css.
import ErrorBoundary from '../components/ErrorBoundary'

export default function MyApp({ Component, pageProps }) {
 return (
 <ErrorBoundary>
 <Component {...pageProps} />
 </ErrorBoundary>
)
}

External Stylesheets

Stylesheets published by external packages can be imported anywhere in the app directory, including colocated components:

app/layout.tsx (tsx)

import 'bootstrap/dist/css/bootstrap.css'

export default function RootLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html lang="en">
 <body className="container">{children}</body>
 </html>
)
}

app/layout.js (jsx)

import 'bootstrap/dist/css/bootstrap.css'

export default function RootLayout({ children }) {
 return (
 <html lang="en">
 <body className="container">{children}</body>
 </html>
)
}

Good to know: External stylesheets must be directly imported from an npm package or downloaded and colocated with your
codebase. You cannot use <link rel="stylesheet" />.

Next.js allows you to import CSS files from a JavaScript file. This is possible because Next.js extends the concept of import beyond
JavaScript.

Import styles from node_modulesnode_modules

Since Next.js 9.5.4, importing a CSS file from node_modules is permitted anywhere in your application.

file:///docs/pages/building-your-application/routing/custom-app
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/import
file:///docs/pages/building-your-application/routing/custom-app
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/import

For global stylesheets, like bootstrap or nprogress, you should import the file inside pages/_app.js. For example:

pages/_app.js (jsx)

import 'bootstrap/dist/css/bootstrap.css'

export default function MyApp({ Component, pageProps }) {
 return <Component {...pageProps} />
}

For importing CSS required by a third-party component, you can do so in your component. For example:
components/example-dialog.js (jsx)

import { useState } from 'react'
import { Dialog } from '@reach/dialog'
import VisuallyHidden from '@reach/visually-hidden'
import '@reach/dialog/styles.css'

function ExampleDialog(props) {
 const [showDialog, setShowDialog] = useState(false)
 const open = () => setShowDialog(true)
 const close = () => setShowDialog(false)

 return (
 <div>
 <button onClick={open}>Open Dialog</button>
 <Dialog isOpen={showDialog} onDismiss={close}>
 <button className="close-button" onClick={close}>
 <VisuallyHidden>Close</VisuallyHidden>
 ×
 </button>
 <p>Hello there. I am a dialog</p>
 </Dialog>
 </div>
)
}

Ordering and Merging

Next.js optimizes CSS during production builds by automatically chunking (merging) stylesheets. The CSS order is determined by the
order in which you import the stylesheets into your application code.

For example, base-button.module.css will be ordered before page.module.css since <BaseButton> is imported first in <Page>:

base-button.tsx (tsx)

import styles from './base-button.module.css'

export function BaseButton() {
 return <button className={styles.primary} />
}

base-button.js (jsx)

import styles from './base-button.module.css'

export function BaseButton() {
 return <button className={styles.primary} />
}

page.ts (tsx)

import { BaseButton } from './base-button'
import styles from './page.module.css'

export function Page() {
 return <BaseButton className={styles.primary} />
}

page.js (jsx)

import { BaseButton } from './base-button'
import styles from './page.module.css'

export function Page() {
 return <BaseButton className={styles.primary} />
}

To maintain a predictable order, we recommend the following:

Only import a CSS file in a single JS/TS file.
If using global class names, import the global styles in the same file in the order you want them to be applied.
Prefer CSS Modules over global styles.
Use a consistent naming convention for your CSS modules. For example, using <name>.module.css over <name>.tsx.
Extract shared styles into a separate shared component.
If using Tailwind, import the stylesheet at the top of the file, preferably in the Root Layout.

Good to know: CSS ordering behaves differently in development mode, always ensure to check preview deployments to verify
the final CSS order in your production build.

Additional Features

Next.js includes additional features to improve the authoring experience of adding styles:

When running locally with next dev, local stylesheets (either global or CSS modules) will take advantage of Fast Refresh to
instantly reflect changes as edits are saved.
When building for production with next build, CSS files will be bundled into fewer minified .css files to reduce the number of
network requests needed to retrieve styles.
If you disable JavaScript, styles will still be loaded in the production build (next start). However, JavaScript is still required for
next dev to enable Fast Refresh.

file:///docs/app/building-your-application/styling/tailwind-css
file:///docs/app/building-your-application/routing/layouts-and-templates#root-layout-required
file:///docs/architecture/fast-refresh
file:///docs/architecture/fast-refresh

3.1.5.2 - Tailwind CSS
Documentation path: /02-app/01-building-your-application/05-styling/02-tailwind-css

Description: Style your Next.js Application using Tailwind CSS.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Examples
- [With Tailwind CSS](https://github.com/vercel/next.js/tree/canary/examples/with-tailwindcss)

Tailwind CSS is a utility-first CSS framework that works exceptionally well with Next.js.

Installing Tailwind

Install the Tailwind CSS packages and run the init command to generate both the tailwind.config.js and postcss.config.js
files:

Terminal (bash)

npm install -D tailwindcss postcss autoprefixer
npx tailwindcss init -p

Configuring Tailwind

Inside tailwind.config.js, add paths to the files that will use Tailwind CSS class names:

tailwind.config.js (js)

/** @type {import('tailwindcss').Config} */
module.exports = {
 content: [
 './app/**/*.{js,ts,jsx,tsx,mdx}', // Note the addition of the `app` directory.
 './pages/**/*.{js,ts,jsx,tsx,mdx}',
 './components/**/*.{js,ts,jsx,tsx,mdx}',

 // Or if using `src` directory:
 './src/**/*.{js,ts,jsx,tsx,mdx}',
],
 theme: {
 extend: {},
 },
 plugins: [],
}

You do not need to modify postcss.config.js.

Importing Styles

Add the Tailwind CSS directives that Tailwind will use to inject its generated styles to a Global Stylesheet in your application, for
example:

app/globals.css (css)

@tailwind base;
@tailwind components;
@tailwind utilities;

Inside the root layout (app/layout.tsx), import the globals.css stylesheet to apply the styles to every route in your application.

app/layout.tsx (tsx)

import type { Metadata } from 'next'

// These styles apply to every route in the application
import './globals.css'

export const metadata: Metadata = {
 title: 'Create Next App',
 description: 'Generated by create next app',
}

export default function RootLayout({
 children,

https://tailwindcss.com/
https://tailwindcss.com/docs/functions-and-directives#directives
file:///docs/app/building-your-application/styling/css-modules#global-styles
file:///docs/app/building-your-application/routing/layouts-and-templates#root-layout-required

}: {
 children: React.ReactNode
}) {
 return (
 <html lang="en">
 <body>{children}</body>
 </html>
)
}

app/layout.js (jsx)

// These styles apply to every route in the application
import './globals.css'

export const metadata = {
 title: 'Create Next App',
 description: 'Generated by create next app',
}

export default function RootLayout({ children }) {
 return (
 <html lang="en">
 <body>{children}</body>
 </html>
)
}

Using Classes

After installing Tailwind CSS and adding the global styles, you can use Tailwind’s utility classes in your application.
app/page.tsx (tsx)

export default function Page() {
 return <h1 className="text-3xl font-bold underline">Hello, Next.js!</h1>
}

app/page.js (jsx)

export default function Page() {
 return <h1 className="text-3xl font-bold underline">Hello, Next.js!</h1>
}

Importing Styles

Add the Tailwind CSS directives that Tailwind will use to inject its generated styles to a Global Stylesheet in your application, for
example:

styles/globals.css (css)

@tailwind base;
@tailwind components;
@tailwind utilities;

Inside the custom app file (pages/_app.js), import the globals.css stylesheet to apply the styles to every route in your application.

pages/_app.tsx (tsx)

// These styles apply to every route in the application
import '@/styles/globals.css'
import type { AppProps } from 'next/app'

export default function App({ Component, pageProps }: AppProps) {
 return <Component {...pageProps} />
}

pages/_app.js (jsx)

// These styles apply to every route in the application
import '@/styles/globals.css'

export default function App({ Component, pageProps }) {
 return <Component {...pageProps} />
}

https://tailwindcss.com/docs/functions-and-directives#directives
file:///docs/pages/building-your-application/styling/css-modules#global-styles
file:///docs/pages/building-your-application/routing/custom-app

Using Classes

After installing Tailwind CSS and adding the global styles, you can use Tailwind’s utility classes in your application.
pages/index.tsx (tsx)

export default function Page() {
 return <h1 className="text-3xl font-bold underline">Hello, Next.js!</h1>
}

pages/index.js (jsx)

export default function Page() {
 return <h1 className="text-3xl font-bold underline">Hello, Next.js!</h1>
}

Usage with Turbopack

As of Next.js 13.1, Tailwind CSS and PostCSS are supported with Turbopack.

https://turbo.build/pack/docs/features/css#tailwind-css

3.1.5.3 - CSS-in-JS
Documentation path: /02-app/01-building-your-application/05-styling/03-css-in-js

Description: Use CSS-in-JS libraries with Next.js

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Warning: CSS-in-JS libraries which require runtime JavaScript are not currently supported in Server Components. Using CSS-in-
JS with newer React features like Server Components and Streaming requires library authors to support the latest version of
React, including concurrent rendering.

We’re working with the React team on upstream APIs to handle CSS and JavaScript assets with support for React Server
Components and streaming architecture.

The following libraries are supported in Client Components in the app directory (alphabetical):

ant-design
chakra-ui
@fluentui/react-components
kuma-ui
@mui/material
@mui/joy
pandacss
styled-jsx
styled-components
stylex
tamagui
tss-react
vanilla-extract

The following are currently working on support:

emotion

Good to know: We’re testing out different CSS-in-JS libraries and we’ll be adding more examples for libraries that support
React 18 features and/or the app directory.

If you want to style Server Components, we recommend using CSS Modules or other solutions that output CSS files, like PostCSS or
Tailwind CSS.

Configuring CSS-in-JS in appapp
Configuring CSS-in-JS is a three-step opt-in process that involves:

1. A style registry to collect all CSS rules in a render.
2. The new useServerInsertedHTML hook to inject rules before any content that might use them.
3. A Client Component that wraps your app with the style registry during initial server-side rendering.

styled-jsxstyled-jsx

Using styled-jsx in Client Components requires using v5.1.0. First, create a new registry:

app/registry.tsx (tsx)

'use client'

import React, { useState } from 'react'
import { useServerInsertedHTML } from 'next/navigation'
import { StyleRegistry, createStyleRegistry } from 'styled-jsx'

export default function StyledJsxRegistry({
 children,
}: {
 children: React.ReactNode
}) {
 // Only create stylesheet once with lazy initial state

https://react.dev/blog/2022/03/29/react-v18#what-is-concurrent-react
https://ant.design/docs/react/use-with-next#using-app-router
https://chakra-ui.com/getting-started/nextjs-app-guide
https://react.fluentui.dev/?path=/docs/concepts-developer-server-side-rendering-next-js-appdir-setup--page
https://kuma-ui.com
https://mui.com/material-ui/guides/next-js-app-router/
https://mui.com/joy-ui/integrations/next-js-app-router/
https://panda-css.com
https://stylexjs.com
https://tamagui.dev/docs/guides/next-js#server-components
https://tss-react.dev/
https://vanilla-extract.style
https://github.com/emotion-js/emotion/issues/2928
file:///docs/app/building-your-application/styling/css-modules
file:///docs/app/building-your-application/styling/tailwind-css

 // x-ref: https://reactjs.org/docs/hooks-reference.html#lazy-initial-state
 const [jsxStyleRegistry] = useState(() => createStyleRegistry())

 useServerInsertedHTML(() => {
 const styles = jsxStyleRegistry.styles()
 jsxStyleRegistry.flush()
 return <>{styles}</>
 })

 return <StyleRegistry registry={jsxStyleRegistry}>{children}</StyleRegistry>
}

app/registry.js (jsx)

'use client'

import React, { useState } from 'react'
import { useServerInsertedHTML } from 'next/navigation'
import { StyleRegistry, createStyleRegistry } from 'styled-jsx'

export default function StyledJsxRegistry({ children }) {
 // Only create stylesheet once with lazy initial state
 // x-ref: https://reactjs.org/docs/hooks-reference.html#lazy-initial-state
 const [jsxStyleRegistry] = useState(() => createStyleRegistry())

 useServerInsertedHTML(() => {
 const styles = jsxStyleRegistry.styles()
 jsxStyleRegistry.flush()
 return <>{styles}</>
 })

 return <StyleRegistry registry={jsxStyleRegistry}>{children}</StyleRegistry>
}

Then, wrap your root layout with the registry:
app/layout.tsx (tsx)

import StyledJsxRegistry from './registry'

export default function RootLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html>
 <body>
 <StyledJsxRegistry>{children}</StyledJsxRegistry>
 </body>
 </html>
)
}

app/layout.js (jsx)

import StyledJsxRegistry from './registry'

export default function RootLayout({ children }) {
 return (
 <html>
 <body>
 <StyledJsxRegistry>{children}</StyledJsxRegistry>
 </body>
 </html>
)
}

View an example here.

Styled Components

Below is an example of how to configure styled-components@6 or newer:

First, enable styled-components in next.config.js.

next.config.js (js)

file:///docs/app/building-your-application/routing/layouts-and-templates#root-layout-required
https://github.com/vercel/app-playground/tree/main/app/styling/styled-jsx

module.exports = {
 compiler: {
 styledComponents: true,
 },
}

Then, use the styled-components API to create a global registry component to collect all CSS style rules generated during a render,
and a function to return those rules. Then use the useServerInsertedHTML hook to inject the styles collected in the registry into the
<head> HTML tag in the root layout.

lib/registry.tsx (tsx)

'use client'

import React, { useState } from 'react'
import { useServerInsertedHTML } from 'next/navigation'
import { ServerStyleSheet, StyleSheetManager } from 'styled-components'

export default function StyledComponentsRegistry({
 children,
}: {
 children: React.ReactNode
}) {
 // Only create stylesheet once with lazy initial state
 // x-ref: https://reactjs.org/docs/hooks-reference.html#lazy-initial-state
 const [styledComponentsStyleSheet] = useState(() => new ServerStyleSheet())

 useServerInsertedHTML(() => {
 const styles = styledComponentsStyleSheet.getStyleElement()
 styledComponentsStyleSheet.instance.clearTag()
 return <>{styles}</>
 })

 if (typeof window !== 'undefined') return <>{children}</>

 return (
 <StyleSheetManager sheet={styledComponentsStyleSheet.instance}>
 {children}
 </StyleSheetManager>
)
}

lib/registry.js (jsx)

'use client'

import React, { useState } from 'react'
import { useServerInsertedHTML } from 'next/navigation'
import { ServerStyleSheet, StyleSheetManager } from 'styled-components'

export default function StyledComponentsRegistry({ children }) {
 // Only create stylesheet once with lazy initial state
 // x-ref: https://reactjs.org/docs/hooks-reference.html#lazy-initial-state
 const [styledComponentsStyleSheet] = useState(() => new ServerStyleSheet())

 useServerInsertedHTML(() => {
 const styles = styledComponentsStyleSheet.getStyleElement()
 styledComponentsStyleSheet.instance.clearTag()
 return <>{styles}</>
 })

 if (typeof window !== 'undefined') return <>{children}</>

 return (
 <StyleSheetManager sheet={styledComponentsStyleSheet.instance}>
 {children}
 </StyleSheetManager>
)
}

Wrap the children of the root layout with the style registry component:

app/layout.tsx (tsx)

import StyledComponentsRegistry from './lib/registry'

export default function RootLayout({

 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html>
 <body>
 <StyledComponentsRegistry>{children}</StyledComponentsRegistry>
 </body>
 </html>
)
}

app/layout.js (jsx)

import StyledComponentsRegistry from './lib/registry'

export default function RootLayout({ children }) {
 return (
 <html>
 <body>
 <StyledComponentsRegistry>{children}</StyledComponentsRegistry>
 </body>
 </html>
)
}

View an example here.

Good to know:

During server rendering, styles will be extracted to a global registry and flushed to the <head> of your HTML. This ensures
the style rules are placed before any content that might use them. In the future, we may use an upcoming React feature to
determine where to inject the styles.
During streaming, styles from each chunk will be collected and appended to existing styles. After client-side hydration is
complete, styled-components will take over as usual and inject any further dynamic styles.
We specifically use a Client Component at the top level of the tree for the style registry because it’s more efficient to extract
CSS rules this way. It avoids re-generating styles on subsequent server renders, and prevents them from being sent in the
Server Component payload.
For advanced use cases where you need to configure individual properties of styled-components compilation, you can read
our Next.js styled-components API reference to learn more.

Examples

It’s possible to use any existing CSS-in-JS solution. The simplest one is inline styles:

function HiThere() {
 return <p style={{ color: 'red' }}>hi there</p>
}

export default HiThere

We bundle styled-jsx to provide support for isolated scoped CSS. The aim is to support “shadow CSS” similar to Web Components, which
unfortunately do not support server-rendering and are JS-only.

See the above examples for other popular CSS-in-JS solutions (like Styled Components).

A component using styled-jsx looks like this:

function HelloWorld() {
 return (
 <div>
 Hello world
 <p>scoped!</p>
 <style jsx>{`
 p {
 color: blue;
 }
 div {
 background: red;
 }
 @media (max-width: 600px) {
 div {
 background: blue;
 }
 }

https://github.com/vercel/app-playground/tree/main/app/styling/styled-components
file:///docs/architecture/nextjs-compiler#styled-components
https://github.com/vercel/styled-jsx
https://github.com/w3c/webcomponents/issues/71

 `}</style>
 <style global jsx>{`
 body {
 background: black;
 }
 `}</style>
 </div>
)
}

export default HelloWorld

Please see the styled-jsx documentation for more examples.

Disabling JavaScript

Yes, if you disable JavaScript the CSS will still be loaded in the production build (next start). During development, we require
JavaScript to be enabled to provide the best developer experience with Fast Refresh.

https://github.com/vercel/styled-jsx
https://nextjs.org/blog/next-9-4#fast-refresh

3.1.5.4 - Sass
Documentation path: /02-app/01-building-your-application/05-styling/04-sass

Description: Style your Next.js application using Sass.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js has built-in support for integrating with Sass after the package is installed using both the .scss and .sass extensions. You can
use component-level Sass via CSS Modules and the .module.scssor .module.sass extension.

First, install sass:

Terminal (bash)

npm install --save-dev sass

Good to know:

Sass supports two different syntaxes, each with their own extension. The .scss extension requires you use the SCSS syntax,
while the .sass extension requires you use the Indented Syntax (“Sass”).

If you’re not sure which to choose, start with the .scss extension which is a superset of CSS, and doesn’t require you learn the
Indented Syntax (“Sass”).

Customizing Sass Options

If you want to configure the Sass compiler, use sassOptions in next.config.js.

next.config.js (js)

const path = require('path')

module.exports = {
 sassOptions: {
 includePaths: [path.join(__dirname, 'styles')],
 },
}

Sass Variables

Next.js supports Sass variables exported from CSS Module files.

For example, using the exported primaryColor Sass variable:

app/variables.module.scss (scss)

$primary-color: #64ff00;

:export {
 primaryColor: $primary-color;
}

app/page.js (jsx)

// maps to root `/` URL

import variables from './variables.module.scss'

export default function Page() {
 return <h1 style={{ color: variables.primaryColor }}>Hello, Next.js!</h1>
}

pages/_app.js (jsx)

import variables from '../styles/variables.module.scss'

export default function MyApp({ Component, pageProps }) {
 return (
 <Layout color={variables.primaryColor}>
 <Component {...pageProps} />
 </Layout>
)
}

https://github.com/sass/sass
https://sass-lang.com/documentation/syntax
https://sass-lang.com/documentation/syntax#scss
https://sass-lang.com/documentation/syntax#the-indented-syntax

3.1.6 - Optimizations
Documentation path: /02-app/01-building-your-application/06-optimizing/index

Description: Optimize your Next.js application for best performance and user experience.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js comes with a variety of built-in optimizations designed to improve your application’s speed and Core Web Vitals. This guide will
cover the optimizations you can leverage to enhance your user experience.

Built-in Components

Built-in components abstract away the complexity of implementing common UI optimizations. These components are:

Images: Built on the native element. The Image Component optimizes images for performance by lazy loading and
automatically resizing images based on device size.
Link: Built on the native <a> tags. The Link Component prefetches pages in the background, for faster and smoother page
transitions.
Scripts: Built on the native <script> tags. The Script Component gives you control over loading and execution of third-party
scripts.

Metadata

Metadata helps search engines understand your content better (which can result in better SEO), and allows you to customize how your
content is presented on social media, helping you create a more engaging and consistent user experience across various platforms.

The Metadata API in Next.js allows you to modify the <head> element of a page. You can configure metadata in two ways:

Config-based Metadata: Export a static metadata object or a dynamic generateMetadata function in a layout.js or page.js
file.
File-based Metadata: Add static or dynamically generated special files to route segments.

Additionally, you can create dynamic Open Graph Images using JSX and CSS with imageResponse constructor.

The Head Component in Next.js allows you to modify the <head> of a page. Learn more in the Head Component documentation.

Static Assets

Next.js /public folder can be used to serve static assets like images, fonts, and other files. Files inside /public can also be cached by
CDN providers so that they are delivered efficiently.

Analytics and Monitoring

For large applications, Next.js integrates with popular analytics and monitoring tools to help you understand how your application is
performing. Learn more in the Analytics, OpenTelemetry, and Instrumentation guides.

https://web.dev/vitals/
file:///docs/app/api-reference/functions/generate-metadata#metadata-object
file:///docs/app/api-reference/functions/generate-metadata#generatemetadata-function
file:///docs/app/api-reference/functions/image-response
file:///docs/pages/api-reference/components/head
file:///docs/app/building-your-application/optimizing/analytics
file:///docs/pages/building-your-application/optimizing/open-telemetry
file:///docs/pages/building-your-application/optimizing/instrumentation

3.1.6.1 - Image Optimization
Documentation path: /02-app/01-building-your-application/06-optimizing/01-images

Description: Optimize your images with the built-in `next/image` component.

Related:

Title: API Reference

Related Description: Learn more about the next/image API.

Links:

app/api-reference/components/image

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Examples

According to Web Almanac, images account for a huge portion of the typical website’s page weight and can have a sizable impact on
your website’s LCP performance.

The Next.js Image component extends the HTML element with features for automatic image optimization:

Size Optimization: Automatically serve correctly sized images for each device, using modern image formats like WebP and AVIF.
Visual Stability: Prevent layout shift automatically when images are loading.
Faster Page Loads: Images are only loaded when they enter the viewport using native browser lazy loading, with optional blur-up
placeholders.
Asset Flexibility: On-demand image resizing, even for images stored on remote servers

� Watch: Learn more about how to use next/image → YouTube (9 minutes).

Usage

import Image from 'next/image'

You can then define the src for your image (either local or remote).

Local Images

To use a local image, import your .jpg, .png, or .webp image files.

Next.js will automatically determine the width and height of your image based on the imported file. These values are used to prevent
Cumulative Layout Shift while your image is loading.

app/page.js (jsx)

import Image from 'next/image'
import profilePic from './me.png'

export default function Page() {
 return (
 <Image
 src={profilePic}
 alt="Picture of the author"
 // width={500} automatically provided
 // height={500} automatically provided
 // blurDataURL="data:..." automatically provided
 // placeholder="blur" // Optional blur-up while loading
 />
)
}

pages/index.js (jsx)

import Image from 'next/image'
import profilePic from '../public/me.png'

export default function Page() {
 return (
 <Image
 src={profilePic}
 alt="Picture of the author"
 // width={500} automatically provided

https://almanac.httparchive.org
https://almanac.httparchive.org/en/2022/page-weight#content-type-and-file-formats
https://almanac.httparchive.org/en/2022/performance#lcp-image-optimization
file:///learn/seo/web-performance/cls
https://youtu.be/IU_qq_c_lKA
https://nextjs.org/learn/seo/web-performance/cls

 // height={500} automatically provided
 // blurDataURL="data:..." automatically provided
 // placeholder="blur" // Optional blur-up while loading
 />
)
}

Warning: Dynamic await import() or require() are not supported. The import must be static so it can be analyzed at
build time.

Remote Images

To use a remote image, the src property should be a URL string.

Since Next.js does not have access to remote files during the build process, you’ll need to provide the width, height and optional
blurDataURL props manually.

The width and height attributes are used to infer the correct aspect ratio of image and avoid layout shift from the image loading in.
The width and height do not determine the rendered size of the image file. Learn more about Image Sizing.

app/page.js (jsx)

import Image from 'next/image'

export default function Page() {
 return (
 <Image
 src="https://s3.amazonaws.com/my-bucket/profile.png"
 alt="Picture of the author"
 width={500}
 height={500}
 />
)
}

To safely allow optimizing images, define a list of supported URL patterns in next.config.js. Be as specific as possible to prevent
malicious usage. For example, the following configuration will only allow images from a specific AWS S3 bucket:

next.config.js (js)

module.exports = {
 images: {
 remotePatterns: [
 {
 protocol: 'https',
 hostname: 's3.amazonaws.com',
 port: '',
 pathname: '/my-bucket/**',
 },
],
 },
}

Learn more about remotePatterns configuration. If you want to use relative URLs for the image src, use a loader.

Domains

Sometimes you may want to optimize a remote image, but still use the built-in Next.js Image Optimization API. To do this, leave the
loader at its default setting and enter an absolute URL for the Image src prop.

To protect your application from malicious users, you must define a list of remote hostnames you intend to use with the next/image
component.

Learn more about remotePatterns configuration.

Loaders

Note that in the example earlier, a partial URL ("/me.png") is provided for a local image. This is possible because of the loader
architecture.

A loader is a function that generates the URLs for your image. It modifies the provided src, and generates multiple URLs to request the
image at different sizes. These multiple URLs are used in the automatic srcset generation, so that visitors to your site will be served an
image that is the right size for their viewport.

The default loader for Next.js applications uses the built-in Image Optimization API, which optimizes images from anywhere on the web,

file:///docs/app/api-reference/components/image#width
file:///docs/app/api-reference/components/image#height
file:///docs/app/api-reference/components/image#blurdataurl
file:///docs/app/api-reference/components/image#remotepatterns
file:///docs/app/api-reference/components/image#loader
file:///docs/app/api-reference/components/image#remotepatterns
https://developer.mozilla.org/docs/Web/API/HTMLImageElement/srcset

and then serves them directly from the Next.js web server. If you would like to serve your images directly from a CDN or image server,
you can write your own loader function with a few lines of JavaScript.

You can define a loader per-image with the loader prop, or at the application level with the loaderFile configuration.

Priority

You should add the priority property to the image that will be the Largest Contentful Paint (LCP) element for each page. Doing so
allows Next.js to specially prioritize the image for loading (e.g. through preload tags or priority hints), leading to a meaningful boost in
LCP.

The LCP element is typically the largest image or text block visible within the viewport of the page. When you run next dev, you’ll see
a console warning if the LCP element is an <Image> without the priority property.

Once you’ve identified the LCP image, you can add the property like this:
app/page.js (jsx)

import Image from 'next/image'

export default function Home() {
 return (
 <>
 <h1>My Homepage</h1>
 <Image
 src="/me.png"
 alt="Picture of the author"
 width={500}
 height={500}
 priority
 />
 <p>Welcome to my homepage!</p>
 </>
)
}

app/page.js (jsx)

import Image from 'next/image'
import profilePic from '../public/me.png'

export default function Page() {
 return <Image src={profilePic} alt="Picture of the author" priority />
}

See more about priority in the next/image component documentation.

Image Sizing

One of the ways that images most commonly hurt performance is through layout shift, where the image pushes other elements around
on the page as it loads in. This performance problem is so annoying to users that it has its own Core Web Vital, called Cumulative
Layout Shift. The way to avoid image-based layout shifts is to always size your images. This allows the browser to reserve precisely
enough space for the image before it loads.

Because next/image is designed to guarantee good performance results, it cannot be used in a way that will contribute to layout shift,
and must be sized in one of three ways:

1. Automatically, using a static import
2. Explicitly, by including a width and height property
3. Implicitly, by using fill which causes the image to expand to fill its parent element.

What if I don’t know the size of my images?

If you are accessing images from a source without knowledge of the images’ sizes, there are several things you can do:

Use fillfill
The fill prop allows your image to be sized by its parent element. Consider using CSS to give the image’s parent element
space on the page along sizes prop to match any media query break points. You can also use object-fit with fill,
contain, or cover, and object-position to define how the image should occupy that space.

Normalize your images

If you’re serving images from a source that you control, consider modifying your image pipeline to normalize the images to a
specific size.

Modify your API calls

file:///docs/app/api-reference/components/image#loader
file:///docs/app/api-reference/components/image#loaderfile
https://web.dev/lcp/#what-elements-are-considered
file:///docs/app/api-reference/components/image#priority
https://web.dev/cls/
https://web.dev/optimize-cls/#images-without-dimensions
file:///docs/app/api-reference/components/image#width
file:///docs/app/api-reference/components/image#height
file:///docs/app/api-reference/components/image#fill
file:///docs/app/api-reference/components/image#fill
file:///docs/app/api-reference/components/image#sizes
https://developer.mozilla.org/docs/Web/CSS/object-fit
https://developer.mozilla.org/docs/Web/CSS/object-position

If your application is retrieving image URLs using an API call (such as to a CMS), you may be able to modify the API call to return
the image dimensions along with the URL.

If none of the suggested methods works for sizing your images, the next/image component is designed to work well on a page
alongside standard elements.

Styling

Styling the Image component is similar to styling a normal element, but there are a few guidelines to keep in mind:

Use className or style, not styled-jsx.
In most cases, we recommend using the className prop. This can be an imported CSS Module, a global stylesheet, etc.
You can also use the style prop to assign inline styles.
You cannot use styled-jsx because it’s scoped to the current component (unless you mark the style as global).
When using fill, the parent element must have position: relative
This is necessary for the proper rendering of the image element in that layout mode.
When using fill, the parent element must have display: block
This is the default for <div> elements but should be specified otherwise.

Examples

Responsive

import Image from 'next/image'
import mountains from '../public/mountains.jpg'

export default function Responsive() {
 return (
 <div style={{ display: 'flex', flexDirection: 'column' }}>
 <Image
 alt="Mountains"
 // Importing an image will
 // automatically set the width and height
 src={mountains}
 sizes="100vw"
 // Make the image display full width
 style={{
 width: '100%',
 height: 'auto',
 }}
 />
 </div>
)
}

Fill Container

file:///docs/app/building-your-application/styling/css-modules
file:///docs/app/building-your-application/styling/css-modules#global-styles
file:///docs/app/building-your-application/styling/css-in-js

import Image from 'next/image'
import mountains from '../public/mountains.jpg'

export default function Fill() {
 return (
 <div
 style={{
 display: 'grid',
 gridGap: '8px',
 gridTemplateColumns: 'repeat(auto-fit, minmax(400px, auto))',
 }}
 >
 <div style={{ position: 'relative', height: '400px' }}>
 <Image
 alt="Mountains"
 src={mountains}
 fill
 sizes="(min-width: 808px) 50vw, 100vw"
 style={{
 objectFit: 'cover', // cover, contain, none
 }}
 />
 </div>
 {/* And more images in the grid... */}
 </div>
)
}

Background Image

import Image from 'next/image'
import mountains from '../public/mountains.jpg'

export default function Background() {
 return (
 <Image
 alt="Mountains"
 src={mountains}
 placeholder="blur"
 quality={100}
 fill

 sizes="100vw"
 style={{
 objectFit: 'cover',
 }}
 />
)
}

For examples of the Image component used with the various styles, see the Image Component Demo.

Other Properties

View all properties available to the next/imagenext/image component.

Configuration

The next/image component and Next.js Image Optimization API can be configured in the next.config.js file. These configurations
allow you to enable remote images, define custom image breakpoints, change caching behavior and more.

Read the full image configuration documentation for more information.

https://image-component.nextjs.gallery
file:///docs/app/api-reference/components/image
file:///docs/app/api-reference/next-config-js
file:///docs/app/api-reference/components/image#remotepatterns
file:///docs/app/api-reference/components/image#devicesizes
file:///docs/app/api-reference/components/image#caching-behavior
file:///docs/app/api-reference/components/image#configuration-options

3.1.6.2 - Video Optimization
Documentation path: /02-app/01-building-your-application/06-optimizing/02-videos

Description: Recommendations and best practices for optimizing videos in your Next.js application.

This page outlines how to use videos with Next.js applications, showing how to store and display video files without affecting
performance.

Using <video><video> and <iframe><iframe>
Videos can be embedded on the page using the HTML <video><video> tag for direct video files and <iframe><iframe> for external platform-hosted
videos.

<video><video>

The HTML <video> tag can embed self-hosted or directly served video content, allowing full control over the playback and appearance.

app/ui/video.jsx (jsx)

export function Video() {
 return (
 <video width="320" height="240" controls preload="none">
 <source src="/path/to/video.mp4" type="video/mp4" />
 <track
 src="/path/to/captions.vtt"
 kind="subtitles"
 srcLang="en"
 label="English"
 />
 Your browser does not support the video tag.
 </video>
)
}

Common <video><video> tag attributes

Attribute Description Example Value

src Specifies the source of the video file.

<video
src="/path/to/video.mp4"
/>

width Sets the width of the video player. <video width="320" />

height Sets the height of the video player. <video height="240" />

controls If present, it displays the default set of playback controls. <video controls />

autoPlay Automatically starts playing the video when the page loads. Note: Autoplay
policies vary across browsers.

<video autoPlay />

loop Loops the video playback. <video loop />

muted Mutes the audio by default. Often used with autoPlay. <video muted />

preload Specifies how the video is preloaded. Values: none, metadata, auto. <video preload="none" />

playsInline
Enables inline playback on iOS devices, often necessary for autoplay to work on
iOS Safari. <video playsInline />

Good to know: When using the autoPlay attribute, it is important to also include the muted attribute to ensure the video
plays automatically in most browsers and the playsInline attribute for compatibility with iOS devices.

For a comprehensive list of video attributes, refer to the MDN documentation.

Video best practices

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#attributes

Fallback Content: When using the <video> tag, include fallback content inside the tag for browsers that do not support video
playback.
Subtitles or Captions: Include subtitles or captions for users who are deaf or hard of hearing. Utilize the <track> tag with your
<video> elements to specify caption file sources.
Accessible Controls: Standard HTML5 video controls are recommended for keyboard navigation and screen reader compatibility.
For advanced needs, consider third-party players like react-player or video.js, which offer accessible controls and consistent
browser experience.

<iframe><iframe>

The HTML <iframe> tag allows you to embed videos from external platforms like YouTube or Vimeo.

app/page.jsx (jsx)

export default function Page() {
 return (
 <iframe
 src="https://www.youtube.com/watch?v=gfU1iZnjRZM"
 frameborder="0"
 allowfullscreen
 />
)
}

Common <iframe><iframe> tag attributes

Attribute Description Example Value

src The URL of the page to embed.
<iframe src="https://example.com"
/>

width Sets the width of the iframe. <iframe width="500" />

height Sets the height of the iframe. <iframe height="300" />

frameborder Specifies whether or not to display a border around the iframe. <iframe frameborder="0" />

allowfullscreen Allows the iframe content to be displayed in full-screen mode. <iframe allowfullscreen />

sandbox Enables an extra set of restrictions on the content within the
iframe.

<iframe sandbox />

loading Optimize loading behavior (e.g., lazy loading). <iframe loading="lazy" />

title Provides a title for the iframe to support accessibility. <iframe title="Description" />

For a comprehensive list of iframe attributes, refer to the MDN documentation.

Choosing a video embedding method

There are two ways you can embed videos in your Next.js application:

Self-hosted or direct video files: Embed self-hosted videos using the <video> tag for scenarios requiring detailed control over
the player’s functionality and appearance. This integration method within Next.js allows for customization and control of your video
content.
Using video hosting services (YouTube, Vimeo, etc.): For video hosting services like YouTube or Vimeo, you’ll embed their
iframe-based players using the <iframe> tag. While this method limits some control over the player, it offers ease of use and
features provided by these platforms.

Choose the embedding method that aligns with your application’s requirements and the user experience you aim to deliver.

Embedding externally hosted videos

To embed videos from external platforms, you can use Next.js to fetch the video information and React Suspense to handle the fallback
state while loading.

1. Create a Server Component for video embedding

The first step is to create a Server Component that generates the appropriate iframe for embedding the video. This component will
fetch the source URL for the video and render the iframe.

app/ui/video-component.jsx (jsx)

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/track
https://github.com/cookpete/react-player
https://videojs.com/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe#attributes
https://nextjs.org/docs/app/building-your-application/rendering/server-components

export default async function VideoComponent() {
 const src = await getVideoSrc()

 return <iframe src={src} frameborder="0" allowfullscreen />
}

2. Stream the video component using React Suspense

After creating the Server Component to embed the video, the next step is to stream the component using React Suspense.
app/page.jsx (jsx)

import { Suspense } from 'react'
import VideoComponent from '../ui/VideoComponent.jsx'

export default function Page() {
 return (
 <section>
 <Suspense fallback={<p>Loading video...</p>}>
 <VideoComponent />
 </Suspense>
 {/* Other content of the page */}
 </section>
)
}

Good to know: When embedding videos from external platforms, consider the following best practices:

Ensure the video embeds are responsive. Use CSS to make the iframe or video player adapt to different screen sizes.
Implement strategies for loading videos based on network conditions, especially for users with limited data plans.

This approach results in a better user experience as it prevents the page from blocking, meaning the user can interact with the page
while the video component streams in.

For a more engaging and informative loading experience, consider using a loading skeleton as the fallback UI. So instead of showing a
simple loading message, you can show a skeleton that resembles the video player like this:

app/page.jsx (jsx)

import { Suspense } from 'react'
import VideoComponent from '../ui/VideoComponent.jsx'
import VideoSkeleton from '../ui/VideoSkeleton.jsx'

export default function Page() {
 return (
 <section>
 <Suspense fallback={<VideoSkeleton />}>
 <VideoComponent />
 </Suspense>
 {/* Other content of the page */}
 </section>
)
}

Self-hosted videos

Self-hosting videos may be preferable for several reasons:

Complete control and independence: Self-hosting gives you direct management over your video content, from playback to
appearance, ensuring full ownership and control, free from external platform constraints.
Customization for specific needs: Ideal for unique requirements, like dynamic background videos, it allows for tailored
customization to align with design and functional needs.
Performance and scalability considerations: Choose storage solutions that are both high-performing and scalable, to support
increasing traffic and content size effectively.
Cost and integration: Balance the costs of storage and bandwidth with the need for easy integration into your Next.js framework
and broader tech ecosystem.

Using Vercel Blob for video hosting

Vercel Blob offers an efficient way to host videos, providing a scalable cloud storage solution that works well with Next.js. Here’s how
you can host a video using Vercel Blob:

1. Uploading a video to Vercel Blob

In your Vercel dashboard, navigate to the “Storage” tab and select your Vercel Blob store. In the Blob table’s upper-right corner, find
and click the “Upload” button. Then, choose the video file you wish to upload. After the upload completes, the video file will appear in

https://nextjs.org/docs/app/building-your-application/routing/loading-ui-and-streaming
https://react.dev/reference/react/Suspense
https://yoast.com/site-speed-tips-for-faster-video/
https://vercel.com/docs/storage/vercel-blob?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://vercel.com/docs/storage/vercel-blob?utm_source=next-site&utm_medium=docs&utm_campaign=next-website

the Blob table.

Alternatively, you can upload your video using a server action. For detailed instructions, refer to the Vercel documentation on server-
side uploads. Vercel also supports client-side uploads. This method may be preferable for certain use cases.

2. Displaying the video in Next.js

Once the video is uploaded and stored, you can display it in your Next.js application. Here’s an example of how to do this using the
<video> tag and React Suspense:

app/page.jsx (jsx)

import { Suspense } from 'react'
import { list } from '@vercel/blob'

export default function Page() {
 return (
 <Suspense fallback={<p>Loading video...</p>}>
 <VideoComponent fileName="my-video.mp4" />
 </Suspense>
)
}

async function VideoComponent({ fileName }) {
 const { blobs } = await list({
 prefix: fileName,
 limit: 1,
 })
 const { url } = blobs[0]

 return (
 <video controls preload="none" aria-label="Video player">
 <source src={url} type="video/mp4" />
 Your browser does not support the video tag.
 </video>
)
}

In this approach, the page uses the video’s @vercel/blob URL to display the video using the VideoComponent. React Suspense is used
to show a fallback until the video URL is fetched and the video is ready to be displayed.

Adding subtitles to your video

If you have subtitles for your video, you can easily add them using the <track> element inside your <video> tag. You can fetch the
subtitle file from Vercel Blob in a similar way as the video file. Here’s how you can update the <VideoComponent> to include subtitles.

app/page.jsx (jsx)

async function VideoComponent({ fileName }) {
 const {blobs} = await list({
 prefix: fileName,
 limit: 2
 });
 const { url } = blobs[0];
 const { url: captionsUrl } = blobs[1];

 return (
 <video controls preload="none" aria-label="Video player">
 <source src={url} type="video/mp4" />
 <track
 src={captionsUrl}
 kind="subtitles"
 srcLang="en"
 label="English">
 Your browser does not support the video tag.
 </video>
);
};

By following this approach, you can effectively self-host and integrate videos into your Next.js applications.

Resources

To continue learning more about video optimization and best practices, please refer to the following resources:

Understanding video formats and codecs: Choose the right format and codec, like MP4 for compatibility or WebM for web
optimization, for your video needs. For more details, see Mozilla’s guide on video codecs.

https://vercel.com/docs/storage/vercel-blob/server-upload
https://vercel.com/docs/storage/vercel-blob/client-upload
https://vercel.com/docs/storage/vercel-blob?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Video_codecs

Video compression: Use tools like FFmpeg to effectively compress videos, balancing quality with file size. Learn about
compression techniques at FFmpeg’s official website.
Resolution and bitrate adjustment: Adjust resolution and bitrate based on the viewing platform, with lower settings for mobile
devices.
Content Delivery Networks (CDNs): Utilize a CDN to enhance video delivery speed and manage high traffic. When using some
storage solutions, such as Vercel Blob, CDN functionality is automatically handled for you. Learn more about CDNs and their
benefits.

Explore these video streaming platforms for integrating video into your Next.js projects:

Open source next-videonext-video component

Provides a <Video> component for Next.js, compatible with various hosting services including Vercel Blob, S3, Backblaze, and Mux.
Detailed documentation for using next-video.dev with different hosting services.

Cloudinary Integration

Official documentation and integration guide for using Cloudinary with Next.js.
Includes a <CldVideoPlayer> component for drop-in video support.
Find examples of integrating Cloudinary with Next.js including Adaptive Bitrate Streaming.
Other Cloudinary libraries including a Node.js SDK are also available.

Mux Video API

Mux provides a starter template for creating a video course with Mux and Next.js.
Learn about Mux’s recommendations for embedding high-performance video for your Next.js application.
Explore an example project demonstrating Mux with Next.js.

Fastly

Learn more about integrating Fastly’s solutions for video on demand and streaming media into Next.js.

https://www.ffmpeg.org/
https://www.dacast.com/blog/bitrate-vs-resolution/#:~:text=The%20two%20measure%20different%20aspects,yield%20different%20qualities%20of%20video
https://vercel.com/docs/edge-network/overview?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://vercel.com/docs/storage/vercel-blob?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://next-video.dev/docs
https://next.cloudinary.dev/
https://next.cloudinary.dev/cldvideoplayer/basic-usage
https://github.com/cloudinary-community/cloudinary-examples/?tab=readme-ov-file#nextjs
https://github.com/cloudinary-community/cloudinary-examples/tree/main/examples/nextjs-cldvideoplayer-abr
https://cloudinary.com/documentation
https://github.com/muxinc/video-course-starter-kit
https://www.mux.com/for/nextjs
https://with-mux-video.vercel.app/
https://www.fastly.com/products/streaming-media/video-on-demand

3.1.6.3 - Font Optimization
Documentation path: /02-app/01-building-your-application/06-optimizing/03-fonts

Description: Optimize your application's web fonts with the built-in `next/font` loaders.

Related:

Title: API Reference

Related Description: Learn more about the next/font API.

Links:

app/api-reference/components/font

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

next/fontnext/font will automatically optimize your fonts (including custom fonts) and remove external network requests for improved
privacy and performance.

� Watch: Learn more about using next/font → YouTube (6 minutes).

next/font includes built-in automatic self-hosting for any font file. This means you can optimally load web fonts with zero layout
shift, thanks to the underlying CSS size-adjust property used.

This new font system also allows you to conveniently use all Google Fonts with performance and privacy in mind. CSS and font files are
downloaded at build time and self-hosted with the rest of your static assets. No requests are sent to Google by the browser.

Google Fonts

Automatically self-host any Google Font. Fonts are included in the deployment and served from the same domain as your deployment.
No requests are sent to Google by the browser.

Get started by importing the font you would like to use from next/font/google as a function. We recommend using variable fonts for
the best performance and flexibility.

app/layout.tsx (tsx)

import { Inter } from 'next/font/google'

// If loading a variable font, you don't need to specify the font weight
const inter = Inter({
 subsets: ['latin'],
 display: 'swap',
})

export default function RootLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html lang="en" className={inter.className}>
 <body>{children}</body>
 </html>
)
}

app/layout.js (jsx)

import { Inter } from 'next/font/google'

// If loading a variable font, you don't need to specify the font weight
const inter = Inter({
 subsets: ['latin'],
 display: 'swap',
})

export default function RootLayout({ children }) {
 return (
 <html lang="en" className={inter.className}>
 <body>{children}</body>
 </html>
)
}

file:///docs/app/api-reference/components/font
https://www.youtube.com/watch?v=L8_98i_bMMA
https://fonts.google.com/variablefonts

If you can’t use a variable font, you will need to specify a weight:
app/layout.tsx (tsx)

import { Roboto } from 'next/font/google'

const roboto = Roboto({
 weight: '400',
 subsets: ['latin'],
 display: 'swap',
})

export default function RootLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html lang="en" className={roboto.className}>
 <body>{children}</body>
 </html>
)
}

app/layout.js (jsx)

import { Roboto } from 'next/font/google'

const roboto = Roboto({
 weight: '400',
 subsets: ['latin'],
 display: 'swap',
})

export default function RootLayout({ children }) {
 return (
 <html lang="en" className={roboto.className}>
 <body>{children}</body>
 </html>
)
}

To use the font in all your pages, add it to _app.js file under /pages as shown below:

pages/_app.js (jsx)

import { Inter } from 'next/font/google'

// If loading a variable font, you don't need to specify the font weight
const inter = Inter({ subsets: ['latin'] })

export default function MyApp({ Component, pageProps }) {
 return (
 <main className={inter.className}>
 <Component {...pageProps} />
 </main>
)
}

If you can’t use a variable font, you will need to specify a weight:
pages/_app.js (jsx)

import { Roboto } from 'next/font/google'

const roboto = Roboto({
 weight: '400',
 subsets: ['latin'],
})

export default function MyApp({ Component, pageProps }) {
 return (
 <main className={roboto.className}>
 <Component {...pageProps} />
 </main>
)
}

file:///docs/pages/building-your-application/routing/custom-app

You can specify multiple weights and/or styles by using an array:
app/layout.js (jsx)

const roboto = Roboto({
 weight: ['400', '700'],
 style: ['normal', 'italic'],
 subsets: ['latin'],
 display: 'swap',
})

Good to know: Use an underscore (_) for font names with multiple words. E.g. Roboto Mono should be imported as
Roboto_Mono.

Apply the font in <head><head>

You can also use the font without a wrapper and className by injecting it inside the <head> as follows:

pages/_app.js (jsx)

import { Inter } from 'next/font/google'

const inter = Inter({ subsets: ['latin'] })

export default function MyApp({ Component, pageProps }) {
 return (
 <>
 <style jsx global>{`
 html {
 font-family: ${inter.style.fontFamily};
 }
 `}</style>
 <Component {...pageProps} />
 </>
)
}

Single page usage

To use the font on a single page, add it to the specific page as shown below:
pages/index.js (jsx)

import { Inter } from 'next/font/google'

const inter = Inter({ subsets: ['latin'] })

export default function Home() {
 return (
 <div className={inter.className}>
 <p>Hello World</p>
 </div>
)
}

Specifying a subset

Google Fonts are automatically subset. This reduces the size of the font file and improves performance. You’ll need to define which of
these subsets you want to preload. Failing to specify any subsets while preload is true will result in a warning.

This can be done by adding it to the function call:
app/layout.tsx (tsx)

const inter = Inter({ subsets: ['latin'] })

app/layout.js (jsx)

const inter = Inter({ subsets: ['latin'] })

pages/_app.js (jsx)

const inter = Inter({ subsets: ['latin'] })

View the Font API Reference for more information.

Using Multiple Fonts

https://fonts.google.com/knowledge/glossary/subsetting
file:///docs/app/api-reference/components/font#preload
file:///docs/app/api-reference/components/font

You can import and use multiple fonts in your application. There are two approaches you can take.

The first approach is to create a utility function that exports a font, imports it, and applies its className where needed. This ensures
the font is preloaded only when it’s rendered:

app/fonts.ts (ts)

import { Inter, Roboto_Mono } from 'next/font/google'

export const inter = Inter({
 subsets: ['latin'],
 display: 'swap',
})

export const roboto_mono = Roboto_Mono({
 subsets: ['latin'],
 display: 'swap',
})

app/fonts.js (js)

import { Inter, Roboto_Mono } from 'next/font/google'

export const inter = Inter({
 subsets: ['latin'],
 display: 'swap',
})

export const roboto_mono = Roboto_Mono({
 subsets: ['latin'],
 display: 'swap',
})

app/layout.tsx (tsx)

import { inter } from './fonts'

export default function Layout({ children }: { children: React.ReactNode }) {
 return (
 <html lang="en" className={inter.className}>
 <body>
 <div>{children}</div>
 </body>
 </html>
)
}

app/layout.js (jsx)

import { inter } from './fonts'

export default function Layout({ children }) {
 return (
 <html lang="en" className={inter.className}>
 <body>
 <div>{children}</div>
 </body>
 </html>
)
}

app/page.tsx (tsx)

import { roboto_mono } from './fonts'

export default function Page() {
 return (
 <>
 <h1 className={roboto_mono.className}>My page</h1>
 </>
)
}

app/page.js (jsx)

import { roboto_mono } from './fonts'

export default function Page() {
 return (

 <>
 <h1 className={roboto_mono.className}>My page</h1>
 </>
)
}

In the example above, Inter will be applied globally, and Roboto Mono can be imported and applied as needed.

Alternatively, you can create a CSS variable and use it with your preferred CSS solution:
app/layout.tsx (tsx)

import { Inter, Roboto_Mono } from 'next/font/google'
import styles from './global.css'

const inter = Inter({
 subsets: ['latin'],
 variable: '--font-inter',
 display: 'swap',
})

const roboto_mono = Roboto_Mono({
 subsets: ['latin'],
 variable: '--font-roboto-mono',
 display: 'swap',
})

export default function RootLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html lang="en" className={`${inter.variable} ${roboto_mono.variable}`}>
 <body>
 <h1>My App</h1>
 <div>{children}</div>
 </body>
 </html>
)
}

app/layout.js (jsx)

import { Inter, Roboto_Mono } from 'next/font/google'

const inter = Inter({
 subsets: ['latin'],
 variable: '--font-inter',
 display: 'swap',
})

const roboto_mono = Roboto_Mono({
 subsets: ['latin'],
 variable: '--font-roboto-mono',
 display: 'swap',
})

export default function RootLayout({ children }) {
 return (
 <html lang="en" className={`${inter.variable} ${roboto_mono.variable}`}>
 <body>
 <h1>My App</h1>
 <div>{children}</div>
 </body>
 </html>
)
}

app/global.css (css)

html {
 font-family: var(--font-inter);
}

h1 {
 font-family: var(--font-roboto-mono);
}

file:///docs/app/api-reference/components/font#variable

In the example above, Inter will be applied globally, and any <h1> tags will be styled with Roboto Mono.

Recommendation: Use multiple fonts conservatively since each new font is an additional resource the client has to download.

Local Fonts

Import next/font/local and specify the src of your local font file. We recommend using variable fonts for the best performance and
flexibility.

app/layout.tsx (tsx)

import localFont from 'next/font/local'

// Font files can be colocated inside of `app`
const myFont = localFont({
 src: './my-font.woff2',
 display: 'swap',
})

export default function RootLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html lang="en" className={myFont.className}>
 <body>{children}</body>
 </html>
)
}

app/layout.js (jsx)

import localFont from 'next/font/local'

// Font files can be colocated inside of `app`
const myFont = localFont({
 src: './my-font.woff2',
 display: 'swap',
})

export default function RootLayout({ children }) {
 return (
 <html lang="en" className={myFont.className}>
 <body>{children}</body>
 </html>
)
}

pages/_app.js (jsx)

import localFont from 'next/font/local'

// Font files can be colocated inside of `pages`
const myFont = localFont({ src: './my-font.woff2' })

export default function MyApp({ Component, pageProps }) {
 return (
 <main className={myFont.className}>
 <Component {...pageProps} />
 </main>
)
}

If you want to use multiple files for a single font family, src can be an array:

const roboto = localFont({
 src: [
 {
 path: './Roboto-Regular.woff2',
 weight: '400',
 style: 'normal',
 },
 {
 path: './Roboto-Italic.woff2',
 weight: '400',
 style: 'italic',

https://fonts.google.com/variablefonts

 },
 {
 path: './Roboto-Bold.woff2',
 weight: '700',
 style: 'normal',
 },
 {
 path: './Roboto-BoldItalic.woff2',
 weight: '700',
 style: 'italic',
 },
],
})

View the Font API Reference for more information.

With Tailwind CSS

next/font can be used with Tailwind CSS through a CSS variable.

In the example below, we use the font Inter from next/font/google (you can use any font from Google or Local Fonts). Load your
font with the variable option to define your CSS variable name and assign it to inter. Then, use inter.variable to add the CSS
variable to your HTML document.

app/layout.tsx (tsx)

import { Inter, Roboto_Mono } from 'next/font/google'

const inter = Inter({
 subsets: ['latin'],
 display: 'swap',
 variable: '--font-inter',
})

const roboto_mono = Roboto_Mono({
 subsets: ['latin'],
 display: 'swap',
 variable: '--font-roboto-mono',
})

export default function RootLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html lang="en" className={`${inter.variable} ${roboto_mono.variable}`}>
 <body>{children}</body>
 </html>
)
}

app/layout.js (jsx)

import { Inter, Roboto_Mono } from 'next/font/google'

const inter = Inter({
 subsets: ['latin'],
 display: 'swap',
 variable: '--font-inter',
})

const roboto_mono = Roboto_Mono({
 subsets: ['latin'],
 display: 'swap',
 variable: '--font-roboto-mono',
})

export default function RootLayout({ children }) {
 return (
 <html lang="en" className={`${inter.variable} ${roboto_mono.variable}`}>
 <body>{children}</body>
 </html>
)
}

file:///docs/app/api-reference/components/font
https://tailwindcss.com/
file:///docs/app/api-reference/components/font#css-variables

pages/_app.js (jsx)

import { Inter } from 'next/font/google'

const inter = Inter({
 subsets: ['latin'],
 variable: '--font-inter',
})

export default function MyApp({ Component, pageProps }) {
 return (
 <main className={`${inter.variable} font-sans`}>
 <Component {...pageProps} />
 </main>
)
}

Finally, add the CSS variable to your Tailwind CSS config:
tailwind.config.js (js)

/** @type {import('tailwindcss').Config} */
module.exports = {
 content: [
 './pages/**/*.{js,ts,jsx,tsx}',
 './components/**/*.{js,ts,jsx,tsx}',
 './app/**/*.{js,ts,jsx,tsx}',
],
 theme: {
 extend: {
 fontFamily: {
 sans: ['var(--font-inter)'],
 mono: ['var(--font-roboto-mono)'],
 },
 },
 },
 plugins: [],
}

You can now use the font-sans and font-mono utility classes to apply the font to your elements.

Preloading

When a font function is called on a page of your site, it is not globally available and preloaded on all routes. Rather, the font is only
preloaded on the related routes based on the type of file where it is used:

If it’s a unique page, it is preloaded on the unique route for that page.
If it’s a layout, it is preloaded on all the routes wrapped by the layout.
If it’s the root layout, it is preloaded on all routes.

When a font function is called on a page of your site, it is not globally available and preloaded on all routes. Rather, the font is only
preloaded on the related route/s based on the type of file where it is used:

if it’s a unique page, it is preloaded on the unique route for that page
if it’s in the custom App, it is preloaded on all the routes of the site under /pages

Reusing fonts

Every time you call the localFont or Google font function, that font is hosted as one instance in your application. Therefore, if you
load the same font function in multiple files, multiple instances of the same font are hosted. In this situation, it is recommended to do
the following:

Call the font loader function in one shared file
Export it as a constant
Import the constant in each file where you would like to use this font

file:///docs/app/building-your-application/styling/tailwind-css#configuring-tailwind
file:///docs/app/building-your-application/routing/pages
file:///docs/app/building-your-application/routing/layouts-and-templates#layouts
file:///docs/app/building-your-application/routing/layouts-and-templates#root-layout-required
file:///docs/pages/building-your-application/routing/pages-and-layouts
file:///docs/pages/building-your-application/routing/custom-app

3.1.6.4 - Metadata
Documentation path: /02-app/01-building-your-application/06-optimizing/04-metadata

Description: Use the Metadata API to define metadata in any layout or page.

Related:

Title: Related

Related Description: View all the Metadata API options.

Links:

app/api-reference/functions/generate-metadata
app/api-reference/file-conventions/metadata
app/api-reference/functions/generate-viewport

Next.js has a Metadata API that can be used to define your application metadata (e.g. meta and link tags inside your HTML head
element) for improved SEO and web shareability.

There are two ways you can add metadata to your application:

Config-based Metadata: Export a static metadata object or a dynamic generateMetadata function in a layout.js or page.js
file.
File-based Metadata: Add static or dynamically generated special files to route segments.

With both these options, Next.js will automatically generate the relevant <head> elements for your pages. You can also create dynamic
OG images using the ImageResponse constructor.

Static Metadata

To define static metadata, export a Metadata object from a layout.js or static page.js file.

layout.tsx | page.tsx (tsx)

import type { Metadata } from 'next'

export const metadata: Metadata = {
 title: '...',
 description: '...',
}

export default function Page() {}

layout.js | page.js (jsx)

export const metadata = {
 title: '...',
 description: '...',
}

export default function Page() {}

For all the available options, see the API Reference.

Dynamic Metadata

You can use generateMetadata function to fetch metadata that requires dynamic values.

app/products/[id]/page.tsx (tsx)

import type { Metadata, ResolvingMetadata } from 'next'

type Props = {
 params: { id: string }
 searchParams: { [key: string]: string | string[] | undefined }
}

export async function generateMetadata(
 { params, searchParams }: Props,
 parent: ResolvingMetadata
): Promise<Metadata> {
 // read route params
 const id = params.id

file:///docs/app/api-reference/functions/generate-metadata#metadata-object
file:///docs/app/api-reference/functions/generate-metadata#generatemetadata-function
file:///docs/app/api-reference/functions/image-response
file:///docs/app/api-reference/functions/generate-metadata#metadata-object
file:///docs/app/api-reference/functions/generate-metadata

 // fetch data
 const product = await fetch(`https://.../${id}`).then((res) => res.json())

 // optionally access and extend (rather than replace) parent metadata
 const previousImages = (await parent).openGraph?.images || []

 return {
 title: product.title,
 openGraph: {
 images: ['/some-specific-page-image.jpg', ...previousImages],
 },
 }
}

export default function Page({ params, searchParams }: Props) {}

app/products/[id]/page.js (jsx)

export async function generateMetadata({ params, searchParams }, parent) {
 // read route params
 const id = params.id

 // fetch data
 const product = await fetch(`https://.../${id}`).then((res) => res.json())

 // optionally access and extend (rather than replace) parent metadata
 const previousImages = (await parent).openGraph?.images || []

 return {
 title: product.title,
 openGraph: {
 images: ['/some-specific-page-image.jpg', ...previousImages],
 },
 }
}

export default function Page({ params, searchParams }) {}

For all the available params, see the API Reference.

Good to know:

Both static and dynamic metadata through generateMetadata are only supported in Server Components.
fetch requests are automatically memoized for the same data across generateMetadata, generateStaticParams,
Layouts, Pages, and Server Components. React cache can be used if fetch is unavailable.
Next.js will wait for data fetching inside generateMetadata to complete before streaming UI to the client. This guarantees
the first part of a streamed response includes <head> tags.

File-based metadata

These special files are available for metadata:

favicon.ico, apple-icon.jpg, and icon.jpg
opengraph-image.jpg and twitter-image.jpg
robots.txt
sitemap.xml

You can use these for static metadata, or you can programmatically generate these files with code.

For implementation and examples, see the Metadata Files API Reference and Dynamic Image Generation.

Behavior

File-based metadata has the higher priority and will override any config-based metadata.

Default Fields

There are two default meta tags that are always added even if a route doesn’t define metadata:

The meta charset tag sets the character encoding for the website.
The meta viewport tag sets the viewport width and scale for the website to adjust for different devices.

file:///docs/app/api-reference/functions/generate-metadata
file:///docs/app/building-your-application/caching#request-memoization
file:///docs/app/building-your-application/caching#request-memoization
file:///docs/app/building-your-application/routing/loading-ui-and-streaming
file:///docs/app/api-reference/file-conventions/metadata/app-icons
file:///docs/app/api-reference/file-conventions/metadata/opengraph-image
file:///docs/app/api-reference/file-conventions/metadata/robots
file:///docs/app/api-reference/file-conventions/metadata/sitemap
file:///docs/app/api-reference/file-conventions/metadata
https://developer.mozilla.org/docs/Web/HTML/Element/meta#attr-charset
https://developer.mozilla.org/docs/Web/HTML/Viewport_meta_tag

<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />

Good to know: You can overwrite the default viewport meta tag.

Ordering

Metadata is evaluated in order, starting from the root segment down to the segment closest to the final page.js segment. For
example:

1. app/layout.tsx (Root Layout)
2. app/blog/layout.tsx (Nested Blog Layout)
3. app/blog/[slug]/page.tsx (Blog Page)

Merging

Following the evaluation order, Metadata objects exported from multiple segments in the same route are shallowly merged together
to form the final metadata output of a route. Duplicate keys are replaced based on their ordering.

This means metadata with nested fields such as openGraph and robots that are defined in an earlier segment are overwritten by the
last segment to define them.

Overwriting fields

app/layout.js (jsx)

export const metadata = {
 title: 'Acme',
 openGraph: {
 title: 'Acme',
 description: 'Acme is a...',
 },
}

app/blog/page.js (jsx)

export const metadata = {
 title: 'Blog',
 openGraph: {
 title: 'Blog',
 },
}

// Output:
// <title>Blog</title>
// <meta property="og:title" content="Blog" />

In the example above:

title from app/layout.js is replaced by title in app/blog/page.js.
All openGraph fields from app/layout.js are replaced in app/blog/page.js because app/blog/page.js sets openGraph
metadata. Note the absence of openGraph.description.

If you’d like to share some nested fields between segments while overwriting others, you can pull them out into a separate variable:
app/shared-metadata.js (jsx)

export const openGraphImage = { images: ['http://...'] }

app/page.js (jsx)

import { openGraphImage } from './shared-metadata'

export const metadata = {
 openGraph: {
 ...openGraphImage,
 title: 'Home',
 },
}

app/about/page.js (jsx)

import { openGraphImage } from '../shared-metadata'

export const metadata = {

file:///docs/app/api-reference/functions/generate-metadata#viewport
file:///docs/app/api-reference/functions/generate-metadata#opengraph
file:///docs/app/api-reference/functions/generate-metadata#robots

 openGraph: {
 ...openGraphImage,
 title: 'About',
 },
}

In the example above, the OG image is shared between app/layout.js and app/about/page.js while the titles are different.

Inheriting fields

app/layout.js (jsx)

export const metadata = {
 title: 'Acme',
 openGraph: {
 title: 'Acme',
 description: 'Acme is a...',
 },
}

app/about/page.js (jsx)

export const metadata = {
 title: 'About',
}

// Output:
// <title>About</title>
// <meta property="og:title" content="Acme" />
// <meta property="og:description" content="Acme is a..." />

Notes

title from app/layout.js is replaced by title in app/about/page.js.
All openGraph fields from app/layout.js are inherited in app/about/page.js because app/about/page.js doesn’t set
openGraph metadata.

Dynamic Image Generation

The ImageResponse constructor allows you to generate dynamic images using JSX and CSS. This is useful for creating social media
images such as Open Graph images, Twitter cards, and more.

To use it, you can import ImageResponse from next/og:

app/about/route.js (jsx)

import { ImageResponse } from 'next/og'

export async function GET() {
 return new ImageResponse(
 (
 <div
 style={{
 fontSize: 128,
 background: 'white',
 width: '100%',
 height: '100%',
 display: 'flex',
 textAlign: 'center',
 alignItems: 'center',
 justifyContent: 'center',
 }}
 >
 Hello world!
 </div>
),
 {
 width: 1200,
 height: 600,
 }
)
}

ImageResponse integrates well with other Next.js APIs, including Route Handlers and file-based Metadata. For example, you can use
ImageResponse in a opengraph-image.tsx file to generate Open Graph images at build time or dynamically at request time.

file:///docs/app/building-your-application/routing/route-handlers

ImageResponse supports common CSS properties including flexbox and absolute positioning, custom fonts, text wrapping, centering,
and nested images. See the full list of supported CSS properties.

Good to know:

Examples are available in the Vercel OG Playground.
ImageResponse uses @vercel/og, Satori, and Resvg to convert HTML and CSS into PNG.
Only the Edge Runtime is supported. The default Node.js runtime will not work.
Only flexbox and a subset of CSS properties are supported. Advanced layouts (e.g. display: grid) will not work.
Maximum bundle size of 500KB. The bundle size includes your JSX, CSS, fonts, images, and any other assets. If you exceed
the limit, consider reducing the size of any assets or fetching at runtime.
Only ttf, otf, and woff font formats are supported. To maximize the font parsing speed, ttf or otf are preferred over
woff.

JSON-LD

JSON-LD is a format for structured data that can be used by search engines to understand your content. For example, you can use it to
describe a person, an event, an organization, a movie, a book, a recipe, and many other types of entities.

Our current recommendation for JSON-LD is to render structured data as a <script> tag in your layout.js or page.js components.
For example:

app/products/[id]/page.tsx (tsx)

export default async function Page({ params }) {
 const product = await getProduct(params.id)

 const jsonLd = {
 '@context': 'https://schema.org',
 '@type': 'Product',
 name: product.name,
 image: product.image,
 description: product.description,
 }

 return (
 <section>
 {/* Add JSON-LD to your page */}
 <script
 type="application/ld+json"
 dangerouslySetInnerHTML={{ __html: JSON.stringify(jsonLd) }}
 />
 {/* ... */}
 </section>
)
}

app/products/[id]/page.js (jsx)

export default async function Page({ params }) {
 const product = await getProduct(params.id)

 const jsonLd = {
 '@context': 'https://schema.org',
 '@type': 'Product',
 name: product.name,
 image: product.image,
 description: product.description,
 }

 return (
 <section>
 {/* Add JSON-LD to your page */}
 <script
 type="application/ld+json"
 dangerouslySetInnerHTML={{ __html: JSON.stringify(jsonLd) }}
 />
 {/* ... */}
 </section>
)
}

You can validate and test your structured data with the Rich Results Test for Google or the generic Schema Markup Validator.

You can type your JSON-LD with TypeScript using community packages like schema-dts:

file:///docs/app/api-reference/functions/image-response
https://og-playground.vercel.app/
https://vercel.com/docs/concepts/functions/edge-functions/og-image-generation
https://github.com/vercel/satori
https://json-ld.org/
https://search.google.com/test/rich-results
https://validator.schema.org/
https://www.npmjs.com/package/schema-dts

import { Product, WithContext } from 'schema-dts'

const jsonLd: WithContext<Product> = {
 '@context': 'https://schema.org',
 '@type': 'Product',
 name: 'Next.js Sticker',
 image: 'https://nextjs.org/imgs/sticker.png',
 description: 'Dynamic at the speed of static.',
}

3.1.6.5 - Script Optimization
Documentation path: /02-app/01-building-your-application/06-optimizing/05-scripts

Description: Optimize 3rd party scripts with the built-in Script component.

Related:

Title: API Reference

Related Description: Learn more about the next/script API.

Links:

app/api-reference/components/script

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Layout Scripts

To load a third-party script for multiple routes, import next/script and include the script directly in your layout component:

app/dashboard/layout.tsx (tsx)

import Script from 'next/script'

export default function DashboardLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <>
 <section>{children}</section>
 <Script src="https://example.com/script.js" />
 </>
)
}

app/dashboard/layout.js (jsx)

import Script from 'next/script'

export default function DashboardLayout({ children }) {
 return (
 <>
 <section>{children}</section>
 <Script src="https://example.com/script.js" />
 </>
)
}

The third-party script is fetched when the folder route (e.g. dashboard/page.js) or any nested route (e.g.
dashboard/settings/page.js) is accessed by the user. Next.js will ensure the script will only load once, even if a user navigates
between multiple routes in the same layout.

Application Scripts

To load a third-party script for all routes, import next/script and include the script directly in your root layout:

app/layout.tsx (tsx)

import Script from 'next/script'

export default function RootLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html lang="en">
 <body>{children}</body>
 <Script src="https://example.com/script.js" />
 </html>
)
}

app/layout.js (jsx)

import Script from 'next/script'

export default function RootLayout({ children }) {
 return (
 <html lang="en">
 <body>{children}</body>
 <Script src="https://example.com/script.js" />
 </html>
)
}

To load a third-party script for all routes, import next/script and include the script directly in your custom _app:

pages/_app.js (jsx)

import Script from 'next/script'

export default function MyApp({ Component, pageProps }) {
 return (
 <>
 <Component {...pageProps} />
 <Script src="https://example.com/script.js" />
 </>
)
}

This script will load and execute when any route in your application is accessed. Next.js will ensure the script will only load once, even
if a user navigates between multiple pages.

Recommendation: We recommend only including third-party scripts in specific pages or layouts in order to minimize any
unnecessary impact to performance.

Strategy

Although the default behavior of next/script allows you to load third-party scripts in any page or layout, you can fine-tune its loading
behavior by using the strategy property:

beforeInteractive: Load the script before any Next.js code and before any page hydration occurs.
afterInteractive: (default) Load the script early but after some hydration on the page occurs.
lazyOnload: Load the script later during browser idle time.
worker: (experimental) Load the script in a web worker.

Refer to the next/script API reference documentation to learn more about each strategy and their use cases.

Offloading Scripts To A Web Worker (Experimental)

Warning: The worker strategy is not yet stable and does not yet work with the app directory. Use with caution.

Scripts that use the worker strategy are offloaded and executed in a web worker with Partytown. This can improve the performance of
your site by dedicating the main thread to the rest of your application code.

This strategy is still experimental and can only be used if the nextScriptWorkers flag is enabled in next.config.js:

next.config.js (js)

module.exports = {
 experimental: {
 nextScriptWorkers: true,
 },
}

Then, run next (normally npm run dev or yarn dev) and Next.js will guide you through the installation of the required packages to
finish the setup:

Terminal (bash)

npm run dev

You’ll see instructions like these: Please install Partytown by running npm install @builder.io/partytown
Once setup is complete, defining strategy="worker" will automatically instantiate Partytown in your application and offload the
script to a web worker.

pages/home.tsx (tsx)

file:///docs/app/api-reference/components/script#strategy
file:///docs/app/building-your-application/routing/defining-routes
https://partytown.builder.io/

import Script from 'next/script'

export default function Home() {
 return (
 <>
 <Script src="https://example.com/script.js" strategy="worker" />
 </>
)
}

pages/home.js (jsx)

import Script from 'next/script'

export default function Home() {
 return (
 <>
 <Script src="https://example.com/script.js" strategy="worker" />
 </>
)
}

There are a number of trade-offs that need to be considered when loading a third-party script in a web worker. Please see Partytown’s
tradeoffs documentation for more information.

Inline Scripts

Inline scripts, or scripts not loaded from an external file, are also supported by the Script component. They can be written by placing
the JavaScript within curly braces:

<Script id="show-banner">
 {`document.getElementById('banner').classList.remove('hidden')`}
</Script>

Or by using the dangerouslySetInnerHTML property:

<Script
 id="show-banner"
 dangerouslySetInnerHTML={{
 __html: `document.getElementById('banner').classList.remove('hidden')`,
 }}
/>

Warning: An id property must be assigned for inline scripts in order for Next.js to track and optimize the script.

Executing Additional Code

Event handlers can be used with the Script component to execute additional code after a certain event occurs:

onLoad: Execute code after the script has finished loading.
onReady: Execute code after the script has finished loading and every time the component is mounted.
onError: Execute code if the script fails to load.

These handlers will only work when next/script is imported and used inside of a Client Component where "use client" is defined
as the first line of code:

app/page.tsx (tsx)

'use client'

import Script from 'next/script'

export default function Page() {
 return (
 <>
 <Script
 src="https://example.com/script.js"
 onLoad={() => {
 console.log('Script has loaded')
 }}
 />
 </>
)
}

https://partytown.builder.io/trade-offs
file:///docs/app/building-your-application/rendering/client-components

app/page.js (jsx)

'use client'

import Script from 'next/script'

export default function Page() {
 return (
 <>
 <Script
 src="https://example.com/script.js"
 onLoad={() => {
 console.log('Script has loaded')
 }}
 />
 </>
)
}

Refer to the next/script API reference to learn more about each event handler and view examples.

These handlers will only work when next/script is imported and used inside of a Client Component where "use client" is defined
as the first line of code:

pages/index.tsx (tsx)

import Script from 'next/script'

export default function Page() {
 return (
 <>
 <Script
 src="https://example.com/script.js"
 onLoad={() => {
 console.log('Script has loaded')
 }}
 />
 </>
)
}

pages/index.js (jsx)

import Script from 'next/script'

export default function Page() {
 return (
 <>
 <Script
 src="https://example.com/script.js"
 onLoad={() => {
 console.log('Script has loaded')
 }}
 />
 </>
)
}

Refer to the next/script API reference to learn more about each event handler and view examples.

Additional Attributes

There are many DOM attributes that can be assigned to a <script> element that are not used by the Script component, like nonce or
custom data attributes. Including any additional attributes will automatically forward it to the final, optimized <script> element that
is included in the HTML.

app/page.tsx (tsx)

import Script from 'next/script'

export default function Page() {
 return (
 <>
 <Script
 src="https://example.com/script.js"
 id="example-script"
 nonce="XUENAJFW"
 data-test="script"

file:///docs/app/api-reference/components/script#onload
file:///docs/app/building-your-application/rendering/client-components
file:///docs/pages/api-reference/components/script#onload
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/nonce
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/data-*

 />
 </>
)
}

app/page.js (jsx)

import Script from 'next/script'

export default function Page() {
 return (
 <>
 <Script
 src="https://example.com/script.js"
 id="example-script"
 nonce="XUENAJFW"
 data-test="script"
 />
 </>
)
}

pages/index.tsx (tsx)

import Script from 'next/script'

export default function Page() {
 return (
 <>
 <Script
 src="https://example.com/script.js"
 id="example-script"
 nonce="XUENAJFW"
 data-test="script"
 />
 </>
)
}

pages/index.js (jsx)

import Script from 'next/script'

export default function Page() {
 return (
 <>
 <Script
 src="https://example.com/script.js"
 id="example-script"
 nonce="XUENAJFW"
 data-test="script"
 />
 </>
)
}

3.1.6.6 - Bundle Analyzer
Documentation path: /02-app/01-building-your-application/06-optimizing/06-bundle-analyzer

Description: Analyze the size of your JavaScript bundles using the @next/bundle-analyzer plugin.

Related:

Title: Related

Related Description: Learn more about optimizing your application for production.

Links:

app/building-your-application/deploying/production-checklist

@next/bundle-analyzer is a plugin for Next.js that helps you manage the size of your JavaScript modules. It generates a visual report
of the size of each module and their dependencies. You can use the information to remove large dependencies, split your code, or only
load some parts when needed, reducing the amount of data transferred to the client.

Installation

Install the plugin by running the following command:

npm i @next/bundle-analyzer
or
yarn add @next/bundle-analyzer
or
pnpm add @next/bundle-analyzer

Then, add the bundle analyzer’s settings to your next.config.js.

next.config.js (js)

/** @type {import('next').NextConfig} */
const nextConfig = {}

const withBundleAnalyzer = require('@next/bundle-analyzer')()

module.exports =
 process.env.ANALYZE === 'true' ? withBundleAnalyzer(nextConfig) : nextConfig

Analyzing your bundles

Run the following command to analyze your bundles:

ANALYZE=true npm run build
or
ANALYZE=true yarn build
or
ANALYZE=true pnpm build

The report will open three new tabs in your browser, which you can inspect. Doing this regularly while you develop and before
deploying your site can help you identify large bundles earlier, and architect your application to be more performant.

https://www.npmjs.com/package/@next/bundle-analyzer

3.1.6.7 - Lazy Loading
Documentation path: /02-app/01-building-your-application/06-optimizing/07-lazy-loading

Description: Lazy load imported libraries and React Components to improve your application's loading performance.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Lazy loading in Next.js helps improve the initial loading performance of an application by decreasing the amount of JavaScript needed
to render a route.

It allows you to defer loading of Client Components and imported libraries, and only include them in the client bundle when they’re
needed. For example, you might want to defer loading a modal until a user clicks to open it.

There are two ways you can implement lazy loading in Next.js:

1. Using Dynamic Imports with next/dynamic
2. Using React.lazy() with Suspense

By default, Server Components are automatically code split, and you can use streaming to progressively send pieces of UI from the
server to the client. Lazy loading applies to Client Components.

next/dynamicnext/dynamic
next/dynamic is a composite of React.lazy() and Suspense. It behaves the same way in the app and pages directories to allow for
incremental migration.

Examples

Importing Client Components

app/page.js (jsx)

'use client'

import { useState } from 'react'
import dynamic from 'next/dynamic'

// Client Components:
const ComponentA = dynamic(() => import('../components/A'))
const ComponentB = dynamic(() => import('../components/B'))
const ComponentC = dynamic(() => import('../components/C'), { ssr: false })

export default function ClientComponentExample() {
 const [showMore, setShowMore] = useState(false)

 return (
 <div>
 {/* Load immediately, but in a separate client bundle */}
 <ComponentA />

 {/* Load on demand, only when/if the condition is met */}
 {showMore && <ComponentB />}
 <button onClick={() => setShowMore(!showMore)}>Toggle</button>

 {/* Load only on the client side */}
 <ComponentC />
 </div>
)
}

Skipping SSR

When using React.lazy() and Suspense, Client Components will be pre-rendered (SSR) by default.

If you want to disable pre-rendering for a Client Component, you can use the ssr option set to false:

const ComponentC = dynamic(() => import('../components/C'), { ssr: false })

Importing Server Components

https://developer.mozilla.org/docs/Web/Performance/Lazy_loading
https://react.dev/reference/react/lazy
https://react.dev/reference/react/Suspense
https://developer.mozilla.org/docs/Glossary/Code_splitting
file:///docs/app/building-your-application/routing/loading-ui-and-streaming
https://react.dev/reference/react/lazy
https://react.dev/reference/react/Suspense

If you dynamically import a Server Component, only the Client Components that are children of the Server Component will be lazy-
loaded - not the Server Component itself.

app/page.js (jsx)

import dynamic from 'next/dynamic'

// Server Component:
const ServerComponent = dynamic(() => import('../components/ServerComponent'))

export default function ServerComponentExample() {
 return (
 <div>
 <ServerComponent />
 </div>
)
}

Loading External Libraries

External libraries can be loaded on demand using the import() function. This example uses the external library fuse.js for fuzzy
search. The module is only loaded on the client after the user types in the search input.

app/page.js (jsx)

'use client'

import { useState } from 'react'

const names = ['Tim', 'Joe', 'Bel', 'Lee']

export default function Page() {
 const [results, setResults] = useState()

 return (
 <div>
 <input
 type="text"
 placeholder="Search"
 onChange={async (e) => {
 const { value } = e.currentTarget
 // Dynamically load fuse.js
 const Fuse = (await import('fuse.js')).default
 const fuse = new Fuse(names)

 setResults(fuse.search(value))
 }}
 />
 <pre>Results: {JSON.stringify(results, null, 2)}</pre>
 </div>
)
}

Adding a custom loading component

app/page.js (jsx)

import dynamic from 'next/dynamic'

const WithCustomLoading = dynamic(
 () => import('../components/WithCustomLoading'),
 {
 loading: () => <p>Loading...</p>,
 }
)

export default function Page() {
 return (
 <div>
 {/* The loading component will be rendered while <WithCustomLoading/> is loading */}
 <WithCustomLoading />
 </div>
)
}

Importing Named Exports

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Operators/import

To dynamically import a named export, you can return it from the Promise returned by import() function:

components/hello.js (jsx)

'use client'

export function Hello() {
 return <p>Hello!</p>
}

app/page.js (jsx)

import dynamic from 'next/dynamic'

const ClientComponent = dynamic(() =>
 import('../components/hello').then((mod) => mod.Hello)
)

By using next/dynamic, the header component will not be included in the page’s initial JavaScript bundle. The page will render the
Suspense fallback first, followed by the Header component when the Suspense boundary is resolved.

import dynamic from 'next/dynamic'

const DynamicHeader = dynamic(() => import('../components/header'), {
 loading: () => <p>Loading...</p>,
})

export default function Home() {
 return <DynamicHeader />
}

Good to know: In import('path/to/component'), the path must be explicitly written. It can’t be a template string nor a
variable. Furthermore the import() has to be inside the dynamic() call for Next.js to be able to match webpack bundles /
module ids to the specific dynamic() call and preload them before rendering. dynamic() can’t be used inside of React
rendering as it needs to be marked in the top level of the module for preloading to work, similar to React.lazy.

With named exports

To dynamically import a named export, you can return it from the Promise returned by import():

components/hello.js (jsx)

export function Hello() {
 return <p>Hello!</p>
}

// pages/index.js
import dynamic from 'next/dynamic'

const DynamicComponent = dynamic(() =>
 import('../components/hello').then((mod) => mod.Hello)
)

With no SSR

To dynamically load a component on the client side, you can use the ssr option to disable server-rendering. This is useful if an external
dependency or component relies on browser APIs like window.

import dynamic from 'next/dynamic'

const DynamicHeader = dynamic(() => import('../components/header'), {
 ssr: false,
})

With external libraries

This example uses the external library fuse.js for fuzzy search. The module is only loaded in the browser after the user types in the
search input.

import { useState } from 'react'

const names = ['Tim', 'Joe', 'Bel', 'Lee']

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Operators/import
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://github.com/tc39/proposal-dynamic-import#example

export default function Page() {
 const [results, setResults] = useState()

 return (
 <div>
 <input
 type="text"
 placeholder="Search"
 onChange={async (e) => {
 const { value } = e.currentTarget
 // Dynamically load fuse.js
 const Fuse = (await import('fuse.js')).default
 const fuse = new Fuse(names)

 setResults(fuse.search(value))
 }}
 />
 <pre>Results: {JSON.stringify(results, null, 2)}</pre>
 </div>
)
}

3.1.6.8 - Analytics
Documentation path: /02-app/01-building-your-application/06-optimizing/08-analytics

Description: Measure and track page performance using Next.js Speed Insights

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js has built-in support for measuring and reporting performance metrics. You can either use the useReportWebVitals hook to
manage reporting yourself, or alternatively, Vercel provides a managed service to automatically collect and visualize metrics for you.

Build Your Own

pages/_app.js (jsx)

import { useReportWebVitals } from 'next/web-vitals'

function MyApp({ Component, pageProps }) {
 useReportWebVitals((metric) => {
 console.log(metric)
 })

 return <Component {...pageProps} />
}

View the API Reference for more information.
app/_components/web-vitals.js (jsx)

'use client'

import { useReportWebVitals } from 'next/web-vitals'

export function WebVitals() {
 useReportWebVitals((metric) => {
 console.log(metric)
 })
}

app/layout.js (jsx)

import { WebVitals } from './_components/web-vitals'

export default function Layout({ children }) {
 return (
 <html>
 <body>
 <WebVitals />
 {children}
 </body>
 </html>
)
}

Since the useReportWebVitals hook requires the "use client" directive, the most performant approach is to create a
separate component that the root layout imports. This confines the client boundary exclusively to the WebVitals component.

View the API Reference for more information.

Web Vitals

Web Vitals are a set of useful metrics that aim to capture the user experience of a web page. The following web vitals are all included:

Time to First Byte (TTFB)
First Contentful Paint (FCP)
Largest Contentful Paint (LCP)
First Input Delay (FID)
Cumulative Layout Shift (CLS)
Interaction to Next Paint (INP)

You can handle all the results of these metrics using the name property.

https://vercel.com/analytics?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
file:///docs/pages/api-reference/functions/use-report-web-vitals
file:///docs/app/api-reference/functions/use-report-web-vitals
https://web.dev/vitals/
https://developer.mozilla.org/docs/Glossary/Time_to_first_byte
https://developer.mozilla.org/docs/Glossary/First_contentful_paint
https://web.dev/lcp/
https://web.dev/fid/
https://web.dev/cls/
https://web.dev/inp/

pages/_app.js (jsx)

import { useReportWebVitals } from 'next/web-vitals'

function MyApp({ Component, pageProps }) {
 useReportWebVitals((metric) => {
 switch (metric.name) {
 case 'FCP': {
 // handle FCP results
 }
 case 'LCP': {
 // handle LCP results
 }
 // ...
 }
 })

 return <Component {...pageProps} />
}

app/_components/web-vitals.tsx (tsx)

'use client'

import { useReportWebVitals } from 'next/web-vitals'

export function WebVitals() {
 useReportWebVitals((metric) => {
 switch (metric.name) {
 case 'FCP': {
 // handle FCP results
 }
 case 'LCP': {
 // handle LCP results
 }
 // ...
 }
 })
}

app/_components/web-vitals.js (jsx)

'use client'

import { useReportWebVitals } from 'next/web-vitals'

export function WebVitals() {
 useReportWebVitals((metric) => {
 switch (metric.name) {
 case 'FCP': {
 // handle FCP results
 }
 case 'LCP': {
 // handle LCP results
 }
 // ...
 }
 })
}

Custom Metrics

In addition to the core metrics listed above, there are some additional custom metrics that measure the time it takes for the page to
hydrate and render:

Next.js-hydration: Length of time it takes for the page to start and finish hydrating (in ms)
Next.js-route-change-to-render: Length of time it takes for a page to start rendering after a route change (in ms)
Next.js-render: Length of time it takes for a page to finish render after a route change (in ms)

You can handle all the results of these metrics separately:

export function reportWebVitals(metric) {
 switch (metric.name) {
 case 'Next.js-hydration':
 // handle hydration results
 break

 case 'Next.js-route-change-to-render':
 // handle route-change to render results
 break
 case 'Next.js-render':
 // handle render results
 break
 default:
 break
 }
}

These metrics work in all browsers that support the User Timing API.

Sending results to external systems

You can send results to any endpoint to measure and track real user performance on your site. For example:

useReportWebVitals((metric) => {
 const body = JSON.stringify(metric)
 const url = 'https://example.com/analytics'

 // Use `navigator.sendBeacon()` if available, falling back to `fetch()`.
 if (navigator.sendBeacon) {
 navigator.sendBeacon(url, body)
 } else {
 fetch(url, { body, method: 'POST', keepalive: true })
 }
})

Good to know: If you use Google Analytics, using the id value can allow you to construct metric distributions manually (to
calculate percentiles, etc.)

js useReportWebVitals((metric) => { // Use `window.gtag` if you initialized Google Analytics as
this example: // https://github.com/vercel/next.js/blob/canary/examples/with-google-
analytics/pages/_app.js window.gtag('event', metric.name, { value: Math.round(metric.name ===
'CLS' ? metric.value * 1000 : metric.value), // values must be integers event_label: metric.id, //
id unique to current page load non_interaction: true, // avoids affecting bounce rate. }) })
Read more about sending results to Google Analytics.

https://caniuse.com/#feat=user-timing
https://analytics.google.com/analytics/web/
https://github.com/GoogleChrome/web-vitals#send-the-results-to-google-analytics

3.1.6.9 - Instrumentation
Documentation path: /02-app/01-building-your-application/06-optimizing/09-instrumentation

Description: Learn how to use instrumentation to run code at server startup in your Next.js app

Related:

Title: Learn more about Instrumentation

Related Description: No related description

Links:

app/api-reference/file-conventions/instrumentation
app/api-reference/next-config-js/instrumentationHook

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Instrumentation is the process of using code to integrate monitoring and logging tools into your application. This allows you to track
the performance and behavior of your application, and to debug issues in production.

Convention

To set up instrumentation, create instrumentation.ts|js file in the root directory of your project (or inside the src folder if using
one).

Then, export a register function in the file. This function will be called once when a new Next.js server instance is initiated.

For example, to use Next.js with OpenTelemetry and @vercel/otel:
instrumentation.ts (ts)

import { registerOTel } from '@vercel/otel'

export function register() {
 registerOTel('next-app')
}

instrumentation.js (js)

import { registerOTel } from '@vercel/otel'

export function register() {
 registerOTel('next-app')
}

See the Next.js with OpenTelemetry example for a complete implementation.

Good to know

This feature is experimental. To use it, you must explicitly opt in by defining experimental.instrumentationHook =
true; in your next.config.js.
The instrumentation file should be in the root of your project and not inside the app or pages directory. If you’re using
the src folder, then place the file inside src alongside pages and app.
If you use the pageExtensions config option to add a suffix, you will also need to update the instrumentation filename
to match.

Examples

Importing files with side effects

Sometimes, it may be useful to import a file in your code because of the side effects it will cause. For example, you might import a file
that defines a set of global variables, but never explicitly use the imported file in your code. You would still have access to the global
variables the package has declared.

We recommend importing files using JavaScript import syntax within your register function. The following example demonstrates a
basic usage of import in a register function:

instrumentation.ts (ts)

export async function register() {
 await import('package-with-side-effect')
}

file:///docs/app/building-your-application/configuring/src-directory
https://opentelemetry.io/
https://vercel.com/docs/observability/otel-overview
https://github.com/vercel/next.js/tree/canary/examples/with-opentelemetry
file:///docs/app/api-reference/next-config-js/instrumentationHook
file:///docs/app/api-reference/next-config-js/pageExtensions

instrumentation.js (js)

export async function register() {
 await import('package-with-side-effect')
}

Good to know:

We recommend importing the file from within the register function, rather than at the top of the file. By doing this, you can
colocate all of your side effects in one place in your code, and avoid any unintended consequences from importing globally at
the top of the file.

Importing runtime-specific code

Next.js calls register in all environments, so it’s important to conditionally import any code that doesn’t support specific runtimes
(e.g. Edge or Node.js). You can use the NEXT_RUNTIME environment variable to get the current environment:

instrumentation.ts (ts)

export async function register() {
 if (process.env.NEXT_RUNTIME === 'nodejs') {
 await import('./instrumentation-node')
 }

 if (process.env.NEXT_RUNTIME === 'edge') {
 await import('./instrumentation-edge')
 }
}

instrumentation.js (js)

export async function register() {
 if (process.env.NEXT_RUNTIME === 'nodejs') {
 await import('./instrumentation-node')
 }

 if (process.env.NEXT_RUNTIME === 'edge') {
 await import('./instrumentation-edge')
 }
}

file:///docs/app/building-your-application/rendering/edge-and-nodejs-runtimes

3.1.6.10 - OpenTelemetry
Documentation path: /02-app/01-building-your-application/06-optimizing/10-open-telemetry

Description: Learn how to instrument your Next.js app with OpenTelemetry.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Good to know: This feature is experimental, you need to explicitly opt-in by providing
experimental.instrumentationHook = true; in your next.config.js.

Observability is crucial for understanding and optimizing the behavior and performance of your Next.js app.

As applications become more complex, it becomes increasingly difficult to identify and diagnose issues that may arise. By leveraging
observability tools, such as logging and metrics, developers can gain insights into their application’s behavior and identify areas for
optimization. With observability, developers can proactively address issues before they become major problems and provide a better
user experience. Therefore, it is highly recommended to use observability in your Next.js applications to improve performance,
optimize resources, and enhance user experience.

We recommend using OpenTelemetry for instrumenting your apps. It’s a platform-agnostic way to instrument apps that allows you to
change your observability provider without changing your code. Read Official OpenTelemetry docs for more information about
OpenTelemetry and how it works.

This documentation uses terms like Span, Trace or Exporter throughout this doc, all of which can be found in the OpenTelemetry
Observability Primer.

Next.js supports OpenTelemetry instrumentation out of the box, which means that we already instrumented Next.js itself. When you
enable OpenTelemetry we will automatically wrap all your code like getStaticProps in spans with helpful attributes.

Getting Started

OpenTelemetry is extensible but setting it up properly can be quite verbose. That’s why we prepared a package @vercel/otel that
helps you get started quickly.

Using @vercel/otel@vercel/otel

To get started, you must install @vercel/otel:

Terminal (bash)

npm install @vercel/otel

Next, create a custom instrumentation.ts (or .js) file in the root directory of the project (or inside src folder if using one):

Next, create a custom instrumentation.ts (or .js) file in the root directory of the project (or inside src folder if using one):

your-project/instrumentation.ts (ts)

import { registerOTel } from '@vercel/otel'

export function register() {
 registerOTel({ serviceName: 'next-app' })
}

your-project/instrumentation.js (js)

import { registerOTel } from '@vercel/otel'

export function register() {
 registerOTel({ serviceName: 'next-app' })
}

See the @vercel/otel documentation for additional configuration options.

Good to know

The instrumentation file should be in the root of your project and not inside the app or pages directory. If you’re using
the src folder, then place the file inside src alongside pages and app.
If you use the pageExtensions config option to add a suffix, you will also need to update the instrumentation filename
to match.
We have created a basic with-opentelemetry example that you can use.

https://opentelemetry.io/docs/
https://opentelemetry.io/docs/concepts/observability-primer/
file:///docs/app/building-your-application/optimizing/instrumentation
file:///docs/pages/building-your-application/optimizing/instrumentation
https://www.npmjs.com/package/@vercel/otel
file:///docs/app/api-reference/next-config-js/pageExtensions
https://github.com/vercel/next.js/tree/canary/examples/with-opentelemetry

Good to know

The instrumentation file should be in the root of your project and not inside the app or pages directory. If you’re using
the src folder, then place the file inside src alongside pages and app.
If you use the pageExtensions config option to add a suffix, you will also need to update the instrumentation filename
to match.
We have created a basic with-opentelemetry example that you can use.

Manual OpenTelemetry configuration

The @vercel/otel package provides many configuration options and should serve most of common use cases. But if it doesn’t suit
your needs, you can configure OpenTelemetry manually.

Firstly you need to install OpenTelemetry packages:
Terminal (bash)

npm install @opentelemetry/sdk-node @opentelemetry/resources @opentelemetry/semantic-conventions @opentelemetry/sdk-trace-node

Now you can initialize NodeSDK in your instrumentation.ts. Unlike @vercel/otel, NodeSDK is not compatible with edge runtime,
so you need to make sure that you are importing them only when process.env.NEXT_RUNTIME === 'nodejs'. We recommend
creating a new file instrumentation.node.ts which you conditionally import only when using node:

instrumentation.ts (ts)

export async function register() {
 if (process.env.NEXT_RUNTIME === 'nodejs') {
 await import('./instrumentation.node.ts')
 }
}

instrumentation.js (js)

export async function register() {
 if (process.env.NEXT_RUNTIME === 'nodejs') {
 await import('./instrumentation.node.js')
 }
}

instrumentation.node.ts (ts)

import { NodeSDK } from '@opentelemetry/sdk-node'
import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-http'
import { Resource } from '@opentelemetry/resources'
import { SEMRESATTRS_SERVICE_NAME } from '@opentelemetry/semantic-conventions'
import { SimpleSpanProcessor } from '@opentelemetry/sdk-trace-node'

const sdk = new NodeSDK({
 resource: new Resource({
 [SEMRESATTRS_SERVICE_NAME]: 'next-app',
 }),
 spanProcessor: new SimpleSpanProcessor(new OTLPTraceExporter()),
})
sdk.start()

instrumentation.node.js (js)

import { NodeSDK } from '@opentelemetry/sdk-node'
import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-http'
import { Resource } from '@opentelemetry/resources'
import { SEMRESATTRS_SERVICE_NAME } from '@opentelemetry/semantic-conventions'
import { SimpleSpanProcessor } from '@opentelemetry/sdk-trace-node'

const sdk = new NodeSDK({
 resource: new Resource({
 [SEMRESATTRS_SERVICE_NAME]: 'next-app',
 }),
 spanProcessor: new SimpleSpanProcessor(new OTLPTraceExporter()),
})
sdk.start()

Doing this is equivalent to using @vercel/otel, but it’s possible to modify and extend some features that are not exposed by the
@vercel/otel. If edge runtime support is necessary, you will have to use @vercel/otel.

Testing your instrumentation

file:///docs/pages/api-reference/next-config-js/pageExtensions
https://github.com/vercel/next.js/tree/canary/examples/with-opentelemetry

You need an OpenTelemetry collector with a compatible backend to test OpenTelemetry traces locally. We recommend using our
OpenTelemetry dev environment.

If everything works well you should be able to see the root server span labeled as GET /requested/pathname. All other spans from
that particular trace will be nested under it.

Next.js traces more spans than are emitted by default. To see more spans, you must set NEXT_OTEL_VERBOSE=1.

Deployment

Using OpenTelemetry Collector

When you are deploying with OpenTelemetry Collector, you can use @vercel/otel. It will work both on Vercel and when self-hosted.

Deploying on Vercel

We made sure that OpenTelemetry works out of the box on Vercel.

Follow Vercel documentation to connect your project to an observability provider.

Self-hosting

Deploying to other platforms is also straightforward. You will need to spin up your own OpenTelemetry Collector to receive and process
the telemetry data from your Next.js app.

To do this, follow the OpenTelemetry Collector Getting Started guide, which will walk you through setting up the collector and
configuring it to receive data from your Next.js app.

Once you have your collector up and running, you can deploy your Next.js app to your chosen platform following their respective
deployment guides.

Custom Exporters

OpenTelemetry Collector is not necessary. You can use a custom OpenTelemetry exporter with @vercel/otel or manual
OpenTelemetry configuration.

Custom Spans

You can add a custom span with OpenTelemetry APIs.
Terminal (bash)

npm install @opentelemetry/api

The following example demonstrates a function that fetches GitHub stars and adds a custom fetchGithubStars span to track the
fetch request’s result:

import { trace } from '@opentelemetry/api'

export async function fetchGithubStars() {
 return await trace
 .getTracer('nextjs-example')
 .startActiveSpan('fetchGithubStars', async (span) => {
 try {
 return await getValue()
 } finally {
 span.end()
 }
 })
}

The register function will execute before your code runs in a new environment. You can start creating new spans, and they should be
correctly added to the exported trace.

Default Spans in Next.js

Next.js automatically instruments several spans for you to provide useful insights into your application’s performance.

Attributes on spans follow OpenTelemetry semantic conventions. We also add some custom attributes under the next namespace:

next.span_name - duplicates span name
next.span_type - each span type has a unique identifier
next.route - The route pattern of the request (e.g., /[param]/user).

https://github.com/vercel/opentelemetry-collector-dev-setup
https://vercel.com/docs/concepts/observability/otel-overview/quickstart
https://opentelemetry.io/docs/collector/getting-started/
file:///docs/pages/building-your-application/optimizing/open-telemetry#manual-opentelemetry-configuration
https://opentelemetry.io/docs/instrumentation/js/instrumentation
https://opentelemetry.io/docs/reference/specification/trace/semantic_conventions/

next.rsc (true/false) - Whether the request is an RSC request, such as prefetch.
next.page
This is an internal value used by an app router.
You can think about it as a route to a special file (like page.ts, layout.ts, loading.ts and others)
It can be used as a unique identifier only when paired with next.route because /layout can be used to identify both
/(groupA)/layout.ts and /(groupB)/layout.ts

[http.method] [next.route][http.method] [next.route]

next.span_type: BaseServer.handleRequest

This span represents the root span for each incoming request to your Next.js application. It tracks the HTTP method, route, target, and
status code of the request.

Attributes:

Common HTTP attributes
http.method
http.status_code
Server HTTP attributes
http.route
http.target
next.span_name
next.span_type
next.route

render route (app) [next.route]render route (app) [next.route]

next.span_type: AppRender.getBodyResult.

This span represents the process of rendering a route in the app router.

Attributes:

next.span_name
next.span_type
next.route

fetch [http.method] [http.url]fetch [http.method] [http.url]

next.span_type: AppRender.fetch

This span represents the fetch request executed in your code.

Attributes:

Common HTTP attributes
http.method
Client HTTP attributes
http.url
net.peer.name
net.peer.port (only if specified)
next.span_name
next.span_type

This span can be turned off by setting NEXT_OTEL_FETCH_DISABLED=1 in your environment. This is useful when you want to use a
custom fetch instrumentation library.

executing api route (app) [next.route]executing api route (app) [next.route]

next.span_type: AppRouteRouteHandlers.runHandler.

This span represents the execution of an API route handler in the app router.

Attributes:

next.span_name
next.span_type

https://opentelemetry.io/docs/reference/specification/trace/semantic_conventions/http/#common-attributes
https://opentelemetry.io/docs/reference/specification/trace/semantic_conventions/http/#http-server-semantic-conventions
https://opentelemetry.io/docs/reference/specification/trace/semantic_conventions/http/#common-attributes
https://opentelemetry.io/docs/reference/specification/trace/semantic_conventions/http/#http-client

next.route

getServerSideProps [next.route]getServerSideProps [next.route]

next.span_type: Render.getServerSideProps.

This span represents the execution of getServerSideProps for a specific route.

Attributes:

next.span_name
next.span_type
next.route

getStaticProps [next.route]getStaticProps [next.route]

next.span_type: Render.getStaticProps.

This span represents the execution of getStaticProps for a specific route.

Attributes:

next.span_name
next.span_type
next.route

render route (pages) [next.route]render route (pages) [next.route]

next.span_type: Render.renderDocument.

This span represents the process of rendering the document for a specific route.

Attributes:

next.span_name
next.span_type
next.route

generateMetadata [next.page]generateMetadata [next.page]

next.span_type: ResolveMetadata.generateMetadata.

This span represents the process of generating metadata for a specific page (a single route can have multiple of these spans).

Attributes:

next.span_name
next.span_type
next.page

resolve page componentsresolve page components

next.span_type: NextNodeServer.findPageComponents.

This span represents the process of resolving page components for a specific page.

Attributes:

next.span_name
next.span_type
next.route

resolve segment modulesresolve segment modules

next.span_type: NextNodeServer.getLayoutOrPageModule.

This span represents loading of code modules for a layout or a page.

Attributes:

next.span_name

next.span_type
next.segment

start responsestart response

next.span_type: NextNodeServer.startResponse.

This zero-length span represents the time when the first byte has been sent in the response.

3.1.6.11 - Static Assets in `public`
Documentation path: /02-app/01-building-your-application/06-optimizing/11-static-assets

Description: Next.js allows you to serve static files, like images, in the public directory. You can learn how it works here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js can serve static files, like images, under a folder called public in the root directory. Files inside public can then be referenced
by your code starting from the base URL (/).

For example, the file public/avatars/me.png can be viewed by visiting the /avatars/me.png path. The code to display that image
might look like:

avatar.js (jsx)

import Image from 'next/image'

export function Avatar({ id, alt }) {
 return <Image src={`/avatars/${id}.png`} alt={alt} width="64" height="64" />
}

export function AvatarOfMe() {
 return <Avatar id="me" alt="A portrait of me" />
}

Caching

Next.js cannot safely cache assets in the public folder because they may change. The default caching headers applied are:

Cache-Control: public, max-age=0

Robots, Favicons, and others

The folder is also useful for robots.txt, favicon.ico, Google Site Verification, and any other static files (including .html). But make
sure to not have a static file with the same name as a file in the pages/ directory, as this will result in an error. Read more.

For static metadata files, such as robots.txt, favicon.ico, etc, you should use special metadata files inside the app folder.

Good to know:

The directory must be named public. The name cannot be changed and it’s the only directory used to serve static assets.
Only assets that are in the public directory at build time will be served by Next.js. Files added at request time won’t be
available. We recommend using a third-party service like Vercel Blob for persistent file storage.

file:///docs/messages/conflicting-public-file-page
file:///docs/app/api-reference/file-conventions/metadata
file:///docs/app/api-reference/next-cli#build
https://vercel.com/docs/storage/vercel-blob?utm_source=next-site&utm_medium=docs&utm_campaign=next-website

3.1.6.12 - Third Party Libraries
Documentation path: /02-app/01-building-your-application/06-optimizing/12-third-party-libraries

Description: Optimize the performance of third-party libraries in your application with the `@next/third-parties` package.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

@next/third-parties@next/third-parties is a library that provides a collection of components and utilities that improve the performance and
developer experience of loading popular third-party libraries in your Next.js application.

All third-party integrations provided by @next/third-parties have been optimized for performance and ease of use.

Getting Started

To get started, install the @next/third-parties library:

Terminal (bash)

npm install @next/third-parties@latest next@latest

{/ To do: Remove this paragraph once package becomes stable /}

@next/third-parties is currently an experimental library under active development. We recommend installing it with the latest or
canary flags while we work on adding more third-party integrations.

Google Third-Parties

All supported third-party libraries from Google can be imported from @next/third-parties/google.

Google Tag Manager

The GoogleTagManager component can be used to instantiate a Google Tag Manager container to your page. By default, it fetches the
original inline script after hydration occurs on the page.

To load Google Tag Manager for all routes, include the component directly in your root layout and pass in your GTM container ID:
app/layout.tsx (tsx)

import { GoogleTagManager } from '@next/third-parties/google'

export default function RootLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html lang="en">
 <GoogleTagManager gtmId="GTM-XYZ" />
 <body>{children}</body>
 </html>
)
}

app/layout.js (jsx)

import { GoogleTagManager } from '@next/third-parties/google'

export default function RootLayout({ children }) {
 return (
 <html lang="en">
 <GoogleTagManager gtmId="GTM-XYZ" />
 <body>{children}</body>
 </html>
)
}

To load Google Tag Manager for all routes, include the component directly in your custom _app and pass in your GTM container ID:

pages/_app.js (jsx)

import { GoogleTagManager } from '@next/third-parties/google'

export default function MyApp({ Component, pageProps }) {

https://developers.google.com/tag-platform/tag-manager

 return (
 <>
 <Component {...pageProps} />
 <GoogleTagManager gtmId="GTM-XYZ" />
 </>
)
}

To load Google Tag Manager for a single route, include the component in your page file:
app/page.js (jsx)

import { GoogleTagManager } from '@next/third-parties/google'

export default function Page() {
 return <GoogleTagManager gtmId="GTM-XYZ" />
}

pages/index.js (jsx)

import { GoogleTagManager } from '@next/third-parties/google'

export default function Page() {
 return <GoogleTagManager gtmId="GTM-XYZ" />
}

Sending Events

The sendGTMEvent function can be used to track user interactions on your page by sending events using the dataLayer object. For
this function to work, the <GoogleTagManager /> component must be included in either a parent layout, page, or component, or
directly in the same file.

app/page.js (jsx)

'use client'

import { sendGTMEvent } from '@next/third-parties/google'

export function EventButton() {
 return (
 <div>
 <button
 onClick={() => sendGTMEvent({ event: 'buttonClicked', value: 'xyz' })}
 >
 Send Event
 </button>
 </div>
)
}

pages/index.js (jsx)

import { sendGTMEvent } from '@next/third-parties/google'

export function EventButton() {
 return (
 <div>
 <button
 onClick={() => sendGTMEvent({ event: 'buttonClicked', value: 'xyz' })}
 >
 Send Event
 </button>
 </div>
)
}

Refer to the Tag Manager developer documentation to learn about the different variables and events that can be passed into the
function.

Options

Options to pass to the Google Tag Manager. For a full list of options, read the Google Tag Manager docs.

Name Type Description

gtmId Required Your GTM container ID. Usually starts with GTM-.

https://developers.google.com/tag-platform/tag-manager/datalayer
https://developers.google.com/tag-platform/tag-manager/datalayer

dataLayer Optional Data layer array to instantiate the container with. Defaults to an empty array.

dataLayerName Optional Name of the data layer. Defaults to dataLayer.

auth Optional Value of authentication parameter (gtm_auth) for environment snippets.

preview Optional Value of preview parameter (gtm_preview) for environment snippets.

Name Type Description

Google Analytics

The GoogleAnalytics component can be used to include Google Analytics 4 to your page via the Google tag (gtag.js). By default, it
fetches the original scripts after hydration occurs on the page.

Recommendation: If Google Tag Manager is already included in your application, you can configure Google Analytics directly
using it, rather than including Google Analytics as a separate component. Refer to the documentation to learn more about the
differences between Tag Manager and gtag.js.

To load Google Analytics for all routes, include the component directly in your root layout and pass in your measurement ID:
app/layout.tsx (tsx)

import { GoogleAnalytics } from '@next/third-parties/google'

export default function RootLayout({
 children,
}: {
 children: React.ReactNode
}) {
 return (
 <html lang="en">
 <body>{children}</body>
 <GoogleAnalytics gaId="G-XYZ" />
 </html>
)
}

app/layout.js (jsx)

import { GoogleAnalytics } from '@next/third-parties/google'

export default function RootLayout({ children }) {
 return (
 <html lang="en">
 <body>{children}</body>
 <GoogleAnalytics gaId="G-XYZ" />
 </html>
)
}

To load Google Analytics for all routes, include the component directly in your custom _app and pass in your measurement ID:

pages/_app.js (jsx)

import { GoogleAnalytics } from '@next/third-parties/google'

export default function MyApp({ Component, pageProps }) {
 return (
 <>
 <Component {...pageProps} />
 <GoogleAnalytics gaId="G-XYZ" />
 </>
)
}

To load Google Analytics for a single route, include the component in your page file:
app/page.js (jsx)

import { GoogleAnalytics } from '@next/third-parties/google'

export default function Page() {
 return <GoogleAnalytics gaId="G-XYZ" />
}

https://developers.google.com/analytics/devguides/collection/ga4
https://developers.google.com/analytics/devguides/collection/ga4/tag-options#what-is-gtm

pages/index.js (jsx)

import { GoogleAnalytics } from '@next/third-parties/google'

export default function Page() {
 return <GoogleAnalytics gaId="G-XYZ" />
}

Sending Events

The sendGAEvent function can be used to measure user interactions on your page by sending events using the dataLayer object. For
this function to work, the <GoogleAnalytics /> component must be included in either a parent layout, page, or component, or
directly in the same file.

app/page.js (jsx)

'use client'

import { sendGAEvent } from '@next/third-parties/google'

export function EventButton() {
 return (
 <div>
 <button
 onClick={() => sendGAEvent({ event: 'buttonClicked', value: 'xyz' })}
 >
 Send Event
 </button>
 </div>
)
}

pages/index.js (jsx)

import { sendGAEvent } from '@next/third-parties/google'

export function EventButton() {
 return (
 <div>
 <button
 onClick={() => sendGAEvent({ event: 'buttonClicked', value: 'xyz' })}
 >
 Send Event
 </button>
 </div>
)
}

Refer to the Google Analytics developer documentation to learn more about event parameters.

Tracking Pageviews

Google Analytics automatically tracks pageviews when the browser history state changes. This means that client-side navigations
between Next.js routes will send pageview data without any configuration.

To ensure that client-side navigations are being measured correctly, verify that the “Enhanced Measurement” property is enabled in your
Admin panel and the “Page changes based on browser history events” checkbox is selected.

Note: If you decide to manually send pageview events, make sure to disable the default pageview measurement to avoid having
duplicate data. Refer to the Google Analytics developer documentation to learn more.

Options

Options to pass to the <GoogleAnalytics> component.

Name Type Description

gaId Required Your measurement ID. Usually starts with G-.

dataLayerName Optional Name of the data layer. Defaults to dataLayer.

Google Maps Embed

The GoogleMapsEmbed component can be used to add a Google Maps Embed to your page. By default, it uses the loading attribute to

https://developers.google.com/analytics/devguides/collection/ga4/event-parameters
https://support.google.com/analytics/answer/9216061#enable_disable
https://developers.google.com/analytics/devguides/collection/ga4/views?client_type=gtag#manual_pageviews
https://support.google.com/analytics/answer/12270356
https://developers.google.com/maps/documentation/embed/embedding-map

lazy-load the embed below the fold.
app/page.js (jsx)

import { GoogleMapsEmbed } from '@next/third-parties/google'

export default function Page() {
 return (
 <GoogleMapsEmbed
 apiKey="XYZ"
 height={200}
 width="100%"
 mode="place"
 q="Brooklyn+Bridge,New+York,NY"
 />
)
}

pages/index.js (jsx)

import { GoogleMapsEmbed } from '@next/third-parties/google'

export default function Page() {
 return (
 <GoogleMapsEmbed
 apiKey="XYZ"
 height={200}
 width="100%"
 mode="place"
 q="Brooklyn+Bridge,New+York,NY"
 />
)
}

Options

Options to pass to the Google Maps Embed. For a full list of options, read the Google Map Embed docs.

Name Type Description

apiKey Required Your api key.

mode Required Map mode

height Optional Height of the embed. Defaults to auto.

width Optional Width of the embed. Defaults to auto.

style Optional Pass styles to the iframe.

allowfullscreen Optional Property to allow certain map parts to go full screen.

loading Optional Defaults to lazy. Consider changing if you know your embed will be above the fold.

q Optional Defines map marker location. This may be required depending on the map mode.

center Optional Defines the center of the map view.

zoom Optional Sets initial zoom level of the map.

maptype Optional Defines type of map tiles to load.

language Optional Defines the language to use for UI elements and for the display of labels on map tiles.

region Optional Defines the appropriate borders and labels to display, based on geo-political sensitivities.

YouTube Embed

The YouTubeEmbed component can be used to load and display a YouTube embed. This component loads faster by using lite-
youtube-embed under the hood.

app/page.js (jsx)

import { YouTubeEmbed } from '@next/third-parties/google'

export default function Page() {
 return <YouTubeEmbed videoid="ogfYd705cRs" height={400} params="controls=0" />

https://developers.google.com/maps/documentation/embed/embedding-map
https://developers.google.com/maps/documentation/embed/embedding-map#choosing_map_modes
https://github.com/paulirish/lite-youtube-embed

}

pages/index.js (jsx)

import { YouTubeEmbed } from '@next/third-parties/google'

export default function Page() {
 return <YouTubeEmbed videoid="ogfYd705cRs" height={400} params="controls=0" />
}

Options

Name Type Description

videoid Required YouTube video id.

width Optional Width of the video container. Defaults to auto

height Optional Height of the video container. Defaults to auto

playlabel Optional A visually hidden label for the play button for accessibility.

params Optional
The video player params defined here.
Params are passed as a query param string.
Eg: params="controls=0&start=10&end=30"

style Optional Used to apply styles to the video container.

https://developers.google.com/youtube/player_parameters#Parameters

3.1.6.13 - Memory Usage
Documentation path: /02-app/01-building-your-application/06-optimizing/13-memory-usage

Description: Optimize memory used by your application in development and production.

As applications grow and become more feature rich, they can demand more resources when developing locally or creating production
builds.

Let’s explore some strategies and techniques to optimize memory and address common memory issues in Next.js.

Reduce number of dependencies

Applications with a large amount of dependencies will use more memory.

The Bundle Analyzer can help you investigate large dependencies in your application that may be able to be removed to improve
performance and memory usage.

Run next buildnext build with --experimental-debug-memory-usage--experimental-debug-memory-usage
Starting in 14.2.0, you can run next build --experimental-debug-memory-usage to run the build in a mode where Next.js will
print out information about memory usage continuously throughout the build, such as heap usage and garbage collection statistics.
Heap snapshots will also be taken automatically when memory usage gets close to the configured limit.

Good to know: This feature is not compatible with the Webpack build worker option which is auto-enabled unless you have
custom webpack config.

Record a heap profile

To look for memory issues, you can record a heap profile from Node.js and load it in Chrome DevTools to identify potential sources of
memory leaks.

In your terminal, pass the --heap-prof flag to Node.js when starting your Next.js build:

node --heap-prof node_modules/next/dist/bin/next build

At the end of the build, a .heapprofile file will be created by Node.js.

In Chrome DevTools, you can open the Memory tab and click on the “Load Profile” button to visualize the file.

Analyze a snapshot of the heap

You can use an inspector tool to analyze the memory usage of the application.

When running the next build or next dev command, add NODE_OPTIONS=--inspect to the beginning of the command. This will
expose the inspector agent on the default port. If you wish to break before any user code starts, you can pass --inspect-brk instead.
While the process is running, you can use a tool such as Chrome DevTools to connect to the debugging port to record and analyze a
snapshot of the heap to see what memory is being retained.

Starting in 14.2.0, you can also run next build with the --experimental-debug-memory-usage flag to make it easier to take
heap snapshots.

While running in this mode, you can send a SIGUSR2 signal to the process at any point, and the process will take a heap snapshot.

The heap snapshot will be saved to the project root of the Next.js application and can be loaded in any heap analyzer, such as Chrome
DevTools, to see what memory is retained. This mode is not yet compatible with Webpack build workers.

See how to record and analyze heap snapshots for more information.

Webpack build worker

The Webpack build worker allows you to run Webpack compilations inside a separate Node.js worker which will decrease memory
usage of your application during builds.

This option is enabled by default if your application does not have a custom Webpack configuration starting in v14.1.0.

If you are using an older version of Next.js or you have a custom Webpack configuration, you can enable this option by setting
experimental.webpackBuildWorker: true inside your next.config.js.

Good to know: This feature may not be compatible with all custom Webpack plugins.

file:///docs/app/building-your-application/optimizing/bundle-analyzer
https://developer.chrome.com/docs/devtools/memory-problems/heap-snapshots

Disable Webpack cache

The Webpack cache saves generated Webpack modules in memory and/or to disk to improve the speed of builds. This can help with
performance, but it will also increase the memory usage of your application to store the cached data.

You can disable this behavior by adding a custom Webpack configuration to your application:
next.config.mjs (js)

/** @type {import('next').NextConfig} */
const nextConfig = {
 webpack: (
 config,
 { buildId, dev, isServer, defaultLoaders, nextRuntime, webpack }
) => {
 if (config.cache && !dev) {
 config.cache = Object.freeze({
 type: 'memory',
 })
 config.cache.maxMemoryGenerations = 0
 }
 // Important: return the modified config
 return config
 },
}

export default nextConfig

Disable source maps

Generating source maps consumes extra memory during the build process.

You can disable source map generation by adding productionBrowserSourceMaps: false and
experimental.serverSourceMaps: false to your Next.js configuration.

Good to know: Some plugins may turn on source maps and may require custom configuration to disable.

Edge memory issues

Next.js v14.1.3 fixed a memory issue when using the Edge runtime. Please update to this version (or later) to see if it addresses your
issue.

https://webpack.js.org/configuration/cache/
file:///docs/app/api-reference/next-config-js/webpack

3.1.7 - Configuring
Documentation path: /02-app/01-building-your-application/07-configuring/index

Description: Learn how to configure your Next.js application.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js allows you to customize your project to meet specific requirements. This includes integrations with TypeScript, ESlint, and
more, as well as internal configuration options such as Absolute Imports and Environment Variables.

3.1.7.1 - TypeScript
Documentation path: /02-app/01-building-your-application/07-configuring/01-typescript

Description: Next.js provides a TypeScript-first development experience for building your React application.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js provides a TypeScript-first development experience for building your React application.

It comes with built-in TypeScript support for automatically installing the necessary packages and configuring the proper settings.

As well as a TypeScript Plugin for your editor.

� Watch: Learn about the built-in TypeScript plugin → YouTube (3 minutes)

New Projects

create-next-app now ships with TypeScript by default.

Terminal (bash)

npx create-next-app@latest

Existing Projects

Add TypeScript to your project by renaming a file to .ts / .tsx. Run next dev and next build to automatically install the necessary
dependencies and add a tsconfig.json file with the recommended config options.

If you already had a jsconfig.json file, copy the paths compiler option from the old jsconfig.json into the new tsconfig.json
file, and delete the old jsconfig.json file.

TypeScript Plugin

Next.js includes a custom TypeScript plugin and type checker, which VSCode and other code editors can use for advanced type-
checking and auto-completion.

You can enable the plugin in VS Code by:

1. Opening the command palette (Ctrl/⌘ + Shift + P)
2. Searching for “TypeScript: Select TypeScript Version”
3. Selecting “Use Workspace Version”

Now, when editing files, the custom plugin will be enabled. When running next build, the custom type checker will be used.

Plugin Features

The TypeScript plugin can help with:

Warning if the invalid values for segment config options are passed.
Showing available options and in-context documentation.

https://www.youtube.com/watch?v=pqMqn9fKEf8
file:///docs/app/api-reference/file-conventions/route-segment-config

Ensuring the use client directive is used correctly.
Ensuring client hooks (like useState) are only used in Client Components.

Good to know: More features will be added in the future.

Minimum TypeScript Version

It is highly recommended to be on at least v4.5.2 of TypeScript to get syntax features such as type modifiers on import names and
performance improvements.

Statically Typed Links

Next.js can statically type links to prevent typos and other errors when using next/link, improving type safety when navigating
between pages.

To opt-into this feature, experimental.typedRoutes need to be enabled and the project needs to be using TypeScript.

next.config.js (js)

/** @type {import('next').NextConfig} */
const nextConfig = {
 experimental: {
 typedRoutes: true,
 },
}

module.exports = nextConfig

Next.js will generate a link definition in .next/types that contains information about all existing routes in your application, which
TypeScript can then use to provide feedback in your editor about invalid links.

Currently, experimental support includes any string literal, including dynamic segments. For non-literal strings, you currently need to
manually cast the href with as Route:

import type { Route } from 'next';
import Link from 'next/link'

// No TypeScript errors if href is a valid route
<Link href="/about" />
<Link href="/blog/nextjs" />
<Link href={`/blog/${slug}`} />
<Link href={('/blog' + slug) as Route} />

// TypeScript errors if href is not a valid route
<Link href="/aboot" />

To accept href in a custom component wrapping next/link, use a generic:

import type { Route } from 'next'
import Link from 'next/link'

function Card<T extends string>({ href }: { href: Route<T> | URL }) {
 return (
 <Link href={href}>
 <div>My Card</div>
 </Link>
)
}

How does it work?

When running next dev or next build, Next.js generates a hidden .d.ts file inside .next that contains information about
all existing routes in your application (all valid routes as the href type of Link). This .d.ts file is included in tsconfig.json
and the TypeScript compiler will check that .d.ts and provide feedback in your editor about invalid links.

End-to-End Type Safety

The Next.js App Router has enhanced type safety. This includes:

1. No serialization of data between fetching function and page: You can fetch directly in components, layouts, and pages on the
server. This data does not need to be serialized (converted to a string) to be passed to the client side for consumption in React.
Instead, since app uses Server Components by default, we can use values like Date, Map, Set, and more without any extra steps.

https://devblogs.microsoft.com/typescript/announcing-typescript-4-5/#type-on-import-names
https://devblogs.microsoft.com/typescript/announcing-typescript-4-5/#real-path-sync-native

Previously, you needed to manually type the boundary between server and client with Next.js-specific types.
2. Streamlined data flow between components: With the removal of _app in favor of root layouts, it is now easier to visualize the

data flow between components and pages. Previously, data flowing between individual pages and _app were difficult to type and
could introduce confusing bugs. With colocated data fetching in the App Router, this is no longer an issue.

Data Fetching in Next.js now provides as close to end-to-end type safety as possible without being prescriptive about your database or
content provider selection.

We’re able to type the response data as you would expect with normal TypeScript. For example:
app/page.tsx (tsx)

async function getData() {
 const res = await fetch('https://api.example.com/...')
 // The return value is *not* serialized
 // You can return Date, Map, Set, etc.
 return res.json()
}

export default async function Page() {
 const name = await getData()

 return '...'
}

For complete end-to-end type safety, this also requires your database or content provider to support TypeScript. This could be through
using an ORM or type-safe query builder.

Async Server Component TypeScript Error

To use an async Server Component with TypeScript, ensure you are using TypeScript 5.1.3 or higher and @types/react 18.2.8 or
higher.

If you are using an older version of TypeScript, you may see a 'Promise<Element>' is not a valid JSX element type error.
Updating to the latest version of TypeScript and @types/react should resolve this issue.

Passing Data Between Server & Client Components

When passing data between a Server and Client Component through props, the data is still serialized (converted to a string) for use in
the browser. However, it does not need a special type. It’s typed the same as passing any other props between components.

Further, there is less code to be serialized, as un-rendered data does not cross between the server and client (it remains on the server).
This is only now possible through support for Server Components.

Static Generation and Server-side Rendering

For getStaticProps, getStaticPaths, and getServerSideProps, you can use the GetStaticProps, GetStaticPaths, and
GetServerSideProps types respectively:

pages/blog/[slug].tsx (tsx)

import type { GetStaticProps, GetStaticPaths, GetServerSideProps } from 'next'

export const getStaticProps = (async (context) => {
 // ...
}) satisfies GetStaticProps

export const getStaticPaths = (async () => {
 // ...
}) satisfies GetStaticPaths

export const getServerSideProps = (async (context) => {
 // ...
}) satisfies GetServerSideProps

Good to know: satisfies was added to TypeScript in 4.9. We recommend upgrading to the latest version of TypeScript.

API Routes

The following is an example of how to use the built-in types for API routes:

import type { NextApiRequest, NextApiResponse } from 'next'

file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating
file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating
https://en.wikipedia.org/wiki/Object%25E2%2580%2593relational_mapping
file:///docs/pages/api-reference/functions/get-static-props
file:///docs/pages/api-reference/functions/get-static-paths
file:///docs/pages/api-reference/functions/get-server-side-props
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-4-9.html

export default function handler(req: NextApiRequest, res: NextApiResponse) {
 res.status(200).json({ name: 'John Doe' })
}

You can also type the response data:

import type { NextApiRequest, NextApiResponse } from 'next'

type Data = {
 name: string
}

export default function handler(
 req: NextApiRequest,
 res: NextApiResponse<Data>
) {
 res.status(200).json({ name: 'John Doe' })
}

Custom AppApp
If you have a custom App, you can use the built-in type AppProps and change file name to ./pages/_app.tsx like so:

import type { AppProps } from 'next/app'

export default function MyApp({ Component, pageProps }: AppProps) {
 return <Component {...pageProps} />
}

Path aliases and baseUrl

Next.js automatically supports the tsconfig.json "paths" and "baseUrl" options.

You can learn more about this feature on the Module Path aliases documentation.

You can learn more about this feature on the Module Path aliases documentation.

Type checking next.config.js

The next.config.js file must be a JavaScript file as it does not get parsed by Babel or TypeScript, however you can add some type
checking in your IDE using JSDoc as below:

// @ts-check

/**
 * @type {import('next').NextConfig}
 **/
const nextConfig = {
 /* config options here */
}

module.exports = nextConfig

Incremental type checking

Since v10.2.1 Next.js supports incremental type checking when enabled in your tsconfig.json, this can help speed up type
checking in larger applications.

Ignoring TypeScript Errors

Next.js fails your production build (next build) when TypeScript errors are present in your project.

If you’d like Next.js to dangerously produce production code even when your application has errors, you can disable the built-in type
checking step.

If disabled, be sure you are running type checks as part of your build or deploy process, otherwise this can be very dangerous.

Open next.config.js and enable the ignoreBuildErrors option in the typescript config:

next.config.js (js)

module.exports = {
 typescript: {

file:///docs/pages/building-your-application/routing/custom-app
file:///docs/app/building-your-application/configuring/absolute-imports-and-module-aliases
file:///docs/pages/building-your-application/configuring/absolute-imports-and-module-aliases
https://www.typescriptlang.org/tsconfig#incremental

 // !! WARN !!
 // Dangerously allow production builds to successfully complete even if
 // your project has type errors.
 // !! WARN !!
 ignoreBuildErrors: true,
 },
}

Custom Type Declarations

When you need to declare custom types, you might be tempted to modify next-env.d.ts. However, this file is automatically
generated, so any changes you make will be overwritten. Instead, you should create a new file, let’s call it new-types.d.ts, and
reference it in your tsconfig.json:

tsconfig.json (json)

{
 "compilerOptions": {
 "skipLibCheck": true
 //...truncated...
 },
 "include": [
 "new-types.d.ts",
 "next-env.d.ts",
 ".next/types/**/*.ts",
 "**/*.ts",
 "**/*.tsx"
],
 "exclude": ["node_modules"]
}

Version Changes

Version Changes

v13.2.0 Statically typed links are available in beta.

v12.0.0 SWC is now used by default to compile TypeScript and TSX for faster builds.

v10.2.1 Incremental type checking support added when enabled in your tsconfig.json.

file:///docs/architecture/nextjs-compiler
https://www.typescriptlang.org/tsconfig#incremental

3.1.7.2 - ESLint
Documentation path: /02-app/01-building-your-application/07-configuring/02-eslint

Description: Next.js provides an integrated ESLint experience by default. These conformance rules help you use Next.js in an optimal
way.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js provides an integrated ESLint experience out of the box. Add next lint as a script to package.json:

package.json (json)

{
 "scripts": {
 "lint": "next lint"
 }
}

Then run npm run lint or yarn lint:

Terminal (bash)

yarn lint

If you don’t already have ESLint configured in your application, you will be guided through the installation and configuration process.
Terminal (bash)

yarn lint

You’ll see a prompt like this:

? How would you like to configure ESLint?

� Strict (recommended)
Base
Cancel

One of the following three options can be selected:

Strict: Includes Next.js’ base ESLint configuration along with a stricter Core Web Vitals rule-set. This is the recommended
configuration for developers setting up ESLint for the first time.

.eslintrc.json (json)

 {
 "extends": "next/core-web-vitals"
 }

Base: Includes Next.js’ base ESLint configuration.

.eslintrc.json (json)

 {
 "extends": "next"
 }

Cancel: Does not include any ESLint configuration. Only select this option if you plan on setting up your own custom ESLint
configuration.

If either of the two configuration options are selected, Next.js will automatically install eslint and eslint-config-next as
dependencies in your application and create an .eslintrc.json file in the root of your project that includes your selected
configuration.

You can now run next lint every time you want to run ESLint to catch errors. Once ESLint has been set up, it will also automatically
run during every build (next build). Errors will fail the build, while warnings will not.

If you do not want ESLint to run during next build, refer to the documentation for Ignoring ESLint.

If you do not want ESLint to run during next build, refer to the documentation for Ignoring ESLint.

We recommend using an appropriate integration to view warnings and errors directly in your code editor during development.

ESLint Config

https://eslint.org/
file:///docs/app/api-reference/next-config-js/eslint
file:///docs/pages/api-reference/next-config-js/eslint
https://eslint.org/docs/user-guide/integrations#editors

The default configuration (eslint-config-next) includes everything you need to have an optimal out-of-the-box linting experience in
Next.js. If you do not have ESLint already configured in your application, we recommend using next lint to set up ESLint along with
this configuration.

If you would like to use eslint-config-next along with other ESLint configurations, refer to the Additional Configurations
section to learn how to do so without causing any conflicts.

Recommended rule-sets from the following ESLint plugins are all used within eslint-config-next:

eslint-plugin-react
eslint-plugin-react-hooks
eslint-plugin-next

This will take precedence over the configuration from next.config.js.

ESLint Plugin

Next.js provides an ESLint plugin, eslint-plugin-next, already bundled within the base configuration that makes it possible to catch
common issues and problems in a Next.js application. The full set of rules is as follows:

Enabled in the recommended configuration

Rule Description

@next/next/google-font-display Enforce font-display behavior with Google Fonts.

@next/next/google-font-preconnect Ensure preconnect is used with Google Fonts.

@next/next/inline-script-id Enforce id attribute on next/script components with inline content.

@next/next/next-script-for-ga
Prefer next/script component when using the inline script for Google
Analytics.

@next/next/no-assign-module-variable Prevent assignment to the module variable.

@next/next/no-async-client-component Prevent client components from being async functions.

@next/next/no-before-interactive-script-outside-
document

Prevent usage of next/script’s beforeInteractive strategy outside of
pages/_document.js.

@next/next/no-css-tags Prevent manual stylesheet tags.

@next/next/no-document-import-in-page Prevent importing next/document outside of pages/_document.js.

@next/next/no-duplicate-head Prevent duplicate usage of <Head> in pages/_document.js.

@next/next/no-head-element Prevent usage of <head> element.

@next/next/no-head-import-in-document Prevent usage of next/head in pages/_document.js.

@next/next/no-html-link-for-pages Prevent usage of <a> elements to navigate to internal Next.js pages.

@next/next/no-img-element Prevent usage of element due to slower LCP and higher bandwidth.

@next/next/no-page-custom-font Prevent page-only custom fonts.

@next/next/no-script-component-in-head Prevent usage of next/script in next/head component.

@next/next/no-styled-jsx-in-document Prevent usage of styled-jsx in pages/_document.js.

@next/next/no-sync-scripts Prevent synchronous scripts.

@next/next/no-title-in-document-head Prevent usage of <title> with Head component from next/document.

@next/next/no-typos Prevent common typos in Next.js’s data fetching functions

@next/next/no-unwanted-polyfillio Prevent duplicate polyfills from Polyfill.io.

If you already have ESLint configured in your application, we recommend extending from this plugin directly instead of including
eslint-config-next unless a few conditions are met. Refer to the Recommended Plugin Ruleset to learn more.

Custom Settings

https://www.npmjs.com/package/eslint-plugin-react
https://www.npmjs.com/package/eslint-plugin-react-hooks
https://www.npmjs.com/package/@next/eslint-plugin-next
https://www.npmjs.com/package/@next/eslint-plugin-next
file:///docs/messages/google-font-display
file:///docs/messages/google-font-preconnect
file:///docs/messages/inline-script-id
file:///docs/messages/next-script-for-ga
file:///docs/messages/no-assign-module-variable
file:///docs/messages/no-async-client-component
file:///docs/messages/no-before-interactive-script-outside-document
file:///docs/messages/no-css-tags
file:///docs/messages/no-document-import-in-page
file:///docs/messages/no-duplicate-head
file:///docs/messages/no-head-element
file:///docs/messages/no-head-import-in-document
file:///docs/messages/no-html-link-for-pages
file:///docs/messages/no-img-element
file:///docs/messages/no-page-custom-font
file:///docs/messages/no-script-component-in-head
file:///docs/messages/no-styled-jsx-in-document
file:///docs/messages/no-sync-scripts
file:///docs/messages/no-title-in-document-head
file:///docs/pages/building-your-application/data-fetching
file:///docs/messages/no-unwanted-polyfillio

rootDirrootDir

If you’re using eslint-plugin-next in a project where Next.js isn’t installed in your root directory (such as a monorepo), you can tell
eslint-plugin-next where to find your Next.js application using the settings property in your .eslintrc:

.eslintrc.json (json)

{
 "extends": "next",
 "settings": {
 "next": {
 "rootDir": "packages/my-app/"
 }
 }
}

rootDir can be a path (relative or absolute), a glob (i.e. "packages/*/"), or an array of paths and/or globs.

Linting Custom Directories and Files

By default, Next.js will run ESLint for all files in the pages/, app/, components/, lib/, and src/ directories. However, you can specify
which directories using the dirs option in the eslint config in next.config.js for production builds:

next.config.js (js)

module.exports = {
 eslint: {
 dirs: ['pages', 'utils'], // Only run ESLint on the 'pages' and 'utils' directories during production builds (next build)
 },
}

Similarly, the --dir and --file flags can be used for next lint to lint specific directories and files:

Terminal (bash)

next lint --dir pages --dir utils --file bar.js

Caching

To improve performance, information of files processed by ESLint are cached by default. This is stored in .next/cache or in your
defined build directory. If you include any ESLint rules that depend on more than the contents of a single source file and need to disable
the cache, use the --no-cache flag with next lint.

To improve performance, information of files processed by ESLint are cached by default. This is stored in .next/cache or in your
defined build directory. If you include any ESLint rules that depend on more than the contents of a single source file and need to disable
the cache, use the --no-cache flag with next lint.

Terminal (bash)

next lint --no-cache

Disabling Rules

If you would like to modify or disable any rules provided by the supported plugins (react, react-hooks, next), you can directly
change them using the rules property in your .eslintrc:

.eslintrc.json (json)

{
 "extends": "next",
 "rules": {
 "react/no-unescaped-entities": "off",
 "@next/next/no-page-custom-font": "off"
 }
}

Core Web Vitals

The next/core-web-vitals rule set is enabled when next lint is run for the first time and the strict option is selected.

.eslintrc.json (json)

{
 "extends": "next/core-web-vitals"
}

file:///docs/app/api-reference/next-config-js/distDir
file:///docs/pages/api-reference/next-config-js/distDir

next/core-web-vitals updates eslint-plugin-next to error on a number of rules that are warnings by default if they affect Core
Web Vitals.

The next/core-web-vitals entry point is automatically included for new applications built with Create Next App.

Usage With Other Tools

Prettier

ESLint also contains code formatting rules, which can conflict with your existing Prettier setup. We recommend including eslint-config-
prettier in your ESLint config to make ESLint and Prettier work together.

First, install the dependency:
Terminal (bash)

npm install --save-dev eslint-config-prettier

yarn add --dev eslint-config-prettier

pnpm add --save-dev eslint-config-prettier

bun add --dev eslint-config-prettier

Then, add prettier to your existing ESLint config:

.eslintrc.json (json)

{
 "extends": ["next", "prettier"]
}

lint-staged

If you would like to use next lint with lint-staged to run the linter on staged git files, you’ll have to add the following to the
.lintstagedrc.js file in the root of your project in order to specify usage of the --file flag.

.lintstagedrc.js (js)

const path = require('path')

const buildEslintCommand = (filenames) =>
 `next lint --fix --file ${filenames
 .map((f) => path.relative(process.cwd(), f))
 .join(' --file ')}`

module.exports = {
 '*.{js,jsx,ts,tsx}': [buildEslintCommand],
}

Migrating Existing Config

Recommended Plugin Ruleset

If you already have ESLint configured in your application and any of the following conditions are true:

You have one or more of the following plugins already installed (either separately or through a different config such as airbnb or
react-app):
react
react-hooks
jsx-a11y
import
You’ve defined specific parserOptions that are different from how Babel is configured within Next.js (this is not recommended
unless you have customized your Babel configuration)
You have eslint-plugin-import installed with Node.js and/or TypeScript resolvers defined to handle imports

Then we recommend either removing these settings if you prefer how these properties have been configured within eslint-config-
next or extending directly from the Next.js ESLint plugin instead:

module.exports = {
 extends: [
 //...

https://web.dev/vitals/
file:///docs/app/api-reference/create-next-app
https://prettier.io/
https://github.com/prettier/eslint-config-prettier
https://github.com/okonet/lint-staged
file:///docs/pages/building-your-application/configuring/babel
https://github.com/benmosher/eslint-plugin-import#resolvers
https://github.com/vercel/next.js/blob/canary/packages/eslint-config-next/index.js

 'plugin:@next/next/recommended',
],
}

The plugin can be installed normally in your project without needing to run next lint:

Terminal (bash)

npm install --save-dev @next/eslint-plugin-next

yarn add --dev @next/eslint-plugin-next

pnpm add --save-dev @next/eslint-plugin-next

bun add --dev @next/eslint-plugin-next

This eliminates the risk of collisions or errors that can occur due to importing the same plugin or parser across multiple configurations.

Additional Configurations

If you already use a separate ESLint configuration and want to include eslint-config-next, ensure that it is extended last after other
configurations. For example:

.eslintrc.json (json)

{
 "extends": ["eslint:recommended", "next"]
}

The next configuration already handles setting default values for the parser, plugins and settings properties. There is no need to
manually re-declare any of these properties unless you need a different configuration for your use case.

If you include any other shareable configurations, you will need to make sure that these properties are not overwritten or
modified. Otherwise, we recommend removing any configurations that share behavior with the next configuration or extending
directly from the Next.js ESLint plugin as mentioned above.

3.1.7.3 - Environment Variables
Documentation path: /02-app/01-building-your-application/07-configuring/03-environment-variables

Description: Learn to add and access environment variables in your Next.js application.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Examples

Next.js comes with built-in support for environment variables, which allows you to do the following:

Use .env to load environment variables
Bundle environment variables for the browser by prefixing with NEXT_PUBLIC_

Loading Environment Variables

Next.js has built-in support for loading environment variables from .env* files into process.env.

.env (txt)

DB_HOST=localhost
DB_USER=myuser
DB_PASS=mypassword

This loads process.env.DB_HOST, process.env.DB_USER, and process.env.DB_PASS into the Node.js environment automatically
allowing you to use them in Next.js data fetching methods and API routes.

For example, using getStaticProps:

pages/index.js (js)

export async function getStaticProps() {
 const db = await myDB.connect({
 host: process.env.DB_HOST,
 username: process.env.DB_USER,
 password: process.env.DB_PASS,
 })
 // ...
}

Note: Next.js also supports multiline variables inside of your .env* files:

```bash

.env
you can write with line breaks
PRIVATE_KEY=”-----BEGIN RSA PRIVATE KEY----- … Kh9NV… … -----END DSA PRIVATE KEY-----“

or with \n\n inside double quotes
PRIVATE_KEY=”-----BEGIN RSA PRIVATE KEY-----\nKh9NV…\n-----END DSA PRIVATE KEY-----\n” ```

Note: If you are using a /src folder, please note that Next.js will load the .env files only from the parent folder and not from
the /src folder. This loads process.env.DB_HOST, process.env.DB_USER, and process.env.DB_PASS into the Node.js
environment automatically allowing you to use them in Route Handlers.

For example:
app/api/route.js (js)

export async function GET() {
  const db = await myDB.connect({
    host: process.env.DB_HOST,
    username: process.env.DB_USER,
    password: process.env.DB_PASS,
  })
  // ...
}

Loading Environment Variables with @next/env@next/env

file:///docs/pages/building-your-application/data-fetching
file:///docs/pages/building-your-application/routing/api-routes
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/app/building-your-application/routing/route-handlers


If you need to load environment variables outside of the Next.js runtime, such as in a root config file for an ORM or test runner, you can
use the @next/env package.

This package is used internally by Next.js to load environment variables from .env* files.

To use it, install the package and use the loadEnvConfig function to load the environment variables:

npm install @next/env

envConfig.ts (tsx)

import { loadEnvConfig } from '@next/env'

const projectDir = process.cwd()
loadEnvConfig(projectDir)

envConfig.js (jsx)

import { loadEnvConfig } from '@next/env'

const projectDir = process.cwd()
loadEnvConfig(projectDir)

Then, you can import the configuration where needed. For example:
orm.config.ts (tsx)

import './envConfig.ts'

export default defineConfig({
  dbCredentials: {
    connectionString: process.env.DATABASE_URL!,
  },
})

orm.config.js (jsx)

import './envConfig.js'

export default defineConfig({
  dbCredentials: {
    connectionString: process.env.DATABASE_URL,
  },
})

Referencing Other Variables

Next.js will automatically expand variables that use $ to reference other variables e.g. $VARIABLE inside of your .env* files. This
allows you to reference other secrets. For example:

.env (txt)

TWITTER_USER=nextjs
TWITTER_URL=https://twitter.com/$TWITTER_USER

In the above example, process.env.TWITTER_URL would be set to https://twitter.com/nextjs.

Good to know: If you need to use variable with a $ in the actual value, it needs to be escaped e.g. \$.

Bundling Environment Variables for the Browser

Non-NEXT_PUBLIC_ environment variables are only available in the Node.js environment, meaning they aren’t accessible to the
browser (the client runs in a different environment).

In order to make the value of an environment variable accessible in the browser, Next.js can “inline” a value, at build time, into the js
bundle that is delivered to the client, replacing all references to process.env.[variable] with a hard-coded value. To tell it to do
this, you just have to prefix the variable with NEXT_PUBLIC_. For example:

Terminal (txt)

NEXT_PUBLIC_ANALYTICS_ID=abcdefghijk

This will tell Next.js to replace all references to process.env.NEXT_PUBLIC_ANALYTICS_ID in the Node.js environment with the
value from the environment in which you run next build, allowing you to use it anywhere in your code. It will be inlined into any
JavaScript sent to the browser.

Note: After being built, your app will no longer respond to changes to these environment variables. For instance, if you use a



Heroku pipeline to promote slugs built in one environment to another environment, or if you build and deploy a single Docker
image to multiple environments, all NEXT_PUBLIC_ variables will be frozen with the value evaluated at build time, so these
values need to be set appropriately when the project is built. If you need access to runtime environment values, you’ll have to
setup your own API to provide them to the client (either on demand or during initialization).

pages/index.js (js)

import setupAnalyticsService from '../lib/my-analytics-service'

// 'NEXT_PUBLIC_ANALYTICS_ID' can be used here as it's prefixed by 'NEXT_PUBLIC_'.
// It will be transformed at build time to `setupAnalyticsService('abcdefghijk')`.
setupAnalyticsService(process.env.NEXT_PUBLIC_ANALYTICS_ID)

function HomePage() {
  return <h1>Hello World</h1>
}

export default HomePage

Note that dynamic lookups will not be inlined, such as:

// This will NOT be inlined, because it uses a variable
const varName = 'NEXT_PUBLIC_ANALYTICS_ID'
setupAnalyticsService(process.env[varName])

// This will NOT be inlined, because it uses a variable
const env = process.env
setupAnalyticsService(env.NEXT_PUBLIC_ANALYTICS_ID)

Runtime Environment Variables

Next.js can support both build time and runtime environment variables.

By default, environment variables are only available on the server. To expose an environment variable to the browser, it must be
prefixed with NEXT_PUBLIC_. However, these public environment variables will be inlined into the JavaScript bundle during next
build.

To read runtime environment variables, we recommend using getServerSideProps or incrementally adopting the App Router. With
the App Router, we can safely read environment variables on the server during dynamic rendering. This allows you to use a singular
Docker image that can be promoted through multiple environments with different values.

import { unstable_noStore as noStore } from 'next/cache'

export default function Component() {
  noStore()
  // cookies(), headers(), and other dynamic functions
  // will also opt into dynamic rendering, meaning
  // this env variable is evaluated at runtime
  const value = process.env.MY_VALUE
  // ...
}

Good to know:

You can run code on server startup using the register function.
We do not recommend using the runtimeConfig option, as this does not work with the standalone output mode. Instead, we
recommend incrementally adopting the App Router.

Default Environment Variables

Typically, only .env* file is needed. However, sometimes you might want to add some defaults for the development (next dev) or
production (next start) environment.

Next.js allows you to set defaults in .env (all environments), .env.development (development environment), and .env.production
(production environment).

Good to know: .env, .env.development, and .env.production files should be included in your repository as they define
defaults. All .env files are excluded in .gitignore by default, allowing you to opt-into committing these values to your
repository.

Environment Variables on Vercel

file:///docs/app/building-your-application/upgrading/app-router-migration
file:///docs/app/building-your-application/optimizing/instrumentation
file:///docs/pages/api-reference/next-config-js/runtime-configuration
file:///docs/app/building-your-application/upgrading/app-router-migration


When deploying your Next.js application to Vercel, Environment Variables can be configured in the Project Settings.

All types of Environment Variables should be configured there. Even Environment Variables used in Development – which can be
downloaded onto your local device afterwards.

If you’ve configured Development Environment Variables you can pull them into a .env.local for usage on your local machine using
the following command:

Terminal (bash)

vercel env pull

Good to know: When deploying your Next.js application to Vercel, your environment variables in .env* files will not be made
available to Edge Runtime, unless their name are prefixed with NEXT_PUBLIC_. We strongly recommend managing your
environment variables in Project Settings instead, from where all environment variables are available.

Test Environment Variables

Apart from development and production environments, there is a 3rd option available: test. In the same way you can set defaults
for development or production environments, you can do the same with a .env.test file for the testing environment (though this
one is not as common as the previous two). Next.js will not load environment variables from .env.development or
.env.production in the testing environment.

This one is useful when running tests with tools like jest or cypress where you need to set specific environment vars only for testing
purposes. Test default values will be loaded if NODE_ENV is set to test, though you usually don’t need to do this manually as testing
tools will address it for you.

There is a small difference between test environment, and both development and production that you need to bear in mind:
.env.local won’t be loaded, as you expect tests to produce the same results for everyone. This way every test execution will use the
same env defaults across different executions by ignoring your .env.local (which is intended to override the default set).

Good to know: similar to Default Environment Variables, .env.test file should be included in your repository, but
.env.test.local shouldn’t, as .env*.local are intended to be ignored through .gitignore.

While running unit tests you can make sure to load your environment variables the same way Next.js does by leveraging the
loadEnvConfig function from the @next/env package.

// The below can be used in a Jest global setup file or similar for your testing set-up
import { loadEnvConfig } from '@next/env'

export default async () => {
  const projectDir = process.cwd()
  loadEnvConfig(projectDir)
}

Environment Variable Load Order

Environment variables are looked up in the following places, in order, stopping once the variable is found.

1. process.env
2. .env.$(NODE_ENV).local
3. .env.local (Not checked when NODE_ENV is test.)
4. .env.$(NODE_ENV)
5. .env

For example, if NODE_ENV is development and you define a variable in both .env.development.local and .env, the value in
.env.development.local will be used.

Good to know: The allowed values for NODE_ENV are production, development and test.

Good to know

If you are using a /src directory, .env.* files should remain in the root of your project.
If the environment variable NODE_ENV is unassigned, Next.js automatically assigns development when running the next dev
command, or production for all other commands.

Version History

https://vercel.com
https://vercel.com/docs/projects/environment-variables?utm_medium=docs&utm_source=next-site&utm_campaign=next-website
https://vercel.com/docs/concepts/projects/environment-variables#development-environment-variables?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://vercel.com/docs/concepts/projects/environment-variables#development-environment-variables?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://vercel.com
https://vercel.com/docs/projects/environment-variables?utm_medium=docs&utm_source=next-site&utm_campaign=next-website
file:///docs/app/building-your-application/configuring/src-directory


Version Changes

v9.4.0 Support .env and NEXT_PUBLIC_ introduced.



3.1.7.4 - Absolute Imports and Module Path Aliases
Documentation path: /02-app/01-building-your-application/07-configuring/04-absolute-imports-and-module-aliases

Description: Configure module path aliases that allow you to remap certain import paths.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Examples

Next.js has in-built support for the "paths" and "baseUrl" options of tsconfig.json and jsconfig.json files.

These options allow you to alias project directories to absolute paths, making it easier to import modules. For example:

// before
import { Button } from '../../../components/button'

// after
import { Button } from '@/components/button'

Good to know: create-next-app will prompt to configure these options for you.

Absolute Imports

The baseUrl configuration option allows you to import directly from the root of the project.

An example of this configuration:
tsconfig.json or jsconfig.json (json)

{
  "compilerOptions": {
    "baseUrl": "."
  }
}

components/button.tsx (tsx)

export default function Button() {
  return <button>Click me</button>
}

components/button.js (jsx)

export default function Button() {
  return <button>Click me</button>
}

app/page.tsx (tsx)

import Button from 'components/button'

export default function HomePage() {
  return (
    <>
      <h1>Hello World</h1>
      <Button />
    </>
  )
}

app/page.js (jsx)

import Button from 'components/button'

export default function HomePage() {
  return (
    <>
      <h1>Hello World</h1>
      <Button />
    </>
  )
}

Module Aliases



In addition to configuring the baseUrl path, you can use the "paths" option to “alias” module paths.

For example, the following configuration maps @/components/* to components/*:

tsconfig.json or jsconfig.json (json)

{
  "compilerOptions": {
    "baseUrl": ".",
    "paths": {
      "@/components/*": ["components/*"]
    }
  }
}

components/button.tsx (tsx)

export default function Button() {
  return <button>Click me</button>
}

components/button.js (jsx)

export default function Button() {
  return <button>Click me</button>
}

app/page.tsx (tsx)

import Button from '@/components/button'

export default function HomePage() {
  return (
    <>
      <h1>Hello World</h1>
      <Button />
    </>
  )
}

app/page.js (jsx)

import Button from '@/components/button'

export default function HomePage() {
  return (
    <>
      <h1>Hello World</h1>
      <Button />
    </>
  )
}

Each of the "paths" are relative to the baseUrl location. For example:

// tsconfig.json or jsconfig.json
{
  "compilerOptions": {
    "baseUrl": "src/",
    "paths": {
      "@/styles/*": ["styles/*"],
      "@/components/*": ["components/*"]
    }
  }
}

// pages/index.js
import Button from '@/components/button'
import '@/styles/styles.css'
import Helper from 'utils/helper'

export default function HomePage() {
  return (
    <Helper>
      <h1>Hello World</h1>
      <Button />
    </Helper>
  )



}



3.1.7.5 - Markdown and MDX
Documentation path: /02-app/01-building-your-application/07-configuring/05-mdx

Description: Learn how to configure MDX and use it in your Next.js apps.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Markdown is a lightweight markup language used to format text. It allows you to write using plain text syntax and convert it to
structurally valid HTML. It’s commonly used for writing content on websites and blogs.

You write…

I **love** using [Next.js](https://nextjs.org/)

Output:

<p>I <strong>love</strong> using <a href="https://nextjs.org/">Next.js</a></p>

MDX is a superset of markdown that lets you write JSX directly in your markdown files. It is a powerful way to add dynamic interactivity
and embed React components within your content.

Next.js can support both local MDX content inside your application, as well as remote MDX files fetched dynamically on the server. The
Next.js plugin handles transforming markdown and React components into HTML, including support for usage in Server Components
(the default in App Router).

Good to know: View the Portfolio Starter Kit template for a complete working example.

Install dependencies

The @next/mdx package, and related packages, are used to configure Next.js so it can process markdown and MDX. It sources data
from local files, allowing you to create pages with a .md or .mdx extension, directly in your /pages or /app directory.

Install these packages to render MDX with Next.js:
Terminal (bash)

npm install @next/mdx @mdx-js/loader @mdx-js/react @types/mdx

Configure next.config.mjsnext.config.mjs
Update the next.config.mjs file at your project’s root to configure it to use MDX:

next.config.mjs (js)

import createMDX from '@next/mdx'

/** @type {import('next').NextConfig} */
const nextConfig = {
  // Configure `pageExtensions` to include markdown and MDX files
  pageExtensions: ['js', 'jsx', 'md', 'mdx', 'ts', 'tsx'],
  // Optionally, add any other Next.js config below
}

const withMDX = createMDX({
  // Add markdown plugins here, as desired
})

// Merge MDX config with Next.js config
export default withMDX(nextConfig)

This allows .md and .mdx files to act as pages, routes, or imports in your application.

Add a mdx-components.tsxmdx-components.tsx file

Create a mdx-components.tsx (or .js) file in the root of your project to define global MDX Components. For example, at the same
level as pages or app, or inside src if applicable.

mdx-components.tsx (tsx)

import type { MDXComponents } from 'mdx/types'

https://daringfireball.net/projects/markdown/syntax
https://mdxjs.com/
https://react.dev/learn/writing-markup-with-jsx
https://vercel.com/templates/next.js/portfolio-starter-kit


export function useMDXComponents(components: MDXComponents): MDXComponents {
  return {
    ...components,
  }
}

mdx-components.js (js)

export function useMDXComponents(components) {
  return {
    ...components,
  }
}

Good to know:

mdx-components.tsx is required to use @next/mdx with App Router and will not work without it.
Learn more about the mdx-components.tsx file convention.
Learn how to use custom styles and components.

Rendering MDX

You can render MDX using Next.js’s file based routing or by importing MDX files into other pages.

Using file based routing

When using file based routing, you can use MDX pages like any other page.

In App Router apps, that includes being able to use metadata.

Create a new MDX page within the /app directory:

  my-project
  ├── app
  │   └── mdx-page
  │       └── page.(mdx/md)
  |── mdx-components.(tsx/js)
  └── package.json

Create a new MDX page within the /pages directory:

  my-project
  |── mdx-components.(tsx/js)
  ├── pages
  │   └── mdx-page.(mdx/md)
  └── package.json

You can use MDX in these files, and even import React components, directly inside your MDX page:

import { MyComponent } from 'my-component'

# Welcome to my MDX page!

This is some **bold** and _italics_ text.

This is a list in markdown:

- One
- Two
- Three

Checkout my React component:

<MyComponent />

Navigating to the /mdx-page route should display your rendered MDX page.

Using imports

Create a new page within the /app directory and an MDX file wherever you’d like:

  my-project
  ├── app
  │   └── mdx-page

file:///docs/app/api-reference/file-conventions/mdx-components
file:///docs/app/building-your-application/optimizing/metadata


  │       └── page.(tsx/js)
  ├── markdown
  │   └── welcome.(mdx/md)
  |── mdx-components.(tsx/js)
  └── package.json

Create a new page within the /pages directory and an MDX file wherever you’d like:

  my-project
  ├── pages
  │   └── mdx-page.(tsx/js)
  ├── markdown
  │   └── welcome.(mdx/md)
  |── mdx-components.(tsx/js)
  └── package.json

You can use MDX in these files, and even import React components, directly inside your MDX page:
markdown/welcome.mdx (mdx)

import { MyComponent } from 'my-component'

# Welcome to my MDX page!

This is some **bold** and _italics_ text.

This is a list in markdown:

- One
- Two
- Three

Checkout my React component:

<MyComponent />

Import the MDX file inside the page to display the content:
app/mdx-page/page.tsx (tsx)

import Welcome from '@/markdown/welcome.mdx'

export default function Page() {
  return <Welcome />
}

app/mdx-page/page.js (jsx)

import Welcome from '@/markdown/welcome.mdx'

export default function Page() {
  return <Welcome />
}

pages/mdx-page.tsx (tsx)

import Welcome from '@/markdown/welcome.mdx'

export default function Page() {
  return <Welcome />
}

pages/mdx-page.js (jsx)

import Welcome from '@/markdown/welcome.mdx'

export default function Page() {
  return <Welcome />
}

Navigating to the /mdx-page route should display your rendered MDX page.

Using custom styles and components

Markdown, when rendered, maps to native HTML elements. For example, writing the following markdown:

## This is a heading



This is a list in markdown:

- One
- Two
- Three

Generates the following HTML:

<h2>This is a heading</h2>

<p>This is a list in markdown:</p>

<ul>
  <li>One</li>
  <li>Two</li>
  <li>Three</li>
</ul>

To style your markdown, you can provide custom components that map to the generated HTML elements. Styles and components can
be implemented globally, locally, and with shared layouts.

Global styles and components

Adding styles and components in mdx-components.tsx will affect all MDX files in your application.

mdx-components.tsx (tsx)

import type { MDXComponents } from 'mdx/types'
import Image, { ImageProps } from 'next/image'

// This file allows you to provide custom React components
// to be used in MDX files. You can import and use any
// React component you want, including inline styles,
// components from other libraries, and more.

export function useMDXComponents(components: MDXComponents): MDXComponents {
  return {
    // Allows customizing built-in components, e.g. to add styling.
    h1: ({ children }) => (
      <h1 style={{ color: 'red', fontSize: '48px' }}>{children}</h1>
    ),
    img: (props) => (
      <Image
        sizes="100vw"
        style={{ width: '100%', height: 'auto' }}
        {...(props as ImageProps)}
      />
    ),
    ...components,
  }
}

mdx-components.js (js)

import Image from 'next/image'

// This file allows you to provide custom React components
// to be used in MDX files. You can import and use any
// React component you want, including inline styles,
// components from other libraries, and more.

export function useMDXComponents(components) {
  return {
    // Allows customizing built-in components, e.g. to add styling.
    h1: ({ children }) => (
      <h1 style={{ color: 'red', fontSize: '48px' }}>{children}</h1>
    ),
    img: (props) => (
      <Image
        sizes="100vw"
        style={{ width: '100%', height: 'auto' }}
        {...props}
      />
    ),
    ...components,
  }



}

Local styles and components

You can apply local styles and components to specific pages by passing them into imported MDX components. These will merge with
and override global styles and components.

app/mdx-page/page.tsx (tsx)

import Welcome from '@/markdown/welcome.mdx'

function CustomH1({ children }) {
  return <h1 style={{ color: 'blue', fontSize: '100px' }}>{children}</h1>
}

const overrideComponents = {
  h1: CustomH1,
}

export default function Page() {
  return <Welcome components={overrideComponents} />
}

app/mdx-page/page.js (jsx)

import Welcome from '@/markdown/welcome.mdx'

function CustomH1({ children }) {
  return <h1 style={{ color: 'blue', fontSize: '100px' }}>{children}</h1>
}

const overrideComponents = {
  h1: CustomH1,
}

export default function Page() {
  return <Welcome components={overrideComponents} />
}

pages/mdx-page.tsx (tsx)

import Welcome from '@/markdown/welcome.mdx'

function CustomH1({ children }) {
  return <h1 style={{ color: 'blue', fontSize: '100px' }}>{children}</h1>
}

const overrideComponents = {
  h1: CustomH1,
}

export default function Page() {
  return <Welcome components={overrideComponents} />
}

pages/mdx-page.js (jsx)

import Welcome from '@/markdown/welcome.mdx'

function CustomH1({ children }) {
  return <h1 style={{ color: 'blue', fontSize: '100px' }}>{children}</h1>
}

const overrideComponents = {
  h1: CustomH1,
}

export default function Page() {
  return <Welcome components={overrideComponents} />
}

Shared layouts

To share a layout across MDX pages, you can use the built-in layouts support with the App Router.
app/mdx-page/layout.tsx (tsx)

export default function MdxLayout({ children }: { children: React.ReactNode }) {

file:///docs/app/building-your-application/routing/layouts-and-templates#layouts


  // Create any shared layout or styles here
  return <div style={{ color: 'blue' }}>{children}</div>
}

app/mdx-page/layout.js (jsx)

export default function MdxLayout({ children }) {
  // Create any shared layout or styles here
  return <div style={{ color: 'blue' }}>{children}</div>
}

To share a layout around MDX pages, create a layout component:
components/mdx-layout.tsx (tsx)

export default function MdxLayout({ children }: { children: React.ReactNode }) {
  // Create any shared layout or styles here
  return <div style={{ color: 'blue' }}>{children}</div>
}

components/mdx-layout.js (jsx)

export default function MdxLayout({ children }) {
  // Create any shared layout or styles here
  return <div style={{ color: 'blue' }}>{children}</div>
}

Then, import the layout component into the MDX page, wrap the MDX content in the layout, and export it:

import MdxLayout from '../components/mdx-layout'

# Welcome to my MDX page!

export default function MDXPage({ children }) {
  return <MdxLayout>{children}</MdxLayout>

}

Using Tailwind typography plugin

If you are using Tailwind to style your application, using the @tailwindcss/typography plugin will allow you to reuse your Tailwind
configuration and styles in your markdown files.

The plugin adds a set of prose classes that can be used to add typographic styles to content blocks that come from sources, like
markdown.

Install Tailwind typography and use with shared layouts to add the prose you want.

app/mdx-page/layout.tsx (tsx)

export default function MdxLayout({ children }: { children: React.ReactNode }) {
  // Create any shared layout or styles here
  return (
    <div className="prose prose-headings:mt-8 prose-headings:font-semibold prose-headings:text-black prose-h1:text-5xl prose-h2:text-4xl prose-h3:text-3xl prose-h4:text-2xl prose-h5:text-xl prose-h6:text-lg dark:prose-headings:text-white"
      {children}
    </div>
  )
}

app/mdx-page/layout.js (jsx)

export default function MdxLayout({ children }) {
  // Create any shared layout or styles here
  return (
    <div className="prose prose-headings:mt-8 prose-headings:font-semibold prose-headings:text-black prose-h1:text-5xl prose-h2:text-4xl prose-h3:text-3xl prose-h4:text-2xl prose-h5:text-xl prose-h6:text-lg dark:prose-headings:text-white"
      {children}
    </div>
  )
}

To share a layout around MDX pages, create a layout component:
components/mdx-layout.tsx (tsx)

export default function MdxLayout({ children }: { children: React.ReactNode }) {
  // Create any shared layout or styles here
  return (
    <div className="prose prose-headings:mt-8 prose-headings:font-semibold prose-headings:text-black prose-h1:text-5xl prose-h2:text-4xl prose-h3:text-3xl prose-h4:text-2xl prose-h5:text-xl prose-h6:text-lg dark:prose-headings:text-white"
      {children}

https://tailwindcss.com
https://tailwindcss.com/docs/plugins#typography
https://github.com/tailwindlabs/tailwindcss-typography?tab=readme-ov-file#installation


    </div>
  )
}

components/mdx-layout.js (jsx)

export default function MdxLayout({ children }) {
  // Create any shared layout or styles here
  return (
    <div className="prose prose-headings:mt-8 prose-headings:font-semibold prose-headings:text-black prose-h1:text-5xl prose-h2:text-4xl prose-h3:text-3xl prose-h4:text-2xl prose-h5:text-xl prose-h6:text-lg dark:prose-headings:text-white"
      {children}
    </div>
  )
}

Then, import the layout component into the MDX page, wrap the MDX content in the layout, and export it:

import MdxLayout from '../components/mdx-layout'

# Welcome to my MDX page!

export default function MDXPage({ children }) {
  return <MdxLayout>{children}</MdxLayout>

}

Frontmatter

Frontmatter is a YAML like key/value pairing that can be used to store data about a page. @next/mdx does not support frontmatter by
default, though there are many solutions for adding frontmatter to your MDX content, such as:

remark-frontmatter
remark-mdx-frontmatter
gray-matter

@next/mdx does allow you to use exports like any other JavaScript component:

content/blog-post.mdx (mdx)

export const metadata = {
  author: 'John Doe',
}

# Blog post

Metadata can now be referenced outside of the MDX file:
app/blog/page.tsx (tsx)

import BlogPost, { metadata } from '@/content/blog-post.mdx'

export default function Page() {
  console.log('metadata': metadata)
  //=> { author: 'John Doe' }
  return <BlogPost />
}

app/blog/page.js (jsx)

import BlogPost, { metadata } from '@/content/blog-post.mdx'

export default function Page() {
  console.log('metadata': metadata)
  //=> { author: 'John Doe' }
  return <BlogPost />
}

pages/blog.tsx (tsx)

import BlogPost, { metadata } from '@/content/blog-post.mdx'

export default function Page() {
  console.log('metadata': metadata)
  //=> { author: 'John Doe' }
  return <BlogPost />
}

https://github.com/remarkjs/remark-frontmatter
https://github.com/remcohaszing/remark-mdx-frontmatter
https://github.com/jonschlinkert/gray-matter


pages/blog.js (jsx)

import BlogPost, { metadata } from '@/content/blog-post.mdx'

export default function Page() {
  console.log('metadata': metadata)
  //=> { author: 'John Doe' }
  return <BlogPost />
}

A common use case for this is when you want to iterate over a collection of MDX and extract data. For example, creating a blog index
page from all blog posts. You can use packages like Node’s fs module or globby to read a directory of posts and extract the metadata.

Good to know:

Using fs, globby, etc. can only be used server-side.
View the Portfolio Starter Kit template for a complete working example.

Remark and Rehype Plugins

You can optionally provide remark and rehype plugins to transform the MDX content.

For example, you can use remark-gfm to support GitHub Flavored Markdown.

Since the remark and rehype ecosystem is ESM only, you’ll need to use next.config.mjs as the configuration file.

next.config.mjs (js)

import remarkGfm from 'remark-gfm'
import createMDX from '@next/mdx'

/** @type {import('next').NextConfig} */
const nextConfig = {
  // Configure `pageExtensions`` to include MDX files
  pageExtensions: ['js', 'jsx', 'md', 'mdx', 'ts', 'tsx'],
  // Optionally, add any other Next.js config below
}

const withMDX = createMDX({
  // Add markdown plugins here, as desired
  options: {
    remarkPlugins: [remarkGfm],
    rehypePlugins: [],
  },
})

// Wrap MDX and Next.js config with each other
export default withMDX(nextConfig)

Remote MDX

If your MDX files or content lives somewhere else, you can fetch it dynamically on the server. This is useful for content stored in a
separate local folder, CMS, database, or anywhere else. A popular community package for this use is next-mdx-remote.

Good to know: Please proceed with caution. MDX compiles to JavaScript and is executed on the server. You should only fetch
MDX content from a trusted source, otherwise this can lead to remote code execution (RCE).

The following example uses next-mdx-remote:

app/mdx-page-remote/page.tsx (tsx)

import { MDXRemote } from 'next-mdx-remote/rsc'

export default async function RemoteMdxPage() {
  // MDX text - can be from a local file, database, CMS, fetch, anywhere...
  const res = await fetch('https://...')
  const markdown = await res.text()
  return <MDXRemote source={markdown} />
}

app/mdx-page-remote/page.js (jsx)

import { MDXRemote } from 'next-mdx-remote/rsc'

export default async function RemoteMdxPage() {
  // MDX text - can be from a local file, database, CMS, fetch, anywhere...
  const res = await fetch('https://...')

https://nodejs.org/api/fs.html
https://www.npmjs.com/package/globby
https://vercel.com/templates/next.js/portfolio-starter-kit
https://github.com/hashicorp/next-mdx-remote#react-server-components-rsc--nextjs-app-directory-support


  const markdown = await res.text()
  return <MDXRemote source={markdown} />
}

pages/mdx-page-remote.tsx (tsx)

import { serialize } from 'next-mdx-remote/serialize'
import { MDXRemote, MDXRemoteSerializeResult } from 'next-mdx-remote'

interface Props {
  mdxSource: MDXRemoteSerializeResult
}

export default function RemoteMdxPage({ mdxSource }: Props) {
  return <MDXRemote {...mdxSource} />
}

export async function getStaticProps() {
  // MDX text - can be from a local file, database, CMS, fetch, anywhere...
  const res = await fetch('https:...')
  const mdxText = await res.text()
  const mdxSource = await serialize(mdxText)
  return { props: { mdxSource } }
}

pages/mdx-page-remote.js (jsx)

import { serialize } from 'next-mdx-remote/serialize'
import { MDXRemote } from 'next-mdx-remote'

export default function RemoteMdxPage({ mdxSource }) {
  return <MDXRemote {...mdxSource} />
}

export async function getStaticProps() {
  // MDX text - can be from a local file, database, CMS, fetch, anywhere...
  const res = await fetch('https:...')
  const mdxText = await res.text()
  const mdxSource = await serialize(mdxText)
  return { props: { mdxSource } }
}

Navigating to the /mdx-page-remote route should display your rendered MDX.

Deep Dive: How do you transform markdown into HTML?

React does not natively understand markdown. The markdown plaintext needs to first be transformed into HTML. This can be
accomplished with remark and rehype.

remark is an ecosystem of tools around markdown. rehype is the same, but for HTML. For example, the following code snippet
transforms markdown into HTML:

import { unified } from 'unified'
import remarkParse from 'remark-parse'
import remarkRehype from 'remark-rehype'
import rehypeSanitize from 'rehype-sanitize'
import rehypeStringify from 'rehype-stringify'

main()

async function main() {
  const file = await unified()
    .use(remarkParse) // Convert into markdown AST
    .use(remarkRehype) // Transform to HTML AST
    .use(rehypeSanitize) // Sanitize HTML input
    .use(rehypeStringify) // Convert AST into serialized HTML
    .process('Hello, Next.js!')

  console.log(String(file)) // <p>Hello, Next.js!</p>
}

The remark and rehype ecosystem contains plugins for syntax highlighting, linking headings, generating a table of contents, and more.

When using @next/mdx as shown above, you do not need to use remark or rehype directly, as it is handled for you. We’re describing
it here for a deeper understanding of what the @next/mdx package is doing underneath.

https://github.com/atomiks/rehype-pretty-code
https://github.com/rehypejs/rehype-autolink-headings
https://github.com/remarkjs/remark-toc


Using the Rust-based MDX compiler (Experimental)

Next.js supports a new MDX compiler written in Rust. This compiler is still experimental and is not recommended for production use.
To use the new compiler, you need to configure next.config.js when you pass it to withMDX:

next.config.js (js)

module.exports = withMDX({
  experimental: {
    mdxRs: true,
  },
})

mdxRs also accepts an object to configure how to transform mdx files.

next.config.js (js)

module.exports = withMDX({
  experimental: {
    mdxRs: {
      jsxRuntime?: string            // Custom jsx runtime
      jsxImportSource?: string       // Custom jsx import source,
      mdxType?: 'gfm' | 'commonmark' // Configure what kind of mdx syntax will be used to parse & transform
    },
  },
})

Helpful Links

MDX
@next/mdx
remark
rehype
Markdoc

https://mdxjs.com
https://www.npmjs.com/package/@next/mdx
https://github.com/remarkjs/remark
https://github.com/rehypejs/rehype
https://markdoc.dev/docs/nextjs


3.1.7.6 - src Directory
Documentation path: /02-app/01-building-your-application/07-configuring/06-src-directory

Description: Save pages under the `src` directory as an alternative to the root `pages` directory.

Related:

Title: Related

Related Description: No related description

Links:

app/building-your-application/routing/colocation

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

As an alternative to having the special Next.js app or pages directories in the root of your project, Next.js also supports the common
pattern of placing application code under the src directory.

This separates application code from project configuration files which mostly live in the root of a project, which is preferred by some
individuals and teams.

To use the src directory, move the app Router folder or pages Router folder to src/app or src/pages respectively.

Good to know

The /public directory should remain in the root of your project.
Config files like package.json, next.config.js and tsconfig.json should remain in the root of your project.
.env.* files should remain in the root of your project.
src/app or src/pages will be ignored if app or pages are present in the root directory.
If you’re using src, you’ll probably also move other application folders such as /components or /lib.
If you’re using Middleware, ensure it is placed inside the src directory.
If you’re using Tailwind CSS, you’ll need to add the /src prefix to the tailwind.config.js file in the content section.
If you are using TypeScript paths for imports such as @/*, you should update the paths object in tsconfig.json to
include src/.

https://tailwindcss.com/docs/content-configuration


3.1.7.7 - Draft Mode
Documentation path: /02-app/01-building-your-application/07-configuring/11-draft-mode

Description: Next.js has draft mode to toggle between static and dynamic pages. You can learn how it works with App Router here.

Static rendering is useful when your pages fetch data from a headless CMS. However, it’s not ideal when you’re writing a draft on your
headless CMS and want to view the draft immediately on your page. You’d want Next.js to render these pages at request time instead
of build time and fetch the draft content instead of the published content. You’d want Next.js to switch to dynamic rendering only for
this specific case.

Next.js has a feature called Draft Mode which solves this problem. Here are instructions on how to use it.

Step 1: Create and access the Route Handler

First, create a Route Handler. It can have any name - e.g. app/api/draft/route.ts
Then, import draftMode from next/headers and call the enable() method.

app/api/draft/route.ts (ts)

// route handler enabling draft mode
import { draftMode } from 'next/headers'

export async function GET(request: Request) {
  draftMode().enable()
  return new Response('Draft mode is enabled')
}

app/api/draft/route.js (js)

// route handler enabling draft mode
import { draftMode } from 'next/headers'

export async function GET(request) {
  draftMode().enable()
  return new Response('Draft mode is enabled')
}

This will set a cookie to enable draft mode. Subsequent requests containing this cookie will trigger Draft Mode changing the behavior
for statically generated pages (more on this later).

You can test this manually by visiting /api/draft and looking at your browser’s developer tools. Notice the Set-Cookie response
header with a cookie named __prerender_bypass.

Securely accessing it from your Headless CMS

In practice, you’d want to call this Route Handler securely from your headless CMS. The specific steps will vary depending on which
headless CMS you’re using, but here are some common steps you could take.

These steps assume that the headless CMS you’re using supports setting custom draft URLs. If it doesn’t, you can still use this method
to secure your draft URLs, but you’ll need to construct and access the draft URL manually.

First, you should create a secret token string using a token generator of your choice. This secret will only be known by your Next.js
app and your headless CMS. This secret prevents people who don’t have access to your CMS from accessing draft URLs.

Second, if your headless CMS supports setting custom draft URLs, specify the following as the draft URL. This assumes that your Route
Handler is located at app/api/draft/route.ts

Terminal (bash)

https://<your-site>/api/draft?secret=<token>&slug=<path>

<your-site> should be your deployment domain.
<token> should be replaced with the secret token you generated.
<path> should be the path for the page that you want to view. If you want to view /posts/foo, then you should use
&slug=/posts/foo.

Your headless CMS might allow you to include a variable in the draft URL so that <path> can be set dynamically based on the CMS’s
data like so: &slug=/posts/{entry.fields.slug}
Finally, in the Route Handler:

Check that the secret matches and that the slug parameter exists (if not, the request should fail).

file:///docs/app/building-your-application/rendering/server-components#dynamic-rendering
file:///docs/app/building-your-application/routing/route-handlers


Call draftMode.enable() to set the cookie.
Then redirect the browser to the path specified by slug.

app/api/draft/route.ts (ts)

// route handler with secret and slug
import { draftMode } from 'next/headers'
import { redirect } from 'next/navigation'

export async function GET(request: Request) {
  // Parse query string parameters
  const { searchParams } = new URL(request.url)
  const secret = searchParams.get('secret')
  const slug = searchParams.get('slug')

  // Check the secret and next parameters
  // This secret should only be known to this route handler and the CMS
  if (secret !== 'MY_SECRET_TOKEN' || !slug) {
    return new Response('Invalid token', { status: 401 })
  }

  // Fetch the headless CMS to check if the provided `slug` exists
  // getPostBySlug would implement the required fetching logic to the headless CMS
  const post = await getPostBySlug(slug)

  // If the slug doesn't exist prevent draft mode from being enabled
  if (!post) {
    return new Response('Invalid slug', { status: 401 })
  }

  // Enable Draft Mode by setting the cookie
  draftMode().enable()

  // Redirect to the path from the fetched post
  // We don't redirect to searchParams.slug as that might lead to open redirect vulnerabilities
  redirect(post.slug)
}

app/api/draft/route.js (js)

// route handler with secret and slug
import { draftMode } from 'next/headers'
import { redirect } from 'next/navigation'

export async function GET(request) {
  // Parse query string parameters
  const { searchParams } = new URL(request.url)
  const secret = searchParams.get('secret')
  const slug = searchParams.get('slug')

  // Check the secret and next parameters
  // This secret should only be known to this route handler and the CMS
  if (secret !== 'MY_SECRET_TOKEN' || !slug) {
    return new Response('Invalid token', { status: 401 })
  }

  // Fetch the headless CMS to check if the provided `slug` exists
  // getPostBySlug would implement the required fetching logic to the headless CMS
  const post = await getPostBySlug(slug)

  // If the slug doesn't exist prevent draft mode from being enabled
  if (!post) {
    return new Response('Invalid slug', { status: 401 })
  }

  // Enable Draft Mode by setting the cookie
  draftMode().enable()

  // Redirect to the path from the fetched post
  // We don't redirect to searchParams.slug as that might lead to open redirect vulnerabilities
  redirect(post.slug)
}

If it succeeds, then the browser will be redirected to the path you want to view with the draft mode cookie.

Step 2: Update page



The next step is to update your page to check the value of draftMode().isEnabled.

If you request a page which has the cookie set, then data will be fetched at request time (instead of at build time).

Furthermore, the value of isEnabled will be true.

app/page.tsx (tsx)

// page that fetches data
import { draftMode } from 'next/headers'

async function getData() {
  const { isEnabled } = draftMode()

  const url = isEnabled
    ? 'https://draft.example.com'
    : 'https://production.example.com'

  const res = await fetch(url)

  return res.json()
}

export default async function Page() {
  const { title, desc } = await getData()

  return (
    <main>
      <h1>{title}</h1>
      <p>{desc}</p>
    </main>
  )
}

app/page.js (jsx)

// page that fetches data
import { draftMode } from 'next/headers'

async function getData() {
  const { isEnabled } = draftMode()

  const url = isEnabled
    ? 'https://draft.example.com'
    : 'https://production.example.com'

  const res = await fetch(url)

  return res.json()
}

export default async function Page() {
  const { title, desc } = await getData()

  return (
    <main>
      <h1>{title}</h1>
      <p>{desc}</p>
    </main>
  )
}

That’s it! If you access the draft Route Handler (with secret and slug) from your headless CMS or manually, you should now be able to
see the draft content. And if you update your draft without publishing, you should be able to view the draft.

Set this as the draft URL on your headless CMS or access manually, and you should be able to see the draft.
Terminal (bash)

https://<your-site>/api/draft?secret=<token>&slug=<path>

More Details

Clear the Draft Mode cookie

By default, the Draft Mode session ends when the browser is closed.

To clear the Draft Mode cookie manually, create a Route Handler that calls draftMode().disable():



app/api/disable-draft/route.ts (ts)

import { draftMode } from 'next/headers'

export async function GET(request: Request) {
  draftMode().disable()
  return new Response('Draft mode is disabled')
}

app/api/disable-draft/route.js (js)

import { draftMode } from 'next/headers'

export async function GET(request) {
  draftMode().disable()
  return new Response('Draft mode is disabled')
}

Then, send a request to /api/disable-draft to invoke the Route Handler. If calling this route using next/link, you must pass
prefetch={false} to prevent accidentally deleting the cookie on prefetch.

Unique per next buildnext build

A new bypass cookie value will be generated each time you run next build.

This ensures that the bypass cookie can’t be guessed.

Good to know: To test Draft Mode locally over HTTP, your browser will need to allow third-party cookies and local storage
access.

file:///docs/app/api-reference/components/link


3.1.7.8 - Content Security Policy
Documentation path: /02-app/01-building-your-application/07-configuring/15-content-security-policy

Description: Learn how to set a Content Security Policy (CSP) for your Next.js application.

Related:

Title: Related

Related Description: No related description

Links:

app/building-your-application/routing/middleware
app/api-reference/functions/headers

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Content Security Policy (CSP) is important to guard your Next.js application against various security threats such as cross-site scripting
(XSS), clickjacking, and other code injection attacks.

By using CSP, developers can specify which origins are permissible for content sources, scripts, stylesheets, images, fonts, objects,
media (audio, video), iframes, and more.

Examples

Nonces

A nonce is a unique, random string of characters created for a one-time use. It is used in conjunction with CSP to selectively allow
certain inline scripts or styles to execute, bypassing strict CSP directives.

Why use a nonce?

Even though CSPs are designed to block malicious scripts, there are legitimate scenarios where inline scripts are necessary. In such
cases, nonces offer a way to allow these scripts to execute if they have the correct nonce.

Adding a nonce with Middleware

Middleware enables you to add headers and generate nonces before the page renders.

Every time a page is viewed, a fresh nonce should be generated. This means that you must use dynamic rendering to add nonces.

For example:
middleware.ts (ts)

import { NextRequest, NextResponse } from 'next/server'

export function middleware(request: NextRequest) {
  const nonce = Buffer.from(crypto.randomUUID()).toString('base64')
  const cspHeader = `
    default-src 'self';
    script-src 'self' 'nonce-${nonce}' 'strict-dynamic';
    style-src 'self' 'nonce-${nonce}';
    img-src 'self' blob: data:;
    font-src 'self';
    object-src 'none';
    base-uri 'self';
    form-action 'self';
    frame-ancestors 'none';
    upgrade-insecure-requests;
`
  // Replace newline characters and spaces
  const contentSecurityPolicyHeaderValue = cspHeader
    .replace(/\s{2,}/g, ' ')
    .trim()

  const requestHeaders = new Headers(request.headers)
  requestHeaders.set('x-nonce', nonce)

  requestHeaders.set(
    'Content-Security-Policy',
    contentSecurityPolicyHeaderValue
  )

https://developer.mozilla.org/docs/Web/HTTP/CSP
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/nonce
file:///docs/app/building-your-application/routing/middleware


  const response = NextResponse.next({
    request: {
      headers: requestHeaders,
    },
  })
  response.headers.set(
    'Content-Security-Policy',
    contentSecurityPolicyHeaderValue
  )

  return response
}

middleware.js (js)

import { NextResponse } from 'next/server'

export function middleware(request) {
  const nonce = Buffer.from(crypto.randomUUID()).toString('base64')
  const cspHeader = `
    default-src 'self';
    script-src 'self' 'nonce-${nonce}' 'strict-dynamic';
    style-src 'self' 'nonce-${nonce}';
    img-src 'self' blob: data:;
    font-src 'self';
    object-src 'none';
    base-uri 'self';
    form-action 'self';
    frame-ancestors 'none';
    upgrade-insecure-requests;
`
  // Replace newline characters and spaces
  const contentSecurityPolicyHeaderValue = cspHeader
    .replace(/\s{2,}/g, ' ')
    .trim()

  const requestHeaders = new Headers(request.headers)
  requestHeaders.set('x-nonce', nonce)
  requestHeaders.set(
    'Content-Security-Policy',
    contentSecurityPolicyHeaderValue
  )

  const response = NextResponse.next({
    request: {
      headers: requestHeaders,
    },
  })
  response.headers.set(
    'Content-Security-Policy',
    contentSecurityPolicyHeaderValue
  )

  return response
}

By default, Middleware runs on all requests. You can filter Middleware to run on specific paths using a matcher.

We recommend ignoring matching prefetches (from next/link) and static assets that don’t need the CSP header.

middleware.ts (ts)

export const config = {
  matcher: [
    /*
     * Match all request paths except for the ones starting with:
     * - api (API routes)
     * - _next/static (static files)
     * - _next/image (image optimization files)
     * - favicon.ico (favicon file)
     */
    {
      source: '/((?!api|_next/static|_next/image|favicon.ico).*)',
      missing: [
        { type: 'header', key: 'next-router-prefetch' },
        { type: 'header', key: 'purpose', value: 'prefetch' },
      ],
    },

file:///docs/app/building-your-application/routing/middleware#matcher


  ],
}

middleware.js (js)

export const config = {
  matcher: [
    /*
     * Match all request paths except for the ones starting with:
     * - api (API routes)
     * - _next/static (static files)
     * - _next/image (image optimization files)
     * - favicon.ico (favicon file)
     */
    {
      source: '/((?!api|_next/static|_next/image|favicon.ico).*)',
      missing: [
        { type: 'header', key: 'next-router-prefetch' },
        { type: 'header', key: 'purpose', value: 'prefetch' },
      ],
    },
  ],
}

Reading the nonce

You can now read the nonce from a Server Component using headers:

app/page.tsx (tsx)

import { headers } from 'next/headers'
import Script from 'next/script'

export default function Page() {
  const nonce = headers().get('x-nonce')

  return (
    <Script
      src="https://www.googletagmanager.com/gtag/js"
      strategy="afterInteractive"
      nonce={nonce}
    />
  )
}

app/page.jsx (jsx)

import { headers } from 'next/headers'
import Script from 'next/script'

export default function Page() {
  const nonce = headers().get('x-nonce')

  return (
    <Script
      src="https://www.googletagmanager.com/gtag/js"
      strategy="afterInteractive"
      nonce={nonce}
    />
  )
}

Without Nonces

For applications that do not require nonces, you can set the CSP header directly in your next.config.js file:

next.config.js (js)

const cspHeader = `
    default-src 'self';
    script-src 'self' 'unsafe-eval' 'unsafe-inline';
    style-src 'self' 'unsafe-inline';
    img-src 'self' blob: data:;
    font-src 'self';
    object-src 'none';
    base-uri 'self';
    form-action 'self';

file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/api-reference/functions/headers
file:///docs/app/api-reference/next-config-js


    frame-ancestors 'none';
    upgrade-insecure-requests;
`

module.exports = {
  async headers() {
    return [
      {
        source: '/(.*)',
        headers: [
          {
            key: 'Content-Security-Policy',
            value: cspHeader.replace(/\n/g, ''),
          },
        ],
      },
    ]
  },
}

Version History

We recommend using v13.4.20+ of Next.js to properly handle and apply nonces.



3.1.8 - Testing
Documentation path: /02-app/01-building-your-application/08-testing/index

Description: Learn how to set up Next.js with four commonly used testing tools — Cypress, Playwright, Vitest, and Jest.

In React and Next.js, there are a few different types of tests you can write, each with its own purpose and use cases. This page provides
an overview of types and commonly used tools you can use to test your application.

Types of tests

Unit testing involves testing individual units (or blocks of code) in isolation. In React, a unit can be a single function, hook, or
component.
Component testing is a more focused version of unit testing where the primary subject of the tests is React components. This may
involve testing how components are rendered, their interaction with props, and their behavior in response to user events.
Integration testing involves testing how multiple units work together. This can be a combination of components, hooks, and
functions.
End-to-End (E2E) Testing involves testing user flows in an environment that simulates real user scenarios, like the browser. This
means testing specific tasks (e.g. signup flow) in a production-like environment.
Snapshot testing involves capturing the rendered output of a component and saving it to a snapshot file. When tests run, the
current rendered output of the component is compared against the saved snapshot. Changes in the snapshot are used to indicate
unexpected changes in behavior.

Async Server Components

Since async Server Components are new to the React ecosystem, some tools do not fully support them. In the meantime, we
recommend using End-to-End Testing over Unit Testing for async components.

Guides

See the guides below to learn how to set up Next.js with these commonly used testing tools:



3.1.8.1 - Setting up Vitest with Next.js
Documentation path: /02-app/01-building-your-application/08-testing/01-vitest

Description: Learn how to set up Vitest with Next.js for Unit Testing.

Vite and React Testing Library are frequently used together for Unit Testing. This guide will show you how to setup Vitest with Next.js
and write your first tests.

Good to know: Since async Server Components are new to the React ecosystem, Vitest currently does not support them.
While you can still run unit tests for synchronous Server and Client Components, we recommend using an E2E tests for async
components.

Quickstart

You can use create-next-app with the Next.js with-vitest example to quickly get started:

Terminal (bash)

npx create-next-app@latest --example with-vitest with-vitest-app

Manual Setup

To manually set up Vitest, install vitest and the following packages as dev dependencies:

Terminal (bash)

npm install -D vitest @vitejs/plugin-react jsdom @testing-library/react
# or
yarn add -D vitest @vitejs/plugin-react jsdom @testing-library/react
# or
pnpm install -D vitest @vitejs/plugin-react jsdom @testing-library/react
# or
bun add -D vitest @vitejs/plugin-react jsdom @testing-library/react

Create a vitest.config.ts|js file in the root of your project, and add the following options:

vitest.config.ts (ts)

import { defineConfig } from 'vitest/config'
import react from '@vitejs/plugin-react'

export default defineConfig({
  plugins: [react()],
  test: {
    environment: 'jsdom',
  },
})

vitest.config.js (js)

import { defineConfig } from 'vitest/config'
import react from '@vitejs/plugin-react'

export default defineConfig({
  plugins: [react()],
  test: {
    environment: 'jsdom',
  },
})

For more information on configuring Vitest, please refer to the Vitest Configuration docs.

Then, add a test script to your package.json:

package.json (json)

{
  "scripts": {
    "dev": "next dev",
    "build": "next build",
    "start": "next start",
    "test": "vitest"
  }
}

https://github.com/vercel/next.js/tree/canary/examples/with-vitest
https://vitest.dev/config/#configuration


When you run npm run test, Vitest will watch for changes in your project by default.

Creating your first Vitest Unit Test

Check that everything is working by creating a test to check if the <Page /> component successfully renders a heading:

app/page.tsx (tsx)

import Link from 'next/link'

export default function Page() {
  return (
    <div>
      <h1>Home</h1>
      <Link href="/about">About</Link>
    </div>
  )
}

app/page.jsx (jsx)

import Link from 'next/link'

export default function Page() {
  return (
    <div>
      <h1>Home</h1>
      <Link href="/about">About</Link>
    </div>
  )
}

__tests__/page.test.tsx (tsx)

import { expect, test } from 'vitest'
import { render, screen } from '@testing-library/react'
import Page from '../app/page'

test('Page', () => {
  render(<Page />)
  expect(screen.getByRole('heading', { level: 1, name: 'Home' })).toBeDefined()
})

__tests__/page.test.jsx (jsx)

import { expect, test } from 'vitest'
import { render, screen } from '@testing-library/react'
import Page from '../app/page'

test('Page', () => {
  render(<Page />)
  expect(screen.getByRole('heading', { level: 1, name: 'Home' })).toBeDefined()
})

Good to know: The example above uses the common __tests__ convention, but test files can also be colocated inside the
app router.

pages/index.tsx (tsx)

import Link from 'next/link'

export default function Page() {
  return (
    <div>
      <h1>Home</h1>
      <Link href="/about">About</Link>
    </div>
  )
}

pages/index.jsx (jsx)

import Link from 'next/link'

export default function Page() {
  return (
    <div>



      <h1>Home</h1>
      <Link href="/about">About</Link>
    </div>
  )
}

__tests__/index.test.tsx (tsx)

import { expect, test } from 'vitest'
import { render, screen } from '@testing-library/react'
import Page from '../pages/index'

test('Page', () => {
  render(<Page />)
  expect(screen.getByRole('heading', { level: 1, name: 'Home' })).toBeDefined()
})

__tests__/index.test.jsx (jsx)

import { expect, test } from 'vitest'
import { render, screen } from '@testing-library/react'
import Page from '../pages/index'

test('Page', () => {
  render(<Page />)
  expect(screen.getByRole('heading', { level: 1, name: 'Home' })).toBeDefined()
})

Running your tests

Then, run the following command to run your tests:
Terminal (bash)

npm run test
# or
yarn test
# or
pnpm test
# or
bun test

Additional Resources

You may find these resources helpful:

Next.js with Vitest example
Vitest Docs
React Testing Library Docs

https://github.com/vercel/next.js/tree/canary/examples/with-vitest
https://vitest.dev/guide/
https://testing-library.com/docs/react-testing-library/intro/


3.1.8.2 - Setting up Jest with Next.js
Documentation path: /02-app/01-building-your-application/08-testing/02-jest

Description: Learn how to set up Jest with Next.js for Unit Testing and Snapshot Testing.

Jest and React Testing Library are frequently used together for Unit Testing and Snapshot Testing. This guide will show you how to set
up Jest with Next.js and write your first tests.

Good to know: Since async Server Components are new to the React ecosystem, Jest currently does not support them. While
you can still run unit tests for synchronous Server and Client Components, we recommend using an E2E tests for async
components.

Quickstart

You can use create-next-app with the Next.js with-jest example to quickly get started:

Terminal (bash)

npx create-next-app@latest --example with-jest with-jest-app

Manual setup

Since the release of Next.js 12, Next.js now has built-in configuration for Jest.

To set up Jest, install jest and the following packages as dev dependencies:

Terminal (bash)

npm install -D jest jest-environment-jsdom @testing-library/react @testing-library/jest-dom
# or
yarn add -D jest jest-environment-jsdom @testing-library/react @testing-library/jest-dom
# or
pnpm install -D jest jest-environment-jsdom @testing-library/react @testing-library/jest-dom

Generate a basic Jest configuration file by running the following command:
Terminal (bash)

npm init jest@latest
# or
yarn create jest@latest
# or
pnpm create jest@latest

This will take you through a series of prompts to setup Jest for your project, including automatically creating a jest.config.ts|js
file.

Update your config file to use next/jest. This transformer has all the necessary configuration options for Jest to work with Next.js:

jest.config.ts (ts)

import type { Config } from 'jest'
import nextJest from 'next/jest.js'

const createJestConfig = nextJest({
  // Provide the path to your Next.js app to load next.config.js and .env files in your test environment
  dir: './',
})

// Add any custom config to be passed to Jest
const config: Config = {
  coverageProvider: 'v8',
  testEnvironment: 'jsdom',
  // Add more setup options before each test is run
  // setupFilesAfterEnv: ['<rootDir>/jest.setup.ts'],
}

// createJestConfig is exported this way to ensure that next/jest can load the Next.js config which is async
export default createJestConfig(config)

jest.config.js (js)

const nextJest = require('next/jest')

/** @type {import('jest').Config} */

https://github.com/vercel/next.js/tree/canary/examples/with-jest
https://nextjs.org/blog/next-12


const createJestConfig = nextJest({
  // Provide the path to your Next.js app to load next.config.js and .env files in your test environment
  dir: './',
})

// Add any custom config to be passed to Jest
const config = {
  coverageProvider: 'v8',
  testEnvironment: 'jsdom',
  // Add more setup options before each test is run
  // setupFilesAfterEnv: ['<rootDir>/jest.setup.ts'],
}

// createJestConfig is exported this way to ensure that next/jest can load the Next.js config which is async
module.exports = createJestConfig(config)

Under the hood, next/jest is automatically configuring Jest for you, including:

Setting up transform using the Next.js Compiler
Auto mocking stylesheets (.css, .module.css, and their scss variants), image imports and next/font
Loading .env (and all variants) into process.env
Ignoring node_modules from test resolving and transforms
Ignoring .next from test resolving
Loading next.config.js for flags that enable SWC transforms

Good to know: To test environment variables directly, load them manually in a separate setup script or in your
jest.config.ts file. For more information, please see Test Environment Variables.

Setting up Jest (with Babel)

If you opt out of the Next.js Compiler and use Babel instead, you will need to manually configure Jest and install babel-jest and
identity-obj-proxy in addition to the packages above.

Here are the recommended options to configure Jest for Next.js:
jest.config.js (js)

module.exports = {
  collectCoverage: true,
  // on node 14.x coverage provider v8 offers good speed and more or less good report
  coverageProvider: 'v8',
  collectCoverageFrom: [
    '**/*.{js,jsx,ts,tsx}',
    '!**/*.d.ts',
    '!**/node_modules/**',
    '!<rootDir>/out/**',
    '!<rootDir>/.next/**',
    '!<rootDir>/*.config.js',
    '!<rootDir>/coverage/**',
  ],
  moduleNameMapper: {
    // Handle CSS imports (with CSS modules)
    // https://jestjs.io/docs/webpack#mocking-css-modules
    '^.+\\.module\\.(css|sass|scss)$': 'identity-obj-proxy',

    // Handle CSS imports (without CSS modules)
    '^.+\\.(css|sass|scss)$': '<rootDir>/__mocks__/styleMock.js',

    // Handle image imports
    // https://jestjs.io/docs/webpack#handling-static-assets
    '^.+\\.(png|jpg|jpeg|gif|webp|avif|ico|bmp|svg)$/i': `<rootDir>/__mocks__/fileMock.js`,

    // Handle module aliases
    '^@/components/(.*)$': '<rootDir>/components/$1',

    // Handle @next/font
    '@next/font/(.*)': `<rootDir>/__mocks__/nextFontMock.js`,
    // Handle next/font
    'next/font/(.*)': `<rootDir>/__mocks__/nextFontMock.js`,
    // Disable server-only
    'server-only': `<rootDir>/__mocks__/empty.js`,
  },
  // Add more setup options before each test is run
  // setupFilesAfterEnv: ['<rootDir>/jest.setup.js'],

file:///docs/architecture/nextjs-compiler
file:///docs/pages/building-your-application/optimizing/fonts
file:///docs/pages/building-your-application/configuring/environment-variables#test-environment-variables
file:///docs/architecture/nextjs-compiler


  testPathIgnorePatterns: ['<rootDir>/node_modules/', '<rootDir>/.next/'],
  testEnvironment: 'jsdom',
  transform: {
    // Use babel-jest to transpile tests with the next/babel preset
    // https://jestjs.io/docs/configuration#transform-objectstring-pathtotransformer--pathtotransformer-object
    '^.+\\.(js|jsx|ts|tsx)$': ['babel-jest', { presets: ['next/babel'] }],
  },
  transformIgnorePatterns: [
    '/node_modules/',
    '^.+\\.module\\.(css|sass|scss)$',
  ],
}

You can learn more about each configuration option in the Jest docs. We also recommend reviewing next/jest configuration to see
how Next.js configures Jest.

Handling stylesheets and image imports

Stylesheets and images aren’t used in the tests but importing them may cause errors, so they will need to be mocked.

Create the mock files referenced in the configuration above - fileMock.js and styleMock.js - inside a __mocks__ directory:

__mocks__/fileMock.js (js)

module.exports = 'test-file-stub'

__mocks__/styleMock.js (js)

module.exports = {}

For more information on handling static assets, please refer to the Jest Docs.

Handling Fonts

To handle fonts, create the nextFontMock.js file inside the __mocks__ directory, and add the following configuration:

__mocks__/nextFontMock.js (js)

module.exports = new Proxy(
  {},
  {
    get: function getter() {
      return () => ({
        className: 'className',
        variable: 'variable',
        style: { fontFamily: 'fontFamily' },
      })
    },
  }
)

Optional: Handling Absolute Imports and Module Path Aliases

If your project is using Module Path Aliases, you will need to configure Jest to resolve the imports by matching the paths option in the
jsconfig.json file with the moduleNameMapper option in the jest.config.js file. For example:

tsconfig.json or jsconfig.json (json)

{
  "compilerOptions": {
    "module": "esnext",
    "moduleResolution": "bundler",
    "baseUrl": "./",
    "paths": {
      "@/components/*": ["components/*"]
    }
  }
}

jest.config.js (js)

moduleNameMapper: {
  // ...
  '^@/components/(.*)$': '<rootDir>/components/$1',
}

https://jestjs.io/docs/configuration
https://github.com/vercel/next.js/blob/e02fe314dcd0ae614c65b505c6daafbdeebb920e/packages/next/src/build/jest/jest.ts
https://jestjs.io/docs/webpack#handling-static-assets
file:///docs/pages/building-your-application/configuring/absolute-imports-and-module-aliases


Optional: Extend Jest with custom matchers

@testing-library/jest-dom includes a set of convenient custom matchers such as .toBeInTheDocument() making it easier to
write tests. You can import the custom matchers for every test by adding the following option to the Jest configuration file:

jest.config.ts (ts)

setupFilesAfterEnv: ['<rootDir>/jest.setup.ts']

jest.config.js (js)

setupFilesAfterEnv: ['<rootDir>/jest.setup.js']

Then, inside jest.setup.ts, add the following import:

jest.setup.ts (ts)

import '@testing-library/jest-dom'

jest.setup.js (js)

import '@testing-library/jest-dom'

Good to know:extend-expect was removed in v6.0, so if you are using @testing-library/jest-dom before version 6,
you will need to import @testing-library/jest-dom/extend-expect instead.

If you need to add more setup options before each test, you can add them to the jest.setup.js file above.

Add a test script to package.jsonpackage.json:

Finally, add a Jest test script to your package.json file:

```json filename=”package.json” highlight={6-7} { “scripts”: { “dev”: “next dev”, “build”: “next build”, “start”: “next start”, “test”: “jest”,
“test:watch”: “jest –watch” } }

`jest --watch` will re-run tests when a file is changed. For more Jest CLI options, please refer to the [Jest

Creating your first test:

Your project is now ready to run tests. Create a folder called `__tests__` in your project's root directory

<PagesOnly>

For example, we can add a test to check if the `<Home />` component successfully renders a heading:

```jsx filename="pages/index.js
export default function Home() {
  return <h1>Home</h1>
}

__tests__/index.test.js (jsx)

import '@testing-library/jest-dom'
import { render, screen } from '@testing-library/react'
import Home from '../pages/index'

describe('Home', () => {
  it('renders a heading', () => {
    render(<Home />)

    const heading = screen.getByRole('heading', { level: 1 })

    expect(heading).toBeInTheDocument()
  })
})

For example, we can add a test to check if the <Page /> component successfully renders a heading:

```jsx filename=”app/page.js import Link from ‘next/link’

export default function Home() { return (

Home
About
) }

https://github.com/testing-library/jest-dom#custom-matchers
https://github.com/testing-library/jest-dom/releases/tag/v6.0.0

<div class="code-header"><i>__tests__/page.test.jsx (jsx)</i></div>
```jsx
import '@testing-library/jest-dom'
import { render, screen } from '@testing-library/react'
import Page from '../app/page'

describe('Page', () => {
  it('renders a heading', () => {
    render(<Page />)

    const heading = screen.getByRole('heading', { level: 1 })

    expect(heading).toBeInTheDocument()
  })
})

Optionally, add a snapshot test to keep track of any unexpected changes in your component:
__tests__/snapshot.js (jsx)

import { render } from '@testing-library/react'
import Home from '../pages/index'

it('renders homepage unchanged', () => {
  const { container } = render(<Home />)
  expect(container).toMatchSnapshot()
})

Good to know: Test files should not be included inside the Pages Router because any files inside the Pages Router are
considered routes.

__tests__/snapshot.js (jsx)

import { render } from '@testing-library/react'
import Page from '../app/page'

it('renders homepage unchanged', () => {
  const { container } = render(<Page />)
  expect(container).toMatchSnapshot()
})

Running your tests

Then, run the following command to run your tests:
Terminal (bash)

npm run test
# or
yarn test
# or
pnpm test

Additional Resources

For further reading, you may find these resources helpful:

Next.js with Jest example
Jest Docs
React Testing Library Docs
Testing Playground - use good testing practices to match elements.

https://jestjs.io/docs/snapshot-testing
https://github.com/vercel/next.js/tree/canary/examples/with-jest
https://jestjs.io/docs/getting-started
https://testing-library.com/docs/react-testing-library/intro/
https://testing-playground.com/


3.1.8.3 - Setting up Playwright with Next.js
Documentation path: /02-app/01-building-your-application/08-testing/03-playwright

Description: Learn how to set up Playwright with Next.js for End-to-End (E2E) testing.

Playwright is a testing framework that lets you automate Chromium, Firefox, and WebKit with a single API. You can use it to write End-
to-End (E2E) testing. This guide will show you how to set up Playwright with Next.js and write your first tests.

Quickstart

The fastest way to get started is to use create-next-app with the with-playwright example. This will create a Next.js project complete
with Playwright configured.

Terminal (bash)

npx create-next-app@latest --example with-playwright with-playwright-app

Manual setup

To install Playwright, run the following command:
Terminal (bash)

npm init playwright
# or
yarn create playwright
# or
pnpm create playwright

This will take you through a series of prompts to setup and configure Playwright for your project, including adding a
playwright.config.ts file. Please refer to the Playwright installation guide for the step-by-step guide.

Creating your first Playwright E2E test

Create two new Next.js pages:
app/page.tsx (tsx)

import Link from 'next/link'

export default function Page() {
  return (
    <div>
      <h1>Home</h1>
      <Link href="/about">About</Link>
    </div>
  )
}

app/about/page.tsx (tsx)

import Link from 'next/link'

export default function Page() {
  return (
    <div>
      <h1>About</h1>
      <Link href="/">Home</Link>
    </div>
  )
}

pages/index.ts (tsx)

import Link from 'next/link'

export default function Home() {
  return (
    <div>
      <h1>Home</h1>
      <Link href="/about">About</Link>
    </div>
  )

https://github.com/vercel/next.js/tree/canary/examples/with-playwright
https://playwright.dev/docs/intro#installation


}

pages/about.ts (tsx)

import Link from 'next/link'

export default function About() {
  return (
    <div>
      <h1>About</h1>
      <Link href="/">Home</Link>
    </div>
  )
}

Then, add a test to verify that your navigation is working correctly:
tests/example.spec.ts (ts)

import { test, expect } from '@playwright/test'

test('should navigate to the about page', async ({ page }) => {
  // Start from the index page (the baseURL is set via the webServer in the playwright.config.ts)
  await page.goto('http://localhost:3000/')
  // Find an element with the text 'About' and click on it
  await page.click('text=About')
  // The new URL should be "/about" (baseURL is used there)
  await expect(page).toHaveURL('http://localhost:3000/about')
  // The new page should contain an h1 with "About"
  await expect(page.locator('h1')).toContainText('About')
})

Good to know:

You can use page.goto("/") instead of page.goto("http://localhost:3000/"), if you add "baseURL":
"http://localhost:3000" to the playwright.config.ts configuration file.

Running your Playwright tests

Playwright will simulate a user navigating your application using three browsers: Chromium, Firefox and Webkit, this requires your
Next.js server to be running. We recommend running your tests against your production code to more closely resemble how your
application will behave.

Run npm run build and npm run start, then run npx playwright test in another terminal window to run the Playwright tests.

Good to know: Alternatively, you can use the webServer feature to let Playwright start the development server and wait until
it’s fully available.

Running Playwright on Continuous Integration (CI)

Playwright will by default run your tests in the headless mode. To install all the Playwright dependencies, run npx playwright
install-deps.

You can learn more about Playwright and Continuous Integration from these resources:

Next.js with Playwright example
Playwright on your CI provider
Playwright Discord

https://playwright.dev/docs/api/class-testoptions#test-options-base-url
https://playwright.dev/docs/test-configuration
https://playwright.dev/docs/test-webserver/
https://playwright.dev/docs/ci#running-headed
https://github.com/vercel/next.js/tree/canary/examples/with-playwright
https://playwright.dev/docs/ci
https://discord.com/invite/playwright-807756831384403968


3.1.8.4 - Setting up Cypress with Next.js
Documentation path: /02-app/01-building-your-application/08-testing/04-cypress

Description: Learn how to set up Cypress with Next.js for End-to-End (E2E) and Component Testing.

Cypress is a test runner used for End-to-End (E2E) and Component Testing. This page will show you how to set up Cypress with
Next.js and write your first tests.

Warning:

For component testing, Cypress currently does not support Next.js version 14 and async Server Components. These
issues are being tracked. For now, component testing works with Next.js version 13, and we recommend E2E testing for
async Server Components.
Cypress versions below 13.6.3 do not support TypeScript version 5 with moduleResolution:"bundler". However, this
issue has been resolved in Cypress version 13.6.3 and later. cypress v13.6.3

Quickstart

You can use create-next-app with the with-cypress example to quickly get started.

Terminal (bash)

npx create-next-app@latest --example with-cypress with-cypress-app

Manual setup

To manually set up Cypress, install cypress as a dev dependency:

Terminal (bash)

npm install -D cypress
# or
yarn add -D cypress
# or
pnpm install -D cypress

Add the Cypress open command to the package.json scripts field:

package.json (json)

{
  "scripts": {
    "dev": "next dev",
    "build": "next build",
    "start": "next start",
    "lint": "next lint",
    "cypress:open": "cypress open"
  }
}

Run Cypress for the first time to open the Cypress testing suite:
Terminal (bash)

npm run cypress:open

You can choose to configure E2E Testing and/or Component Testing. Selecting any of these options will automatically create a
cypress.config.js file and a cypress folder in your project.

Creating your first Cypress E2E test

Ensure your cypress.config.js file has the following configuration:

cypress.config.ts (ts)

import { defineConfig } from 'cypress'

export default defineConfig({
  e2e: {
    setupNodeEvents(on, config) {},
  },
})

https://www.cypress.io/
https://github.com/cypress-io/cypress/issues/28185
https://github.com/cypress-io/cypress/issues/27731
https://docs.cypress.io/guides/references/changelog#13-6-3
https://github.com/vercel/next.js/tree/canary/examples/with-cypress


cypress.config.js (js)

const { defineConfig } = require('cypress')

module.exports = defineConfig({
  e2e: {
    setupNodeEvents(on, config) {},
  },
})

Then, create two new Next.js files:
app/page.js (jsx)

import Link from 'next/link'

export default function Page() {
  return (
    <div>
      <h1>Home</h1>
      <Link href="/about">About</Link>
    </div>
  )
}

app/about/page.js (jsx)

import Link from 'next/link'

export default function Page() {
  return (
    <div>
      <h1>About</h1>
      <Link href="/">Home</Link>
    </div>
  )
}

pages/index.js (jsx)

import Link from 'next/link'

export default function Home() {
  return (
    <div>
      <h1>Home</h1>
      <Link href="/about">About</Link>
    </div>
  )
}

pages/about.js (jsx)

import Link from 'next/link'

export default function About() {
  return (
    <div>
      <h1>About</h1>
      <Link href="/">Home</Link>
    </div>
  )
}

Add a test to check your navigation is working correctly:
cypress/e2e/app.cy.js (js)

describe('Navigation', () => {
  it('should navigate to the about page', () => {
    // Start from the index page
    cy.visit('http://localhost:3000/')

    // Find a link with an href attribute containing "about" and click it
    cy.get('a[href*="about"]').click()

    // The new url should include "/about"
    cy.url().should('include', '/about')

    // The new page should contain an h1 with "About"



    cy.get('h1').contains('About')
  })
})

Running E2E Tests

Cypress will simulate a user navigating your application, this requires your Next.js server to be running. We recommend running your
tests against your production code to more closely resemble how your application will behave.

Run npm run build && npm run start to build your Next.js application, then run npm run cypress:open in another terminal
window to start Cypress and run your E2E testing suite.

Good to know:

You can use cy.visit("/") instead of cy.visit("http://localhost:3000/") by adding baseUrl:
'http://localhost:3000' to the cypress.config.js configuration file.
Alternatively, you can install the start-server-and-test package to run the Next.js production server in conjunction
with Cypress. After installation, add "test": "start-server-and-test start http://localhost:3000 cypress"
to your package.json scripts field. Remember to rebuild your application after new changes.

Creating your first Cypress component test

Component tests build and mount a specific component without having to bundle your whole application or start a server.

Select Component Testing in the Cypress app, then select Next.js as your front-end framework. A cypress/component folder will be
created in your project, and a cypress.config.js file will be updated to enable component testing.

Ensure your cypress.config.js file has the following configuration:

cypress.config.ts (ts)

import { defineConfig } from 'cypress'

export default defineConfig({
  component: {
    devServer: {
      framework: 'next',
      bundler: 'webpack',
    },
  },
})

cypress.config.js (js)

const { defineConfig } = require('cypress')

module.exports = defineConfig({
  component: {
    devServer: {
      framework: 'next',
      bundler: 'webpack',
    },
  },
})

Assuming the same components from the previous section, add a test to validate a component is rendering the expected output:
cypress/component/about.cy.tsx (tsx)

import Page from '../../app/page'

describe('<Page />', () => {
  it('should render and display expected content', () => {
    // Mount the React component for the Home page
    cy.mount(<Page />)

    // The new page should contain an h1 with "Home"
    cy.get('h1').contains('Home')

    // Validate that a link with the expected URL is present
    // Following the link is better suited to an E2E test
    cy.get('a[href="/about"]').should('be.visible')
  })
})

cypress/component/about.cy.js (jsx)



import AboutPage from '../../pages/about'

describe('<AboutPage />', () => {
  it('should render and display expected content', () => {
    // Mount the React component for the About page
    cy.mount(<AboutPage />)

    // The new page should contain an h1 with "About page"
    cy.get('h1').contains('About')

    // Validate that a link with the expected URL is present
    // *Following* the link is better suited to an E2E test
    cy.get('a[href="/"]').should('be.visible')
  })
})

Good to know:

Cypress currently doesn’t support component testing for async Server Components. We recommend using E2E testing.
Since component tests do not require a Next.js server, features like <Image /> that rely on a server being available may
not function out-of-the-box.

Running Component Tests

Run npm run cypress:open in your terminal to start Cypress and run your component testing suite.

Continuous Integration (CI)

In addition to interactive testing, you can also run Cypress headlessly using the cypress run command, which is better suited for CI
environments:

package.json (json)

{
  "scripts": {
    //...
    "e2e": "start-server-and-test dev http://localhost:3000 \"cypress open --e2e\"",
    "e2e:headless": "start-server-and-test dev http://localhost:3000 \"cypress run --e2e\"",
    "component": "cypress open --component",
    "component:headless": "cypress run --component"
  }
}

You can learn more about Cypress and Continuous Integration from these resources:

Next.js with Cypress example
Cypress Continuous Integration Docs
Cypress GitHub Actions Guide
Official Cypress GitHub Action
Cypress Discord

https://github.com/vercel/next.js/tree/canary/examples/with-cypress
https://docs.cypress.io/guides/continuous-integration/introduction
https://on.cypress.io/github-actions
https://github.com/cypress-io/github-action
https://discord.com/invite/cypress


3.1.9 - Authentication
Documentation path: /02-app/01-building-your-application/09-authentication/index

Description: Learn how to implement authentication in your Next.js application.

Understanding authentication is crucial for protecting your application’s data. This page will guide you through what React and Next.js
features to use to implement auth.

Before starting, it helps to break down the process into three concepts:

1. Authentication: Verifies if the user is who they say they are. It requires the user to prove their identity with something they have,
such as a username and password.

2. Session Management: Tracks the user’s auth state across requests.
3. Authorization: Decides what routes and data the user can access.

This diagram shows the authentication flow using React and Next.js features:

The examples on this page walk through basic username and password auth for educational purposes. While you can implement a
custom auth solution, for increased security and simplicity, we recommend using an authentication library. These offer built-in
solutions for authentication, session management, and authorization, as well as additional features such as social logins, multi-factor
authentication, and role-based access control. You can find a list in the Auth Libraries section.

Authentication

Sign-up and login functionality

You can use the <form> element with React’s Server Actions, useFormStatus(), and useActionState() to capture user credentials,
validate form fields, and call your Authentication Provider’s API or database.

https://react.dev/reference/react-dom/components/form
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
https://react.dev/reference/react-dom/hooks/useFormStatus
https://react.dev/reference/react/useActionState


Since Server Actions always execute on the server, they provide a secure environment for handling authentication logic.

Here are the steps to implement signup/login functionality:

1. Capture user credentials

To capture user credentials, create a form that invokes a Server Action on submission. For example, a signup form that accepts the
user’s name, email, and password:

app/ui/signup-form.tsx (tsx)

import { signup } from '@/app/actions/auth'

export function SignupForm() {
  return (
    <form action={signup}>
      <div>
        <label htmlFor="name">Name</label>
        <input id="name" name="name" placeholder="Name" />
      </div>
      <div>
        <label htmlFor="email">Email</label>
        <input id="email" name="email" type="email" placeholder="Email" />
      </div>
      <div>
        <label htmlFor="password">Password</label>
        <input id="password" name="password" type="password" />
      </div>
      <button type="submit">Sign Up</button>
    </form>
  )
}

app/ui/signup-form.js (jsx)

import { signup } from '@/app/actions/auth'

export function SignupForm() {
  return (
    <form action={signup}>
      <div>
        <label htmlFor="name">Name</label>
        <input id="name" name="name" placeholder="Name" />
      </div>
      <div>
        <label htmlFor="email">Email</label>
        <input id="email" name="email" type="email" placeholder="Email" />
      </div>
      <div>
        <label htmlFor="password">Password</label>
        <input id="password" name="password" type="password" />
      </div>
      <button type="submit">Sign Up</button>
    </form>
  )
}

app/actions/auth.tsx (tsx)

export async function signup(formData: FormData) {}

app/actions/auth.js (jsx)

export async function signup(formData) {}

2. Validate form fields on the server

Use the Server Action to validate the form fields on the server. If your authentication provider doesn’t provide form validation, you can
use a schema validation library like Zod or Yup.

Using Zod as an example, you can define a form schema with appropriate error messages:
app/lib/definitions.ts (ts)

import { z } from 'zod'

export const SignupFormSchema = z.object({
  name: z
    .string()
    .min(2, { message: 'Name must be at least 2 characters long.' })

https://zod.dev/
https://github.com/jquense/yup


    .trim(),
  email: z.string().email({ message: 'Please enter a valid email.' }).trim(),
  password: z
    .string()
    .min(8, { message: 'Be at least 8 characters long' })
    .regex(/[a-zA-Z]/, { message: 'Contain at least one letter.' })
    .regex(/[0-9]/, { message: 'Contain at least one number.' })
    .regex(/[^a-zA-Z0-9]/, {
      message: 'Contain at least one special character.',
    })
    .trim(),
})

export type FormState =
  | {
      errors?: {
        name?: string[]
        email?: string[]
        password?: string[]
      }
      message?: string
    }
  | undefined

app/lib/definitions.js (js)

import { z } from 'zod'

export const SignupFormSchema = z.object({
  name: z
    .string()
    .min(2, { message: 'Name must be at least 2 characters long.' })
    .trim(),
  email: z.string().email({ message: 'Please enter a valid email.' }).trim(),
  password: z
    .string()
    .min(8, { message: 'Be at least 8 characters long' })
    .regex(/[a-zA-Z]/, { message: 'Contain at least one letter.' })
    .regex(/[0-9]/, { message: 'Contain at least one number.' })
    .regex(/[^a-zA-Z0-9]/, {
      message: 'Contain at least one special character.',
    })
    .trim(),
})

To prevent unnecessary calls to your authentication provider’s API or database, you can return early in the Server Action if any form
fields do not match the defined schema.

app/actions/auth.ts (ts)

import { SignupFormSchema, FormState } from '@/app/lib/definitions'

export async function signup(state: FormState, formData) {
  // Validate form fields
  const validatedFields = SignupFormSchema.safeParse({
    name: formData.get('name'),
    email: formData.get('email'),
    password: formData.get('password'),
  })

  // If any form fields are invalid, return early
  if (!validatedFields.success) {
    return {
      errors: validatedFields.error.flatten().fieldErrors,
    }
  }

  // Call the provider or db to create a user...
}

app/actions/auth.js (js)

import { SignupFormSchema } from '@/app/lib/definitions'

export async function signup(state, formData) {
  // Validate form fields
  const validatedFields = SignupFormSchema.safeParse({
    name: formData.get('name'),



    email: formData.get('email'),
    password: formData.get('password'),
  })

  // If any form fields are invalid, return early
  if (!validatedFields.success) {
    return {
      errors: validatedFields.error.flatten().fieldErrors,
    }
  }

  // Call the provider or db to create a user...
}

Back in your <SignupForm />, you can use React’s useActionState() hook to display validation errors to the user:

```tsx filename=”app/ui/signup-form.tsx” switcher highlight={7,15,21,27-36} ‘use client’

import { useActionState } from ‘react’ import { signup } from ‘@/app/actions/auth’

export function SignupForm() { const [state, action] = useActionState(signup, undefined)

return (

Name Name
{state?.errors?.name &&

{state.errors.name}

}

 <div>
 <label htmlFor="email">Email</label>
 <input id="email" name="email" placeholder="Email" />
 </div>
 {state?.errors?.email && <p>{state.errors.email}</p>}

 <div>
 <label htmlFor="password">Password</label>
 <input id="password" name="password" type="password" />
 </div>
 {state?.errors?.password && (
 <div>
 <p>Password must:</p>

 {state.errors.password.map((error) => (
 <li key={error}>- {error}
))}

 </div>
)}
 <SignupButton />
</form>

) }

```jsx filename="app/ui/signup-form.js" switcher highlight={7,15,21,27-36}
'use client'

import { useActionState } from 'react'
import { signup } from '@/app/actions/auth'

export function SignupForm() {
  const [state, action] = useActionState(signup, undefined)

  return (
    <form action={action}>
      <div>
        <label htmlFor="name">Name</label>
        <input id="name" name="name" placeholder="John Doe" />
      </div>
      {state.errors.name && <p>{state.errors.name}</p>}

      <div>
        <label htmlFor="email">Email</label>
        <input id="email" name="email" placeholder="john@example.com" />
      </div>
      {state.errors.email && <p>{state.errors.email}</p>}



      <div>
        <label htmlFor="password">Password</label>
        <input id="password" name="password" type="password" />
      </div>
      {state.errors.password && (
        <div>
          <p>Password must:</p>
          <ul>
            {state.errors.password.map((error) => (
              <li key={error}>- {error}</li>
            ))}
          </ul>
        </div>
      )}
      <SignupButton />
    </form>
  )
}

You can also use the useFormStatus() hook to handle the pending state on form submission:

```tsx filename=”app/ui/signup-form.tsx” highlight={6} switcher ‘use client’

import { useActionState } from ‘react’ import { useFormStatus } from ‘react-dom’

export function SignupButton() { const { pending } = useFormStatus()

return ({pending ? ‘Submitting…’ : ‘Sign up’}) }

```jsx filename="app/ui/signup-form.js"  highlight={6} switcher
'use client'

import { useActionState } from 'react'
import { useFormStatus } from 'react-dom'

export function SignupButton() {
  const { pending } = useFormStatus()

  return (
    <button aria-disabled={pending} type="submit">
      {pending ? 'Submitting...' : 'Sign up'}
    </button>
  )
}

Good to know: useFormStatus() must be called from a component that is rendered inside a <form>. See the React Docs for
more information.

3. Create a user or check user credentials

After validating form fields, you can create a new user account or check if the user exists by calling your authentication provider’s API
or database.

Continuing from the previous example:
app/actions/auth.tsx (tsx)

export async function signup(state: FormState, formData: FormData) {
  // 1. Validate form fields
  // ...

  // 2. Prepare data for insertion into database
  const { name, email, password } = validatedFields.data
  // e.g. Hash the user's password before storing it
  const hashedPassword = await bcrypt.hash(password, 10)

  // 3. Insert the user into the database or call an Auth Library's API
  const data = await db
    .insert(users)
    .values({
      name,
      email,
      password: hashedPassword,
    })
    .returning({ id: users.id })

  const user = data[0]

https://react.dev/reference/react-dom/hooks/useFormStatus#usage


  if (!user) {
    return {
      message: 'An error occurred while creating your account.',
    }
  }

  // TODO:
  // 4. Create user session
  // 5. Redirect user
}

app/actions/auth.js (jsx)

export async function signup(state, formData) {
  // 1. Validate form fields
  // ...

  // 2. Prepare data for insertion into database
  const { name, email, password } = validatedFields.data
  // e.g. Hash the user's password before storing it
  const hashedPassword = await bcrypt.hash(password, 10)

  // 3. Insert the user into the database or call an Library API
  const data = await db
    .insert(users)
    .values({
      name,
      email,
      password: hashedPassword,
    })
    .returning({ id: users.id })

  const user = data[0]

  if (!user) {
    return {
      message: 'An error occurred while creating your account.',
    }
  }

  // TODO:
  // 4. Create user session
  // 5. Redirect user
}

After successfully creating the user account or verifying the user credentials, you can create a session to manage the user’s auth state.
Depending on your session management strategy, the session can be stored in a cookie or database, or both. Continue to the Session
Management section to learn more.

Tips:

The example above is verbose since it breaks down the authentication steps for the purpose of education. This highlights
that implementing your own secure solution can quickly become complex. Consider using an Auth Library to simplify the
process.
To improve the user experience, you may want to check for duplicate emails or usernames earlier in the registration flow.
For example, as the user types in a username or the input field loses focus. This can help prevent unnecessary form
submissions and provide immediate feedback to the user. You can debounce requests with libraries such as use-debounce
to manage the frequency of these checks.

Here are the steps to implement a sign-up and/or login form:

1. The user submits their credentials through a form.
2. The form sends a request that is handled by an API route.
3. Upon successful verification, the process is completed, indicating the user’s successful authentication.
4. If verification is unsuccessful, an error message is shown.

Consider a login form where users can input their credentials:
pages/login.tsx (tsx)

import { FormEvent } from 'react'
import { useRouter } from 'next/router'

export default function LoginPage() {
  const router = useRouter()

https://www.npmjs.com/package/use-debounce


  async function handleSubmit(event: FormEvent<HTMLFormElement>) {
    event.preventDefault()

    const formData = new FormData(event.currentTarget)
    const email = formData.get('email')
    const password = formData.get('password')

    const response = await fetch('/api/auth/login', {
      method: 'POST',
      headers: { 'Content-Type': 'application/json' },
      body: JSON.stringify({ email, password }),
    })

    if (response.ok) {
      router.push('/profile')
    } else {
      // Handle errors
    }
  }

  return (
    <form onSubmit={handleSubmit}>
      <input type="email" name="email" placeholder="Email" required />
      <input type="password" name="password" placeholder="Password" required />
      <button type="submit">Login</button>
    </form>
  )
}

pages/login.jsx (jsx)

import { FormEvent } from 'react'
import { useRouter } from 'next/router'

export default function LoginPage() {
  const router = useRouter()

  async function handleSubmit(event) {
    event.preventDefault()

    const formData = new FormData(event.currentTarget)
    const email = formData.get('email')
    const password = formData.get('password')

    const response = await fetch('/api/auth/login', {
      method: 'POST',
      headers: { 'Content-Type': 'application/json' },
      body: JSON.stringify({ email, password }),
    })

    if (response.ok) {
      router.push('/profile')
    } else {
      // Handle errors
    }
  }

  return (
    <form onSubmit={handleSubmit}>
      <input type="email" name="email" placeholder="Email" required />
      <input type="password" name="password" placeholder="Password" required />
      <button type="submit">Login</button>
    </form>
  )
}

The form above has two input fields for capturing the user’s email and password. On submission, it triggers a function that sends a
POST request to an API route (/api/auth/login).

You can then call your Authentication Provider’s API in the API route to handle authentication:
pages/api/auth/login.ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'
import { signIn } from '@/auth'

export default async function handler(
  req: NextApiRequest,



  res: NextApiResponse
) {
  try {
    const { email, password } = req.body
    await signIn('credentials', { email, password })

    res.status(200).json({ success: true })
  } catch (error) {
    if (error.type === 'CredentialsSignin') {
      res.status(401).json({ error: 'Invalid credentials.' })
    } else {
      res.status(500).json({ error: 'Something went wrong.' })
    }
  }
}

pages/api/auth/login.js (js)

import { signIn } from '@/auth'

export default async function handler(req, res) {
  try {
    const { email, password } = req.body
    await signIn('credentials', { email, password })

    res.status(200).json({ success: true })
  } catch (error) {
    if (error.type === 'CredentialsSignin') {
      res.status(401).json({ error: 'Invalid credentials.' })
    } else {
      res.status(500).json({ error: 'Something went wrong.' })
    }
  }
}

Session Management

Session management ensures that the user’s authenticated state is preserved across requests. It involves creating, storing, refreshing,
and deleting sessions or tokens.

There are two types of sessions:

1. Stateless: Session data (or a token) is stored in the browser’s cookies. The cookie is sent with each request, allowing the session to
be verified on the server. This method is simpler, but can be less secure if not implemented correctly.

2. Database: Session data is stored in a database, with the user’s browser only receiving the encrypted session ID. This method is
more secure, but can be complex and use more server resources.

Good to know: While you can use either method, or both, we recommend using session management library such as iron-
session or Jose.

Stateless Sessions

To create and manage stateless sessions, there are a few steps you need to follow:

1. Generate a secret key, which will be used to sign your session, and store it as an environment variable.
2. Write logic to encrypt/decrypt session data using a session management library.
3. Manage cookies using the Next.js cookies() API.

In addition to the above, consider adding functionality to update (or refresh) the session when the user returns to the application, and
delete the session when the user logs out.

Good to know: Check if your auth library includes session management.

1. Generating a secret key

There are a few ways you can generate secret key to sign your session. For example, you may choose to use the openssl command in
your terminal:

terminal (bash)

openssl rand -base64 32

This command generates a 32-character random string that you can use as your secret key and store in your environment variables file:
.env (bash)

https://github.com/vvo/iron-session
https://github.com/panva/jose
file:///docs/app/building-your-application/configuring/environment-variables
file:///docs/app/api-reference/functions/cookies
file:///docs/app/building-your-application/configuring/environment-variables


SESSION_SECRET=your_secret_key

You can then reference this key in your session management logic:
app/lib/session.js (js)

const secretKey = process.env.SESSION_SECRET

2. Encrypting and decrypting sessions

Next, you can use your preferred session management library to encrypt and decrypt sessions. Continuing from the previous example,
we’ll use Jose (compatible with the Edge Runtime) and React’s server-only package to ensure that your session management logic is
only executed on the server.

app/lib/session.ts (tsx)

import 'server-only'
import { SignJWT, jwtVerify } from 'jose'
import { SessionPayload } from '@/app/lib/definitions'

const secretKey = process.env.SESSION_SECRET
const encodedKey = new TextEncoder().encode(secretKey)

export async function encrypt(payload: SessionPayload) {
  return new SignJWT(payload)
    .setProtectedHeader({ alg: 'HS256' })
    .setIssuedAt()
    .setExpirationTime('7d')
    .sign(encodedKey)
}

export async function decrypt(session: string | undefined = '') {
  try {
    const { payload } = await jwtVerify(session, encodedKey, {
      algorithms: ['HS256'],
    })
    return payload
  } catch (error) {
    console.log('Failed to verify session')
  }
}

app/lib/session.js (jsx)

import 'server-only'
import { SignJWT, jwtVerify } from 'jose'

const secretKey = process.env.SESSION_SECRET
const encodedKey = new TextEncoder().encode(secretKey)

export async function encrypt(payload) {
  return new SignJWT(payload)
    .setProtectedHeader({ alg: 'HS256' })
    .setIssuedAt()
    .setExpirationTime('7d')
    .sign(encodedKey)
}

export async function decrypt(session) {
  try {
    const { payload } = await jwtVerify(session, encodedKey, {
      algorithms: ['HS256'],
    })
    return payload
  } catch (error) {
    console.log('Failed to verify session')
  }
}

Tips:

The payload should contain the minimum, unique user data that’ll be used in subsequent requests, such as the user’s ID,
role, etc. It should not contain personally identifiable information like phone number, email address, credit card
information, etc, or sensitive data like passwords.

3. Setting cookies (recommended options)

https://www.npmjs.com/package/jose
file:///docs/app/building-your-application/rendering/edge-and-nodejs-runtimes
https://www.npmjs.com/package/server-only


To store the session in a cookie, use the Next.js cookies() API. The cookie should be set on the server, and include the recommended
options:

HttpOnly: Prevents client-side JavaScript from accessing the cookie.
Secure: Use https to send the cookie.
SameSite: Specify whether the cookie can be sent with cross-site requests.
Max-Age or Expires: Delete the cookie after a certain period.
Path: Define the URL path for the cookie.

Please refer to MDN for more information on each of these options.
app/lib/session.ts (ts)

import 'server-only'
import { cookies } from 'next/headers'

export async function createSession(userId: string) {
  const expiresAt = new Date(Date.now() + 7 * 24 * 60 * 60 * 1000)
  const session = await encrypt({ userId, expiresAt })

  cookies().set('session', session, {
    httpOnly: true,
    secure: true,
    expires: expiresAt,
    sameSite: 'lax',
    path: '/',
  })
}

app/lib/session.js (js)

import 'server-only'
import { cookies } from 'next/headers'

export async function createSession(userId) {
  const expiresAt = new Date(Date.now() + 7 * 24 * 60 * 60 * 1000)
  const session = await encrypt({ userId, expiresAt })

  cookies().set('session', session, {
    httpOnly: true,
    secure: true,
    expires: expiresAt,
    sameSite: 'lax',
    path: '/',
  })
}

Back in your Server Action, you can invoke the createSession() function, and use the redirect() API to redirect the user to the
appropriate page:

app/actions/auth.ts (ts)

import { createSession } from '@/app/lib/session'

export async function signup(state: FormState, formData: FormData) {
  // Previous steps:
  // 1. Validate form fields
  // 2. Prepare data for insertion into database
  // 3. Insert the user into the database or call an Library API

  // Current steps:
  // 4. Create user session
  await createSession(user.id)
  // 5. Redirect user
  redirect('/profile')
}

app/actions/auth.js (js)

import { createSession } from '@/app/lib/session'

export async function signup(state, formData) {
  // Previous steps:
  // 1. Validate form fields
  // 2. Prepare data for insertion into database
  // 3. Insert the user into the database or call an Library API

  // Current steps:

file:///docs/app/api-reference/functions/cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
file:///docs/app/building-your-application/routing/redirecting


  // 4. Create user session
  await createSession(user.id)
  // 5. Redirect user
  redirect('/profile')
}

Tips:

Cookies should be set on the server to prevent client-side tampering.
� Watch: Learn more about stateless sessions and authentication with Next.js → YouTube (11 minutes).

Updating (or refreshing) sessions

You can also extend the session’s expiration time. This is useful for keeping the user logged in after they access the application again.
For example:

app/lib/session.ts (ts)

import 'server-only'
import { cookies } from 'next/headers'
import { decrypt } from '@/app/lib/session'

export async function updateSession() {
  const session = cookies().get('session')?.value
  const payload = await decrypt(session)

  if (!session || !payload) {
    return null
  }

  const expires = new Date(Date.now() + 7 * 24 * 60 * 60 * 1000)
  cookies().set('session', session, {
    httpOnly: true,
    secure: true,
    expires: expires,
    sameSite: 'lax',
    path: '/',
  })
}

app/lib/session.js (js)

import 'server-only'
import { cookies } from 'next/headers'
import { decrypt } from '@/app/lib/session'

export async function updateSession() {
  const session = cookies().get('session').value
  const payload = await decrypt(session)

  if (!session || !payload) {
    return null
  }

  const expires = new Date(Date.now() + 7 * 24 * 60 * 60 * 1000)
  cookies().set('session', session, {
    httpOnly: true,
    secure: true,
    expires: expires,
    sameSite: 'lax',
    path: '/',
  })
}

Tip: Check if your auth library supports refresh tokens, which can be used to extend the user’s session.

Deleting the session

To delete the session, you can delete the cookie:
app/lib/session.ts (ts)

import 'server-only'
import { cookies } from 'next/headers'

export function deleteSession() {
  cookies().delete('session')
}

https://www.youtube.com/watch?v=DJvM2lSPn6w


app/lib/session.js (js)

import 'server-only'
import { cookies } from 'next/headers'

export function deleteSession() {
  cookies().delete('session')
}

Then you can reuse the deleteSession() function in your application, for example, on logout:

app/actions/auth.ts (ts)

import { cookies } from 'next/headers'
import { deleteSession } from '@/app/lib/session'

export async function logout() {
  deleteSession()
  redirect('/login')
}

app/actions/auth.js (js)

import { cookies } from 'next/headers'
import { deleteSession } from '@/app/lib/session'

export async function logout() {
  deleteSession()
  redirect('/login')
}

Setting and deleting cookies

You can use API Routes to set the session as a cookie on the server:
pages/api/login.ts (ts)

import { serialize } from 'cookie'
import type { NextApiRequest, NextApiResponse } from 'next'
import { encrypt } from '@/app/lib/session'

export default function handler(req: NextApiRequest, res: NextApiResponse) {
  const sessionData = req.body
  const encryptedSessionData = encrypt(sessionData)

  const cookie = serialize('session', encryptedSessionData, {
    httpOnly: true,
    secure: process.env.NODE_ENV === 'production',
    maxAge: 60 * 60 * 24 * 7, // One week
    path: '/',
  })
  res.setHeader('Set-Cookie', cookie)
  res.status(200).json({ message: 'Successfully set cookie!' })
}

pages/api/login.js (js)

import { serialize } from 'cookie'
import { encrypt } from '@/app/lib/session'

export default function handler(req, res) {
  const sessionData = req.body
  const encryptedSessionData = encrypt(sessionData)

  const cookie = serialize('session', encryptedSessionData, {
    httpOnly: true,
    secure: process.env.NODE_ENV === 'production',
    maxAge: 60 * 60 * 24 * 7, // One week
    path: '/',
  })
  res.setHeader('Set-Cookie', cookie)
  res.status(200).json({ message: 'Successfully set cookie!' })
}

Database Sessions

To create and manage database sessions, you’ll need to follow these steps:

1. Create a table in your database to store session and data (or check if your Auth Library handles this).

file:///docs/pages/building-your-application/routing/api-routes


2. Implement functionality to insert, update, and delete sessions
3. Encrypt the session ID before storing it in the user’s browser, and ensure the database and cookie stay in sync (this is optional, but

recommended for optimistic auth checks in Middleware).

For example:
app/lib/session.ts (ts)

import cookies from 'next/headers'
import { db } from '@/app/lib/db'
import { encrypt } from '@/app/lib/session'

export async function createSession(id: number) {
  const expiresAt = new Date(Date.now() + 7 * 24 * 60 * 60 * 1000)

  // 1. Create a session in the database
  const data = await db
    .insert(sessions)
    .values({
      userId: id,
      expiresAt,
    })
    // Return the session ID
    .returning({ id: sessions.id })

  const sessionId = data[0].id

  // 2. Encrypt the session ID
  const session = await encrypt({ sessionId, expiresAt })

  // 3. Store the session in cookies for optimistic auth checks
  cookies().set('session', session, {
    httpOnly: true,
    secure: true,
    expires: expiresAt,
    sameSite: 'lax',
    path: '/',
  })
}

app/lib/session.js (js)

import cookies from 'next/headers'
import { db } from '@/app/lib/db'
import { encrypt } from '@/app/lib/session'

export async function createSession(id) {
  const expiresAt = new Date(Date.now() + 7 * 24 * 60 * 60 * 1000)

  // 1. Create a session in the database
  const data = await db
    .insert(sessions)
    .values({
      userId: id,
      expiresAt,
    })
    // Return the session ID
    .returning({ id: sessions.id })

  const sessionId = data[0].id

  // 2. Encrypt the session ID
  const session = await encrypt({ sessionId, expiresAt })

  // 3. Store the session in cookies for optimistic auth checks
  cookies().set('session', session, {
    httpOnly: true,
    secure: true,
    expires: expiresAt,
    sameSite: 'lax',
    path: '/',
  })
}

Tips:

For faster data retrieval, consider using a database like Vercel Redis. However, you can also keep the session data in your

https://vercel.com/docs/storage/vercel-kv


primary database, and combine data requests to reduce the number of queries.
You may opt to use database sessions for more advanced use cases, such as keeping track of the last time a user logged in,
or number of active devices, or give users the ability to log out of all devices.

After implementing session management, you’ll need to add authorization logic to control what users can access and do within your
application. Continue to the Authorization section to learn more.

Creating a Session on the Server:
pages/api/create-session.ts (ts)

import db from '../../lib/db'
import type { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
  req: NextApiRequest,
  res: NextApiResponse
) {
  try {
    const user = req.body
    const sessionId = generateSessionId()
    await db.insertSession({
      sessionId,
      userId: user.id,
      createdAt: new Date(),
    })

    res.status(200).json({ sessionId })
  } catch (error) {
    res.status(500).json({ error: 'Internal Server Error' })
  }
}

pages/api/create-session.js (js)

import db from '../../lib/db'

export default async function handler(req, res) {
  try {
    const user = req.body
    const sessionId = generateSessionId()
    await db.insertSession({
      sessionId,
      userId: user.id,
      createdAt: new Date(),
    })

    res.status(200).json({ sessionId })
  } catch (error) {
    res.status(500).json({ error: 'Internal Server Error' })
  }
}

Authorization

Once a user is authenticated and a session is created, you can implement authorization to control what the user can access and do
within your application.

There are two main types of authorization checks:

1. Optimistic: Checks if the user is authorized to access a route or perform an action using the session data stored in the cookie.
These checks are useful for quick operations, such as showing/hiding UI elements or redirecting users based on permissions or
roles.

2. Secure: Checks if the user is authorized to access a route or perform an action using the session data stored in the database. These
checks are more secure and are used for operations that require access to sensitive data or actions.

For both cases, we recommend:

Creating a Data Access Layer to centralize your authorization logic
Using Data Transfer Objects (DTO) to only return the necessary data
Optionally use Middleware to perform optimistic checks.

Optimistic checks with Middleware (Optional)

There are some cases where you may want to use Middleware and redirect users based on permissions:

file:///docs/app/building-your-application/routing/middleware


To perform optimistic checks. Since Middleware runs on every route, it’s a good way to centralize redirect logic and pre-filter
unauthorized users.
To protect static routes that share data between users (e.g. content behind a paywall).

However, since Middleware runs on every route, including prefetched routes, it’s important to only read the session from the cookie
(optimistic checks), and avoid database checks to prevent performance issues.

For example:
middleware.ts (tsx)

import { NextRequest, NextResponse } from 'next/server'
import { decrypt } from '@/app/lib/session'
import { cookies } from 'next/headers'

// 1. Specify protected and public routes
const protectedRoutes = ['/dashboard']
const publicRoutes = ['/login', '/signup', '/']

export default async function middleware(req: NextRequest) {
  // 2. Check if the current route is protected or public
  const path = req.nextUrl.pathname
  const isProtectedRoute = protectedRoutes.includes(path)
  const isPublicRoute = publicRoutes.includes(path)

  // 3. Decrypt the session from the cookie
  const cookie = cookies().get('session')?.value
  const session = await decrypt(cookie)

  // 5. Redirect to /login if the user is not authenticated
  if (isProtectedRoute && !session?.userId) {
    return NextResponse.redirect(new URL('/login', req.nextUrl))
  }

  // 6. Redirect to /dashboard if the user is authenticated
  if (
    isPublicRoute &&
    session?.userId &&
    !req.nextUrl.pathname.startsWith('/dashboard')
  ) {
    return NextResponse.redirect(new URL('/dashboard', req.nextUrl))
  }

  return NextResponse.next()
}

// Routes Middleware should not run on
export const config = {
  matcher: ['/((?!api|_next/static|_next/image|.*\\.png$).*)'],
}

middleware.js (js)

import { NextResponse } from 'next/server'
import { decrypt } from '@/app/lib/session'
import { cookies } from 'next/headers'

// 1. Specify protected and public routes
const protectedRoutes = ['/dashboard']
const publicRoutes = ['/login', '/signup', '/']

export default async function middleware(req) {
  // 2. Check if the current route is protected or public
  const path = req.nextUrl.pathname
  const isProtectedRoute = protectedRoutes.includes(path)
  const isPublicRoute = publicRoutes.includes(path)

  // 3. Decrypt the session from the cookie
  const cookie = cookies().get('session')?.value
  const session = await decrypt(cookie)

  // 5. Redirect to /login if the user is not authenticated
  if (isProtectedRoute && !session?.userId) {
    return NextResponse.redirect(new URL('/login', req.nextUrl))
  }

  // 6. Redirect to /dashboard if the user is authenticated
  if (

file:///docs/app/building-your-application/routing/linking-and-navigating#2-prefetching


    isPublicRoute &&
    session?.userId &&
    !req.nextUrl.pathname.startsWith('/dashboard')
  ) {
    return NextResponse.redirect(new URL('/dashboard', req.nextUrl))
  }

  return NextResponse.next()
}

// Routes Middleware should not run on
export const config = {
  matcher: ['/((?!api|_next/static|_next/image|.*\\.png$).*)'],
}

While Middleware can be useful for initial checks, it should not be your only line of defense in protecting your data. The majority of
security checks should be performed as close as possible to your data source, see Data Access Layer for more information.

Tips:

In Middleware, you can also read cookies using req.cookies.get('session).value.
Middleware uses the Edge Runtime, check if your Auth library and session management library are compatible.
You can use the matcher property in the Middleware to specify which routes Middleware should run on. Although, for auth,
it’s recommended Middleware runs on all routes.

Creating a Data Access Layer (DAL)

We recommend creating a DAL to centralize your data requests and authorization logic.

The DAL should include a function that verifies the user’s session as they interact with your application. At the very least, the function
should check if the session is valid, then redirect or return the user information needed to make further requests.

For example, create a separate file for your DAL that includes a verifySession() function. Then use React’s cache API to memoize
the return value of the function during a React render pass:

app/lib/dal.ts (tsx)

import 'server-only'

import { cookies } from 'next/headers'
import { decrypt } from '@/app/lib/session'

export const verifySession = cache(async () => {
  const cookie = cookies().get('session')?.value
  const session = await decrypt(cookie)

  if (!session?.userId) {
    redirect('/login')
  }

  return { isAuth: true, userId: session.userId }
})

app/lib/dal.js (js)

import 'server-only'

import { cookies } from 'next/headers'
import { decrypt } from '@/app/lib/session'

export const verifySession = cache(async () => {
  const cookie = cookies().get('session').value
  const session = await decrypt(cookie)

  if (!session.userId) {
    redirect('/login')
  }

  return { isAuth: true, userId: session.userId }
})

You can then invoke the verifySession() function in your data requests, Server Actions, Route Handlers:

app/lib/dal.ts (tsx)

export const getUser = cache(async () => {
  const session = await verifySession()

file:///docs/app/building-your-application/rendering/edge-and-nodejs-runtimes
https://react.dev/reference/react/cache


  if (!session) return null

  try {
    const data = await db.query.users.findMany({
      where: eq(users.id, session.userId),
      // Explicitly return the columns you need rather than the whole user object
      columns: {
        id: true,
        name: true,
        email: true,
      },
    })

    const user = data[0]

    return user
  } catch (error) {
    console.log('Failed to fetch user')
    return null
  }
})

app/lib/dal.js (jsx)

export const getUser = cache(async () => {
  const session = await verifySession()
  if (!session) return null

  try {
    const data = await db.query.users.findMany({
      where: eq(users.id, session.userId),
      // Explicitly return the columns you need rather than the whole user object
      columns: {
        id: true,
        name: true,
        email: true,
      },
    })

    const user = data[0]

    return user
  } catch (error) {
    console.log('Failed to fetch user')
    return null
  }
})

Tip:

A DAL can be used to protect data fetched at request time. However, for static routes that share data between users, data
will be fetched at build time and not at request time. Use Middleware to protect static routes.
For secure checks, you can check if the session is valid by comparing the session ID with your database. Use React’s cache
function to avoid unnecessary duplicate requests to the database during a render pass.
You may wish to consolidate related data requests in a JavaScript class that runs verifySession() before any methods.

Using Data Transfer Objects (DTO)

When retrieving data, it’s recommended you return only the necessary data that will be used in your application, and not entire objects.
For example, if you’re fetching user data, you might only return the user’s ID and name, rather than the entire user object which could
contain passwords, phone numbers, etc.

However, if you have no control over the returned data structure, or are working in a team where you want to avoid whole objects
being passed to the client, you can use strategies such as specifying what fields are safe to be exposed to the client.

app/lib/dto.ts (tsx)

import 'server-only'
import { getUser } from '@/app/lib/dal'

function canSeeUsername(viewer: User) {
  return true
}

function canSeePhoneNumber(viewer: User, team: string) {
  return viewer.isAdmin || team === viewer.team

https://react.dev/reference/react/cache


}

export async function getProfileDTO(slug: string) {
  const data = await db.query.users.findMany({
    where: eq(users.slug, slug),
    // Return specific columns here
  })
  const user = data[0]

  const currentUser = await getUser(user.id)

  // Or return only what's specific to the query here
  return {
    username: canSeeUsername(currentUser) ? user.username : null,
    phonenumber: canSeePhoneNumber(currentUser, user.team)
      ? user.phonenumber
      : null,
  }
}

app/lib/dto.js (js)

import 'server-only'
import { getUser } from '@/app/lib/dal'

function canSeeUsername(viewer) {
  return true
}

function canSeePhoneNumber(viewer, team) {
  return viewer.isAdmin || team === viewer.team
}

export async function getProfileDTO(slug) {
  const data = await db.query.users.findMany({
    where: eq(users.slug, slug),
    // Return specific columns here
  })
  const user = data[0]

  const currentUser = await getUser(user.id)

  // Or return only what's specific to the query here
  return {
    username: canSeeUsername(currentUser) ? user.username : null,
    phonenumber: canSeePhoneNumber(currentUser, user.team)
      ? user.phonenumber
      : null,
  }
}

By centralizing your data requests and authorization logic in a DAL and using DTOs, you can ensure that all data requests are secure
and consistent, making it easier to maintain, audit, and debug as your application scales.

Good to know:

There are a couple of different ways you can define a DTO, from using toJSON(), to individual functions like the example
above, or JS classes. Since these are JavaScript patterns and not a React or Next.js feature, we recommend doing some
research to find the best pattern for your application.
Learn more about security best practices in our Security in Next.js article.

Server Components

Auth check in Server Components are useful for role-based access. For example, to conditionally render components based on the
user’s role:

app/dashboard/page.tsx (tsx)

import { verifySession } from '@/app/lib/dal'

export default function Dashboard() {
  const session = await verifySession()
  const userRole = session?.user?.role // Assuming 'role' is part of the session object

  if (userRole === 'admin') {
    return <AdminDashboard />

file:///blog/security-nextjs-server-components-actions
file:///docs/app/building-your-application/rendering/server-components


  } else if (userRole === 'user') {
    return <UserDashboard />
  } else {
    redirect('/login')
  }
}

app/dashboard/page.jsx (jsx)

import { verifySession } from '@/app/lib/dal'

export default function Dashboard() {
  const session = await verifySession()
  const userRole = session.role // Assuming 'role' is part of the session object

  if (userRole === 'admin') {
    return <AdminDashboard />
  } else if (userRole === 'user') {
    return <UserDashboard />
  } else {
    redirect('/login')
  }
}

In the example, we use the verifySession() function from our DAL to check for ‘admin’, ‘user’, and unauthorized roles. This pattern
ensures that each user interacts only with components appropriate to their role.

Layouts and auth checks

Due to Partial Rendering, be cautious when doing checks in Layouts as these don’t re-render on navigation, meaning the user session
won’t be checked on every route change.

Instead, you should do the checks close to your data source or the component that’ll be conditionally rendered.

For example, consider a shared layout that fetches the user data and displays the user image in a nav. Instead of doing the auth check
in the layout, you should fetch the user data (getUser()) in the layout and do the auth check in your DAL.

This guarantees that wherever getUser() is called within your application, the auth check is performed, and prevents developers
forgetting to check the user is authorized to access the data.

app/layout.tsx (tsx)

export default async function Layout({
  children,
}: {
  children: React.ReactNode;
}) {
  const user = await getUser();

  return (
    // ...
  )
}

app/layout.js (jsx)

export default async function Layout({ children }) {
  const user = await getUser();

  return (
    // ...
  )
}

app/lib/dal.ts (ts)

export const getUser = cache(async () => {
  const session = await verifySession()
  if (!session) return null

  // Get user ID from session and fetch data
})

app/lib/dal.js (js)

export const getUser = cache(async () => {
  const session = await verifySession()
  if (!session) return null

file:///docs/app/building-your-application/routing/linking-and-navigating#4-partial-rendering
file:///docs/app/building-your-application/routing/layouts-and-templates


  // Get user ID from session and fetch data
})

Good to know:

A common pattern in SPAs is to return null in a layout or a top-level component if a user is not authorized. This pattern
is not not recommended since Next.js applications have multiple entry points, which will not prevent nested route
segments and Server Actions from being accessed.

Server Actions

Treat Server Actions with the same security considerations as public-facing API endpoints, and verify if the user is allowed to perform a
mutation.

In the example below, we check the user’s role before allowing the action to proceed:
app/lib/actions.ts (ts)

'use server'
import { verifySession } from '@/app/lib/dal'

export async function serverAction(formData: FormData) {
  const session = await verifySession()
  const userRole = session?.user?.role

  // Return early if user is not authorized to perform the action
  if (userRole !== 'admin') {
    return null
  }

  // Proceed with the action for authorized users
}

app/lib/actions.js (js)

'use server'
import { verifySession } from '@/app/lib/dal'

export async function serverAction() {
  const session = await verifySession()
  const userRole = session.user.role

  // Return early if user is not authorized to perform the action
  if (userRole !== 'admin') {
    return null
  }

  // Proceed with the action for authorized users
}

Route Handlers

Treat Route Handlers with the same security considerations as public-facing API endpoints, and verify if the user is allowed to access
the Route Handler.

For example:
app/api/route.ts (ts)

import { verifySession } from '@/app/lib/dal'

export async function GET() {
  // User authentication and role verification
  const session = await verifySession()

  // Check if the user is authenticated
  if (!session) {
    // User is not authenticated
    return new Response(null, { status: 401 })
  }

  // Check if the user has the 'admin' role
  if (session.user.role !== 'admin') {
    // User is authenticated but does not have the right permissions
    return new Response(null, { status: 403 })
  }

file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/routing/route-handlers


  // Continue for authorized users
}

app/api/route.js (js)

import { verifySession } from '@/app/lib/dal'

export async function GET() {
  // User authentication and role verification
  const session = await verifySession()

  // Check if the user is authenticated
  if (!session) {
    // User is not authenticated
    return new Response(null, { status: 401 })
  }

  // Check if the user has the 'admin' role
  if (session.user.role !== 'admin') {
    // User is authenticated but does not have the right permissions
    return new Response(null, { status: 403 })
  }

  // Continue for authorized users
}

The example above demonstrates a Route Handler with a two-tier security check. It first checks for an active session, and then verifies if
the logged-in user is an ‘admin’.

Context Providers

Using context providers for auth work due to interleaving. However, React context is not supported in Server Components, making
them only applicable to Client Components.

This works, but any child Server Components will be rendered on the server first, and will not have access to the context provider’s
session data:

app/layout.ts (tsx)

import { ContextProvider } from 'auth-lib'

export default function RootLayout({ children }) {
  return (
    <html lang="en">
      <body>
        <ContextProvider>{children}</ContextProvider>
      </body>
    </html>
  )
}

```tsx filename=”app/ui/profile.ts switcher “use client”;

import { useSession } from “auth-lib”;

export default function Profile() { const { userId } = useSession(); const { data } = useSWR(/api/user/${userId}, fetcher)

return (// …); }

```jsx filename="app/ui/profile.js switcher
"use client";

import { useSession } from "auth-lib";

export default function Profile() {
  const { userId } = useSession();
  const { data } = useSWR(`/api/user/${userId}`, fetcher)

  return (
    // ...
  );
}

If session data is needed in Client Components (e.g. for client-side data fetching),use React’s taintUniqueValue API to prevent
sensitive session data from being exposed to the client.

Creating a Data Access Layer (DAL)

file:///docs/app/building-your-application/rendering/composition-patterns#interleaving-server-and-client-components
https://react.dev/reference/react/experimental_taintUniqueValue


Protecting API Routes

API Routes in Next.js are essential for handling server-side logic and data management. It’s crucial to secure these routes to ensure that
only authorized users can access specific functionalities. This typically involves verifying the user’s authentication status and their role-
based permissions.

Here’s an example of securing an API Route:
pages/api/route.ts (ts)

import { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
  req: NextApiRequest,
  res: NextApiResponse
) {
  const session = await getSession(req)

  // Check if the user is authenticated
  if (!session) {
    res.status(401).json({
      error: 'User is not authenticated',
    })
    return
  }

  // Check if the user has the 'admin' role
  if (session.user.role !== 'admin') {
    res.status(401).json({
      error: 'Unauthorized access: User does not have admin privileges.',
    })
    return
  }

  // Proceed with the route for authorized users
  // ... implementation of the API Route
}

pages/api/route.js (js)

export default async function handler(req, res) {
  const session = await getSession(req)

  // Check if the user is authenticated
  if (!session) {
    res.status(401).json({
      error: 'User is not authenticated',
    })
    return
  }

  // Check if the user has the 'admin' role
  if (session.user.role !== 'admin') {
    res.status(401).json({
      error: 'Unauthorized access: User does not have admin privileges.',
    })
    return
  }

  // Proceed with the route for authorized users
  // ... implementation of the API Route
}

This example demonstrates an API Route with a two-tier security check for authentication and authorization. It first checks for an active
session, and then verifies if the logged-in user is an ‘admin’. This approach ensures secure access, limited to authenticated and
authorized users, maintaining robust security for request processing.

Resources

Now that you’ve learned about authentication in Next.js, here are Next.js-compatible libraries and resources to help you implement
secure authentication and session management:

Auth Libraries

Auth0
Clerk

https://auth0.com/docs/quickstart/webapp/nextjs/01-login
https://clerk.com/docs/quickstarts/nextjs


Kinde
Lucia
NextAuth.js
Supabase
Stytch
WorkOS

Session Management Libraries

Iron Session
Jose

Further Reading

To continue learning about authentication and security, check out the following resources:

How to think about security in Next.js
Understanding XSS Attacks
Understanding CSRF Attacks
The Copenhagen Book

https://kinde.com/docs/developer-tools/nextjs-sdk
https://lucia-auth.com/getting-started/nextjs-app
https://authjs.dev/getting-started/installation?framework=next.js
https://supabase.com/docs/guides/getting-started/quickstarts/nextjs
https://stytch.com/docs/guides/quickstarts/nextjs
https://workos.com/docs/user-management
https://github.com/vvo/iron-session
https://github.com/panva/jose
file:///blog/security-nextjs-server-components-actions
https://vercel.com/guides/understanding-xss-attacks
https://vercel.com/guides/understanding-csrf-attacks
https://thecopenhagenbook.com/


3.1.10 - Deploying
Documentation path: /02-app/01-building-your-application/10-deploying/index

Description: Learn how to deploy your Next.js app to production, either managed or self-hosted.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Congratulations, it’s time to ship to production.

You can deploy managed Next.js with Vercel, or self-host on a Node.js server, Docker image, or even static HTML files. When deploying
using next start, all Next.js features are supported.

Production Builds

Running next build generates an optimized version of your application for production. HTML, CSS, and JavaScript files are created
based on your pages. JavaScript is compiled and browser bundles are minified using the Next.js Compiler to help achieve the best
performance and support all modern browsers.

Next.js produces a standard deployment output used by managed and self-hosted Next.js. This ensures all features are supported
across both methods of deployment. In the next major version, we will be transforming this output into our Build Output API
specification.

Managed Next.js with Vercel

Vercel, the creators and maintainers of Next.js, provide managed infrastructure and a developer experience platform for your Next.js
applications.

Deploying to Vercel is zero-configuration and provides additional enhancements for scalability, availability, and performance globally.
However, all Next.js features are still supported when self-hosted.

Learn more about Next.js on Vercel or deploy a template for free to try it out.

Self-Hosting

You can self-host Next.js in three different ways:

A Node.js server
A Docker container
A static export

Node.js Server

Next.js can be deployed to any hosting provider that supports Node.js. Ensure your package.json has the "build" and "start"
scripts:

package.json (json)

{
  "scripts": {
    "dev": "next dev",
    "build": "next build",
    "start": "next start"
  }
}

Then, run npm run build to build your application. Finally, run npm run start to start the Node.js server. This server supports all
Next.js features.

Docker Image

Next.js can be deployed to any hosting provider that supports Docker containers. You can use this approach when deploying to
container orchestrators such as Kubernetes or when running inside a container in any cloud provider.

1. Install Docker on your machine
2. Clone our example (or the multi-environment example)
3. Build your container: docker build -t nextjs-docker .
4. Run your container: docker run -p 3000:3000 nextjs-docker

file:///docs/architecture/nextjs-compiler
file:///docs/architecture/supported-browsers
https://vercel.com/docs/build-output-api/v3?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://vercel.com/docs/frameworks/nextjs?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://vercel.com/docs/frameworks/nextjs?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://vercel.com/templates/next.js?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://www.docker.com/
https://kubernetes.io/
https://docs.docker.com/get-docker/
https://github.com/vercel/next.js/tree/canary/examples/with-docker
https://github.com/vercel/next.js/tree/canary/examples/with-docker-multi-env


Next.js through Docker supports all Next.js features.

Static HTML Export

Next.js enables starting as a static site or Single-Page Application (SPA), then later optionally upgrading to use features that require a
server.

Since Next.js supports this static export, it can be deployed and hosted on any web server that can serve HTML/CSS/JS static assets.
This includes tools like AWS S3, Nginx, or Apache.

Running as a static export does not support Next.js features that require a server. Learn more.

Good to know:

Server Components are supported with static exports.

Features

Image Optimization

Image Optimization through next/image works self-hosted with zero configuration when deploying using next start. If you would
prefer to have a separate service to optimize images, you can configure an image loader.

Image Optimization can be used with a static export by defining a custom image loader in next.config.js. Note that images are
optimized at runtime, not during the build.

Good to know:

When self-hosting, consider installing sharp for more performant Image Optimization in your production environment by
running npm install sharp in your project directory. On Linux platforms, sharp may require additional configuration to
prevent excessive memory usage.
Learn more about the caching behavior of optimized images and how to configure the TTL.
You can also disable Image Optimization and still retain other benefits of using next/image if you prefer. For example, if
you are optimizing images yourself separately.

Middleware

Middleware works self-hosted with zero configuration when deploying using next start. Since it requires access to the incoming
request, it is not supported when using a static export.

Middleware uses a runtime that is a subset of all available Node.js APIs to help ensure low latency, since it may run in front of every
route or asset in your application. This runtime does not require running “at the edge” and works in a single-region server. Additional
configuration and infrastructure are required to run Middleware in multiple regions.

If you are looking to add logic (or use an external package) that requires all Node.js APIs, you might be able to move this logic to a
layout as a Server Component. For example, checking headers and redirecting. You can also use headers, cookies, or query parameters
to redirect or rewrite through next.config.js. If that does not work, you can also use a custom server.

Environment Variables

Next.js can support both build time and runtime environment variables.

By default, environment variables are only available on the server. To expose an environment variable to the browser, it must be
prefixed with NEXT_PUBLIC_. However, these public environment variables will be inlined into the JavaScript bundle during next
build.

To read runtime environment variables, we recommend using getServerSideProps or incrementally adopting the App Router. With
the App Router, we can safely read environment variables on the server during dynamic rendering. This allows you to use a singular
Docker image that can be promoted through multiple environments with different values.

import { unstable_noStore as noStore } from 'next/cache';

export default function Component() {
  noStore();
  // cookies(), headers(), and other dynamic functions
  // will also opt into dynamic rendering, making
  // this env variable is evaluated at runtime
  const value = process.env.MY_VALUE
  ...
}

Good to know:

file:///docs/app/building-your-application/deploying/static-exports
file:///docs/app/building-your-application/deploying/static-exports
file:///docs/app/building-your-application/deploying/static-exports#unsupported-features
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/optimizing/images
file:///docs/app/building-your-application/optimizing/images#loaders
file:///docs/app/building-your-application/deploying/static-exports#image-optimization
file:///docs/pages/building-your-application/optimizing/images
https://sharp.pixelplumbing.com/install#linux-memory-allocator
file:///docs/app/api-reference/components/image#caching-behavior
file:///docs/app/api-reference/components/image#unoptimized
file:///docs/app/building-your-application/routing/middleware
file:///docs/app/building-your-application/deploying/static-exports
file:///docs/app/building-your-application/rendering/edge-and-nodejs-runtimes
file:///docs/app/building-your-application/routing/layouts-and-templates#layouts
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/api-reference/functions/headers
file:///docs/app/api-reference/functions/redirect
file:///docs/app/api-reference/next-config-js/redirects#header-cookie-and-query-matching
file:///docs/app/api-reference/next-config-js/rewrites#header-cookie-and-query-matching
file:///docs/pages/building-your-application/configuring/custom-server
file:///docs/app/building-your-application/upgrading/app-router-migration


You can run code on server startup using the register function.
We do not recommend using the runtimeConfig option, as this does not work with the standalone output mode. Instead, we
recommend incrementally adopting the App Router.

Caching and ISR

Next.js can cache responses, generated static pages, build outputs, and other static assets like images, fonts, and scripts.

Caching and revalidating pages (using Incremental Static Regeneration (ISR) or newer functions in the App Router) use the same
shared cache. By default, this cache is stored to the filesystem (on disk) on your Next.js server. This works automatically when self-
hosting using both the Pages and App Router.

You can configure the Next.js cache location if you want to persist cached pages and data to durable storage, or share the cache across
multiple containers or instances of your Next.js application.

Automatic Caching

Next.js sets the Cache-Control header of public, max-age=31536000, immutable to truly immutable assets. It cannot be
overridden. These immutable files contain a SHA-hash in the file name, so they can be safely cached indefinitely. For example, Static
Image Imports. You can configure the TTL for images.
Incremental Static Regeneration (ISR) sets the Cache-Control header of s-maxage: <revalidate in getStaticProps>,
stale-while-revalidate. This revalidation time is defined in your getStaticProps function in seconds. If you set
revalidate: false, it will default to a one-year cache duration.
Dynamically rendered pages set a Cache-Control header of private, no-cache, no-store, max-age=0, must-
revalidate to prevent user-specific data from being cached. This applies to both the App Router and Pages Router. This also
includes Draft Mode.

Static Assets

If you want to host static assets on a different domain or CDN, you can use the assetPrefix configuration in next.config.js.
Next.js will use this asset prefix when retrieving JavaScript or CSS files. Separating your assets to a different domain does come with the
downside of extra time spent on DNS and TLS resolution.

Learn more about assetPrefix.

Configuring Caching

By default, generated cache assets will be stored in memory (defaults to 50mb) and on disk. If you are hosting Next.js using a container
orchestration platform like Kubernetes, each pod will have a copy of the cache. To prevent stale data from being shown since the cache
is not shared between pods by default, you can configure the Next.js cache to provide a cache handler and disable in-memory caching.

To configure the ISR/Data Cache location when self-hosting, you can configure a custom handler in your next.config.js file:

next.config.js (jsx)

module.exports = {
  cacheHandler: require.resolve('./cache-handler.js'),
  cacheMaxMemorySize: 0, // disable default in-memory caching
}

Then, create cache-handler.js in the root of your project, for example:

cache-handler.js (jsx)

const cache = new Map()

module.exports = class CacheHandler {
  constructor(options) {
    this.options = options
  }

  async get(key) {
    // This could be stored anywhere, like durable storage
    return cache.get(key)
  }

  async set(key, data, ctx) {
    // This could be stored anywhere, like durable storage
    cache.set(key, {
      value: data,
      lastModified: Date.now(),
      tags: ctx.tags,
    })
  }

file:///docs/app/building-your-application/optimizing/instrumentation
file:///docs/pages/api-reference/next-config-js/runtime-configuration
file:///docs/app/building-your-application/upgrading/app-router-migration
file:///docs/app/building-your-application/optimizing/images#local-images
file:///docs/app/api-reference/components/image#caching-behavior
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/app/building-your-application/configuring/draft-mode
file:///docs/app/api-reference/next-config-js/assetPrefix
file:///docs/app/api-reference/next-config-js/assetPrefix


  async revalidateTag(tag) {
    // Iterate over all entries in the cache
    for (let [key, value] of cache) {
      // If the value's tags include the specified tag, delete this entry
      if (value.tags.includes(tag)) {
        cache.delete(key)
      }
    }
  }
}

Using a custom cache handler will allow you to ensure consistency across all pods hosting your Next.js application. For instance, you
can save the cached values anywhere, like Redis or AWS S3.

Good to know:

revalidatePath is a convenience layer on top of cache tags. Calling revalidatePath will call the revalidateTag
function with a special default tag for the provided page.

Build Cache

Next.js generates an ID during next build to identify which version of your application is being served. The same build should be used
and boot up multiple containers.

If you are rebuilding for each stage of your environment, you will need to generate a consistent build ID to use between containers. Use
the generateBuildId command in next.config.js:

next.config.js (jsx)

module.exports = {
  generateBuildId: async () => {
    // This could be anything, using the latest git hash
    return process.env.GIT_HASH
  },
}

Version Skew

Next.js will automatically mitigate most instances of version skew and automatically reload the application to retrieve new assets when
detected. For example, if there is a mismatch in the deploymentId, transitions between pages will perform a hard navigation versus
using a prefetched value.

When the application is reloaded, there may be a loss of application state if it’s not designed to persist between page navigations. For
example, using URL state or local storage would persist state after a page refresh. However, component state like useState would be
lost in such navigations.

Vercel provides additional skew protection for Next.js applications to ensure assets and functions from the previous version are still
available to older clients, even after the new version is deployed.

You can manually configure the deploymentId property in your next.config.js file to ensure each request uses either ?dpl query
string or x-deployment-id header.

Streaming and Suspense

The Next.js App Router supports streaming responses when self-hosting. If you are using Nginx or a similar proxy, you will need to
configure it to disable buffering to enable streaming.

For example, you can disable buffering in Nginx by setting X-Accel-Buffering to no:

next.config.js (js)

module.exports = {
  async headers() {
    return [
      {
        source: '/:path*{/}?',
        headers: [
          {
            key: 'X-Accel-Buffering',
            value: 'no',
          },
        ],
      },
    ]
  },
}

https://github.com/vercel/next.js/tree/canary/examples/cache-handler-redis
https://www.industrialempathy.com/posts/version-skew/
https://vercel.com/docs/deployments/skew-protection?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
file:///docs/app/building-your-application/routing/loading-ui-and-streaming


Manual Graceful Shutdowns

When self-hosting, you might want to run code when the server shuts down on SIGTERM or SIGINT signals.

You can set the env variable NEXT_MANUAL_SIG_HANDLE to true and then register a handler for that signal inside your _document.js
file. You will need to register the environment variable directly in the package.json script, and not in the .env file.

Good to know: Manual signal handling is not available in next dev.

package.json (json)

{
  "scripts": {
    "dev": "next dev",
    "build": "next build",
    "start": "NEXT_MANUAL_SIG_HANDLE=true next start"
  }
}

pages/_document.js (js)

if (process.env.NEXT_MANUAL_SIG_HANDLE) {
  process.on('SIGTERM', () => {
    console.log('Received SIGTERM: cleaning up')
    process.exit(0)
  })
  process.on('SIGINT', () => {
    console.log('Received SIGINT: cleaning up')
    process.exit(0)
  })
}



3.1.10.1 - Production Checklist
Documentation path: /02-app/01-building-your-application/10-deploying/01-production-checklist

Description: Recommendations to ensure the best performance and user experience before taking your Next.js application to
production.

Before taking your Next.js application to production, there are some optimizations and patterns you should consider implementing for
the best user experience, performance, and security.

This page provides best practices that you can use as a reference when building your application, before going to production, and after
deployment - as well as the automatic Next.js optimizations you should be aware of.

Automatic optimizations

These Next.js optimizations are enabled by default and require no configuration:

Server Components: Next.js uses Server Components by default. Server Components run on the server, and don’t require
JavaScript to render on the client. As such, they have no impact on the size of your client-side JavaScript bundles. You can then use
Client Components as needed for interactivity.
Code-splitting: Server Components enable automatic code-splitting by route segments. You may also consider lazy loading Client
Components and third-party libraries, where appropriate.
Prefetching: When a link to a new route enters the user’s viewport, Next.js prefetches the route in background. This makes
navigation to new routes almost instant. You can opt out of prefetching, where appropriate.
Static Rendering: Next.js statically renders Server and Client Components on the server at build time and caches the rendered
result to improve your application’s performance. You can opt into Dynamic Rendering for specific routes, where appropriate. {/
TODO: Update when PPR is stable /}
Caching: Next.js caches data requests, the rendered result of Server and Client Components, static assets, and more, to reduce the
number of network requests to your server, database, and backend services. You may opt out of caching, where appropriate.

Code-splitting: Next.js automatically code-splits your application code by pages. This means only the code needed for the current
page is loaded on navigation. You may also consider lazy loading third-party libraries, where appropriate.
Prefetching: When a link to a new route enters the user’s viewport, Next.js prefetches the route in background. This makes
navigation to new routes almost instant. You can opt out of prefetching, where appropriate.
Automatic Static Optimization: Next.js automatically determines that a page is static (can be pre-rendered) if it has no blocking
data requirements. Optimized pages can be cached, and served to the end-user from multiple CDN locations. You may opt into
Server-side Rendering, where appropriate.

These defaults aim to improve your application’s performance, and reduce the cost and amount of data transferred on each network
request.

During development

While building your application, we recommend using the following features to ensure the best performance and user experience:

Routing and rendering

Layouts: Use layouts to share UI across pages and enable partial rendering on navigation.
<Link><Link> component: Use the <Link> component for client-side navigation and prefetching.
Error Handling: Gracefully handle catch-all errors and 404 errors in production by creating custom error pages.
Composition Patterns: Follow the recommended composition patterns for Server and Client Components, and check the
placement of your "use client" boundaries to avoid unnecessarily increasing your client-side JavaScript bundle.
Dynamic Functions: Be aware that dynamic functions like cookies() and the searchParams prop will opt the entire route into
Dynamic Rendering (or your whole application if used in the Root Layout). Ensure dynamic function usage is intentional and wrap
them in <Suspense> boundaries where appropriate.

Good to know: Partial Prerendering (Experimental) will allow parts of a route to be dynamic without opting the whole route
into dynamic rendering.

<Link><Link> component: Use the <Link> component for client-side navigation and prefetching.
Custom Errors: Gracefully handle 500 and 404 errors

Data fetching and caching

Server Components: Leverage the benefits of fetching data on the server using Server Components.
Route Handlers: Use Route Handlers to access your backend resources from Client Components. But do not call Route Handlers

file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/routing/linking-and-navigating#how-routing-and-navigation-works
file:///docs/app/building-your-application/optimizing/lazy-loading
file:///docs/app/building-your-application/routing/linking-and-navigating#2-prefetching
file:///docs/app/building-your-application/rendering/server-components#static-rendering-default
file:///docs/app/building-your-application/rendering/server-components#dynamic-rendering
file:///docs/app/building-your-application/caching
file:///docs/pages/building-your-application/routing/pages-and-layouts
file:///docs/pages/building-your-application/optimizing/lazy-loading
file:///docs/pages/api-reference/components/link#prefetch
file:///docs/pages/building-your-application/rendering/automatic-static-optimization
file:///docs/pages/building-your-application/data-fetching/get-server-side-props
file:///docs/app/building-your-application/routing/layouts-and-templates#layouts
file:///docs/app/building-your-application/routing/linking-and-navigating#4-partial-rendering
file:///docs/app/building-your-application/routing/linking-and-navigating#link-component
file:///docs/app/building-your-application/routing/linking-and-navigating#how-routing-and-navigation-works
file:///docs/app/building-your-application/routing/error-handling
file:///docs/app/building-your-application/routing/error-handling
file:///docs/app/api-reference/file-conventions/not-found
file:///docs/app/building-your-application/rendering/composition-patterns
file:///docs/app/building-your-application/rendering/composition-patterns#moving-client-components-down-the-tree
file:///docs/app/building-your-application/rendering/server-components#dynamic-functions
file:///docs/app/api-reference/functions/cookies
file:///docs/app/api-reference/file-conventions/page#searchparams-optional
file:///docs/app/building-your-application/rendering/server-components#dynamic-rendering
file:///docs/app/building-your-application/routing/layouts-and-templates#root-layout-required
file:///blog/next-14#partial-prerendering-preview
file:///docs/pages/building-your-application/routing/linking-and-navigating
file:///docs/pages/building-your-application/routing/custom-error
file:///docs/pages/building-your-application/routing/custom-error#500-page
file:///docs/pages/building-your-application/routing/custom-error#404-page
file:///docs/app/building-your-application/data-fetching/patterns#fetching-data-on-the-server
file:///docs/app/building-your-application/routing/route-handlers


from Server Components to avoid an additional server request.
Streaming: Use Loading UI and React Suspense to progressively send UI from the server to the client, and prevent the whole route
from blocking while data is being fetched.
Parallel Data Fetching: Reduce network waterfalls by fetching data in parallel, where appropriate. Also, consider preloading data
where appropriate.
Data Caching: Verify whether your data requests are being cached or not, and opt into caching, where appropriate. Ensure
requests that don’t use fetch are cached.
Static Images: Use the public directory to automatically cache your application’s static assets, e.g. images.

API Routes: Use Route Handlers to access your backend resources, and prevent sensitive secrets from being exposed to the client.
Data Caching: Verify whether your data requests are being cached or not, and opt into caching, where appropriate. Ensure
requests that don’t use getStaticProps are cached where appropriate.
Incremental Static Regeneration: Use Incremental Static Regeneration to update static pages after they’ve been built, without
rebuilding your entire site.
Static Images: Use the public directory to automatically cache your application’s static assets, e.g. images.

UI and accessibility

Forms and Validation: Use Server Actions to handle form submissions, server-side validation, and handle errors.

Font Module: Optimize fonts by using the Font Module, which automatically hosts your font files with other static assets, removes
external network requests, and reduces layout shift.
<Image><Image> Component: Optimize images by using the Image Component, which automatically optimizes images, prevents layout
shift, and serves them in modern formats like WebP or AVIF.
<Script><Script> Component: Optimize third-party scripts by using the Script Component, which automatically defers scripts and
prevents them from blocking the main thread.
ESLint: Use the built-in eslint-plugin-jsx-a11y plugin to catch accessibility issues early.

Security

Tainting: Prevent sensitive data from being exposed to the client by tainting data objects and/or specific values.
Server Actions: Ensure users are authorized to call Server Actions. Review the the recommended security practices.

Environment Variables: Ensure your .env.* files are added to .gitignore and only public variables are prefixed with
NEXT_PUBLIC_.
Content Security Policy: Consider adding a Content Security Policy to protect your application against various security threats
such as cross-site scripting, clickjacking, and other code injection attacks.

Metadata and SEO

Metadata API: Use the Metadata API to improve your application’s Search Engine Optimization (SEO) by adding page titles,
descriptions, and more.
Open Graph (OG) images: Create OG images to prepare your application for social sharing.
Sitemaps and Robots: Help Search Engines crawl and index your pages by generating sitemaps and robots files.

<Head><Head> Component: Use the next/head component to add page titles, descriptions, and more.

Type safety

TypeScript and TS Plugin: Use TypeScript and the TypeScript plugin for better type-safety, and to help you catch errors early.

Before going to production

Before going to production, you can run next build to build your application locally and catch any build errors, then run next start
to measure the performance of your application in a production-like environment.

Core Web Vitals

Lighthouse: Run lighthouse in incognito to gain a better understanding of how your users will experience your site, and to identify
areas for improvement. This is a simulated test and should be paired with looking at field data (such as Core Web Vitals).

useReportWebVitalsuseReportWebVitals hook: Use this hook to send Core Web Vitals data to analytics tools.

Analyzing bundles

Use the @next/bundle-analyzer plugin to analyze the size of your JavaScript bundles and identify large modules and dependencies

file:///docs/app/building-your-application/routing/loading-ui-and-streaming
file:///docs/app/building-your-application/data-fetching/patterns#parallel-and-sequential-data-fetching
file:///docs/app/building-your-application/data-fetching/patterns#preloading-data
file:///docs/app/building-your-application/caching#data-cache
file:///docs/app/api-reference/functions/unstable_cache
file:///docs/app/building-your-application/optimizing/static-assets
file:///docs/pages/building-your-application/routing/api-routes
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration
file:///docs/pages/building-your-application/optimizing/static-assets
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations#forms
file:///docs/app/building-your-application/optimizing/fonts
https://web.dev/articles/cls
file:///docs/app/building-your-application/optimizing/images
file:///docs/app/building-your-application/optimizing/scripts
file:///docs/architecture/accessibility#linting
file:///docs/app/building-your-application/data-fetching/patterns#preventing-sensitive-data-from-being-exposed-to-the-client
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations#authentication-and-authorization
file:///blog/security-nextjs-server-components-actions
file:///docs/app/building-your-application/configuring/environment-variables
file:///docs/app/building-your-application/configuring/content-security-policy
file:///docs/app/building-your-application/optimizing/metadata
file:///docs/app/api-reference/file-conventions/metadata/opengraph-image
file:///docs/app/api-reference/functions/generate-sitemaps
file:///docs/app/api-reference/file-conventions/metadata/robots
file:///docs/pages/api-reference/components/head
file:///docs/app/building-your-application/configuring/typescript
https://developers.google.com/web/tools/lighthouse
file:///docs/app/api-reference/functions/use-report-web-vitals
https://web.dev/articles/vitals
file:///docs/app/building-your-application/optimizing/bundle-analyzer


that might be impacting your application’s performance.

Additionally, the following tools can you understand the impact of adding new dependencies to your application:

Import Cost
Package Phobia
Bundle Phobia
bundlejs

After deployment

Depending on where you deploy your application, you might have access to additional tools and integrations to help you monitor and
improve your application’s performance.

For Vercel deployments, we recommend the following:

Analytics: A built-in analytics dashboard to help you understand your application’s traffic, including the number of unique visitors,
page views, and more.
Speed Insights: Real-world performance insights based on visitor data, offering a practical view of how your website is performing
in the field.
Logging: Runtime and Activity logs to help you debug issues and monitor your application in production. Alternatively, see the
integrations page for a list of third-party tools and services.

Good to know:

To get a comprehensive understanding of the best practices for production deployments on Vercel, including detailed strategies
for improving website performance, refer to the Vercel Production Checklist.

Following these recommendations will help you build a faster, more reliable, and secure application for your users.

https://marketplace.visualstudio.com/items?itemName=wix.vscode-import-cost
https://packagephobia.com/
https://bundlephobia.com/
https://bundlejs.com/
https://vercel.com/analytics?utm_source=next-site&utm_campaign=nextjs-docs&utm_medium=docs
https://vercel.com/docs/speed-insights?utm_source=next-site&utm_campaign=nextjs-docs&utm_medium=docs
https://vercel.com/docs/observability/runtime-logs?utm_source=next-site&utm_campaign=nextjs-docs&utm_medium=docs
https://vercel.com/integrations?utm_source=next-site&utm_campaign=nextjs-docs&utm_medium=docs
https://vercel.com/docs/production-checklist?utm_source=next-site&utm_campaign=nextjs-docs&utm_medium=docs


3.1.10.2 - Static Exports
Documentation path: /02-app/01-building-your-application/10-deploying/02-static-exports

Description: Next.js enables starting as a static site or Single-Page Application (SPA), then later optionally upgrading to use features
that require a server.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js enables starting as a static site or Single-Page Application (SPA), then later optionally upgrading to use features that require a
server.

When running next build, Next.js generates an HTML file per route. By breaking a strict SPA into individual HTML files, Next.js can
avoid loading unnecessary JavaScript code on the client-side, reducing the bundle size and enabling faster page loads.

Since Next.js supports this static export, it can be deployed and hosted on any web server that can serve HTML/CSS/JS static assets.

Good to know: We recommend using the App Router for enhanced static export support.

Configuration

To enable a static export, change the output mode inside next.config.js:

```js filename=”next.config.js” highlight={5} /* * @type {import(‘next’).NextConfig} / const nextConfig = { output: ‘export’,

// Optional: Change links /me -> /me/ and emit /me.html -> /me/index.html // trailingSlash: true,

// Optional: Prevent automatic /me -> /me/, instead preserve href // skipTrailingSlashRedirect: true,

// Optional: Change the output directory out -> dist // distDir: ‘dist’, }

module.exports = nextConfig

After running `next build`, Next.js will produce an `out` folder which contains the HTML/CSS/JS assets for

<PagesOnly>

You can utilize [`getStaticProps`](/docs/pages/building-your-application/data-fetching/get-static-props) and

</PagesOnly>

<AppOnly>

Supported Features

The core of Next.js has been designed to support static exports.

Server Components

When you run `next build` to generate a static export, Server Components consumed inside the `app` directory

The resulting component will be rendered into static HTML for the initial page load and a static payload for

<div class="code-header"><i>app/page.tsx (tsx)</i></div>
```tsx
export default async function Page() {
  // This fetch will run on the server during `next build`
  const res = await fetch('https://api.example.com/...')
  const data = await res.json()

  return <main>...</main>
}

Client Components

If you want to perform data fetching on the client, you can use a Client Component with SWR to memoize requests.
app/other/page.tsx (tsx)

'use client'

import useSWR from 'swr'

const fetcher = (url: string) => fetch(url).then((r) => r.json())

export default function Page() {

https://github.com/vercel/swr


  const { data, error } = useSWR(
    `https://jsonplaceholder.typicode.com/posts/1`,
    fetcher
  )
  if (error) return 'Failed to load'
  if (!data) return 'Loading...'

  return data.title
}

app/other/page.js (jsx)

'use client'

import useSWR from 'swr'

const fetcher = (url) => fetch(url).then((r) => r.json())

export default function Page() {
  const { data, error } = useSWR(
    `https://jsonplaceholder.typicode.com/posts/1`,
    fetcher
  )
  if (error) return 'Failed to load'
  if (!data) return 'Loading...'

  return data.title
}

Since route transitions happen client-side, this behaves like a traditional SPA. For example, the following index route allows you to
navigate to different posts on the client:

app/page.tsx (tsx)

import Link from 'next/link'

export default function Page() {
  return (
    <>
      <h1>Index Page</h1>
      <hr />
      <ul>
        <li>
          <Link href="/post/1">Post 1</Link>
        </li>
        <li>
          <Link href="/post/2">Post 2</Link>
        </li>
      </ul>
    </>
  )
}

app/page.js (jsx)

import Link from 'next/link'

export default function Page() {
  return (
    <>
      <h1>Index Page</h1>
      <p>
        <Link href="/other">Other Page</Link>
      </p>
    </>
  )
}

Supported Features

The majority of core Next.js features needed to build a static site are supported, including:

Dynamic Routes when using getStaticPaths
Prefetching with next/link
Preloading JavaScript
Dynamic Imports

file:///docs/app/building-your-application/routing/dynamic-routes
file:///docs/pages/building-your-application/optimizing/lazy-loading


Any styling options (e.g. CSS Modules, styled-jsx)
Client-side data fetching
getStaticProps
getStaticPaths

Image Optimization

Image Optimization through next/image can be used with a static export by defining a custom image loader in next.config.js. For
example, you can optimize images with a service like Cloudinary:

next.config.js (js)

/** @type {import('next').NextConfig} */
const nextConfig = {
  output: 'export',
  images: {
    loader: 'custom',
    loaderFile: './my-loader.ts',
  },
}

module.exports = nextConfig

This custom loader will define how to fetch images from a remote source. For example, the following loader will construct the URL for
Cloudinary:

my-loader.ts (ts)

export default function cloudinaryLoader({
  src,
  width,
  quality,
}: {
  src: string
  width: number
  quality?: number
}) {
  const params = ['f_auto', 'c_limit', `w_${width}`, `q_${quality || 'auto'}`]
  return `https://res.cloudinary.com/demo/image/upload/${params.join(
    ','
  )}${src}`
}

my-loader.js (js)

export default function cloudinaryLoader({ src, width, quality }) {
  const params = ['f_auto', 'c_limit', `w_${width}`, `q_${quality || 'auto'}`]
  return `https://res.cloudinary.com/demo/image/upload/${params.join(
    ','
  )}${src}`
}

You can then use next/image in your application, defining relative paths to the image in Cloudinary:

app/page.tsx (tsx)

import Image from 'next/image'

export default function Page() {
  return <Image alt="turtles" src="/turtles.jpg" width={300} height={300} />
}

app/page.js (jsx)

import Image from 'next/image'

export default function Page() {
  return <Image alt="turtles" src="/turtles.jpg" width={300} height={300} />
}

Route Handlers

Route Handlers will render a static response when running next build. Only the GET HTTP verb is supported. This can be used to
generate static HTML, JSON, TXT, or other files from cached or uncached data. For example:

app/data.json/route.ts (ts)

export async function GET() {

file:///docs/pages/building-your-application/data-fetching/client-side
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/data-fetching/get-static-paths
file:///docs/app/building-your-application/optimizing/images


  return Response.json({ name: 'Lee' })
}

app/data.json/route.js (js)

export async function GET() {
  return Response.json({ name: 'Lee' })
}

The above file app/data.json/route.ts will render to a static file during next build, producing data.json containing { name:
'Lee' }.

If you need to read dynamic values from the incoming request, you cannot use a static export.

Browser APIs

Client Components are pre-rendered to HTML during next build. Because Web APIs like window, localStorage, and navigator are
not available on the server, you need to safely access these APIs only when running in the browser. For example:

'use client';

import { useEffect } from 'react';

export default function ClientComponent() {
  useEffect(() => {
    // You now have access to `window`
    console.log(window.innerHeight);
  }, [])

  return ...;
}

Unsupported Features

Features that require a Node.js server, or dynamic logic that cannot be computed during the build process, are not supported:

Dynamic Routes with dynamicParams: true
Dynamic Routes without generateStaticParams()
Route Handlers that rely on Request
Cookies
Rewrites
Redirects
Headers
Middleware
Incremental Static Regeneration
Image Optimization with the default loader
Draft Mode

Attempting to use any of these features with next dev will result in an error, similar to setting the dynamic option to error in the
root layout.

export const dynamic = 'error'

Internationalized Routing
API Routes
Rewrites
Redirects
Headers
Middleware
Incremental Static Regeneration
Image Optimization with the default loader
Draft Mode
getStaticPaths with fallback: true
getStaticPaths with fallback: 'blocking'
getServerSideProps

Deploying

https://developer.mozilla.org/docs/Web/API
file:///docs/app/building-your-application/routing/dynamic-routes
file:///docs/app/building-your-application/routing/dynamic-routes
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/api-reference/functions/cookies
file:///docs/app/api-reference/next-config-js/rewrites
file:///docs/app/api-reference/next-config-js/redirects
file:///docs/app/api-reference/next-config-js/headers
file:///docs/app/building-your-application/routing/middleware
file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating
file:///docs/app/building-your-application/optimizing/images
file:///docs/app/building-your-application/configuring/draft-mode
file:///docs/app/api-reference/file-conventions/route-segment-config#dynamic
file:///docs/pages/building-your-application/routing/internationalization
file:///docs/pages/building-your-application/routing/api-routes
file:///docs/pages/api-reference/next-config-js/rewrites
file:///docs/pages/api-reference/next-config-js/redirects
file:///docs/pages/api-reference/next-config-js/headers
file:///docs/pages/building-your-application/routing/middleware
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration
file:///docs/pages/building-your-application/optimizing/images
file:///docs/pages/building-your-application/configuring/draft-mode
file:///docs/pages/api-reference/functions/get-static-paths#fallback-true
file:///docs/pages/api-reference/functions/get-static-paths#fallback-blocking
file:///docs/pages/building-your-application/data-fetching/get-server-side-props


With a static export, Next.js can be deployed and hosted on any web server that can serve HTML/CSS/JS static assets.

When running next build, Next.js generates the static export into the out folder. For example, let’s say you have the following routes:

/
/blog/[id]

After running next build, Next.js will generate the following files:

/out/index.html
/out/404.html
/out/blog/post-1.html
/out/blog/post-2.html

If you are using a static host like Nginx, you can configure rewrites from incoming requests to the correct files:
nginx.conf (nginx)

server {
  listen 80;
  server_name acme.com;

  root /var/www/out;

  location / {
      try_files $uri $uri.html $uri/ =404;
  }

  # This is necessary when `trailingSlash: false`.
  # You can omit this when `trailingSlash: true`.
  location /blog/ {
      rewrite ^/blog/(.*)$ /blog/$1.html break;
  }

  error_page 404 /404.html;
  location = /404.html {
      internal;
  }
}

Version History

Version Changes

v14.0.0 next export has been removed in favor of "output": "export"

v13.4.0 App Router (Stable) adds enhanced static export support, including using React Server Components and Route Handlers.

v13.3.0 next export is deprecated and replaced with "output": "export"



3.1.11 - Upgrade Guide
Documentation path: /02-app/01-building-your-application/11-upgrading/index

Description: Learn how to upgrade to the latest versions of Next.js.

Upgrade your application to newer versions of Next.js or migrate from the Pages Router to the App Router.



3.1.11.1 - Codemods
Documentation path: /02-app/01-building-your-application/11-upgrading/01-codemods

Description: Use codemods to upgrade your Next.js codebase when new features are released.

Codemods are transformations that run on your codebase programmatically. This allows a large number of changes to be
programmatically applied without having to manually go through every file.

Next.js provides Codemod transformations to help upgrade your Next.js codebase when an API is updated or deprecated.

Usage

In your terminal, navigate (cd) into your project’s folder, then run:

Terminal (bash)

npx @next/codemod <transform> <path>

Replacing <transform> and <path> with appropriate values.

transform - name of transform
path - files or directory to transform
--dry Do a dry-run, no code will be edited
--print Prints the changed output for comparison

Next.js Codemods

14.0

Migrate ImageResponseImageResponse imports

next-og-importnext-og-import

Terminal (bash)

npx @next/codemod@latest next-og-import .

This codemod moves transforms imports from next/server to next/og for usage of Dynamic OG Image Generation.

For example:

import { ImageResponse } from 'next/server'

Transforms into:

import { ImageResponse } from 'next/og'

Use viewportviewport export

metadata-to-viewport-exportmetadata-to-viewport-export

Terminal (bash)

npx @next/codemod@latest metadata-to-viewport-export .

This codemod migrates certain viewport metadata to viewport export.

For example:

export const metadata = {
  title: 'My App',
  themeColor: 'dark',
  viewport: {
    width: 1,
  },
}

Transforms into:

export const metadata = {

file:///docs/app/building-your-application/optimizing/metadata#dynamic-image-generation


  title: 'My App',
}

export const viewport = {
  width: 1,
  themeColor: 'dark',
}

13.2

Use Built-in Font

built-in-next-fontbuilt-in-next-font

Terminal (bash)

npx @next/codemod@latest built-in-next-font .

This codemod uninstalls the @next/font package and transforms @next/font imports into the built-in next/font.

For example:

import { Inter } from '@next/font/google'

Transforms into:

import { Inter } from 'next/font/google'

13.0

Rename Next Image Imports

next-image-to-legacy-imagenext-image-to-legacy-image

Terminal (bash)

npx @next/codemod@latest next-image-to-legacy-image .

Safely renames next/image imports in existing Next.js 10, 11, or 12 applications to next/legacy/image in Next.js 13. Also renames
next/future/image to next/image.

For example:
pages/index.js (jsx)

import Image1 from 'next/image'
import Image2 from 'next/future/image'

export default function Home() {
  return (
    <div>
      <Image1 src="/test.jpg" width="200" height="300" />
      <Image2 src="/test.png" width="500" height="400" />
    </div>
  )
}

Transforms into:
pages/index.js (jsx)

// 'next/image' becomes 'next/legacy/image'
import Image1 from 'next/legacy/image'
// 'next/future/image' becomes 'next/image'
import Image2 from 'next/image'

export default function Home() {
  return (
    <div>
      <Image1 src="/test.jpg" width="200" height="300" />
      <Image2 src="/test.png" width="500" height="400" />
    </div>
  )
}

Migrate to the New Image Component



next-image-experimentalnext-image-experimental

Terminal (bash)

npx @next/codemod@latest next-image-experimental .

Dangerously migrates from next/legacy/image to the new next/image by adding inline styles and removing unused props.

Removes layout prop and adds style.
Removes objectFit prop and adds style.
Removes objectPosition prop and adds style.
Removes lazyBoundary prop.
Removes lazyRoot prop.

Remove <a><a> Tags From Link Components

new-linknew-link

Terminal (bash)

npx @next/codemod@latest new-link .

Remove <a> tags inside Link Components, or add a legacyBehavior prop to Links that cannot be auto-fixed.

Remove <a> tags inside Link Components, or add a legacyBehavior prop to Links that cannot be auto-fixed.

For example:

<Link href="/about">
  <a>About</a>
</Link>
// transforms into
<Link href="/about">
  About
</Link>

<Link href="/about">
  <a onClick={() => console.log('clicked')}>About</a>
</Link>
// transforms into
<Link href="/about" onClick={() => console.log('clicked')}>
  About
</Link>

In cases where auto-fixing can’t be applied, the legacyBehavior prop is added. This allows your app to keep functioning using the old
behavior for that particular link.

const Component = () => <a>About</a>

<Link href="/about">
  <Component />
</Link>
// becomes
<Link href="/about" legacyBehavior>
  <Component />
</Link>

11

Migrate from CRA

cra-to-nextcra-to-next

Terminal (bash)

npx @next/codemod cra-to-next

Migrates a Create React App project to Next.js; creating a Pages Router and necessary config to match behavior. Client-side only
rendering is leveraged initially to prevent breaking compatibility due to window usage during SSR and can be enabled seamlessly to
allow the gradual adoption of Next.js specific features.

Please share any feedback related to this transform in this discussion.

10

file:///docs/app/api-reference/components/link
file:///docs/pages/api-reference/components/link
https://github.com/vercel/next.js/discussions/25858


Add React imports

add-missing-react-importadd-missing-react-import

Terminal (bash)

npx @next/codemod add-missing-react-import

Transforms files that do not import React to include the import in order for the new React JSX transform to work.

For example:
my-component.js (jsx)

export default class Home extends React.Component {
  render() {
    return <div>Hello World</div>
  }
}

Transforms into:
my-component.js (jsx)

import React from 'react'
export default class Home extends React.Component {
  render() {
    return <div>Hello World</div>
  }
}

9

Transform Anonymous Components into Named Components

name-default-componentname-default-component

Terminal (bash)

npx @next/codemod name-default-component

Versions 9 and above.

Transforms anonymous components into named components to make sure they work with Fast Refresh.

For example:
my-component.js (jsx)

export default function () {
  return <div>Hello World</div>
}

Transforms into:
my-component.js (jsx)

export default function MyComponent() {
  return <div>Hello World</div>
}

The component will have a camel-cased name based on the name of the file, and it also works with arrow functions.

8

Transform AMP HOC into page config

withamp-to-configwithamp-to-config

Terminal (bash)

npx @next/codemod withamp-to-config

Transforms the withAmp HOC into Next.js 9 page configuration.

For example:

// Before
import { withAmp } from 'next/amp'

function Home() {

https://reactjs.org/blog/2020/09/22/introducing-the-new-jsx-transform.html
https://nextjs.org/blog/next-9-4#fast-refresh


  return <h1>My AMP Page</h1>
}

export default withAmp(Home)

// After
export default function Home() {
  return <h1>My AMP Page</h1>
}

export const config = {
  amp: true,
}

6

Use withRouterwithRouter

url-to-withrouterurl-to-withrouter

Terminal (bash)

npx @next/codemod url-to-withrouter

Transforms the deprecated automatically injected url property on top level pages to using withRouter and the router property it
injects. Read more here: https://nextjs.org/docs/messages/url-deprecated

For example:
From (js)

import React from 'react'
export default class extends React.Component {
  render() {
    const { pathname } = this.props.url
    return <div>Current pathname: {pathname}</div>
  }
}

To (js)

import React from 'react'
import { withRouter } from 'next/router'
export default withRouter(
  class extends React.Component {
    render() {
      const { pathname } = this.props.router
      return <div>Current pathname: {pathname}</div>
    }
  }
)

This is one case. All the cases that are transformed (and tested) can be found in the __testfixtures__ directory.

file:///docs/messages/url-deprecated
https://github.com/vercel/next.js/tree/canary/packages/next-codemod/transforms/__testfixtures__/url-to-withrouter


3.1.11.2 - App Router Incremental Adoption Guide
Documentation path: /02-app/01-building-your-application/11-upgrading/02-app-router-migration

Description: Learn how to upgrade your existing Next.js application from the Pages Router to the App Router.

This guide will help you:

Update your Next.js application from version 12 to version 13
Upgrade features that work in both the pages and the app directories
Incrementally migrate your existing application from pages to app

Upgrading

Node.js Version

The minimum Node.js version is now v18.17. See the Node.js documentation for more information.

Next.js Version

To update to Next.js version 13, run the following command using your preferred package manager:
Terminal (bash)

npm install next@latest react@latest react-dom@latest

ESLint Version

If you’re using ESLint, you need to upgrade your ESLint version:
Terminal (bash)

npm install -D eslint-config-next@latest

Good to know: You may need to restart the ESLint server in VS Code for the ESLint changes to take effect. Open the Command
Palette (cmd+shift+p on Mac; ctrl+shift+p on Windows) and search for ESLint: Restart ESLint Server.

Next Steps

After you’ve updated, see the following sections for next steps:

Upgrade new features: A guide to help you upgrade to new features such as the improved Image and Link Components.
Migrate from the pages to app directory: A step-by-step guide to help you incrementally migrate from the pages to the app
directory.

Upgrading New Features

Next.js 13 introduced the new App Router with new features and conventions. The new Router is available in the app directory and co-
exists with the pages directory.

Upgrading to Next.js 13 does not require using the new App Router. You can continue using pages with new features that work in both
directories, such as the updated Image component, Link component, Script component, and Font optimization.

<Image/><Image/>  Component

Next.js 12 introduced new improvements to the Image Component with a temporary import: next/future/image. These
improvements included less client-side JavaScript, easier ways to extend and style images, better accessibility, and native browser lazy
loading.

In version 13, this new behavior is now the default for next/image.

There are two codemods to help you migrate to the new Image Component:

next-image-to-legacy-imagenext-image-to-legacy-image codemod: Safely and automatically renames next/image imports to next/legacy/image.
Existing components will maintain the same behavior.
next-image-experimentalnext-image-experimental codemod: Dangerously adds inline styles and removes unused props. This will change the behavior
of existing components to match the new defaults. To use this codemod, you need to run the next-image-to-legacy-image
codemod first.

https://nodejs.org/docs/latest-v18.x/api/
file:///docs/app/building-your-application/routing
file:///docs/app/building-your-application/routing#the-app-router
file:///docs/app/building-your-application/upgrading/codemods#next-image-to-legacy-image
file:///docs/app/building-your-application/upgrading/codemods#next-image-experimental


<Link><Link>  Component

The <Link> Component no longer requires manually adding an <a> tag as a child. This behavior was added as an experimental option
in version 12.2 and is now the default. In Next.js 13, <Link> always renders <a> and allows you to forward props to the underlying tag.

For example:

import Link from 'next/link'

// Next.js 12: `<a>` has to be nested otherwise it's excluded
<Link href="/about">
  <a>About</a>
</Link>

// Next.js 13: `<Link>` always renders `<a>` under the hood
<Link href="/about">
  About
</Link>

To upgrade your links to Next.js 13, you can use the new-link codemod.

<Script><Script>  Component

The behavior of next/script has been updated to support both pages and app, but some changes need to be made to ensure a
smooth migration:

Move any beforeInteractive scripts you previously included in _document.js to the root layout file (app/layout.tsx).
The experimental worker strategy does not yet work in app and scripts denoted with this strategy will either have to be removed
or modified to use a different strategy (e.g. lazyOnload).
onLoad, onReady, and onError handlers will not work in Server Components so make sure to move them to a Client Component
or remove them altogether.

Font Optimization

Previously, Next.js helped you optimize fonts by inlining font CSS. Version 13 introduces the new next/font module which gives you
the ability to customize your font loading experience while still ensuring great performance and privacy. next/font is supported in
both the pages and app directories.

While inlining CSS still works in pages, it does not work in app. You should use next/font instead.

See the Font Optimization page to learn how to use next/font.

Migrating from pagespages to appapp
� Watch: Learn how to incrementally adopt the App Router → YouTube (16 minutes).

Moving to the App Router may be the first time using React features that Next.js builds on top of such as Server Components,
Suspense, and more. When combined with new Next.js features such as special files and layouts, migration means new concepts,
mental models, and behavioral changes to learn.

We recommend reducing the combined complexity of these updates by breaking down your migration into smaller steps. The app
directory is intentionally designed to work simultaneously with the pages directory to allow for incremental page-by-page migration.

The app directory supports nested routes and layouts. Learn more.
Use nested folders to define routes and a special page.js file to make a route segment publicly accessible. Learn more.
Special file conventions are used to create UI for each route segment. The most common special files are page.js and layout.js.
Use page.js to define UI unique to a route.
Use layout.js to define UI that is shared across multiple routes.
.js, .jsx, or .tsx file extensions can be used for special files.
You can colocate other files inside the app directory such as components, styles, tests, and more. Learn more.
Data fetching functions like getServerSideProps and getStaticProps have been replaced with a new API inside app.
getStaticPaths has been replaced with generateStaticParams.
pages/_app.js and pages/_document.js have been replaced with a single app/layout.js root layout. Learn more.
pages/_error.js has been replaced with more granular error.js special files. Learn more.
pages/404.js has been replaced with the not-found.js file.
pages/api/* API Routes have been replaced with the route.js (Route Handler) special file.

file:///docs/app/building-your-application/routing/linking-and-navigating#link-component
https://nextjs.org/blog/next-12-2
file:///docs/app/building-your-application/upgrading/codemods#new-link
file:///docs/app/api-reference/components/script
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/optimizing/fonts
file:///docs/app/building-your-application/optimizing/fonts
file:///docs/app/building-your-application/optimizing/fonts
file:///docs/app/building-your-application/optimizing/fonts
file:///docs/app/building-your-application/optimizing/fonts
https://www.youtube.com/watch?v=YQMSietiFm0
file:///docs/app/building-your-application/routing#file-conventions
file:///docs/app/building-your-application/routing/layouts-and-templates#layouts
file:///docs/app/building-your-application/routing
file:///docs/app/building-your-application/routing/defining-routes
file:///docs/app/building-your-application/routing#file-conventions
file:///docs/app/building-your-application/routing
file:///docs/app/building-your-application/data-fetching
file:///docs/app/api-reference/functions/generate-static-params
file:///docs/app/building-your-application/routing/layouts-and-templates#root-layout-required
file:///docs/app/building-your-application/routing/error-handling
file:///docs/app/api-reference/file-conventions/not-found
file:///docs/app/api-reference/file-conventions/route


Step 1: Creating the appapp  directory

Update to the latest Next.js version (requires 13.4 or greater):

npm install next@latest

Then, create a new app directory at the root of your project (or src/ directory).

Step 2: Creating a Root Layout

Create a new app/layout.tsx file inside the app directory. This is a root layout that will apply to all routes inside app.

app/layout.tsx (tsx)

export default function RootLayout({
  // Layouts must accept a children prop.
  // This will be populated with nested layouts or pages
  children,
}: {
  children: React.ReactNode
}) {
  return (
    <html lang="en">
      <body>{children}</body>
    </html>
  )
}

app/layout.js (jsx)

export default function RootLayout({
  // Layouts must accept a children prop.
  // This will be populated with nested layouts or pages
  children,
}) {
  return (
    <html lang="en">
      <body>{children}</body>
    </html>
  )
}

The app directory must include a root layout.
The root layout must define <html>, and <body> tags since Next.js does not automatically create them
The root layout replaces the pages/_app.tsx and pages/_document.tsx files.
.js, .jsx, or .tsx extensions can be used for layout files.

To manage <head> HTML elements, you can use the built-in SEO support:

app/layout.tsx (tsx)

import type { Metadata } from 'next'

export const metadata: Metadata = {
  title: 'Home',
  description: 'Welcome to Next.js',
}

app/layout.js (jsx)

export const metadata = {
  title: 'Home',
  description: 'Welcome to Next.js',
}

Migrating _document.js_document.js and _app.js_app.js

If you have an existing _app or _document file, you can copy the contents (e.g. global styles) to the root layout (app/layout.tsx).
Styles in app/layout.tsx will not apply to pages/*. You should keep _app/_document while migrating to prevent your pages/*
routes from breaking. Once fully migrated, you can then safely delete them.

If you are using any React Context providers, they will need to be moved to a Client Component.

Migrating the getLayout()getLayout() pattern to Layouts (Optional)

file:///docs/app/building-your-application/routing/layouts-and-templates#root-layout-required
file:///docs/app/building-your-application/optimizing/metadata
file:///docs/app/building-your-application/rendering/client-components


Next.js recommended adding a property to Page components to achieve per-page layouts in the pages directory. This pattern can be
replaced with native support for nested layouts in the app directory.

See before and after example

Step 3: Migrating next/headnext/head

In the pages directory, the next/head React component is used to manage <head> HTML elements such as title and meta . In the
app directory, next/head is replaced with the new built-in SEO support.

Before:
pages/index.tsx (tsx)

import Head from 'next/head'

export default function Page() {
  return (
    <>
      <Head>
        <title>My page title</title>
      </Head>
    </>
  )
}

pages/index.js (jsx)

import Head from 'next/head'

export default function Page() {
  return (
    <>
      <Head>
        <title>My page title</title>
      </Head>
    </>
  )
}

After:
app/page.tsx (tsx)

import type { Metadata } from 'next'

export const metadata: Metadata = {
  title: 'My Page Title',
}

export default function Page() {
  return '...'
}

app/page.js (jsx)

export const metadata = {
  title: 'My Page Title',
}

export default function Page() {
  return '...'
}

See all metadata options.

Step 4: Migrating Pages

Pages in the app directory are Server Components by default. This is different from the pages directory where pages are Client
Components.
Data fetching has changed in app. getServerSideProps, getStaticProps and getInitialProps have been replaced with a
simpler API.
The app directory uses nested folders to define routes and a special page.js file to make a route segment publicly accessible.

pagespages Directory appapp Directory Route

file:///docs/pages/building-your-application/routing/pages-and-layouts#layout-pattern#per-page-layouts
file:///docs/app/building-your-application/routing/layouts-and-templates#layouts
file:///docs/app/building-your-application/optimizing/metadata
file:///docs/app/api-reference/functions/generate-metadata
file:///docs/app/building-your-application/routing
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/data-fetching
file:///docs/app/building-your-application/routing/defining-routes


index.js page.js /

about.js about/page.js /about

blog/[slug].js blog/[slug]/page.js /blog/post-1

pagespages Directory appapp Directory Route

We recommend breaking down the migration of a page into two main steps:

Step 1: Move the default exported Page Component into a new Client Component.
Step 2: Import the new Client Component into a new page.js file inside the app directory.

Good to know: This is the easiest migration path because it has the most comparable behavior to the pages directory.

Step 1: Create a new Client Component

Create a new separate file inside the app directory (i.e. app/home-page.tsx or similar) that exports a Client Component. To define
Client Components, add the 'use client' directive to the top of the file (before any imports).
Similar to the Pages Router, there is an optimization step to prerender Client Components to static HTML on the initial page load.
Move the default exported page component from pages/index.js to app/home-page.tsx.

app/home-page.tsx (tsx)

'use client'

// This is a Client Component (same as components in the `pages` directory)
// It receives data as props, has access to state and effects, and is
// prerendered on the server during the initial page load.
export default function HomePage({ recentPosts }) {
  return (
    <div>
      {recentPosts.map((post) => (
        <div key={post.id}>{post.title}</div>
      ))}
    </div>
  )
}

app/home-page.js (jsx)

'use client'

// This is a Client Component. It receives data as props and
// has access to state and effects just like Page components
// in the `pages` directory.
export default function HomePage({ recentPosts }) {
  return (
    <div>
      {recentPosts.map((post) => (
        <div key={post.id}>{post.title}</div>
      ))}
    </div>
  )
}

Step 2: Create a new page

Create a new app/page.tsx file inside the app directory. This is a Server Component by default.
Import the home-page.tsx Client Component into the page.
If you were fetching data in pages/index.js, move the data fetching logic directly into the Server Component using the new data
fetching APIs. See the data fetching upgrade guide for more details.

app/page.tsx (tsx)

  // Import your Client Component
  import HomePage from './home-page'

  async function getPosts() {
    const res = await fetch('https://...')
    const posts = await res.json()
    return posts
  }

file:///docs/app/building-your-application/rendering/client-components#full-page-load
file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating


  export default async function Page() {
    // Fetch data directly in a Server Component
    const recentPosts = await getPosts()
    // Forward fetched data to your Client Component
    return <HomePage recentPosts={recentPosts} />
  }

app/page.js (jsx)

  // Import your Client Component
  import HomePage from './home-page'

  async function getPosts() {
    const res = await fetch('https://...')
    const posts = await res.json()
    return posts
  }

  export default async function Page() {
    // Fetch data directly in a Server Component
    const recentPosts = await getPosts()
    // Forward fetched data to your Client Component
    return <HomePage recentPosts={recentPosts} />
  }

If your previous page used useRouter, you’ll need to update to the new routing hooks. Learn more.
Start your development server and visit http://localhost:3000. You should see your existing index route, now served through
the app directory.

Step 5: Migrating Routing Hooks

A new router has been added to support the new behavior in the app directory.

In app, you should use the three new hooks imported from next/navigation: useRouter(), usePathname(), and
useSearchParams().

The new useRouter hook is imported from next/navigation and has different behavior to the useRouter hook in pages which
is imported from next/router.
The useRouter hook imported from next/router is not supported in the app directory but can continue to be used in the pages
directory.
The new useRouter does not return the pathname string. Use the separate usePathname hook instead.
The new useRouter does not return the query object. Use the separate useSearchParams hook instead.
You can use useSearchParams and usePathname together to listen to page changes. See the Router Events section for more
details.
These new hooks are only supported in Client Components. They cannot be used in Server Components.

app/example-client-component.tsx (tsx)

'use client'

import { useRouter, usePathname, useSearchParams } from 'next/navigation'

export default function ExampleClientComponent() {
  const router = useRouter()
  const pathname = usePathname()
  const searchParams = useSearchParams()

  // ...
}

app/example-client-component.js (jsx)

'use client'

import { useRouter, usePathname, useSearchParams } from 'next/navigation'

export default function ExampleClientComponent() {
  const router = useRouter()
  const pathname = usePathname()
  const searchParams = useSearchParams()

  // ...
}

file:///docs/app/api-reference/functions/use-router
http://localhost:3000
file:///docs/app/api-reference/functions/use-router
file:///docs/app/api-reference/functions/use-pathname
file:///docs/app/api-reference/functions/use-search-params
file:///docs/pages/api-reference/functions/use-router
file:///docs/app/api-reference/functions/use-router#router-events


In addition, the new useRouter hook has the following changes:

isFallback has been removed because fallback has been replaced.
The locale, locales, defaultLocales, domainLocales values have been removed because built-in i18n Next.js features are no
longer necessary in the app directory. Learn more about i18n.
basePath has been removed. The alternative will not be part of useRouter. It has not yet been implemented.
asPath has been removed because the concept of as has been removed from the new router.
isReady has been removed because it is no longer necessary. During static rendering, any component that uses the
useSearchParams() hook will skip the prerendering step and instead be rendered on the client at runtime.

View the useRouter() API reference.

Step 6: Migrating Data Fetching Methods

The pages directory uses getServerSideProps and getStaticProps to fetch data for pages. Inside the app directory, these previous
data fetching functions are replaced with a simpler API built on top of fetch() and async React Server Components.

app/page.tsx (tsx)

export default async function Page() {
  // This request should be cached until manually invalidated.
  // Similar to `getStaticProps`.
  // `force-cache` is the default and can be omitted.
  const staticData = await fetch(`https://...`, { cache: 'force-cache' })

  // This request should be refetched on every request.
  // Similar to `getServerSideProps`.
  const dynamicData = await fetch(`https://...`, { cache: 'no-store' })

  // This request should be cached with a lifetime of 10 seconds.
  // Similar to `getStaticProps` with the `revalidate` option.
  const revalidatedData = await fetch(`https://...`, {
    next: { revalidate: 10 },
  })

  return <div>...</div>
}

app/page.js (jsx)

export default async function Page() {
  // This request should be cached until manually invalidated.
  // Similar to `getStaticProps`.
  // `force-cache` is the default and can be omitted.
  const staticData = await fetch(`https://...`, { cache: 'force-cache' })

  // This request should be refetched on every request.
  // Similar to `getServerSideProps`.
  const dynamicData = await fetch(`https://...`, { cache: 'no-store' })

  // This request should be cached with a lifetime of 10 seconds.
  // Similar to `getStaticProps` with the `revalidate` option.
  const revalidatedData = await fetch(`https://...`, {
    next: { revalidate: 10 },
  })

  return <div>...</div>
}

Server-side Rendering (getServerSidePropsgetServerSideProps)

In the pages directory, getServerSideProps is used to fetch data on the server and forward props to the default exported React
component in the file. The initial HTML for the page is prerendered from the server, followed by “hydrating” the page in the browser
(making it interactive).

pages/dashboard.js (jsx)

// `pages` directory

export async function getServerSideProps() {
  const res = await fetch(`https://...`)
  const projects = await res.json()

  return { props: { projects } }
}

file:///docs/app/building-your-application/routing/internationalization
file:///docs/app/building-your-application/rendering/server-components#static-rendering-default
file:///docs/app/api-reference/functions/use-search-params
file:///docs/app/api-reference/functions/use-router
file:///docs/app/building-your-application/data-fetching


export default function Dashboard({ projects }) {
  return (
    <ul>
      {projects.map((project) => (
        <li key={project.id}>{project.name}</li>
      ))}
    </ul>
  )
}

In the app directory, we can colocate our data fetching inside our React components using Server Components. This allows us to send
less JavaScript to the client, while maintaining the rendered HTML from the server.

By setting the cache option to no-store, we can indicate that the fetched data should never be cached. This is similar to
getServerSideProps in the pages directory.

app/dashboard/page.tsx (tsx)

// `app` directory

// This function can be named anything
async function getProjects() {
  const res = await fetch(`https://...`, { cache: 'no-store' })
  const projects = await res.json()

  return projects
}

export default async function Dashboard() {
  const projects = await getProjects()

  return (
    <ul>
      {projects.map((project) => (
        <li key={project.id}>{project.name}</li>
      ))}
    </ul>
  )
}

app/dashboard/page.js (jsx)

// `app` directory

// This function can be named anything
async function getProjects() {
  const res = await fetch(`https://...`, { cache: 'no-store' })
  const projects = await res.json()

  return projects
}

export default async function Dashboard() {
  const projects = await getProjects()

  return (
    <ul>
      {projects.map((project) => (
        <li key={project.id}>{project.name}</li>
      ))}
    </ul>
  )
}

Accessing Request Object

In the pages directory, you can retrieve request-based data based on the Node.js HTTP API.

For example, you can retrieve the req object from getServerSideProps and use it to retrieve the request’s cookies and headers.

pages/index.js (jsx)

// `pages` directory

export async function getServerSideProps({ req, query }) {
  const authHeader = req.getHeaders()['authorization'];
  const theme = req.cookies['theme'];

file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating


  return { props: { ... }}
}

export default function Page(props) {
  return ...
}

The app directory exposes new read-only functions to retrieve request data:

headers(): Based on the Web Headers API, and can be used inside Server Components to retrieve request headers.
cookies(): Based on the Web Cookies API, and can be used inside Server Components to retrieve cookies.

app/page.tsx (tsx)

// `app` directory
import { cookies, headers } from 'next/headers'

async function getData() {
  const authHeader = headers().get('authorization')

  return '...'
}

export default async function Page() {
  // You can use `cookies()` or `headers()` inside Server Components
  // directly or in your data fetching function
  const theme = cookies().get('theme')
  const data = await getData()
  return '...'
}

app/page.js (jsx)

// `app` directory
import { cookies, headers } from 'next/headers'

async function getData() {
  const authHeader = headers().get('authorization')

  return '...'
}

export default async function Page() {
  // You can use `cookies()` or `headers()` inside Server Components
  // directly or in your data fetching function
  const theme = cookies().get('theme')
  const data = await getData()
  return '...'
}

Static Site Generation (getStaticPropsgetStaticProps)

In the pages directory, the getStaticProps function is used to pre-render a page at build time. This function can be used to fetch
data from an external API or directly from a database, and pass this data down to the entire page as it’s being generated during the
build.

pages/index.js (jsx)

// `pages` directory

export async function getStaticProps() {
  const res = await fetch(`https://...`)
  const projects = await res.json()

  return { props: { projects } }
}

export default function Index({ projects }) {
  return projects.map((project) => <div>{project.name}</div>)
}

In the app directory, data fetching with fetch() will default to cache: 'force-cache', which will cache the request data until
manually invalidated. This is similar to getStaticProps in the pages directory.

app/page.js (jsx)

file:///docs/app/api-reference/functions/headers
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/api-reference/functions/cookies
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/api-reference/functions/fetch


// `app` directory

// This function can be named anything
async function getProjects() {
  const res = await fetch(`https://...`)
  const projects = await res.json()

  return projects
}

export default async function Index() {
  const projects = await getProjects()

  return projects.map((project) => <div>{project.name}</div>)
}

Dynamic paths (getStaticPathsgetStaticPaths)

In the pages directory, the getStaticPaths function is used to define the dynamic paths that should be pre-rendered at build time.

pages/posts/[id].js (jsx)

// `pages` directory
import PostLayout from '@/components/post-layout'

export async function getStaticPaths() {
  return {
    paths: [{ params: { id: '1' } }, { params: { id: '2' } }],
  }
}

export async function getStaticProps({ params }) {
  const res = await fetch(`https://.../posts/${params.id}`)
  const post = await res.json()

  return { props: { post } }
}

export default function Post({ post }) {
  return <PostLayout post={post} />
}

In the app directory, getStaticPaths is replaced with generateStaticParams.

generateStaticParams behaves similarly to getStaticPaths, but has a simplified API for returning route parameters and can be
used inside layouts. The return shape of generateStaticParams is an array of segments instead of an array of nested param objects
or a string of resolved paths.

app/posts/[id]/page.js (jsx)

// `app` directory
import PostLayout from '@/components/post-layout'

export async function generateStaticParams() {
  return [{ id: '1' }, { id: '2' }]
}

async function getPost(params) {
  const res = await fetch(`https://.../posts/${params.id}`)
  const post = await res.json()

  return post
}

export default async function Post({ params }) {
  const post = await getPost(params)

  return <PostLayout post={post} />
}

Using the name generateStaticParams is more appropriate than getStaticPaths for the new model in the app directory. The get
prefix is replaced with a more descriptive generate, which sits better alone now that getStaticProps and getServerSideProps
are no longer necessary. The Paths suffix is replaced by Params, which is more appropriate for nested routing with multiple dynamic
segments.

file:///docs/app/api-reference/functions/generate-static-params
file:///docs/app/api-reference/functions/generate-static-params
file:///docs/app/building-your-application/routing/layouts-and-templates


Replacing fallbackfallback

In the pages directory, the fallback property returned from getStaticPaths is used to define the behavior of a page that isn’t pre-
rendered at build time. This property can be set to true to show a fallback page while the page is being generated, false to show a
404 page, or blocking to generate the page at request time.

pages/posts/[id].js (jsx)

// `pages` directory

export async function getStaticPaths() {
  return {
    paths: [],
    fallback: 'blocking'
  };
}

export async function getStaticProps({ params }) {
  ...
}

export default function Post({ post }) {
  return ...
}

In the app directory the config.dynamicParams property controls how params outside of generateStaticParams are handled:

truetrue: (default) Dynamic segments not included in generateStaticParams are generated on demand.
falsefalse: Dynamic segments not included in generateStaticParams will return a 404.

This replaces the fallback: true | false | 'blocking' option of getStaticPaths in the pages directory. The fallback:
'blocking' option is not included in dynamicParams because the difference between 'blocking' and true is negligible with
streaming.

app/posts/[id]/page.js (jsx)

// `app` directory

export const dynamicParams = true;

export async function generateStaticParams() {
  return [...]
}

async function getPost(params) {
  ...
}

export default async function Post({ params }) {
  const post = await getPost(params);

  return ...
}

With dynamicParams set to true (the default), when a route segment is requested that hasn’t been generated, it will be server-
rendered and cached.

Incremental Static Regeneration (getStaticPropsgetStaticProps with revalidaterevalidate)

In the pages directory, the getStaticProps function allows you to add a revalidate field to automatically regenerate a page after a
certain amount of time.

pages/index.js (jsx)

// `pages` directory

export async function getStaticProps() {
  const res = await fetch(`https://.../posts`)
  const posts = await res.json()

  return {
    props: { posts },
    revalidate: 60,
  }
}

file:///docs/app/api-reference/file-conventions/route-segment-config#dynamicparams
file:///docs/app/api-reference/functions/generate-static-params
file:///docs/app/api-reference/file-conventions/route-segment-config#dynamicparams


export default function Index({ posts }) {
  return (
    <Layout>
      <PostList posts={posts} />
    </Layout>
  )
}

In the app directory, data fetching with fetch() can use revalidate, which will cache the request for the specified amount of
seconds.

app/page.js (jsx)

// `app` directory

async function getPosts() {
  const res = await fetch(`https://.../posts`, { next: { revalidate: 60 } })
  const data = await res.json()

  return data.posts
}

export default async function PostList() {
  const posts = await getPosts()

  return posts.map((post) => <div>{post.name}</div>)
}

API Routes

API Routes continue to work in the pages/api directory without any changes. However, they have been replaced by Route Handlers in
the app directory.

Route Handlers allow you to create custom request handlers for a given route using the Web Request and Response APIs.
app/api/route.ts (ts)

export async function GET(request: Request) {}

app/api/route.js (js)

export async function GET(request) {}

Good to know: If you previously used API routes to call an external API from the client, you can now use Server Components
instead to securely fetch data. Learn more about data fetching.

Step 7: Styling

In the pages directory, global stylesheets are restricted to only pages/_app.js. With the app directory, this restriction has been lifted.
Global styles can be added to any layout, page, or component.

CSS Modules
Tailwind CSS
Global Styles
CSS-in-JS
External Stylesheets
Sass

Tailwind CSS

If you’re using Tailwind CSS, you’ll need to add the app directory to your tailwind.config.js file:

tailwind.config.js (js)

module.exports = {
  content: [
    './app/**/*.{js,ts,jsx,tsx,mdx}', // <-- Add this line
    './pages/**/*.{js,ts,jsx,tsx,mdx}',
    './components/**/*.{js,ts,jsx,tsx,mdx}',
  ],
}

You’ll also need to import your global styles in your app/layout.js file:

app/layout.js (jsx)

import '../styles/globals.css'

file:///docs/app/api-reference/functions/fetch
file:///docs/app/building-your-application/routing/route-handlers
https://developer.mozilla.org/docs/Web/API/Request
https://developer.mozilla.org/docs/Web/API/Response
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating
file:///docs/app/building-your-application/styling/css-modules
file:///docs/app/building-your-application/styling/tailwind-css
file:///docs/app/building-your-application/styling/css-modules#global-styles
file:///docs/app/building-your-application/styling/css-in-js
file:///docs/app/building-your-application/styling/css-modules#external-stylesheets
file:///docs/app/building-your-application/styling/sass


export default function RootLayout({ children }) {
  return (
    <html lang="en">
      <body>{children}</body>
    </html>
  )
}

Learn more about styling with Tailwind CSS

Codemods

Next.js provides Codemod transformations to help upgrade your codebase when a feature is deprecated. See Codemods for more
information.

file:///docs/app/building-your-application/styling/tailwind-css
file:///docs/app/building-your-application/upgrading/codemods


3.1.11.3 - Version 14
Documentation path: /02-app/01-building-your-application/11-upgrading/03-version-14

Description: Upgrade your Next.js Application from Version 13 to 14.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Upgrading from 13 to 14

To update to Next.js version 14, run the following command using your preferred package manager:
Terminal (bash)

npm i next@latest react@latest react-dom@latest eslint-config-next@latest

Terminal (bash)

yarn add next@latest react@latest react-dom@latest eslint-config-next@latest

Terminal (bash)

pnpm up next react react-dom eslint-config-next --latest

Terminal (bash)

bun add next@latest react@latest react-dom@latest eslint-config-next@latest

Good to know: If you are using TypeScript, ensure you also upgrade @types/react and @types/react-dom to their latest
versions.

v14 Summary

The minimum Node.js version has been bumped from 16.14 to 18.17, since 16.x has reached end-of-life.
The next export command has been removed in favor of output: 'export' config. Please see the docs for more information.
The next/server import for ImageResponse was renamed to next/og. A codemod is available to safely and automatically
rename your imports.
The @next/font package has been fully removed in favor of the built-in next/font. A codemod is available to safely and
automatically rename your imports.
The WASM target for next-swc has been removed.

https://nextjs.org/docs/app/building-your-application/deploying/static-exports
file:///docs/app/building-your-application/upgrading/codemods#next-og-import
file:///docs/app/building-your-application/upgrading/codemods#built-in-next-font


3.1.11.4 - Migrating from Vite
Documentation path: /02-app/01-building-your-application/11-upgrading/04-from-vite

Description: Learn how to migrate your existing React application from Vite to Next.js.

This guide will help you migrate an existing Vite application to Next.js.

Why Switch?

There are several reasons why you might want to switch from Vite to Next.js:

Slow initial page loading time

If you have built your application with the default Vite plugin for React, your application is a purely client-side application. Client-side
only applications, also known as single-page applications (SPAs), often experience slow initial page loading time. This happens due to a
couple of reasons:

1. The browser needs to wait for the React code and your entire application bundle to download and run before your code is able to
send requests to load some data.

2. Your application code grows with every new feature and extra dependency you add.

No automatic code splitting

The previous issue of slow loading times can be somewhat managed with code splitting. However, if you try to do code splitting
manually, you’ll often make performance worse. It’s easy to inadvertently introduce network waterfalls when code-splitting manually.
Next.js provides automatic code splitting built into its router.

Network waterfalls

A common cause of poor performance occurs when applications make sequential client-server requests to fetch data. One common
pattern for data fetching in an SPA is to initially render a placeholder, and then fetch data after the component has mounted.
Unfortunately, this means that a child component that fetches data can’t start fetching until the parent component has finished loading
its own data.

While fetching data on the client is supported with Next.js, it also gives you the option to shift data fetching to the server, which can
eliminate client-server waterfalls.

Fast and intentional loading states

With built-in support for streaming through React Suspense, you can be more intentional about which parts of your UI you want to load
first and in what order without introducing network waterfalls.

This enables you to build pages that are faster to load and eliminate layout shifts.

Choose the data fetching strategy

Depending on your needs, Next.js allows you to choose your data fetching strategy on a page and component basis. You can decide to
fetch at build time, at request time on the server, or on the client. For example, you can fetch data from your CMS and render your blog
posts at build time, which can then be efficiently cached on a CDN.

Middleware

Next.js Middleware allows you to run code on the server before a request is completed. This is especially useful to avoid having a flash
of unauthenticated content when the user visits an authenticated-only page by redirecting the user to a login page. The middleware is
also useful for experimentation and internationalization.

Built-in Optimizations

Images, fonts, and third-party scripts often have significant impact on an application’s performance. Next.js comes with built-in
components that automatically optimize those for you.

Migration Steps

Our goal with this migration is to get a working Next.js application as quickly as possible, so that you can then adopt Next.js features
incrementally. To begin with, we’ll keep it as a purely client-side application (SPA) without migrating your existing router. This helps
minimize the chances of encountering issues during the migration process and reduces merge conflicts.

https://github.com/vitejs/vite-plugin-react/tree/main/packages/plugin-react
file:///docs/app/building-your-application/routing/loading-ui-and-streaming#streaming-with-suspense
https://vercel.com/blog/how-core-web-vitals-affect-seo
file:///docs/app/building-your-application/routing/middleware
file:///docs/app/building-your-application/routing/internationalization
file:///docs/app/building-your-application/optimizing/images
file:///docs/app/building-your-application/optimizing/fonts
file:///docs/app/building-your-application/optimizing/scripts


Step 1: Install the Next.js Dependency

The first thing you need to do is to install next as a dependency:

Terminal (bash)

npm install next@latest

Step 2: Create the Next.js Configuration File

Create a next.config.mjs at the root of your project. This file will hold your Next.js configuration options.

next.config.mjs (js)

/** @type {import('next').NextConfig} */
const nextConfig = {
  output: 'export', // Outputs a Single-Page Application (SPA).
  distDir: './dist', // Changes the build output directory to `./dist/`.
}

export default nextConfig

Good to know: You can use either .js or .mjs for your Next.js configuration file.

Step 3: Update TypeScript Configuration

If you’re using TypeScript, you need to update your tsconfig.json file with the following changes to make it compatible with Next.js.
If you’re not using TypeScript, you can skip this step.

1. Remove the project reference to tsconfig.node.json
2. Add ./dist/types/**/*.ts and ./next-env.d.ts to the include array
3. Add ./node_modules to the exclude array
4. Add { "name": "next" } to the plugins array in compilerOptions: "plugins": [{ "name": "next" }]
5. Set esModuleInterop to true: "esModuleInterop": true
6. Set jsx to preserve: "jsx": "preserve"
7. Set allowJs to true: "allowJs": true
8. Set forceConsistentCasingInFileNames to true: "forceConsistentCasingInFileNames": true
9. Set incremental to true: "incremental": true

Here’s an example of a working tsconfig.json with those changes:

tsconfig.json (json)

{
  "compilerOptions": {
    "target": "ES2020",
    "useDefineForClassFields": true,
    "lib": ["ES2020", "DOM", "DOM.Iterable"],
    "module": "ESNext",
    "esModuleInterop": true,
    "skipLibCheck": true,
    "moduleResolution": "bundler",
    "allowImportingTsExtensions": true,
    "resolveJsonModule": true,
    "isolatedModules": true,
    "noEmit": true,
    "jsx": "preserve",
    "strict": true,
    "noUnusedLocals": true,
    "noUnusedParameters": true,
    "noFallthroughCasesInSwitch": true,
    "allowJs": true,
    "forceConsistentCasingInFileNames": true,
    "incremental": true,
    "plugins": [{ "name": "next" }]
  },
  "include": ["./src", "./dist/types/**/*.ts", "./next-env.d.ts"],
  "exclude": ["./node_modules"]
}

You can find more information about configuring TypeScript on the Next.js docs.

Step 4: Create the Root Layout

file:///docs/app/api-reference/next-config-js
https://www.typescriptlang.org/tsconfig#references
https://www.typescriptlang.org/tsconfig#include
https://www.typescriptlang.org/tsconfig#exclude
https://www.typescriptlang.org/tsconfig#plugins
https://www.typescriptlang.org/tsconfig#esModuleInterop
https://www.typescriptlang.org/tsconfig#jsx
https://www.typescriptlang.org/tsconfig#allowJs
https://www.typescriptlang.org/tsconfig#forceConsistentCasingInFileNames
https://www.typescriptlang.org/tsconfig#incremental
file:///docs/app/building-your-application/configuring/typescript#typescript-plugin


A Next.js App Router application must include a root layout file, which is a React Server Component that will wrap all pages in your
application. This file is defined at the top level of the app directory.

The closest equivalent to the root layout file in a Vite application is the index.html file, which contains your <html>, <head>, and
<body> tags.

In this step, you’ll convert your index.html file into a root layout file:

1. Create a new app directory in your src directory.
2. Create a new layout.tsx file inside that app directory:

app/layout.tsx (tsx)

export default function RootLayout({
  children,
}: {
  children: React.ReactNode
}) {
  return null
}

app/layout.js (jsx)

export default function RootLayout({ children }) {
  return null
}

Good to know: .js, .jsx, or .tsx extensions can be used for Layout files.

1. Copy the content of your index.html file into the previously created <RootLayout> component while replacing the
body.div#root and body.script tags with <div id="root">{children}</div>:

app/layout.tsx (tsx)

export default function RootLayout({
  children,
}: {
  children: React.ReactNode
}) {
  return (
    <html lang="en">
      <head>
        <meta charset="UTF-8" />
        <link rel="icon" type="image/svg+xml" href="/icon.svg" />
        <meta name="viewport" content="width=device-width, initial-scale=1.0" />
        <title>My App</title>
        <meta name="description" content="My App is a..." />
      </head>
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

app/layout.js (jsx)

export default function RootLayout({ children }) {
  return (
    <html lang="en">
      <head>
        <meta charset="UTF-8" />
        <link rel="icon" type="image/svg+xml" href="/icon.svg" />
        <meta name="viewport" content="width=device-width, initial-scale=1.0" />
        <title>My App</title>
        <meta name="description" content="My App is a..." />
      </head>
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

1. Next.js already includes by default the meta charset and meta viewport tags, so you can safely remove those from your <head>:

app/layout.tsx (tsx)

file:///docs/app
file:///docs/app/building-your-application/routing/layouts-and-templates#root-layout-required
file:///docs/app/building-your-application/rendering/server-components
https://vitejs.dev/guide/#index-html-and-project-root
https://developer.mozilla.org/docs/Web/HTML/Element/meta#charset
https://developer.mozilla.org/docs/Web/HTML/Viewport_meta_tag


export default function RootLayout({
  children,
}: {
  children: React.ReactNode
}) {
  return (
    <html lang="en">
      <head>
        <link rel="icon" type="image/svg+xml" href="/icon.svg" />
        <title>My App</title>
        <meta name="description" content="My App is a..." />
      </head>
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

app/layout.js (jsx)

export default function RootLayout({ children }) {
  return (
    <html lang="en">
      <head>
        <link rel="icon" type="image/svg+xml" href="/icon.svg" />
        <title>My App</title>
        <meta name="description" content="My App is a..." />
      </head>
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

1. Any metadata files such as favicon.ico, icon.png, robots.txt are automatically added to the application <head> tag as long
as you have them placed into the top level of the app directory. After moving all supported files into the app directory you can
safely delete their <link> tags:

app/layout.tsx (tsx)

export default function RootLayout({
  children,
}: {
  children: React.ReactNode
}) {
  return (
    <html lang="en">
      <head>
        <title>My App</title>
        <meta name="description" content="My App is a..." />
      </head>
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

app/layout.js (jsx)

export default function RootLayout({ children }) {
  return (
    <html lang="en">
      <head>
        <title>My App</title>
        <meta name="description" content="My App is a..." />
      </head>
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

file:///docs/app/building-your-application/optimizing/metadata#file-based-metadata
file:///docs/app/building-your-application/optimizing/metadata#file-based-metadata


1. Finally, Next.js can manage your last <head> tags with the Metadata API. Move your final metadata info into an exported metadata
object:

app/layout.tsx (tsx)

import type { Metadata } from 'next'

export const metadata: Metadata = {
  title: 'My App',
  description: 'My App is a...',
}

export default function RootLayout({
  children,
}: {
  children: React.ReactNode
}) {
  return (
    <html lang="en">
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

app/layout.js (jsx)

export const metadata = {
  title: 'My App',
  description: 'My App is a...',
}

export default function RootLayout({ children }) {
  return (
    <html lang="en">
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

With the above changes, you shifted from declaring everything in your index.html to using Next.js’ convention-based approach built
into the framework (Metadata API). This approach enables you to more easily improve your SEO and web shareability of your pages.

Step 5: Create the Entrypoint Page

On Next.js you declare an entrypoint for your application by creating a page.tsx file. The closest equivalent of this file on Vite is your
main.tsx file. In this step, you’ll set up the entrypoint of your application.

1. Create a [[...slug]][[...slug]] directory in your appapp directory.

Since in this guide we’re aiming first to set up our Next.js as an SPA (Single Page Application), you need your page entrypoint to catch
all possible routes of your application. For that, create a new [[...slug]] directory in your app directory.

This directory is what is called an optional catch-all route segment. Next.js uses a file-system based router where directories are used
to define routes. This special directory will make sure that all routes of your application will be directed to its containing page.tsx file.

1. Create a new page.tsxpage.tsx file inside the app/[[...slug]]app/[[...slug]] directory with the following content:

app/[[...slug]]/page.tsx (tsx)

import '../../index.css'

export function generateStaticParams() {
  return [{ slug: [''] }]
}

export default function Page() {
  return '...' // We'll update this
}

app/[[...slug]]/page.js (jsx)

import '../../index.css'

file:///docs/app/building-your-application/optimizing/metadata
file:///docs/app/api-reference/functions/generate-metadata#metadata-object
file:///docs/app/building-your-application/optimizing/metadata
file:///docs/app/building-your-application/routing/dynamic-routes#optional-catch-all-segments
file:///docs/app/building-your-application/routing/defining-routes#creating-routes


export function generateStaticParams() {
  return [{ slug: [''] }]
}

export default function Page() {
  return '...' // We'll update this
}

Good to know: .js, .jsx, or .tsx extensions can be used for Page files.

This file is a Server Component. When you run next build, the file is prerendered into a static asset. It does not require any dynamic
code.

This file imports our global CSS and tells generateStaticParams we are only going to generate one route, the index route at /.

Now, let’s move the rest of our Vite application which will run client-only.
app/[[...slug]]/client.tsx (tsx)

'use client'

import React from 'react'
import dynamic from 'next/dynamic'

const App = dynamic(() => import('../../App'), { ssr: false })

export function ClientOnly() {
  return <App />
}

app/[[...slug]]/client.js (jsx)

'use client'

import React from 'react'
import dynamic from 'next/dynamic'

const App = dynamic(() => import('../../App'), { ssr: false })

export function ClientOnly() {
  return <App />
}

This file is a Client Component, defined by the 'use client' directive. Client Components are still prerendered to HTML on the server
before being sent to the client.

Since we want a client-only application to start, we can configure Next.js to disable prerendering from the App component down.

const App = dynamic(() => import('../../App'), { ssr: false })

Now, update your entrypoint page to use the new component:
app/[[...slug]]/page.tsx (tsx)

import '../../index.css'
import { ClientOnly } from './client'

export function generateStaticParams() {
  return [{ slug: [''] }]
}

export default function Page() {
  return <ClientOnly />
}

app/[[...slug]]/page.js (jsx)

import '../../index.css'
import { ClientOnly } from './client'

export function generateStaticParams() {
  return [{ slug: [''] }]
}

export default function Page() {
  return <ClientOnly />
}

file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/api-reference/functions/generate-static-params
file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/rendering/client-components#how-are-client-components-rendered


Step 6: Update Static Image Imports

Next.js handles static image imports slightly different from Vite. With Vite, importing an image file will return its public URL as a string:
App.tsx (tsx)

import image from './img.png' // `image` will be '/assets/img.2d8efhg.png' in production

export default function App() {
  return <img src={image} />
}

With Next.js, static image imports return an object. The object can then be used directly with the Next.js <Image> component, or you
can use the object’s src property with your existing <img> tag.

The <Image> component has the added benefits of automatic image optimization. The <Image> component automatically sets the
width and height attributes of the resulting <img> based on the image’s dimensions. This prevents layout shifts when the image
loads. However, this can cause issues if your app contains images with only one of their dimensions being styled without the other
styled to auto. When not styled to auto, the dimension will default to the <img> dimension attribute’s value, which can cause the
image to appear distorted.

Keeping the <img> tag will reduce the amount of changes in your application and prevent the above issues. You can then optionally
later migrate to the <Image> component to take advantage of optimizing images by configuring a loader, or moving to the default
Next.js server which has automatic image optimization.

1. Convert absolute import paths for images imported from /public/public into relative imports:

// Before
import logo from '/logo.png'

// After
import logo from '../public/logo.png'

1. Pass the image srcsrc property instead of the whole image object to your <img><img> tag:

// Before
<img src={logo} />

// After
<img src={logo.src} />

Alternatively, you can reference the public URL for the image asset based on the filename. For example, public/logo.png will serve
the image at /logo.png for your application, which would be the src value.

Warning: If you’re using TypeScript, you might encounter type errors when accessing the src property. You can safely ignore
those for now. They will be fixed by the end of this guide.

Step 7: Migrate the Environment Variables

Next.js has support for .env environment variables similar to Vite. The main difference is the prefix used to expose environment
variables on the client-side.

Change all environment variables with the VITE_ prefix to NEXT_PUBLIC_.

Vite exposes a few built-in environment variables on the special import.meta.env object which aren’t supported by Next.js. You need
to update their usage as follows:

import.meta.env.MODE � process.env.NODE_ENV
import.meta.env.PROD � process.env.NODE_ENV === 'production'
import.meta.env.DEV � process.env.NODE_ENV !== 'production'
import.meta.env.SSR � typeof window !== 'undefined'

Next.js also doesn’t provide a built-in BASE_URL environment variable. However, you can still configure one, if you need it:

1. Add the following to your .env.env file:

.env (bash)

# ...
NEXT_PUBLIC_BASE_PATH="/some-base-path"

file:///docs/app/api-reference/components/image
file:///docs/app/building-your-application/optimizing/images
file:///docs/app/building-your-application/optimizing/images#loaders
file:///docs/app/building-your-application/configuring/environment-variables


1. Set basePathbasePath to process.env.NEXT_PUBLIC_BASE_PATHprocess.env.NEXT_PUBLIC_BASE_PATH in your next.config.mjsnext.config.mjs file:

next.config.mjs (js)

/** @type {import('next').NextConfig} */
const nextConfig = {
  output: 'export', // Outputs a Single-Page Application (SPA).
  distDir: './dist', // Changes the build output directory to `./dist/`.
  basePath: process.env.NEXT_PUBLIC_BASE_PATH, // Sets the base path to `/some-base-path`.
}

export default nextConfig

1. Update import.meta.env.BASE_URLimport.meta.env.BASE_URL usages to process.env.NEXT_PUBLIC_BASE_PATHprocess.env.NEXT_PUBLIC_BASE_PATH

Step 8: Update Scripts in package.jsonpackage.json

You should now be able to run your application to test if you successfully migrated to Next.js. But before that, you need to update your
scripts in your package.json with Next.js related commands, and add .next and next-env.d.ts to your .gitignore:

package.json (json)

{
  "scripts": {
    "dev": "next dev",
    "build": "next build",
    "start": "next start"
  }
}

.gitignore (txt)

# ...
.next
next-env.d.ts
dist

Now run npm run dev, and open http://localhost:3000. You should see your application now running on Next.js.

Example: Check out this pull request for a working example of a Vite application migrated to Next.js.

Step 9: Clean Up

You can now clean up your codebase from Vite related artifacts:

Delete main.tsx
Delete index.html
Delete vite-env.d.ts
Delete tsconfig.node.json
Delete vite.config.ts
Uninstall Vite dependencies

Next Steps

If everything went according to plan, you now have a functioning Next.js application running as a single-page application. However, you
aren’t yet taking advantage of most of Next.js’ benefits, but you can now start making incremental changes to reap all the benefits.
Here’s what you might want to do next:

Migrate from React Router to the Next.js App Router to get:
Automatic code splitting
Streaming Server-Rendering
React Server Components
Optimize images with the <Image> component
Optimize fonts with next/font
Optimize third-party scripts with the <Script> component
Update your ESLint configuration to support Next.js rules

file:///docs/app/api-reference/next-config-js/basePath
http://localhost:3000
https://github.com/inngest/vite-to-nextjs/pull/1
file:///docs/app/building-your-application/routing
file:///docs/app/building-your-application/routing/loading-ui-and-streaming
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/optimizing/images
file:///docs/app/building-your-application/optimizing/fonts
file:///docs/app/building-your-application/optimizing/scripts
file:///docs/app/building-your-application/configuring/eslint


3.1.11.5 - Migrating from Create React App
Documentation path: /02-app/01-building-your-application/11-upgrading/05-from-create-react-app

Description: Learn how to migrate your existing React application from Create React App to Next.js.

This guide will help you migrate an existing Create React App site to Next.js.

Why Switch?

There are several reasons why you might want to switch from Create React App to Next.js:

Slow initial page loading time

Create React App uses purely client-side React. Client-side only applications, also known as single-page applications (SPAs), often
experience slow initial page loading time. This happens due to a couple of reasons:

1. The browser needs to wait for the React code and your entire application bundle to download and run before your code is able to
send requests to load data.

2. Your application code grows with every new feature and dependency you add.

No automatic code splitting

The previous issue of slow loading times can be somewhat managed with code splitting. However, if you try to do code splitting
manually, you’ll often make performance worse. It’s easy to inadvertently introduce network waterfalls when code-splitting manually.
Next.js provides automatic code splitting built into its router.

Network waterfalls

A common cause of poor performance occurs when applications make sequential client-server requests to fetch data. One common
pattern for data fetching in an SPA is to initially render a placeholder, and then fetch data after the component has mounted.
Unfortunately, this means that a child component that fetches data can’t start fetching until the parent component has finished loading
its own data.

While fetching data on the client is supported with Next.js, it also gives you the option to shift data fetching to the server, which can
eliminate client-server waterfalls.

Fast and intentional loading states

With built-in support for streaming through React Suspense, you can be more intentional about which parts of your UI you want to load
first and in what order without introducing network waterfalls.

This enables you to build pages that are faster to load and eliminate layout shifts.

Choose the data fetching strategy

Depending on your needs, Next.js allows you to choose your data fetching strategy on a page and component basis. You can decide to
fetch at build time, at request time on the server, or on the client. For example, you can fetch data from your CMS and render your blog
posts at build time, which can then be efficiently cached on a CDN.

Middleware

Next.js Middleware allows you to run code on the server before a request is completed. This is especially useful to avoid having a flash
of unauthenticated content when the user visits an authenticated-only page by redirecting the user to a login page. The middleware is
also useful for experimentation and internationalization.

Built-in Optimizations

Images, fonts, and third-party scripts often have significant impact on an application’s performance. Next.js comes with built-in
components that automatically optimize those for you.

Migration Steps

Our goal with this migration is to get a working Next.js application as quickly as possible, so that you can then adopt Next.js features
incrementally. To begin with, we’ll keep it as a purely client-side application (SPA) without migrating your existing router. This helps
minimize the chances of encountering issues during the migration process and reduces merge conflicts.

file:///docs/app/building-your-application/routing/loading-ui-and-streaming#streaming-with-suspense
https://vercel.com/blog/how-core-web-vitals-affect-seo
file:///docs/app/building-your-application/routing/middleware
file:///docs/app/building-your-application/routing/internationalization
file:///docs/app/building-your-application/optimizing/images
file:///docs/app/building-your-application/optimizing/fonts
file:///docs/app/building-your-application/optimizing/scripts


Step 1: Install the Next.js Dependency

The first thing you need to do is to install next as a dependency:

Terminal (bash)

npm install next@latest

Step 2: Create the Next.js Configuration File

Create a next.config.mjs at the root of your project. This file will hold your Next.js configuration options.

next.config.mjs (js)

/** @type {import('next').NextConfig} */
const nextConfig = {
  output: 'export', // Outputs a Single-Page Application (SPA).
  distDir: './dist', // Changes the build output directory to `./dist/`.
}

export default nextConfig

Step 3: Update TypeScript Configuration

If you’re using TypeScript, you need to update your tsconfig.json file with the following changes to make it compatible with Next.js:

tsconfig.json (json)

{
  "compilerOptions": {
    "target": "es5",
    "lib": ["dom", "dom.iterable", "esnext"],
    "allowJs": true,
    "skipLibCheck": true,
    "strict": false,
    "forceConsistentCasingInFileNames": true,
    "noEmit": true,
    "esModuleInterop": true,
    "module": "esnext",
    "moduleResolution": "node",
    "resolveJsonModule": true,
    "isolatedModules": true,
    "jsx": "preserve",
    "baseUrl": ".",
    "incremental": true,
    "plugins": [
      {
        "name": "next"
      }
    ],
    "strictNullChecks": true
  },
  "include": [
    "next-env.d.ts",
    "**/*.ts",
    "**/*.tsx",
    ".next/types/**/*.ts",
    "./dist/types/**/*.ts"
  ],
  "exclude": ["node_modules"]
}

You can find more information about configuring TypeScript on the Next.js docs.

Step 4: Create the Root Layout

A Next.js App Router application must include a root layout file, which is a React Server Component that will wrap all pages in your
application. This file is defined at the top level of the app directory.

The closest equivalent to the root layout file in a CRA application is the index.html file, which contains your <html>, <head>, and
<body> tags.

In this step, you’ll convert your index.html file into a root layout file:

1. Create a new app directory in your src directory.
2. Create a new layout.tsx file inside that app directory:

file:///docs/app/api-reference/next-config-js
file:///docs/app/building-your-application/configuring/typescript#typescript-plugin
file:///docs/app
file:///docs/app/building-your-application/routing/layouts-and-templates#root-layout-required
file:///docs/app/building-your-application/rendering/server-components


app/layout.tsx (tsx)

export default function RootLayout({
  children,
}: {
  children: React.ReactNode
}) {
  return null
}

app/layout.js (jsx)

export default function RootLayout({ children }) {
  return null
}

Good to know: .js, .jsx, or .tsx extensions can be used for Layout files.

Copy the content of your index.html file into the previously created <RootLayout> component while replacing the body.div#root
and body.script tags with <div id="root">{children}</div>:

app/layout.tsx (tsx)

export default function RootLayout({
  children,
}: {
  children: React.ReactNode
}) {
  return (
    <html lang="en">
      <head>
        <meta charSet="UTF-8" />
        <link rel="icon" href="%PUBLIC_URL%/favicon.ico" />
        <meta name="viewport" content="width=device-width, initial-scale=1" />
        <title>React App</title>
        <meta name="description" content="Web site created..." />
      </head>
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

app/layout.js (jsx)

export default function RootLayout({ children }) {
  return (
    <html lang="en">
      <head>
        <meta charset="UTF-8" />
        <link rel="icon" href="%PUBLIC_URL%/favicon.ico" />
        <meta name="viewport" content="width=device-width, initial-scale=1" />
        <title>React App</title>
        <meta name="description" content="Web site created..." />
      </head>
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

Good to know: We’ll ignore the manifest file, additional iconography other than the favicon, and testing configuration, but if
these are requirements, Next.js also supports these options.

Step 5: Metadata

Next.js already includes by default the meta charset and meta viewport tags, so you can safely remove those from your <head>:

app/layout.tsx (tsx)

export default function RootLayout({
  children,
}: {
  children: React.ReactNode
}) {
  return (

file:///docs/app/api-reference/file-conventions/metadata
file:///docs/app/building-your-application/testing
https://developer.mozilla.org/docs/Web/HTML/Element/meta#charset
https://developer.mozilla.org/docs/Web/HTML/Viewport_meta_tag


    <html lang="en">
      <head>
        <link rel="icon" href="%PUBLIC_URL%/favicon.ico" />
        <title>React App</title>
        <meta name="description" content="Web site created..." />
      </head>
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

app/layout.js (jsx)

export default function RootLayout({ children }) {
  return (
    <html lang="en">
      <head>
        <link rel="icon" href="%PUBLIC_URL%/favicon.ico" />
        <title>React App</title>
        <meta name="description" content="Web site created..." />
      </head>
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

Any metadata files such as favicon.ico, icon.png, robots.txt are automatically added to the application <head> tag as long as
you have them placed into the top level of the app directory. After moving all supported files into the app directory you can safely
delete their <link> tags:

app/layout.tsx (tsx)

export default function RootLayout({
  children,
}: {
  children: React.ReactNode
}) {
  return (
    <html lang="en">
      <head>
        <title>React App</title>
        <meta name="description" content="Web site created..." />
      </head>
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

app/layout.js (jsx)

export default function RootLayout({ children }) {
  return (
    <html lang="en">
      <head>
        <title>React App</title>
        <meta name="description" content="Web site created..." />
      </head>
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

Finally, Next.js can manage your last <head> tags with the Metadata API. Move your final metadata info into an exported metadata
object:

app/layout.tsx (tsx)

import type { Metadata } from 'next'

export const metadata: Metadata = {

file:///docs/app/building-your-application/optimizing/metadata#file-based-metadata
file:///docs/app/building-your-application/optimizing/metadata#file-based-metadata
file:///docs/app/building-your-application/optimizing/metadata
file:///docs/app/api-reference/functions/generate-metadata#metadata-object


  title: 'React App',
  description: 'Web site created with Next.js.',
}

export default function RootLayout({
  children,
}: {
  children: React.ReactNode
}) {
  return (
    <html lang="en">
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

app/layout.js (jsx)

export const metadata = {
  title: 'React App',
  description: 'Web site created with Next.js.',
}

export default function RootLayout({ children }) {
  return (
    <html lang="en">
      <body>
        <div id="root">{children}</div>
      </body>
    </html>
  )
}

With the above changes, you shifted from declaring everything in your index.html to using Next.js’ convention-based approach built
into the framework (Metadata API). This approach enables you to more easily improve your SEO and web shareability of your pages.

Step 6: Styles

Like Create React App, Next.js has built-in support for CSS Modules.

If you’re using a global CSS file, import it into your app/layout.tsx file:

app/layout.tsx (tsx)

import '../index.css'

// ...

If you’re using Tailwind, you’ll need to install postcss and autoprefixer:

Terminal (bash)

npm install postcss autoprefixer

Then, create a postcss.config.js file at the root of your project:

postcss.config.js (js)

module.exports = {
  plugins: {
    tailwindcss: {},
    autoprefixer: {},
  },
}

Step 7: Create the Entrypoint Page

On Next.js you declare an entrypoint for your application by creating a page.tsx file. The closest equivalent of this file on CRA is your
src/index.tsx file. In this step, you’ll set up the entry point of your application.

Create a [[...slug]][[...slug]] directory in your appapp directory.

Since this guide is aiming to first set up our Next.js as an SPA (Single Page Application), you need your page entry point to catch all
possible routes of your application. For that, create a new [[...slug]] directory in your app directory.

This directory is what is called an optional catch-all route segment. Next.js uses a file-system based router where directories are used

file:///docs/app/building-your-application/optimizing/metadata
file:///docs/app/building-your-application/styling/css-modules
file:///docs/app/building-your-application/routing/dynamic-routes#optional-catch-all-segments
file:///docs/app/building-your-application/routing/defining-routes#creating-routes


to define routes. This special directory will make sure that all routes of your application will be directed to its containing page.tsx file.

Create a new page.tsxpage.tsx file inside the app/[[...slug]]app/[[...slug]] directory with the following content:

app/[[...slug]]/page.tsx (tsx)

import '../../index.css'

export function generateStaticParams() {
  return [{ slug: [''] }]
}

export default function Page() {
  return '...' // We'll update this
}

app/[[...slug]]/page.js (jsx)

import '../../index.css'

export function generateStaticParams() {
  return [{ slug: [''] }]
}

export default function Page() {
  return '...' // We'll update this
}

This file is a Server Component. When you run next build, the file is prerendered into a static asset. It does not require any dynamic
code.

This file imports our global CSS and tells generateStaticParams we are only going to generate one route, the index route at /.

Now, let’s move the rest of our CRA application which will run client-only.
app/[[...slug]]/client.tsx (tsx)

'use client'

import React from 'react'
import dynamic from 'next/dynamic'

const App = dynamic(() => import('../../App'), { ssr: false })

export function ClientOnly() {
  return <App />
}

app/[[...slug]]/client.js (jsx)

'use client'

import React from 'react'
import dynamic from 'next/dynamic'

const App = dynamic(() => import('../../App'), { ssr: false })

export function ClientOnly() {
  return <App />
}

This file is a Client Component, defined by the 'use client' directive. Client Components are still prerendered to HTML on the server
before being sent to the client.

Since we want a client-only application to start, we can configure Next.js to disable prerendering from the App component down.

const App = dynamic(() => import('../../App'), { ssr: false })

Now, update your entrypoint page to use the new component:
app/[[...slug]]/page.tsx (tsx)

import '../../index.css'
import { ClientOnly } from './client'

export function generateStaticParams() {
  return [{ slug: [''] }]
}

export default function Page() {
  return <ClientOnly />

file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/api-reference/functions/generate-static-params
file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/rendering/client-components#how-are-client-components-rendered


}

app/[[...slug]]/page.js (jsx)

import '../../index.css'
import { ClientOnly } from './client'

export function generateStaticParams() {
  return [{ slug: [''] }]
}

export default function Page() {
  return <ClientOnly />
}

Step 8: Update Static Image Imports

Next.js handles static image imports slightly different from CRA. With CRA, importing an image file will return its public URL as a string:
App.tsx (tsx)

import image from './img.png'

export default function App() {
  return <img src={image} />
}

With Next.js, static image imports return an object. The object can then be used directly with the Next.js <Image> component, or you
can use the object’s src property with your existing <img> tag.

The <Image> component has the added benefits of automatic image optimization. The <Image> component automatically sets the
width and height attributes of the resulting <img> based on the image’s dimensions. This prevents layout shifts when the image
loads. However, this can cause issues if your app contains images with only one of their dimensions being styled without the other
styled to auto. When not styled to auto, the dimension will default to the <img> dimension attribute’s value, which can cause the
image to appear distorted.

Keeping the <img> tag will reduce the amount of changes in your application and prevent the above issues. You can then optionally
later migrate to the <Image> component to take advantage of optimizing images by configuring a loader, or moving to the default
Next.js server which has automatic image optimization.

Convert absolute import paths for images imported from /public/public into relative imports:

// Before
import logo from '/logo.png'

// After
import logo from '../public/logo.png'

Pass the image srcsrc property instead of the whole image object to your <img><img> tag:

// Before
<img src={logo} />

// After
<img src={logo.src} />

Alternatively, you can reference the public URL for the image asset based on the filename. For example, public/logo.png will serve
the image at /logo.png for your application, which would be the src value.

Warning: If you’re using TypeScript, you might encounter type errors when accessing the src property. You can safely ignore
those for now. They will be fixed by the end of this guide.

Step 9: Migrate the Environment Variables

Next.js has support for .env environment variables similar to CRA.

The main difference is the prefix used to expose environment variables on the client-side. Change all environment variables with the
REACT_APP_ prefix to NEXT_PUBLIC_.

Step 10: Update Scripts in package.jsonpackage.json

You should now be able to run your application to test if you successfully migrated to Next.js. But before that, you need to update your
scripts in your package.json with Next.js related commands, and add .next, next-env.d.ts, and dist to your .gitignore file:

file:///docs/app/api-reference/components/image
file:///docs/app/building-your-application/optimizing/images
file:///docs/app/building-your-application/optimizing/images#loaders
file:///docs/app/building-your-application/configuring/environment-variables


package.json (json)

{
  "scripts": {
    "dev": "next dev",
    "build": "next build",
    "start": "next start"
  }
}

.gitignore (txt)

# ...
.next
next-env.d.ts
dist

Now run npm run dev, and open http://localhost:3000. You should see your application now running on Next.js.

Step 11: Clean Up

You can now clean up your codebase from Create React App related artifacts:

Delete src/index.tsx
Delete public/index.html
Delete reportWebVitals setup
Uninstall CRA dependencies (react-scripts)

Bundler Compatibility

Create React App and Next.js both default to using webpack for bundling.

When migrating your CRA application to Next.js, you might have a custom webpack configuration you’re looking to migrate. Next.js
supports providing a custom webpack configuration.

Further, Next.js has support for Turbopack through next dev --turbo to improve your local dev performance. Turbopack supports
some webpack loaders as well for compatibility and incremental adoption.

Next Steps

If everything went according to plan, you now have a functioning Next.js application running as a single-page application. However, you
aren’t yet taking advantage of most of Next.js’ benefits, but you can now start making incremental changes to reap all the benefits.
Here’s what you might want to do next:

Migrate from React Router to the Next.js App Router to get:
Automatic code splitting
Streaming Server-Rendering
React Server Components
Optimize images with the <Image> component
Optimize fonts with next/font
Optimize third-party scripts with the <Script> component
Update your ESLint configuration to support Next.js rules

Good to know: Using a static export does not currently support using the useParams hook.

http://localhost:3000
file:///docs/app/api-reference/next-config-js/webpack
file:///docs/app/api-reference/next-config-js/turbo
file:///docs/app/api-reference/next-config-js/turbo
file:///docs/app/building-your-application/routing
file:///docs/app/building-your-application/routing/loading-ui-and-streaming
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/optimizing/images
file:///docs/app/building-your-application/optimizing/fonts
file:///docs/app/building-your-application/optimizing/scripts
file:///docs/app/building-your-application/configuring/eslint
https://github.com/vercel/next.js/issues/54393


3.2 - API Reference
Documentation path: /02-app/02-api-reference/index

Description: Next.js API Reference for the App Router.

The Next.js API reference is divided into the following sections:



3.2.1 - Components
Documentation path: /02-app/02-api-reference/01-components/index

Description: API Reference for Next.js built-in components.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}



3.2.1.1 - Font Module
Documentation path: /02-app/02-api-reference/01-components/font

Description: Optimizing loading web fonts with the built-in `next/font` loaders.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

This API reference will help you understand how to use next/font/google and next/font/local. For features and usage, please see
the Optimizing Fonts page.

Font Function Arguments

For usage, review Google Fonts and Local Fonts.

Key font/googlefont/google font/localfont/local Type Required

src String or Array of Objects Yes

weight String or Array Required/Optional

style String or Array -

subsets Array of Strings -

axes Array of Strings -

display String -

preload Boolean -

fallback Array of Strings -

adjustFontFallback Boolean or String -

variable String -

declarations Array of Objects -

srcsrc

The path of the font file as a string or an array of objects (with type Array<{path: string, weight?: string, style?:
string}>) relative to the directory where the font loader function is called.

Used in next/font/local

Required

Examples:

src:'./fonts/my-font.woff2' where my-font.woff2 is placed in a directory named fonts inside the app directory
src:[{path: './inter/Inter-Thin.ttf', weight: '100',},{path: './inter/Inter-Regular.ttf',weight:
'400',},{path: './inter/Inter-Bold-Italic.ttf', weight: '700',style: 'italic',},]
if the font loader function is called in app/page.tsx using src:'../styles/fonts/my-font.ttf', then my-font.ttf is placed
in styles/fonts at the root of the project

weightweight

The font weight with the following possibilities:

A string with possible values of the weights available for the specific font or a range of values if it’s a variable font
An array of weight values if the font is not a variable google font. It applies to next/font/google only.

Used in next/font/google and next/font/local

Required if the font being used is not variable

Examples:

file:///docs/app/building-your-application/optimizing/fonts#google-fonts
file:///docs/app/building-your-application/optimizing/fonts#local-fonts
file:///docs/app/building-your-application/optimizing/fonts
file:///docs/app/building-your-application/optimizing/fonts#google-fonts
file:///docs/app/building-your-application/optimizing/fonts#local-fonts
https://fonts.google.com/knowledge/glossary/weight
https://fonts.google.com/variablefonts
https://fonts.google.com/variablefonts
https://fonts.google.com/variablefonts


weight: '400': A string for a single weight value - for the font Inter, the possible values are '100', '200', '300', '400',
'500', '600', '700', '800', '900' or 'variable' where 'variable' is the default)
weight: '100 900': A string for the range between 100 and 900 for a variable font
weight: ['100','400','900']: An array of 3 possible values for a non variable font

stylestyle

The font style with the following possibilities:

A string value with default value of 'normal'
An array of style values if the font is not a variable google font. It applies to next/font/google only.

Used in next/font/google and next/font/local

Optional

Examples:

style: 'italic': A string - it can be normal or italic for next/font/google
style: 'oblique': A string - it can take any value for next/font/local but is expected to come from standard font styles
style: ['italic','normal']: An array of 2 values for next/font/google - the values are from normal and italic

subsetssubsets

The font subsets defined by an array of string values with the names of each subset you would like to be preloaded. Fonts specified via
subsets will have a link preload tag injected into the head when the preload option is true, which is the default.

Used in next/font/google

Optional

Examples:

subsets: ['latin']: An array with the subset latin

You can find a list of all subsets on the Google Fonts page for your font.

axesaxes

Some variable fonts have extra axes that can be included. By default, only the font weight is included to keep the file size down. The
possible values of axes depend on the specific font.

Used in next/font/google

Optional

Examples:

axes: ['slnt']: An array with value slnt for the Inter variable font which has slnt as additional axes as shown here. You can
find the possible axes values for your font by using the filter on the Google variable fonts page and looking for axes other than
wght

displaydisplay

The font display with possible string values of 'auto', 'block', 'swap', 'fallback' or 'optional' with default value of 'swap'.

Used in next/font/google and next/font/local

Optional

Examples:

display: 'optional': A string assigned to the optional value

preloadpreload

A boolean value that specifies whether the font should be preloaded or not. The default is true.

Used in next/font/google and next/font/local

https://fonts.google.com/specimen/Inter?query=inter
https://developer.mozilla.org/docs/Web/CSS/font-style
https://developer.mozilla.org/docs/Web/CSS/font-style#values
https://fonts.google.com/variablefonts
https://developer.mozilla.org/docs/Web/CSS/font-style
https://fonts.google.com/knowledge/glossary/subsetting
file:///docs/app/building-your-application/optimizing/fonts#specifying-a-subset
https://fonts.google.com/variablefonts?vfquery=inter#font-families
https://fonts.google.com/variablefonts#font-families
https://developer.mozilla.org/docs/Web/CSS/@font-face/font-display
https://developer.mozilla.org/docs/Web/CSS/@font-face/font-display#values
file:///docs/app/building-your-application/optimizing/fonts#preloading


Optional

Examples:

preload: false

fallbackfallback

The fallback font to use if the font cannot be loaded. An array of strings of fallback fonts with no default.

Optional

Used in next/font/google and next/font/local
Examples:

fallback: ['system-ui', 'arial']: An array setting the fallback fonts to system-ui or arial

adjustFontFallbackadjustFontFallback

For next/font/google: A boolean value that sets whether an automatic fallback font should be used to reduce Cumulative Layout
Shift. The default is true.
For next/font/local: A string or boolean false value that sets whether an automatic fallback font should be used to reduce
Cumulative Layout Shift. The possible values are 'Arial', 'Times New Roman' or false. The default is 'Arial'.

Used in next/font/google and next/font/local

Optional

Examples:

adjustFontFallback: false: for next/font/google
adjustFontFallback: 'Times New Roman': for next/font/local

variablevariable

A string value to define the CSS variable name to be used if the style is applied with the CSS variable method.

Used in next/font/google and next/font/local

Optional

Examples:

variable: '--my-font': The CSS variable --my-font is declared

declarationsdeclarations

An array of font face descriptor key-value pairs that define the generated @font-face further.

Used in next/font/local

Optional

Examples:

declarations: [{ prop: 'ascent-override', value: '90%' }]

Applying Styles

You can apply the font styles in three ways:

className
style
CSS Variables

classNameclassName

Returns a read-only CSS className for the loaded font to be passed to an HTML element.

<p className={inter.className}>Hello, Next.js!</p>

https://web.dev/cls/
https://web.dev/cls/
https://developer.mozilla.org/docs/Web/CSS/@font-face#descriptors


stylestyle

Returns a read-only CSS style object for the loaded font to be passed to an HTML element, including style.fontFamily to access
the font family name and fallback fonts.

<p style={inter.style}>Hello World</p>

CSS Variables

If you would like to set your styles in an external style sheet and specify additional options there, use the CSS variable method.

In addition to importing the font, also import the CSS file where the CSS variable is defined and set the variable option of the font
loader object as follows:

app/page.tsx (tsx)

import { Inter } from 'next/font/google'
import styles from '../styles/component.module.css'

const inter = Inter({
  variable: '--font-inter',
})

app/page.js (jsx)

import { Inter } from 'next/font/google'
import styles from '../styles/component.module.css'

const inter = Inter({
  variable: '--font-inter',
})

To use the font, set the className of the parent container of the text you would like to style to the font loader’s variable value and
the className of the text to the styles property from the external CSS file.

app/page.tsx (tsx)

<main className={inter.variable}>
  <p className={styles.text}>Hello World</p>
</main>

app/page.js (jsx)

<main className={inter.variable}>
  <p className={styles.text}>Hello World</p>
</main>

Define the text selector class in the component.module.css CSS file as follows:

styles/component.module.css (css)

.text {
  font-family: var(--font-inter);
  font-weight: 200;
  font-style: italic;
}

In the example above, the text Hello World is styled using the Inter font and the generated font fallback with font-weight: 200
and font-style: italic.

Using a font definitions file

Every time you call the localFont or Google font function, that font will be hosted as one instance in your application. Therefore, if
you need to use the same font in multiple places, you should load it in one place and import the related font object where you need it.
This is done using a font definitions file.

For example, create a fonts.ts file in a styles folder at the root of your app directory.

Then, specify your font definitions as follows:
styles/fonts.ts (ts)

import { Inter, Lora, Source_Sans_3 } from 'next/font/google'
import localFont from 'next/font/local'

// define your variable fonts
const inter = Inter()



const lora = Lora()
// define 2 weights of a non-variable font
const sourceCodePro400 = Source_Sans_3({ weight: '400' })
const sourceCodePro700 = Source_Sans_3({ weight: '700' })
// define a custom local font where GreatVibes-Regular.ttf is stored in the styles folder
const greatVibes = localFont({ src: './GreatVibes-Regular.ttf' })

export { inter, lora, sourceCodePro400, sourceCodePro700, greatVibes }

styles/fonts.js (js)

import { Inter, Lora, Source_Sans_3 } from 'next/font/google'
import localFont from 'next/font/local'

// define your variable fonts
const inter = Inter()
const lora = Lora()
// define 2 weights of a non-variable font
const sourceCodePro400 = Source_Sans_3({ weight: '400' })
const sourceCodePro700 = Source_Sans_3({ weight: '700' })
// define a custom local font where GreatVibes-Regular.ttf is stored in the styles folder
const greatVibes = localFont({ src: './GreatVibes-Regular.ttf' })

export { inter, lora, sourceCodePro400, sourceCodePro700, greatVibes }

You can now use these definitions in your code as follows:
app/page.tsx (tsx)

import { inter, lora, sourceCodePro700, greatVibes } from '../styles/fonts'

export default function Page() {
  return (
    <div>
      <p className={inter.className}>Hello world using Inter font</p>
      <p style={lora.style}>Hello world using Lora font</p>
      <p className={sourceCodePro700.className}>
        Hello world using Source_Sans_3 font with weight 700
      </p>
      <p className={greatVibes.className}>My title in Great Vibes font</p>
    </div>
  )
}

app/page.js (jsx)

import { inter, lora, sourceCodePro700, greatVibes } from '../styles/fonts'

export default function Page() {
  return (
    <div>
      <p className={inter.className}>Hello world using Inter font</p>
      <p style={lora.style}>Hello world using Lora font</p>
      <p className={sourceCodePro700.className}>
        Hello world using Source_Sans_3 font with weight 700
      </p>
      <p className={greatVibes.className}>My title in Great Vibes font</p>
    </div>
  )
}

To make it easier to access the font definitions in your code, you can define a path alias in your tsconfig.json or jsconfig.json
files as follows:

tsconfig.json (json)

{
  "compilerOptions": {
    "paths": {
      "@/fonts": ["./styles/fonts"]
    }
  }
}

You can now import any font definition as follows:
app/about/page.tsx (tsx)

import { greatVibes, sourceCodePro400 } from '@/fonts'



app/about/page.js (jsx)

import { greatVibes, sourceCodePro400 } from '@/fonts'

Version Changes

Version Changes

v13.2.0 @next/font renamed to next/font. Installation no longer required.

v13.0.0 @next/font was added.



3.2.1.2 - <Image>
Documentation path: /02-app/02-api-reference/01-components/image

Description: Optimize Images in your Next.js Application using the built-in `next/image` Component.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Examples

Good to know: If you are using a version of Next.js prior to 13, you’ll want to use the next/legacy/image documentation since
the component was renamed.

This API reference will help you understand how to use props and configuration options available for the Image Component. For
features and usage, please see the Image Component page.

app/page.js (jsx)

import Image from 'next/image'

export default function Page() {
  return (
    <Image
      src="/profile.png"
      width={500}
      height={500}
      alt="Picture of the author"
    />
  )
}

Props

Here’s a summary of the props available for the Image Component:

| Prop | Example | Type | Status | | ----------------------------------------- | ---------------------------------------- | --------------- | ---------- | | [`src`](#src) |
`src="/profile.png"` | String | Required | | [`width`](#width) | `width={500}` | Integer (px) | Required | | [`height`](#height) | `height=
{500}` | Integer (px) | Required | | [`alt`](#alt) | `alt="Picture of the author"` | String | Required | | [`loader`](#loader) | `loader=
{imageLoader}` | Function | - | | [`fill`](#fill) | `fill={true}` | Boolean | - | | [`sizes`](#sizes) | `sizes="(max-width: 768px) 100vw, 33vw"` |
String | - | | [`quality`](#quality) | `quality={80}` | Integer (1-100) | - | | [`priority`](#priority) | `priority={true}` | Boolean | - | |
[`placeholder`](#placeholder) | `placeholder="blur"` | String | - | | [`style`](#style) | `style={{objectFit: "contain"}}` | Object | - | |
[`onLoadingComplete`](#onloadingcomplete) | `onLoadingComplete={img => done())}` | Function | Deprecated | | [`onLoad`](#onload) |
`onLoad={event => done())}` | Function | - | | [`onError`](#onerror) | `onError(event => fail()}` | Function | - | | [`loading`](#loading) |
`loading="lazy"` | String | - | | [`blurDataURL`](#blurdataurl) | `blurDataURL="data:image/jpeg..."` | String | - | | [`overrideSrc`]
(#overridesrc) | `overrideSrc="/seo.png"` | String | - |

Required Props

The Image Component requires the following properties: src, width, height, and alt.

app/page.js (jsx)

import Image from 'next/image'

export default function Page() {
  return (
    <div>
      <Image
        src="/profile.png"
        width={500}
        height={500}
        alt="Picture of the author"
      />
    </div>
  )
}

srcsrc

Must be one of the following:

A statically imported image file

file:///docs/pages/api-reference/components/image-legacy
file:///docs/app/building-your-application/optimizing/images
file:///docs/app/building-your-application/optimizing/images#local-images


A path string. This can be either an absolute external URL, or an internal path depending on the loader prop.

When using an external URL, you must add it to remotePatterns in next.config.js.

widthwidth

The width property represents the rendered width in pixels, so it will affect how large the image appears.

Required, except for statically imported images or images with the fill property.

heightheight

The height property represents the rendered height in pixels, so it will affect how large the image appears.

Required, except for statically imported images or images with the fill property.

altalt

The alt property is used to describe the image for screen readers and search engines. It is also the fallback text if images have been
disabled or an error occurs while loading the image.

It should contain text that could replace the image without changing the meaning of the page. It is not meant to supplement the image
and should not repeat information that is already provided in the captions above or below the image.

If the image is purely decorative or not intended for the user, the alt property should be an empty string (alt="").

Learn more

Optional Props

The <Image /> component accepts a number of additional properties beyond those which are required. This section describes the
most commonly-used properties of the Image component. Find details about more rarely-used properties in the Advanced Props
section.

loaderloader

A custom function used to resolve image URLs.

A loader is a function returning a URL string for the image, given the following parameters:

src
width
quality

Here is an example of using a custom loader:

'use client'

import Image from 'next/image'

const imageLoader = ({ src, width, quality }) => {
  return `https://example.com/${src}?w=${width}&q=${quality || 75}`
}

export default function Page() {
  return (
    <Image
      loader={imageLoader}
      src="me.png"
      alt="Picture of the author"
      width={500}
      height={500}
    />
  )
}

Good to know: Using props like loader, which accept a function, requires using Client Components to serialize the provided
function.

import Image from 'next/image'

const imageLoader = ({ src, width, quality }) => {
  return `https://example.com/${src}?w=${width}&q=${quality || 75}`

file:///docs/app/building-your-application/optimizing/images#local-images
file:///docs/app/building-your-application/optimizing/images#local-images
https://html.spec.whatwg.org/multipage/images.html#general-guidelines
https://html.spec.whatwg.org/multipage/images.html#a-purely-decorative-image-that-doesn't-add-any-information
https://html.spec.whatwg.org/multipage/images.html#an-image-not-intended-for-the-user
https://html.spec.whatwg.org/multipage/images.html#alt
file:///docs/app/building-your-application/rendering/client-components


}

export default function Page() {
  return (
    <Image
      loader={imageLoader}
      src="me.png"
      alt="Picture of the author"
      width={500}
      height={500}
    />
  )
}

Alternatively, you can use the loaderFile configuration in next.config.js to configure every instance of next/image in your
application, without passing a prop.

fillfill

fill={true} // {true} | {false}

A boolean that causes the image to fill the parent element, which is useful when the width and height are unknown.

The parent element must assign position: "relative", position: "fixed", or position: "absolute" style.

By default, the img element will automatically be assigned the position: "absolute" style.

If no styles are applied to the image, the image will stretch to fit the container. You may prefer to set object-fit: "contain" for an
image which is letterboxed to fit the container and preserve aspect ratio.

Alternatively, object-fit: "cover" will cause the image to fill the entire container and be cropped to preserve aspect ratio. For this
to look correct, the overflow: "hidden" style should be assigned to the parent element.

For more information, see also:

position
object-fit
object-position

sizessizes

A string, similar to a media query, that provides information about how wide the image will be at different breakpoints. The value of
sizes will greatly affect performance for images using fill or which are styled to have a responsive size.

The sizes property serves two important purposes related to image performance:

First, the value of sizes is used by the browser to determine which size of the image to download, from next/image’s
automatically generated srcset. When the browser chooses, it does not yet know the size of the image on the page, so it selects an
image that is the same size or larger than the viewport. The sizes property allows you to tell the browser that the image will
actually be smaller than full screen. If you don’t specify a sizes value in an image with the fill property, a default value of 100vw
(full screen width) is used.
Second, the sizes property changes the behavior of the automatically generated srcset value. If no sizes value is present, a
small srcset is generated, suitable for a fixed-size image (1x/2x/etc). If sizes is defined, a large srcset is generated, suitable for
a responsive image (640w/750w/etc). If the sizes property includes sizes such as 50vw, which represent a percentage of the
viewport width, then the srcset is trimmed to not include any values which are too small to ever be necessary.

For example, if you know your styling will cause an image to be full-width on mobile devices, in a 2-column layout on tablets, and a 3-
column layout on desktop displays, you should include a sizes property such as the following:

import Image from 'next/image'

export default function Page() {
  return (
    <div className="grid-element">
      <Image
        fill
        src="/example.png"
        sizes="(max-width: 768px) 100vw, (max-width: 1200px) 50vw, 33vw"
      />
    </div>
  )
}

https://developer.mozilla.org/docs/Web/CSS/position
https://developer.mozilla.org/docs/Web/CSS/object-fit
https://developer.mozilla.org/docs/Web/CSS/object-position


This example sizes could have a dramatic effect on performance metrics. Without the 33vw sizes, the image selected from the server
would be 3 times as wide as it needs to be. Because file size is proportional to the square of the width, without sizes the user would
download an image that’s 9 times larger than necessary.

Learn more about srcset and sizes:

web.dev
mdn

qualityquality

quality={75} // {number 1-100}

The quality of the optimized image, an integer between 1 and 100, where 100 is the best quality and therefore largest file size. Defaults
to 75.

prioritypriority

priority={false} // {false} | {true}

When true, the image will be considered high priority and preload. Lazy loading is automatically disabled for images using priority.

You should use the priority property on any image detected as the Largest Contentful Paint (LCP) element. It may be appropriate to
have multiple priority images, as different images may be the LCP element for different viewport sizes.

Should only be used when the image is visible above the fold. Defaults to false.

placeholderplaceholder

placeholder = 'empty' // "empty" | "blur" | "data:image/..."

A placeholder to use while the image is loading. Possible values are blur, empty, or data:image/.... Defaults to empty.

When blur, the blurDataURL property will be used as the placeholder. If src is an object from a static import and the imported image
is .jpg, .png, .webp, or .avif, then blurDataURL will be automatically populated, except when the image is detected to be
animated.

For dynamic images, you must provide the blurDataURL property. Solutions such as Plaiceholder can help with base64 generation.

When data:image/..., the Data URL will be used as the placeholder while the image is loading.

When empty, there will be no placeholder while the image is loading, only empty space.

Try it out:

Demo the blur placeholder
Demo the shimmer effect with data URL placeholder prop
Demo the color effect with blurDataURL prop

Advanced Props

In some cases, you may need more advanced usage. The <Image /> component optionally accepts the following advanced properties.

stylestyle

Allows passing CSS styles to the underlying image element.
components/ProfileImage.js (jsx)

const imageStyle = {
  borderRadius: '50%',
  border: '1px solid #fff',
}

export default function ProfileImage() {
  return <Image src="..." style={imageStyle} />
}

Remember that the required width and height props can interact with your styling. If you use styling to modify an image’s width, you
should also style its height to auto to preserve its intrinsic aspect ratio, or your image will be distorted.

https://web.dev/learn/design/responsive-images/#sizes
https://developer.mozilla.org/docs/Web/HTML/Element/img#sizes
https://web.dev/preload-responsive-images/
https://nextjs.org/learn/seo/web-performance/lcp
file:///docs/app/building-your-application/optimizing/images#local-images
https://github.com/joe-bell/plaiceholder
https://developer.mozilla.org/docs/Web/HTTP/Basics_of_HTTP/Data_URIs
https://image-component.nextjs.gallery/placeholder
https://image-component.nextjs.gallery/shimmer
https://image-component.nextjs.gallery/color


onLoadingCompleteonLoadingComplete

'use client'

<Image onLoadingComplete={(img) => console.log(img.naturalWidth)} />

<Image onLoadingComplete={(img) => console.log(img.naturalWidth)} />

Warning: Deprecated since Next.js 14 in favor of onLoad.

A callback function that is invoked once the image is completely loaded and the placeholder has been removed.

The callback function will be called with one argument, a reference to the underlying <img> element.

Good to know: Using props like onLoadingComplete, which accept a function, requires using Client Components to serialize
the provided function.

onLoadonLoad

<Image onLoad={(e) => console.log(e.target.naturalWidth)} />

A callback function that is invoked once the image is completely loaded and the placeholder has been removed.

The callback function will be called with one argument, the Event which has a target that references the underlying <img> element.

Good to know: Using props like onLoad, which accept a function, requires using Client Components to serialize the provided
function.

onErroronError

<Image onError={(e) => console.error(e.target.id)} />

A callback function that is invoked if the image fails to load.

Good to know: Using props like onError, which accept a function, requires using Client Components to serialize the provided
function.

loadingloading

Recommendation: This property is only meant for advanced use cases. Switching an image to load with eager will normally
hurt performance. We recommend using the priority property instead, which will eagerly preload the image.

loading = 'lazy' // {lazy} | {eager}

The loading behavior of the image. Defaults to lazy.

When lazy, defer loading the image until it reaches a calculated distance from the viewport.

When eager, load the image immediately.

Learn more about the loading attribute.

blurDataURLblurDataURL

A Data URL to be used as a placeholder image before the src image successfully loads. Only takes effect when combined with
placeholder="blur".

Must be a base64-encoded image. It will be enlarged and blurred, so a very small image (10px or less) is recommended. Including larger
images as placeholders may harm your application performance.

Try it out:

Demo the default blurDataURL prop
Demo the color effect with blurDataURL prop

You can also generate a solid color Data URL to match the image.

unoptimizedunoptimized

file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/rendering/client-components
https://developer.mozilla.org/docs/Web/HTML/Element/img#loading
https://developer.mozilla.org/docs/Web/HTTP/Basics_of_HTTP/Data_URIs
https://image-component.nextjs.gallery/placeholder
https://image-component.nextjs.gallery/color
https://png-pixel.com


unoptimized = {false} // {false} | {true}

When true, the source image will be served as-is instead of changing quality, size, or format. Defaults to false.

import Image from 'next/image'

const UnoptimizedImage = (props) => {
  return <Image {...props} unoptimized />
}

Since Next.js 12.3.0, this prop can be assigned to all images by updating next.config.js with the following configuration:

next.config.js (js)

module.exports = {
  images: {
    unoptimized: true,
  },
}

overrideSrcoverrideSrc

When providing the src prop to the <Image> component, both the srcset and src attributes are generated automatically for the
resulting <img>.

input.js (jsx)

<Image src="/me.jpg" />

output.html (html)

<img
  srcset="
    /_next/image?url=%2Fme.jpg&w=640&q=75 1x,
    /_next/image?url=%2Fme.jpg&w=828&q=75 2x
  "
  src="/_next/image?url=%2Fme.jpg&w=828&q=75"
/>

In some cases, it is not desirable to have the src attribute generated and you may wish to override it using the overrideSrc prop.

For example, when upgrading an existing website from <img> to <Image>, you may wish to maintain the same src attribute for SEO
purposes such as image ranking or avoiding recrawl.

input.js (jsx)

<Image src="/me.jpg" overrideSrc="/override.jpg" />

output.html (html)

<img
  srcset="
    /_next/image?url=%2Fme.jpg&w=640&q=75 1x,
    /_next/image?url=%2Fme.jpg&w=828&q=75 2x
  "
  src="/override.jpg"
/>

Other Props

Other properties on the <Image /> component will be passed to the underlying img element with the exception of the following:

srcSet. Use Device Sizes instead.
decoding. It is always "async".

Configuration Options

In addition to props, you can configure the Image Component in next.config.js. The following options are available:

remotePatternsremotePatterns

To protect your application from malicious users, configuration is required in order to use external images. This ensures that only
external images from your account can be served from the Next.js Image Optimization API. These external images can be configured
with the remotePatterns property in your next.config.js file, as shown below:



next.config.js (js)

module.exports = {
  images: {
    remotePatterns: [
      {
        protocol: 'https',
        hostname: 'example.com',
        port: '',
        pathname: '/account123/**',
      },
    ],
  },
}

Good to know: The example above will ensure the src property of next/image must start with
https://example.com/account123/. Any other protocol, hostname, port, or unmatched path will respond with 400 Bad
Request.

Below is another example of the remotePatterns property in the next.config.js file:

next.config.js (js)

module.exports = {
  images: {
    remotePatterns: [
      {
        protocol: 'https',
        hostname: '**.example.com',
        port: '',
      },
    ],
  },
}

Good to know: The example above will ensure the src property of next/image must start with https://img1.example.com
or https://me.avatar.example.com or any number of subdomains. Any other protocol, port, or unmatched hostname will
respond with 400 Bad Request.

Wildcard patterns can be used for both pathname and hostname and have the following syntax:

* match a single path segment or subdomain
** match any number of path segments at the end or subdomains at the beginning

The ** syntax does not work in the middle of the pattern.

Good to know: When omitting protocol, port or pathname, then the wildcard ** is implied. This is not recommended
because it may allow malicious actors to optimize urls you did not intend.

domainsdomains

Warning: Deprecated since Next.js 14 in favor of strict remotePatterns in order to protect your application from malicious
users. Only use domains if you own all the content served from the domain.

Similar to remotePatterns, the domains configuration can be used to provide a list of allowed hostnames for external images.

However, the domains configuration does not support wildcard pattern matching and it cannot restrict protocol, port, or pathname.

Below is an example of the domains property in the next.config.js file:

next.config.js (js)

module.exports = {
  images: {
    domains: ['assets.acme.com'],
  },
}

loaderFileloaderFile

If you want to use a cloud provider to optimize images instead of using the Next.js built-in Image Optimization API, you can configure
the loaderFile in your next.config.js like the following:

next.config.js (js)

module.exports = {



  images: {
    loader: 'custom',
    loaderFile: './my/image/loader.js',
  },
}

This must point to a file relative to the root of your Next.js application. The file must export a default function that returns a string, for
example:

my/image/loader.js (js)

'use client'

export default function myImageLoader({ src, width, quality }) {
  return `https://example.com/${src}?w=${width}&q=${quality || 75}`
}

my/image/loader.js (js)

export default function myImageLoader({ src, width, quality }) {
  return `https://example.com/${src}?w=${width}&q=${quality || 75}`
}

Alternatively, you can use the loader prop to configure each instance of next/image.

Examples:

Custom Image Loader Configuration

Good to know: Customizing the image loader file, which accepts a function, requires using Client Components to serialize the
provided function.

Advanced

The following configuration is for advanced use cases and is usually not necessary. If you choose to configure the properties below, you
will override any changes to the Next.js defaults in future updates.

deviceSizesdeviceSizes

If you know the expected device widths of your users, you can specify a list of device width breakpoints using the deviceSizes
property in next.config.js. These widths are used when the next/image component uses sizes prop to ensure the correct image
is served for user’s device.

If no configuration is provided, the default below is used.
next.config.js (js)

module.exports = {
  images: {
    deviceSizes: [640, 750, 828, 1080, 1200, 1920, 2048, 3840],
  },
}

imageSizesimageSizes

You can specify a list of image widths using the images.imageSizes property in your next.config.js file. These widths are
concatenated with the array of device sizes to form the full array of sizes used to generate image srcsets.

The reason there are two separate lists is that imageSizes is only used for images which provide a sizes prop, which indicates that the
image is less than the full width of the screen. Therefore, the sizes in imageSizes should all be smaller than the smallest size in
deviceSizes.

If no configuration is provided, the default below is used.
next.config.js (js)

module.exports = {
  images: {
    imageSizes: [16, 32, 48, 64, 96, 128, 256, 384],
  },
}

formatsformats

The default Image Optimization API will automatically detect the browser’s supported image formats via the request’s Accept header.

file:///docs/app/api-reference/next-config-js/images#example-loader-configuration
file:///docs/app/building-your-application/rendering/client-components
https://developer.mozilla.org/docs/Web/API/HTMLImageElement/srcset


If the Accept head matches more than one of the configured formats, the first match in the array is used. Therefore, the array order
matters. If there is no match (or the source image is animated), the Image Optimization API will fallback to the original image’s format.

If no configuration is provided, the default below is used.
next.config.js (js)

module.exports = {
  images: {
    formats: ['image/webp'],
  },
}

You can enable AVIF support with the following configuration.
next.config.js (js)

module.exports = {
  images: {
    formats: ['image/avif', 'image/webp'],
  },
}

Good to know:

AVIF generally takes 20% longer to encode but it compresses 20% smaller compared to WebP. This means that the first time
an image is requested, it will typically be slower and then subsequent requests that are cached will be faster.
If you self-host with a Proxy/CDN in front of Next.js, you must configure the Proxy to forward the Accept header.

Caching Behavior

The following describes the caching algorithm for the default loader. For all other loaders, please refer to your cloud provider’s
documentation.

Images are optimized dynamically upon request and stored in the <distDir>/cache/images directory. The optimized image file will
be served for subsequent requests until the expiration is reached. When a request is made that matches a cached but expired file, the
expired image is served stale immediately. Then the image is optimized again in the background (also called revalidation) and saved to
the cache with the new expiration date.

The cache status of an image can be determined by reading the value of the x-nextjs-cache response header. The possible values are
the following:

MISS - the path is not in the cache (occurs at most once, on the first visit)
STALE - the path is in the cache but exceeded the revalidate time so it will be updated in the background
HIT - the path is in the cache and has not exceeded the revalidate time

The expiration (or rather Max Age) is defined by either the minimumCacheTTL configuration or the upstream image Cache-Control
header, whichever is larger. Specifically, the max-age value of the Cache-Control header is used. If both s-maxage and max-age are
found, then s-maxage is preferred. The max-age is also passed-through to any downstream clients including CDNs and browsers.

You can configure minimumCacheTTL to increase the cache duration when the upstream image does not include Cache-Control
header or the value is very low.
You can configure deviceSizes and imageSizes to reduce the total number of possible generated images.
You can configure formats to disable multiple formats in favor of a single image format.

minimumCacheTTLminimumCacheTTL

You can configure the Time to Live (TTL) in seconds for cached optimized images. In many cases, it’s better to use a Static Image Import
which will automatically hash the file contents and cache the image forever with a Cache-Control header of immutable.

next.config.js (js)

module.exports = {
  images: {
    minimumCacheTTL: 60,
  },
}

The expiration (or rather Max Age) of the optimized image is defined by either the minimumCacheTTL or the upstream image Cache-
Control header, whichever is larger.

If you need to change the caching behavior per image, you can configure headers to set the Cache-Control header on the upstream
image (e.g. /some-asset.jpg, not /_next/image itself).

file:///docs/app/building-your-application/optimizing/images#local-images
file:///docs/app/api-reference/next-config-js/headers


There is no mechanism to invalidate the cache at this time, so its best to keep minimumCacheTTL low. Otherwise you may need to
manually change the src prop or delete <distDir>/cache/images.

disableStaticImagesdisableStaticImages

The default behavior allows you to import static files such as import icon from './icon.png' and then pass that to the src
property.

In some cases, you may wish to disable this feature if it conflicts with other plugins that expect the import to behave differently.

You can disable static image imports inside your next.config.js:

next.config.js (js)

module.exports = {
  images: {
    disableStaticImages: true,
  },
}

dangerouslyAllowSVGdangerouslyAllowSVG

The default loader does not optimize SVG images for a few reasons. First, SVG is a vector format meaning it can be resized losslessly.
Second, SVG has many of the same features as HTML/CSS, which can lead to vulnerabilities without proper Content Security Policy
(CSP) headers.

Therefore, we recommended using the unoptimized prop when the src prop is known to be SVG. This happens automatically when
src ends with ".svg".

However, if you need to serve SVG images with the default Image Optimization API, you can set dangerouslyAllowSVG inside your
next.config.js:

next.config.js (js)

module.exports = {
  images: {
    dangerouslyAllowSVG: true,
    contentDispositionType: 'attachment',
    contentSecurityPolicy: "default-src 'self'; script-src 'none'; sandbox;",
  },
}

In addition, it is strongly recommended to also set contentDispositionType to force the browser to download the image, as well as
contentSecurityPolicy to prevent scripts embedded in the image from executing.

contentDispositionTypecontentDispositionType

The default loader sets the Content-Disposition header to attachment for added protection since the API can serve arbitrary
remote images.

The default value is attachment which forces the browser to download the image when visiting directly. This is particularly important
when dangerouslyAllowSVG is true.

You can optionally configure inline to allow the browser to render the image when visiting directly, without downloading it.

next.config.js (js)

module.exports = {
  images: {
    contentDispositionType: 'inline',
  },
}

Animated Images

The default loader will automatically bypass Image Optimization for animated images and serve the image as-is.

Auto-detection for animated files is best-effort and supports GIF, APNG, and WebP. If you want to explicitly bypass Image Optimization
for a given animated image, use the unoptimized prop.

Responsive Images

The default generated srcset contains 1x and 2x images in order to support different device pixel ratios. However, you may wish to
render a responsive image that stretches with the viewport. In that case, you’ll need to set sizes as well as style (or className).

file:///docs/app/api-reference/next-config-js/headers#content-security-policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Disposition#as_a_response_header_for_the_main_body


You can render a responsive image using one of the following methods below.

Responsive image using a static import

If the source image is not dynamic, you can statically import to create a responsive image:
components/author.js (jsx)

import Image from 'next/image'
import me from '../photos/me.jpg'

export default function Author() {
  return (
    <Image
      src={me}
      alt="Picture of the author"
      sizes="100vw"
      style={{
        width: '100%',
        height: 'auto',
      }}
    />
  )
}

Try it out:

Demo the image responsive to viewport

Responsive image with aspect ratio

If the source image is a dynamic or a remote url, you will also need to provide width and height to set the correct aspect ratio of the
responsive image:

components/page.js (jsx)

import Image from 'next/image'

export default function Page({ photoUrl }) {
  return (
    <Image
      src={photoUrl}
      alt="Picture of the author"
      sizes="100vw"
      style={{
        width: '100%',
        height: 'auto',
      }}
      width={500}
      height={300}
    />
  )
}

Try it out:

Demo the image responsive to viewport

Responsive image with fillfill

If you don’t know the aspect ratio, you will need to set the fill prop and set position: relative on the parent. Optionally, you can
set object-fit style depending on the desired stretch vs crop behavior:

app/page.js (jsx)

import Image from 'next/image'

export default function Page({ photoUrl }) {
  return (
    <div style={{ position: 'relative', width: '300px', height: '500px' }}>
      <Image
        src={photoUrl}
        alt="Picture of the author"
        sizes="300px"
        fill
        style={{
          objectFit: 'contain',

https://image-component.nextjs.gallery/responsive
https://image-component.nextjs.gallery/responsive


        }}
      />
    </div>
  )
}

Try it out:

Demo the fill prop

Theme Detection CSS

If you want to display a different image for light and dark mode, you can create a new component that wraps two <Image> components
and reveals the correct one based on a CSS media query.

components/theme-image.module.css (css)

.imgDark {
  display: none;
}

@media (prefers-color-scheme: dark) {
  .imgLight {
    display: none;
  }
  .imgDark {
    display: unset;
  }
}

components/theme-image.tsx (tsx)

import styles from './theme-image.module.css'
import Image, { ImageProps } from 'next/image'

type Props = Omit<ImageProps, 'src' | 'priority' | 'loading'> & {
  srcLight: string
  srcDark: string
}

const ThemeImage = (props: Props) => {
  const { srcLight, srcDark, ...rest } = props

  return (
    <>
      <Image {...rest} src={srcLight} className={styles.imgLight} />
      <Image {...rest} src={srcDark} className={styles.imgDark} />
    </>
  )
}

components/theme-image.js (jsx)

import styles from './theme-image.module.css'
import Image from 'next/image'

const ThemeImage = (props) => {
  const { srcLight, srcDark, ...rest } = props

  return (
    <>
      <Image {...rest} src={srcLight} className={styles.imgLight} />
      <Image {...rest} src={srcDark} className={styles.imgDark} />
    </>
  )
}

Good to know: The default behavior of loading="lazy" ensures that only the correct image is loaded. You cannot use
priority or loading="eager" because that would cause both images to load. Instead, you can use
fetchPriority="high".

Try it out:

Demo light/dark mode theme detection

https://image-component.nextjs.gallery/fill
https://developer.mozilla.org/docs/Web/API/HTMLImageElement/fetchPriority
https://image-component.nextjs.gallery/theme


getImageProps

For more advanced use cases, you can call getImageProps() to get the props that would be passed to the underlying <img> element,
and instead pass to them to another component, style, canvas, etc.

This also avoid calling React useState() so it can lead to better performance, but it cannot be used with the placeholder prop
because the placeholder will never be removed.

Theme Detection Picture

If you want to display a different image for light and dark mode, you can use the <picture> element to display a different image based
on the user’s preferred color scheme.

app/page.js (jsx)

import { getImageProps } from 'next/image'

export default function Page() {
  const common = { alt: 'Theme Example', width: 800, height: 400 }
  const {
    props: { srcSet: dark },
  } = getImageProps({ ...common, src: '/dark.png' })
  const {
    props: { srcSet: light, ...rest },
  } = getImageProps({ ...common, src: '/light.png' })

  return (
    <picture>
      <source media="(prefers-color-scheme: dark)" srcSet={dark} />
      <source media="(prefers-color-scheme: light)" srcSet={light} />
      <img {...rest} />
    </picture>
  )
}

Art Direction

If you want to display a different image for mobile and desktop, sometimes called Art Direction, you can provide different src, width,
height, and quality props to getImageProps().

app/page.js (jsx)

import { getImageProps } from 'next/image'

export default function Home() {
  const common = { alt: 'Art Direction Example', sizes: '100vw' }
  const {
    props: { srcSet: desktop },
  } = getImageProps({
    ...common,
    width: 1440,
    height: 875,
    quality: 80,
    src: '/desktop.jpg',
  })
  const {
    props: { srcSet: mobile, ...rest },
  } = getImageProps({
    ...common,
    width: 750,
    height: 1334,
    quality: 70,
    src: '/mobile.jpg',
  })

  return (
    <picture>
      <source media="(min-width: 1000px)" srcSet={desktop} />
      <source media="(min-width: 500px)" srcSet={mobile} />
      <img {...rest} style={{ width: '100%', height: 'auto' }} />
    </picture>
  )
}

Background CSS

https://developer.mozilla.org/docs/Web/HTML/Element/picture
https://developer.mozilla.org/en-US/docs/Web/CSS/@media/prefers-color-scheme
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images#art_direction


You can even convert the srcSet string to the image-set() CSS function to optimize a background image.

app/page.js (jsx)

import { getImageProps } from 'next/image'

function getBackgroundImage(srcSet = '') {
  const imageSet = srcSet
    .split(', ')
    .map((str) => {
      const [url, dpi] = str.split(' ')
      return `url("${url}") ${dpi}`
    })
    .join(', ')
  return `image-set(${imageSet})`
}

export default function Home() {
  const {
    props: { srcSet },
  } = getImageProps({ alt: '', width: 128, height: 128, src: '/img.png' })
  const backgroundImage = getBackgroundImage(srcSet)
  const style = { height: '100vh', width: '100vw', backgroundImage }

  return (
    <main style={style}>
      <h1>Hello World</h1>
    </main>
  )
}

Known Browser Bugs

This next/image component uses browser native lazy loading, which may fallback to eager loading for older browsers before Safari
15.4. When using the blur-up placeholder, older browsers before Safari 12 will fallback to empty placeholder. When using styles with
width/height of auto, it is possible to cause Layout Shift on older browsers before Safari 15 that don’t preserve the aspect ratio. For
more details, see this MDN video.

Safari 15 - 16.3 display a gray border while loading. Safari 16.4 fixed this issue. Possible solutions:
Use CSS @supports (font: -apple-system-body) and (-webkit-appearance: none) { img[loading="lazy"] {
clip-path: inset(0.6px) } }
Use priority if the image is above the fold
Firefox 67+ displays a white background while loading. Possible solutions:
Enable AVIF formats
Use placeholder

Version History

Version Changes

v15.0.0 contentDispositionType configuration default changed to attachment.

v14.2.0 overrideSrc prop added.

v14.1.0 getImageProps() is stable.

v14.0.0 onLoadingComplete prop and domains config deprecated.

v13.4.14 placeholder prop support for data:/image...

v13.2.0 contentDispositionType configuration added.

v13.0.6 ref prop added.

v13.0.0

The next/image import was renamed to next/legacy/image. The next/future/image import was renamed to
next/image. A codemod is available to safely and automatically rename your imports. <span> wrapper removed.
layout, objectFit, objectPosition, lazyBoundary, lazyRoot props removed. alt is required.
onLoadingComplete receives reference to img element. Built-in loader config removed.

v12.3.0 remotePatterns and unoptimized configuration is stable.

https://developer.mozilla.org/en-US/docs/Web/CSS/image/image-set
https://caniuse.com/loading-lazy-attr
https://web.dev/cls/
https://caniuse.com/mdn-html_elements_img_aspect_ratio_computed_from_attributes
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://bugs.webkit.org/show_bug.cgi?id=243601
https://webkit.org/blog/13966/webkit-features-in-safari-16-4/#:~:text=Now%20in%20Safari%2016.4%252C%20a%20gray%20line%20no%20longer%20appears%20to%20mark%20the%20space%20where%20a%20lazy%252Dloaded%20image%20will%20appear%20once%20it%25E2%2580%2599s%20been%20loaded.
https://bugzilla.mozilla.org/show_bug.cgi?id=1556156
file:///docs/app/building-your-application/upgrading/codemods#next-image-to-legacy-image


v12.2.0 Experimental remotePatterns and experimental unoptimized configuration added. layout="raw" removed.

v12.1.1 style prop added. Experimental support for layout="raw" added.

v12.1.0 dangerouslyAllowSVG and contentSecurityPolicy configuration added.

v12.0.9 lazyRoot prop added.

v12.0.0
formats configuration added.
AVIF support added.
Wrapper <div> changed to <span>.

v11.1.0 onLoadingComplete and lazyBoundary props added.

v11.0.0
src prop support for static import.
placeholder prop added.
blurDataURL prop added.

v10.0.5 loader prop added.

v10.0.1 layout prop added.

v10.0.0 next/image introduced.

Version Changes



3.2.1.3 - <Link>
Documentation path: /02-app/02-api-reference/01-components/link

Description: Enable fast client-side navigation with the built-in `next/link` component.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Examples

<Link> is a React component that extends the HTML <a> element to provide prefetching and client-side navigation between routes. It
is the primary way to navigate between routes in Next.js.

app/page.tsx (tsx)

import Link from 'next/link'

export default function Page() {
  return <Link href="/dashboard">Dashboard</Link>
}

app/page.js (jsx)

import Link from 'next/link'

export default function Page() {
  return <Link href="/dashboard">Dashboard</Link>
}

For an example, consider a pages directory with the following files:

pages/index.js
pages/about.js
pages/blog/[slug].js

We can have a link to each of these pages like so:

import Link from 'next/link'

function Home() {
  return (
    <ul>
      <li>
        <Link href="/">Home</Link>
      </li>
      <li>
        <Link href="/about">About Us</Link>
      </li>
      <li>
        <Link href="/blog/hello-world">Blog Post</Link>
      </li>
    </ul>
  )
}

export default Home

Props

Here’s a summary of the props available for the Link Component:

Prop Example Type Required

href href="/dashboard" String or Object Yes

replace replace={false} Boolean -

scroll scroll={false} Boolean -

prefetch prefetch={false} Boolean -

file:///docs/app/building-your-application/routing/linking-and-navigating#2-prefetching


Prop Example Type Required

href href="/dashboard" String or Object Yes

replace replace={false} Boolean -

scroll scroll={false} Boolean -

prefetch prefetch={false} Boolean or null -

Good to know: <a> tag attributes such as className or target="_blank" can be added to <Link> as props and will be
passed to the underlying <a> element.

hrefhref  (required)

The path or URL to navigate to.

<Link href="/dashboard">Dashboard</Link>

href can also accept an object, for example:

// Navigate to /about?name=test
<Link
  href={{
    pathname: '/about',
    query: { name: 'test' },
  }}
>
  About
</Link>

replacereplace

Defaults to falsefalse. When true, next/link will replace the current history state instead of adding a new URL into the browser’s
history stack.

app/page.tsx (tsx)

import Link from 'next/link'

export default function Page() {
  return (
    <Link href="/dashboard" replace>
      Dashboard
    </Link>
  )
}

app/page.js (jsx)

import Link from 'next/link'

export default function Page() {
  return (
    <Link href="/dashboard" replace>
      Dashboard
    </Link>
  )
}

scrollscroll

Defaults to truetrue. The default behavior of <Link> is to scroll to the top of a new route or to maintain the scroll position for
backwards and forwards navigation. When false, next/link will not scroll to the top of the page after a navigation.

app/page.tsx (tsx)

import Link from 'next/link'

export default function Page() {
  return (
    <Link href="/dashboard" scroll={false}>
      Dashboard

https://developer.mozilla.org/docs/Web/API/History_API


    </Link>
  )
}

app/page.js (jsx)

import Link from 'next/link'

export default function Page() {
  return (
    <Link href="/dashboard" scroll={false}>
      Dashboard
    </Link>
  )
}

Good to know:

Next.js will scroll to the Page if it is not visible in the viewport upon navigation.

prefetchprefetch

Prefetching happens when a <Link /> component enters the user’s viewport (initially or through scroll). Next.js prefetches and loads
the linked route (denoted by the href) and its data in the background to improve the performance of client-side navigations.
Prefetching is only enabled in production.

nullnull (default): Prefetch behavior depends on whether the route is static or dynamic. For static routes, the full route will be
prefetched (including all its data). For dynamic routes, the partial route down to the nearest segment with a loading.js boundary
will be prefetched.
true: The full route will be prefetched for both static and dynamic routes.
false: Prefetching will never happen both on entering the viewport and on hover.

app/page.tsx (tsx)

import Link from 'next/link'

export default function Page() {
  return (
    <Link href="/dashboard" prefetch={false}>
      Dashboard
    </Link>
  )
}

app/page.js (jsx)

import Link from 'next/link'

export default function Page() {
  return (
    <Link href="/dashboard" prefetch={false}>
      Dashboard
    </Link>
  )
}

Prefetching happens when a <Link /> component enters the user’s viewport (initially or through scroll). Next.js prefetches and loads
the linked route (denoted by the href) and data in the background to improve the performance of client-side navigations. Prefetching is
only enabled in production.

truetrue (default): The full route and its data will be prefetched.
false: Prefetching will not happen when entering the viewport, but will happen on hover. If you want to completely remove
fetching on hover as well, consider using an <a> tag or incrementally adopting the App Router, which enables disabling prefetching
on hover too.

pages/index.tsx (tsx)

import Link from 'next/link'

export default function Page() {
  return (
    <Link href="/dashboard" prefetch={false}>
      Dashboard

file:///docs/app/building-your-application/routing/pages
file:///docs/app/building-your-application/routing/loading-ui-and-streaming#instant-loading-states
file:///docs/app/building-your-application/upgrading/app-router-migration


    </Link>
  )
}

pages/index.js (jsx)

import Link from 'next/link'

export default function Page() {
  return (
    <Link href="/dashboard" prefetch={false}>
      Dashboard
    </Link>
  )
}

Other Props

legacyBehaviorlegacyBehavior

An <a> element is no longer required as a child of <Link>. Add the legacyBehavior prop to use the legacy behavior or remove the
<a> to upgrade. A codemod is available to automatically upgrade your code.

Good to know: when legacyBehavior is not set to true, all anchor tag properties can be passed to next/link as well such
as, className, onClick, etc.

passHrefpassHref

Forces Link to send the href property to its child. Defaults to false

scrollscroll

Scroll to the top of the page after a navigation. Defaults to true

shallowshallow

Update the path of the current page without rerunning getStaticProps, getServerSideProps or getInitialProps. Defaults to
false

localelocale

The active locale is automatically prepended. locale allows for providing a different locale. When false href has to include the locale
as the default behavior is disabled.

Examples

Linking to Dynamic Routes

For dynamic routes, it can be handy to use template literals to create the link’s path.

For example, you can generate a list of links to the dynamic route pages/blog/[slug].js
pages/blog/index.js (jsx)

import Link from 'next/link'

function Posts({ posts }) {
  return (
    <ul>
      {posts.map((post) => (
        <li key={post.id}>
          <Link href={`/blog/${post.slug}`}>{post.title}</Link>
        </li>
      ))}
    </ul>
  )
}

export default Posts

file:///docs/app/building-your-application/upgrading/codemods#new-link
https://developer.mozilla.org/docs/Web/HTML/Element/a
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/data-fetching/get-server-side-props
file:///docs/pages/api-reference/functions/get-initial-props


For example, you can generate a list of links to the dynamic route app/blog/[slug]/page.js:

app/blog/page.js (jsx)

import Link from 'next/link'

function Page({ posts }) {
  return (
    <ul>
      {posts.map((post) => (
        <li key={post.id}>
          <Link href={`/blog/${post.slug}`}>{post.title}</Link>
        </li>
      ))}
    </ul>
  )
}

If the child is a custom component that wraps an <a><a>  tag

If the child of Link is a custom component that wraps an <a> tag, you must add passHref to Link. This is necessary if you’re using
libraries like styled-components. Without this, the <a> tag will not have the href attribute, which hurts your site’s accessibility and
might affect SEO. If you’re using ESLint, there is a built-in rule next/link-passhref to ensure correct usage of passHref.

If the child of Link is a custom component that wraps an <a> tag, you must add passHref to Link. This is necessary if you’re using
libraries like styled-components. Without this, the <a> tag will not have the href attribute, which hurts your site’s accessibility and
might affect SEO. If you’re using ESLint, there is a built-in rule next/link-passhref to ensure correct usage of passHref.

import Link from 'next/link'
import styled from 'styled-components'

// This creates a custom component that wraps an <a> tag
const RedLink = styled.a`
  color: red;
`

function NavLink({ href, name }) {
  return (
    <Link href={href} passHref legacyBehavior>
      <RedLink>{name}</RedLink>
    </Link>
  )
}

export default NavLink

If you’re using emotion’s JSX pragma feature (@jsx jsx), you must use passHref even if you use an <a> tag directly.
The component should support onClick property to trigger navigation correctly

If the child is a functional component

If the child of Link is a functional component, in addition to using passHref and legacyBehavior, you must wrap the component in
React.forwardRef:

import Link from 'next/link'

// `onClick`, `href`, and `ref` need to be passed to the DOM element
// for proper handling
const MyButton = React.forwardRef(({ onClick, href }, ref) => {
  return (
    <a href={href} onClick={onClick} ref={ref}>
      Click Me
    </a>
  )
})

function Home() {
  return (
    <Link href="/about" passHref legacyBehavior>
      <MyButton />
    </Link>
  )
}

https://styled-components.com/
file:///docs/app/building-your-application/configuring/eslint#eslint-plugin
https://styled-components.com/
file:///docs/pages/building-your-application/configuring/eslint#eslint-plugin
https://emotion.sh/
https://react.dev/reference/react/forwardRef


export default Home

With URL Object

Link can also receive a URL object and it will automatically format it to create the URL string. Here’s how to do it:

import Link from 'next/link'

function Home() {
  return (
    <ul>
      <li>
        <Link
          href={{
            pathname: '/about',
            query: { name: 'test' },
          }}
        >
          About us
        </Link>
      </li>
      <li>
        <Link
          href={{
            pathname: '/blog/[slug]',
            query: { slug: 'my-post' },
          }}
        >
          Blog Post
        </Link>
      </li>
    </ul>
  )
}

export default Home

The above example has a link to:

A predefined route: /about?name=test
A dynamic route: /blog/my-post

You can use every property as defined in the Node.js URL module documentation.

Replace the URL instead of push

The default behavior of the Link component is to push a new URL into the history stack. You can use the replace prop to prevent
adding a new entry, as in the following example:

<Link href="/about" replace>
  About us
</Link>

Disable scrolling to the top of the page

The default behavior of Link is to scroll to the top of the page. When there is a hash defined it will scroll to the specific id, like a normal
<a> tag. To prevent scrolling to the top / hash scroll={false} can be added to Link:

<Link href="/#hashid" scroll={false}>
  Disables scrolling to the top
</Link>

Middleware

It’s common to use Middleware for authentication or other purposes that involve rewriting the user to a different page. In order for the
<Link /> component to properly prefetch links with rewrites via Middleware, you need to tell Next.js both the URL to display and the
URL to prefetch. This is required to avoid un-necessary fetches to middleware to know the correct route to prefetch.

For example, if you want to serve a /dashboard route that has authenticated and visitor views, you may add something similar to the
following in your Middleware to redirect the user to the correct page:

middleware.js (js)

export function middleware(req) {

file:///docs/app/building-your-application/routing/dynamic-routes
https://nodejs.org/api/url.html#url_url_strings_and_url_objects
file:///docs/app/building-your-application/routing/middleware


  const nextUrl = req.nextUrl
  if (nextUrl.pathname === '/dashboard') {
    if (req.cookies.authToken) {
      return NextResponse.rewrite(new URL('/auth/dashboard', req.url))
    } else {
      return NextResponse.rewrite(new URL('/public/dashboard', req.url))
    }
  }
}

In this case, you would want to use the following code in your <Link /> component:

import Link from 'next/link'
import useIsAuthed from './hooks/useIsAuthed'

export default function Page() {
  const isAuthed = useIsAuthed()
  const path = isAuthed ? '/auth/dashboard' : '/public/dashboard'
  return (
    <Link as="/dashboard" href={path}>
      Dashboard
    </Link>
  )
}

Good to know: If you’re using Dynamic Routes, you’ll need to adapt your as and href props. For example, if you have a
Dynamic Route like /dashboard/authed/[user] that you want to present differently via middleware, you would write: <Link
href={{ pathname: '/dashboard/authed/[user]', query: { user: username } }}
as="/dashboard/[user]">Profile</Link>.

Version History

Version Changes

v13.0.0 No longer requires a child <a> tag. A codemod is provided to automatically update your codebase.

v10.0.0 href props pointing to a dynamic route are automatically resolved and no longer require an as prop.

v8.0.0 Improved prefetching performance.

v1.0.0 next/link introduced.

file:///docs/app/building-your-application/routing/dynamic-routes
file:///docs/app/building-your-application/upgrading/codemods#remove-a-tags-from-link-components


3.2.1.4 - <Script>
Documentation path: /02-app/02-api-reference/01-components/script

Description: Optimize third-party scripts in your Next.js application using the built-in `next/script` Component.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

This API reference will help you understand how to use props available for the Script Component. For features and usage, please see
the Optimizing Scripts page.

app/dashboard/page.tsx (tsx)

import Script from 'next/script'

export default function Dashboard() {
  return (
    <>
      <Script src="https://example.com/script.js" />
    </>
  )
}

app/dashboard/page.js (jsx)

import Script from 'next/script'

export default function Dashboard() {
  return (
    <>
      <Script src="https://example.com/script.js" />
    </>
  )
}

Props

Here’s a summary of the props available for the Script Component:

Prop Example Type Required

src src="http://example.com/script" String Required unless inline script is used

strategy strategy="lazyOnload" String -

onLoad onLoad={onLoadFunc} Function -

onReady onReady={onReadyFunc} Function -

onError onError={onErrorFunc} Function -

Required Props

The <Script /> component requires the following properties.

srcsrc

A path string specifying the URL of an external script. This can be either an absolute external URL or an internal path. The src property
is required unless an inline script is used.

Optional Props

The <Script /> component accepts a number of additional properties beyond those which are required.

strategystrategy

The loading strategy of the script. There are four different strategies that can be used:

beforeInteractive: Load before any Next.js code and before any page hydration occurs.

file:///docs/app/building-your-application/optimizing/scripts


afterInteractive: (default) Load early but after some hydration on the page occurs.
lazyOnload: Load during browser idle time.
worker: (experimental) Load in a web worker.

beforeInteractivebeforeInteractive

Scripts that load with the beforeInteractive strategy are injected into the initial HTML from the server, downloaded before any
Next.js module, and executed in the order they are placed before any hydration occurs on the page.

Scripts denoted with this strategy are preloaded and fetched before any first-party code, but their execution does not block page
hydration from occurring.

beforeInteractive scripts must be placed inside the root layout (app/layout.tsx) and are designed to load scripts that are needed
by the entire site (i.e. the script will load when any page in the application has been loaded server-side).

beforeInteractive scripts must be placed inside the Document Component (pages/_document.js) and are designed to load scripts
that are needed by the entire site (i.e. the script will load when any page in the application has been loaded server-side).

This strategy should only be used for critical scripts that need to be fetched before any part of the page becomes
interactive.

app/layout.tsx (tsx)

import Script from 'next/script'

export default function RootLayout({
  children,
}: {
  children: React.ReactNode
}) {
  return (
    <html lang="en">
      <body>
        {children}
        <Script
          src="https://example.com/script.js"
          strategy="beforeInteractive"
        />
      </body>
    </html>
  )
}

app/layout.js (jsx)

import Script from 'next/script'

export default function RootLayout({ children }) {
  return (
    <html lang="en">
      <body>
        {children}
        <Script
          src="https://example.com/script.js"
          strategy="beforeInteractive"
        />
      </body>
    </html>
  )
}

pages/_document.js (jsx)

import { Html, Head, Main, NextScript } from 'next/document'
import Script from 'next/script'

export default function Document() {
  return (
    <Html>
      <Head />
      <body>
        <Main />
        <NextScript />
        <Script
          src="https://example.com/script.js"
          strategy="beforeInteractive"
        />
      </body>



    </Html>
  )
}

Good to know: Scripts with beforeInteractive will always be injected inside the head of the HTML document regardless of
where it’s placed in the component.

Some examples of scripts that should be loaded as soon as possible with beforeInteractive include:

Bot detectors
Cookie consent managers

afterInteractiveafterInteractive

Scripts that use the afterInteractive strategy are injected into the HTML client-side and will load after some (or all) hydration
occurs on the page. This is the default strategy of the Script component and should be used for any script that needs to load as soon
as possible but not before any first-party Next.js code.

afterInteractive scripts can be placed inside of any page or layout and will only load and execute when that page (or group of
pages) is opened in the browser.

app/page.js (jsx)

import Script from 'next/script'

export default function Page() {
  return (
    <>
      <Script src="https://example.com/script.js" strategy="afterInteractive" />
    </>
  )
}

Some examples of scripts that are good candidates for afterInteractive include:

Tag managers
Analytics

lazyOnloadlazyOnload

Scripts that use the lazyOnload strategy are injected into the HTML client-side during browser idle time and will load after all
resources on the page have been fetched. This strategy should be used for any background or low priority scripts that do not need to
load early.

lazyOnload scripts can be placed inside of any page or layout and will only load and execute when that page (or group of pages) is
opened in the browser.

app/page.js (jsx)

import Script from 'next/script'

export default function Page() {
  return (
    <>
      <Script src="https://example.com/script.js" strategy="lazyOnload" />
    </>
  )
}

Examples of scripts that do not need to load immediately and can be fetched with lazyOnload include:

Chat support plugins
Social media widgets

workerworker

Warning: The worker strategy is not yet stable and does not yet work with the app directory. Use with caution.

Scripts that use the worker strategy are off-loaded to a web worker in order to free up the main thread and ensure that only critical,
first-party resources are processed on it. While this strategy can be used for any script, it is an advanced use case that is not guaranteed
to support all third-party scripts.

To use worker as a strategy, the nextScriptWorkers flag must be enabled in next.config.js:

file:///docs/app/building-your-application/routing/defining-routes


next.config.js (js)

module.exports = {
  experimental: {
    nextScriptWorkers: true,
  },
}

worker scripts can only currently be used in the pages/pages/ directory:

pages/home.tsx (tsx)

import Script from 'next/script'

export default function Home() {
  return (
    <>
      <Script src="https://example.com/script.js" strategy="worker" />
    </>
  )
}

pages/home.js (jsx)

import Script from 'next/script'

export default function Home() {
  return (
    <>
      <Script src="https://example.com/script.js" strategy="worker" />
    </>
  )
}

onLoadonLoad

Warning: onLoad does not yet work with Server Components and can only be used in Client Components. Further, onLoad
can’t be used with beforeInteractive – consider using onReady instead.

Some third-party scripts require users to run JavaScript code once after the script has finished loading in order to instantiate content or
call a function. If you are loading a script with either afterInteractive or lazyOnload as a loading strategy, you can execute code after it
has loaded using the onLoad property.

Here’s an example of executing a lodash method only after the library has been loaded.
app/page.tsx (tsx)

'use client'

import Script from 'next/script'

export default function Page() {
  return (
    <>
      <Script
        src="https://cdnjs.cloudflare.com/ajax/libs/lodash.js/4.17.20/lodash.min.js"
        onLoad={() => {
          console.log(_.sample([1, 2, 3, 4]))
        }}
      />
    </>
  )
}

app/page.js (jsx)

'use client'

import Script from 'next/script'

export default function Page() {
  return (
    <>
      <Script
        src="https://cdnjs.cloudflare.com/ajax/libs/lodash.js/4.17.20/lodash.min.js"
        onLoad={() => {
          console.log(_.sample([1, 2, 3, 4]))
        }}
      />



    </>
  )
}

onReadyonReady

Warning: onReady does not yet work with Server Components and can only be used in Client Components.

Some third-party scripts require users to run JavaScript code after the script has finished loading and every time the component is
mounted (after a route navigation for example). You can execute code after the script’s load event when it first loads and then after
every subsequent component re-mount using the onReady property.

Here’s an example of how to re-instantiate a Google Maps JS embed every time the component is mounted:
app/page.tsx (tsx)

'use client'

import { useRef } from 'react'
import Script from 'next/script'

export default function Page() {
  const mapRef = useRef()

  return (
    <>
      <div ref={mapRef}></div>
      <Script
        id="google-maps"
        src="https://maps.googleapis.com/maps/api/js"
        onReady={() => {
          new google.maps.Map(mapRef.current, {
            center: { lat: -34.397, lng: 150.644 },
            zoom: 8,
          })
        }}
      />
    </>
  )
}

app/page.js (jsx)

'use client'

import { useRef } from 'react'
import Script from 'next/script'

export default function Page() {
  const mapRef = useRef()

  return (
    <>
      <div ref={mapRef}></div>
      <Script
        id="google-maps"
        src="https://maps.googleapis.com/maps/api/js"
        onReady={() => {
          new google.maps.Map(mapRef.current, {
            center: { lat: -34.397, lng: 150.644 },
            zoom: 8,
          })
        }}
      />
    </>
  )
}

import { useRef } from 'react'
import Script from 'next/script'

export default function Page() {
  const mapRef = useRef()

  return (
    <>



      <div ref={mapRef}></div>
      <Script
        id="google-maps"
        src="https://maps.googleapis.com/maps/api/js"
        onReady={() => {
          new google.maps.Map(mapRef.current, {
            center: { lat: -34.397, lng: 150.644 },
            zoom: 8,
          })
        }}
      />
    </>
  )
}

onErroronError

Warning: onError does not yet work with Server Components and can only be used in Client Components. onError cannot be
used with the beforeInteractive loading strategy.

Sometimes it is helpful to catch when a script fails to load. These errors can be handled with the onError property:
app/page.tsx (tsx)

'use client'

import Script from 'next/script'

export default function Page() {
  return (
    <>
      <Script
        src="https://example.com/script.js"
        onError={(e: Error) => {
          console.error('Script failed to load', e)
        }}
      />
    </>
  )
}

app/page.js (jsx)

'use client'

import Script from 'next/script'

export default function Page() {
  return (
    <>
      <Script
        src="https://example.com/script.js"
        onError={(e: Error) => {
          console.error('Script failed to load', e)
        }}
      />
    </>
  )
}

import Script from 'next/script'

export default function Page() {
  return (
    <>
      <Script
        src="https://example.com/script.js"
        onError={(e: Error) => {
          console.error('Script failed to load', e)
        }}
      />
    </>
  )
}



Version History

Version Changes

v13.0.0 beforeInteractive and afterInteractive is modified to support app.

v12.2.4 onReady prop added.

v12.2.2 Allow next/script with beforeInteractive to be placed in _document.

v11.0.0 next/script introduced.



3.2.2 - File Conventions
Documentation path: /02-app/02-api-reference/02-file-conventions/index

Description: API Reference for Next.js Special Files.



3.2.2.1 - Metadata Files API Reference
Documentation path: /02-app/02-api-reference/02-file-conventions/01-metadata/index

Description: API documentation for the metadata file conventions.

This section of the docs covers Metadata file conventions. File-based metadata can be defined by adding special metadata files to
route segments.

Each file convention can be defined using a static file (e.g. opengraph-image.jpg), or a dynamic variant that uses code to generate the
file (e.g. opengraph-image.js).

Once a file is defined, Next.js will automatically serve the file (with hashes in production for caching) and update the relevant head
elements with the correct metadata, such as the asset’s URL, file type, and image size.



3.2.2.1.1 - favicon, icon, and apple-icon
Documentation path: /02-app/02-api-reference/02-file-conventions/01-metadata/app-icons

Description: API Reference for the Favicon, Icon and Apple Icon file conventions.

The favicon, icon, or apple-icon file conventions allow you to set icons for your application.

They are useful for adding app icons that appear in places like web browser tabs, phone home screens, and search engine results.

There are two ways to set app icons:

Using image files (.ico, .jpg, .png)
Using code to generate an icon (.js, .ts, .tsx)

Image files (.ico, .jpg, .png)

Use an image file to set an app icon by placing a favicon, icon, or apple-icon image file within your /app directory. The favicon
image can only be located in the top level of app/.

Next.js will evaluate the file and automatically add the appropriate tags to your app’s <head> element.

File convention Supported file types Valid locations

favicon .ico app/

icon .ico, .jpg, .jpeg, .png, .svg app/**/*

apple-icon .jpg, .jpeg, .png app/**/*

faviconfavicon

Add a favicon.ico image file to the root /app route segment.

output (html)

<link rel="icon" href="/favicon.ico" sizes="any" />

iconicon

Add an icon.(ico|jpg|jpeg|png|svg) image file.

output (html)

<link
  rel="icon"
  href="/icon?<generated>"
  type="image/<generated>"
  sizes="<generated>"
/>

apple-iconapple-icon

Add an apple-icon.(jpg|jpeg|png) image file.

output (html)

<link
  rel="apple-touch-icon"
  href="/apple-icon?<generated>"
  type="image/<generated>"
  sizes="<generated>"
/>

Good to know

You can set multiple icons by adding a number suffix to the file name. For example, icon1.png, icon2.png, etc.
Numbered files will sort lexically.
Favicons can only be set in the root /app segment. If you need more granularity, you can use icon.
The appropriate <link> tags and attributes such as rel, href, type, and sizes are determined by the icon type and
metadata of the evaluated file.
For example, a 32 by 32px .png file will have type="image/png" and sizes="32x32" attributes.



sizes="any" is added to favicon.ico output to avoid a browser bug where an .ico icon is favored over .svg.

Generate icons using code (.js, .ts, .tsx)

In addition to using literal image files, you can programmatically generate icons using code.

Generate an app icon by creating an icon or apple-icon route that default exports a function.

File convention Supported file types

icon .js, .ts, .tsx

apple-icon .js, .ts, .tsx

The easiest way to generate an icon is to use the ImageResponse API from next/og.

app/icon.tsx (tsx)

import { ImageResponse } from 'next/og'

// Image metadata
export const size = {
  width: 32,
  height: 32,
}
export const contentType = 'image/png'

// Image generation
export default function Icon() {
  return new ImageResponse(
    (
      // ImageResponse JSX element
      <div
        style={{
          fontSize: 24,
          background: 'black',
          width: '100%',
          height: '100%',
          display: 'flex',
          alignItems: 'center',
          justifyContent: 'center',
          color: 'white',
        }}
      >
        A
      </div>
    ),
    // ImageResponse options
    {
      // For convenience, we can re-use the exported icons size metadata
      // config to also set the ImageResponse's width and height.
      ...size,
    }
  )
}

app/icon.js (jsx)

import { ImageResponse } from 'next/og'

// Image metadata
export const size = {
  width: 32,
  height: 32,
}
export const contentType = 'image/png'

// Image generation
export default function Icon() {
  return new ImageResponse(
    (
      // ImageResponse JSX element
      <div
        style={{
          fontSize: 24,

https://evilmartians.com/chronicles/how-to-favicon-in-2021-six-files-that-fit-most-needs
file:///docs/app/api-reference/functions/image-response


          background: 'black',
          width: '100%',
          height: '100%',
          display: 'flex',
          alignItems: 'center',
          justifyContent: 'center',
          color: 'white',
        }}
      >
        A
      </div>
    ),
    // ImageResponse options
    {
      // For convenience, we can re-use the exported icons size metadata
      // config to also set the ImageResponse's width and height.
      ...size,
    }
  )
}

output (html)

<link rel="icon" href="/icon?<generated>" type="image/png" sizes="32x32" />

Good to know

By default, generated icons are statically optimized (generated at build time and cached) unless they use dynamic
functions or uncached data.
You can generate multiple icons in the same file using generateImageMetadata.
You cannot generate a favicon icon. Use icon or a favicon.ico file instead.

Props

The default export function receives the following props:

paramsparams (optional)

An object containing the dynamic route parameters object from the root segment down to the segment icon or apple-icon is
colocated in.

app/shop/[slug]/icon.tsx (tsx)

export default function Icon({ params }: { params: { slug: string } }) {
  // ...
}

app/shop/[slug]/icon.js (jsx)

export default function Icon({ params }) {
  // ...
}

Route URL paramsparams

app/shop/icon.js /shop undefined

app/shop/[slug]/icon.js /shop/1 { slug: '1' }

app/shop/[tag]/[item]/icon.js /shop/1/2 { tag: '1', item: '2' }

app/shop/[...slug]/icon.js /shop/1/2 { slug: ['1', '2'] }

Returns

The default export function should return a Blob | ArrayBuffer | TypedArray | DataView | ReadableStream | Response.

Good to know: ImageResponse satisfies this return type.

Config exports

You can optionally configure the icon’s metadata by exporting size and contentType variables from the icon or apple-icon route.

file:///docs/app/building-your-application/rendering/server-components#static-rendering-default
file:///docs/app/building-your-application/rendering/server-components#server-rendering-strategies#dynamic-functions
file:///docs/app/api-reference/functions/generate-image-metadata
file:///docs/app/building-your-application/routing/dynamic-routes


Option Type

size { width: number; height: number }

contentType string - image MIME type

sizesize

icon.tsx | apple-icon.tsx (tsx)

export const size = { width: 32, height: 32 }

export default function Icon() {}

icon.js | apple-icon.js (jsx)

export const size = { width: 32, height: 32 }

export default function Icon() {}

output (html)

<link rel="icon" sizes="32x32" />

contentTypecontentType

icon.tsx | apple-icon.tsx (tsx)

export const contentType = 'image/png'

export default function Icon() {}

icon.js | apple-icon.js (jsx)

export const contentType = 'image/png'

export default function Icon() {}

output (html)

<link rel="icon" type="image/png" />

Route Segment Config

icon and apple-icon are specialized Route Handlers that can use the same route segment configuration options as Pages and
Layouts.

Version History

Version Changes

v13.3.0 favicon icon and apple-icon introduced

https://developer.mozilla.org/docs/Web/HTTP/Basics_of_HTTP/MIME_types#image_types
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/api-reference/file-conventions/route-segment-config


3.2.2.1.2 - manifest.json
Documentation path: /02-app/02-api-reference/02-file-conventions/01-metadata/manifest

Description: API Reference for manifest.json file.

Add or generate a manifest.(json|webmanifest) file that matches the Web Manifest Specification in the root of app directory to
provide information about your web application for the browser.

Static Manifest file

app/manifest.json | app/manifest.webmanifest (json)

{
  "name": "My Next.js Application",
  "short_name": "Next.js App",
  "description": "An application built with Next.js",
  "start_url": "/"
  // ...
}

Generate a Manifest file

Add a manifest.js or manifest.ts file that returns a Manifest object.

app/manifest.ts (ts)

import type { MetadataRoute } from 'next'

export default function manifest(): MetadataRoute.Manifest {
  return {
    name: 'Next.js App',
    short_name: 'Next.js App',
    description: 'Next.js App',
    start_url: '/',
    display: 'standalone',
    background_color: '#fff',
    theme_color: '#fff',
    icons: [
      {
        src: '/favicon.ico',
        sizes: 'any',
        type: 'image/x-icon',
      },
    ],
  }
}

app/manifest.js (js)

export default function manifest() {
  return {
    name: 'Next.js App',
    short_name: 'Next.js App',
    description: 'Next.js App',
    start_url: '/',
    display: 'standalone',
    background_color: '#fff',
    theme_color: '#fff',
    icons: [
      {
        src: '/favicon.ico',
        sizes: 'any',
        type: 'image/x-icon',
      },
    ],
  }
}

Manifest Object

The manifest object contains an extensive list of options that may be updated due to new web standards. For information on all the
current options, refer to the MetadataRoute.Manifest type in your code editor if using TypeScript or see the MDN docs.

https://developer.mozilla.org/docs/Web/Manifest
https://nextjs.org/docs/app/building-your-application/configuring/typescript#typescript-plugin
https://developer.mozilla.org/docs/Web/Manifest


3.2.2.1.3 - opengraph-image and twitter-image
Documentation path: /02-app/02-api-reference/02-file-conventions/01-metadata/opengraph-image

Description: API Reference for the Open Graph Image and Twitter Image file conventions.

The opengraph-image and twitter-image file conventions allow you to set Open Graph and Twitter images for a route segment.

They are useful for setting the images that appear on social networks and messaging apps when a user shares a link to your site.

There are two ways to set Open Graph and Twitter images:

Using image files (.jpg, .png, .gif)
Using code to generate images (.js, .ts, .tsx)

Image files (.jpg, .png, .gif)

Use an image file to set a route segment’s shared image by placing an opengraph-image or twitter-image image file in the segment.

Next.js will evaluate the file and automatically add the appropriate tags to your app’s <head> element.

File convention Supported file types

opengraph-image .jpg, .jpeg, .png, .gif

twitter-image .jpg, .jpeg, .png, .gif

opengraph-image.alt .txt

twitter-image.alt .txt

opengraph-imageopengraph-image

Add an opengraph-image.(jpg|jpeg|png|gif) image file to any route segment.

output (html)

<meta property="og:image" content="<generated>" />
<meta property="og:image:type" content="<generated>" />
<meta property="og:image:width" content="<generated>" />
<meta property="og:image:height" content="<generated>" />

twitter-imagetwitter-image

Add a twitter-image.(jpg|jpeg|png|gif) image file to any route segment.

output (html)

<meta name="twitter:image" content="<generated>" />
<meta name="twitter:image:type" content="<generated>" />
<meta name="twitter:image:width" content="<generated>" />
<meta name="twitter:image:height" content="<generated>" />

opengraph-image.alt.txtopengraph-image.alt.txt

Add an accompanying opengraph-image.alt.txt file in the same route segment as the opengraph-image.(jpg|jpeg|png|gif)
image it’s alt text.

opengraph-image.alt.txt (txt)

About Acme

output (html)

<meta property="og:image:alt" content="About Acme" />

twitter-image.alt.txttwitter-image.alt.txt

Add an accompanying twitter-image.alt.txt file in the same route segment as the twitter-image.(jpg|jpeg|png|gif) image
it’s alt text.

twitter-image.alt.txt (txt)

About Acme



output (html)

<meta property="twitter:image:alt" content="About Acme" />

Generate images using code (.js, .ts, .tsx)

In addition to using literal image files, you can programmatically generate images using code.

Generate a route segment’s shared image by creating an opengraph-image or twitter-image route that default exports a function.

File convention Supported file types

opengraph-image .js, .ts, .tsx

twitter-image .js, .ts, .tsx

Good to know

By default, generated images are statically optimized (generated at build time and cached) unless they use dynamic
functions or uncached data.
You can generate multiple Images in the same file using generateImageMetadata.

The easiest way to generate an image is to use the ImageResponse API from next/og.

app/about/opengraph-image.tsx (tsx)

import { ImageResponse } from 'next/og'

// Image metadata
export const alt = 'About Acme'
export const size = {
  width: 1200,
  height: 630,
}

export const contentType = 'image/png'

// Image generation
export default async function Image() {
  // Font
  const interSemiBold = fetch(
    new URL('./Inter-SemiBold.ttf', import.meta.url)
  ).then((res) => res.arrayBuffer())

  return new ImageResponse(
    (
      // ImageResponse JSX element
      <div
        style={{
          fontSize: 128,
          background: 'white',
          width: '100%',
          height: '100%',
          display: 'flex',
          alignItems: 'center',
          justifyContent: 'center',
        }}
      >
        About Acme
      </div>
    ),
    // ImageResponse options
    {
      // For convenience, we can re-use the exported opengraph-image
      // size config to also set the ImageResponse's width and height.
      ...size,
      fonts: [
        {
          name: 'Inter',
          data: await interSemiBold,
          style: 'normal',
          weight: 400,
        },
      ],
    }

file:///docs/app/building-your-application/rendering/server-components#static-rendering-default
file:///docs/app/building-your-application/rendering/server-components#server-rendering-strategies#dynamic-functions
file:///docs/app/api-reference/functions/generate-image-metadata
file:///docs/app/api-reference/functions/image-response


  )
}

app/about/opengraph-image.js (jsx)

import { ImageResponse } from 'next/og'

// Image metadata
export const alt = 'About Acme'
export const size = {
  width: 1200,
  height: 630,
}

export const contentType = 'image/png'

// Image generation
export default async function Image() {
  // Font
  const interSemiBold = fetch(
    new URL('./Inter-SemiBold.ttf', import.meta.url)
  ).then((res) => res.arrayBuffer())

  return new ImageResponse(
    (
      // ImageResponse JSX element
      <div
        style={{
          fontSize: 128,
          background: 'white',
          width: '100%',
          height: '100%',
          display: 'flex',
          alignItems: 'center',
          justifyContent: 'center',
        }}
      >
        About Acme
      </div>
    ),
    // ImageResponse options
    {
      // For convenience, we can re-use the exported opengraph-image
      // size config to also set the ImageResponse's width and height.
      ...size,
      fonts: [
        {
          name: 'Inter',
          data: await interSemiBold,
          style: 'normal',
          weight: 400,
        },
      ],
    }
  )
}

output (html)

<meta property="og:image" content="<generated>" />
<meta property="og:image:alt" content="About Acme" />
<meta property="og:image:type" content="image/png" />
<meta property="og:image:width" content="1200" />
<meta property="og:image:height" content="630" />

Props

The default export function receives the following props:

paramsparams (optional)

An object containing the dynamic route parameters object from the root segment down to the segment opengraph-image or
twitter-image is colocated in.

app/shop/[slug]/opengraph-image.tsx (tsx)

export default function Image({ params }: { params: { slug: string } }) {

file:///docs/app/building-your-application/routing/dynamic-routes


  // ...
}

app/shop/[slug]/opengraph-image.js (jsx)

export default function Image({ params }) {
  // ...
}

Route URL paramsparams

app/shop/opengraph-image.js /shop undefined

app/shop/[slug]/opengraph-image.js /shop/1 { slug: '1' }

app/shop/[tag]/[item]/opengraph-image.js /shop/1/2 { tag: '1', item: '2' }

app/shop/[...slug]/opengraph-image.js /shop/1/2 { slug: ['1', '2'] }

Returns

The default export function should return a Blob | ArrayBuffer | TypedArray | DataView | ReadableStream | Response.

Good to know: ImageResponse satisfies this return type.

Config exports

You can optionally configure the image’s metadata by exporting alt, size, and contentType variables from opengraph-image or
twitter-image route.

Option Type

alt string

size { width: number; height: number }

contentType string - image MIME type

altalt

opengraph-image.tsx | twitter-image.tsx (tsx)

export const alt = 'My images alt text'

export default function Image() {}

opengraph-image.js | twitter-image.js (jsx)

export const alt = 'My images alt text'

export default function Image() {}

output (html)

<meta property="og:image:alt" content="My images alt text" />

sizesize

opengraph-image.tsx | twitter-image.tsx (tsx)

export const size = { width: 1200, height: 630 }

export default function Image() {}

opengraph-image.js | twitter-image.js (jsx)

export const size = { width: 1200, height: 630 }

export default function Image() {}

output (html)

<meta property="og:image:width" content="1200" />

https://developer.mozilla.org/docs/Web/HTTP/Basics_of_HTTP/MIME_types#image_types


<meta property="og:image:height" content="630" />

contentTypecontentType

opengraph-image.tsx | twitter-image.tsx (tsx)

export const contentType = 'image/png'

export default function Image() {}

opengraph-image.js | twitter-image.js (jsx)

export const contentType = 'image/png'

export default function Image() {}

output (html)

<meta property="og:image:type" content="image/png" />

Route Segment Config

opengraph-image and twitter-image are specialized Route Handlers that can use the same route segment configuration options as
Pages and Layouts.

Examples

Using external data

This example uses the params object and external data to generate the image.

Good to know: By default, this generated image will be statically optimized. You can configure the individual fetch options
or route segments options to change this behavior.

app/posts/[slug]/opengraph-image.tsx (tsx)

import { ImageResponse } from 'next/og'

export const alt = 'About Acme'
export const size = {
  width: 1200,
  height: 630,
}
export const contentType = 'image/png'

export default async function Image({ params }: { params: { slug: string } }) {
  const post = await fetch(`https://.../posts/${params.slug}`).then((res) =>
    res.json()
  )

  return new ImageResponse(
    (
      <div
        style={{
          fontSize: 48,
          background: 'white',
          width: '100%',
          height: '100%',
          display: 'flex',
          alignItems: 'center',
          justifyContent: 'center',
        }}
      >
        {post.title}
      </div>
    ),
    {
      ...size,
    }
  )
}

app/posts/[slug]/opengraph-image.js (jsx)

import { ImageResponse } from 'next/og'

file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/api-reference/file-conventions/route-segment-config
file:///docs/app/building-your-application/rendering/server-components#static-rendering-default
file:///docs/app/api-reference/functions/fetch
file:///docs/app/api-reference/file-conventions/route-segment-config#revalidate


export const alt = 'About Acme'
export const size = {
  width: 1200,
  height: 630,
}
export const contentType = 'image/png'

export default async function Image({ params }) {
  const post = await fetch(`https://.../posts/${params.slug}`).then((res) =>
    res.json()
  )

  return new ImageResponse(
    (
      <div
        style={{
          fontSize: 48,
          background: 'white',
          width: '100%',
          height: '100%',
          display: 'flex',
          alignItems: 'center',
          justifyContent: 'center',
        }}
      >
        {post.title}
      </div>
    ),
    {
      ...size,
    }
  )
}

Using Edge runtime with local assets

This example uses the Edge runtime to fetch a local image on the file system and passes it as an ArrayBuffer to the src attribute of
an <img> element. The local asset should be placed relative to the example source file location.

app/opengraph-image.js (jsx)

import { ImageResponse } from 'next/og'
import { readFile } from 'node:fs/promises'

export const runtime = 'edge'

export async function GET() {
  const logoSrc = await fetch(new URL('./logo.png', import.meta.url)).then(
    (res) => res.arrayBuffer()
  )

  return new ImageResponse(
    (
      <div
        style={{
          display: 'flex',
          alignItems: 'center',
          justifyContent: 'center',
        }}
      >
        <img src={logoSrc} height="100" />
      </div>
    )
  )
}

Using Node.js runtime with local assets

This example uses the Node.js runtime to fetch a local image on the file system and passes it as an ArrayBuffer to the src attribute
of an <img> element. The local asset should be placed relative to the root of your project, rather than the location of the example
source file.

app/opengraph-image.js (jsx)

import { ImageResponse } from 'next/og'
import { join } from 'node:path'
import { readFile } from 'node:fs/promises'



export async function GET() {
  const logoData = await readFile(join(process.cwd(), 'logo.png'))
  const logoSrc = Uint8Array.from(logoData).buffer

  return new ImageResponse(
    (
      <div
        style={{
          display: 'flex',
          alignItems: 'center',
          justifyContent: 'center',
        }}
      >
        <img src={logoSrc} height="100" />
      </div>
    )
  )
}

Version History

Version Changes

v13.3.0 opengraph-image and twitter-image introduced.



3.2.2.1.4 - robots.txt
Documentation path: /02-app/02-api-reference/02-file-conventions/01-metadata/robots

Description: API Reference for robots.txt file.

Add or generate a robots.txt file that matches the Robots Exclusion Standard in the root of app directory to tell search engine
crawlers which URLs they can access on your site.

Static robots.txtrobots.txt
app/robots.txt (txt)

User-Agent: *
Allow: /
Disallow: /private/

Sitemap: https://acme.com/sitemap.xml

Generate a Robots file

Add a robots.js or robots.ts file that returns a Robots object.

app/robots.ts (ts)

import type { MetadataRoute } from 'next'

export default function robots(): MetadataRoute.Robots {
  return {
    rules: {
      userAgent: '*',
      allow: '/',
      disallow: '/private/',
    },
    sitemap: 'https://acme.com/sitemap.xml',
  }
}

app/robots.js (js)

export default function robots() {
  return {
    rules: {
      userAgent: '*',
      allow: '/',
      disallow: '/private/',
    },
    sitemap: 'https://acme.com/sitemap.xml',
  }
}

Output:

User-Agent: *
Allow: /
Disallow: /private/

Sitemap: https://acme.com/sitemap.xml

Customizing specific user agents

You can customise how individual search engine bots crawl your site by passing an array of user agents to the rules property. For
example:

app/robots.ts (ts)

import type { MetadataRoute } from 'next'

export default function robots(): MetadataRoute.Robots {
  return {
    rules: [
      {
        userAgent: 'Googlebot',
        allow: ['/'],

https://en.wikipedia.org/wiki/Robots.txt#Standard


        disallow: '/private/',
      },
      {
        userAgent: ['Applebot', 'Bingbot'],
        disallow: ['/'],
      },
    ],
    sitemap: 'https://acme.com/sitemap.xml',
  }
}

app/robots.js (js)

export default function robots() {
  return {
    rules: [
      {
        userAgent: 'Googlebot',
        allow: ['/'],
        disallow: ['/private/'],
      },
      {
        userAgent: ['Applebot', 'Bingbot'],
        disallow: ['/'],
      },
    ],
    sitemap: 'https://acme.com/sitemap.xml',
  }
}

Output:

User-Agent: Googlebot
Allow: /
Disallow: /private/

User-Agent: Applebot
Disallow: /

User-Agent: Bingbot
Disallow: /

Sitemap: https://acme.com/sitemap.xml

Robots object

type Robots = {
  rules:
    | {
        userAgent?: string | string[]
        allow?: string | string[]
        disallow?: string | string[]
        crawlDelay?: number
      }
    | Array<{
        userAgent: string | string[]
        allow?: string | string[]
        disallow?: string | string[]
        crawlDelay?: number
      }>
  sitemap?: string | string[]
  host?: string
}

Version History

Version Changes

v13.3.0 robots introduced.



3.2.2.1.5 - sitemap.xml
Documentation path: /02-app/02-api-reference/02-file-conventions/01-metadata/sitemap

Description: API Reference for the sitemap.xml file.

Related:

Title: Next Steps

Related Description: Learn how to use the generateSitemaps function.

Links:

app/api-reference/functions/generate-sitemaps

sitemap.(xml|js|ts) is a special file that matches the Sitemaps XML format to help search engine crawlers index your site more
efficiently.

Sitemap files (.xml)

For smaller applications, you can create a sitemap.xml file and place it in the root of your app directory.

app/sitemap.xml (xml)

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
  <url>
    <loc>https://acme.com</loc>
    <lastmod>2023-04-06T15:02:24.021Z</lastmod>
    <changefreq>yearly</changefreq>
    <priority>1</priority>
  </url>
  <url>
    <loc>https://acme.com/about</loc>
    <lastmod>2023-04-06T15:02:24.021Z</lastmod>
    <changefreq>monthly</changefreq>
    <priority>0.8</priority>
  </url>
  <url>
    <loc>https://acme.com/blog</loc>
    <lastmod>2023-04-06T15:02:24.021Z</lastmod>
    <changefreq>weekly</changefreq>
    <priority>0.5</priority>
  </url>
</urlset>

Generating a sitemap using code (.js, .ts)

You can use the sitemap.(js|ts) file convention to programmatically generate a sitemap by exporting a default function that
returns an array of URLs. If using TypeScript, a Sitemap type is available.

app/sitemap.ts (ts)

import type { MetadataRoute } from 'next'

export default function sitemap(): MetadataRoute.Sitemap {
  return [
    {
      url: 'https://acme.com',
      lastModified: new Date(),
      changeFrequency: 'yearly',
      priority: 1,
    },
    {
      url: 'https://acme.com/about',
      lastModified: new Date(),
      changeFrequency: 'monthly',
      priority: 0.8,
    },
    {
      url: 'https://acme.com/blog',
      lastModified: new Date(),
      changeFrequency: 'weekly',
      priority: 0.5,
    },
  ]
}

https://www.sitemaps.org/protocol.html


app/sitemap.js (js)

export default function sitemap() {
  return [
    {
      url: 'https://acme.com',
      lastModified: new Date(),
      changeFrequency: 'yearly',
      priority: 1,
    },
    {
      url: 'https://acme.com/about',
      lastModified: new Date(),
      changeFrequency: 'monthly',
      priority: 0.8,
    },
    {
      url: 'https://acme.com/blog',
      lastModified: new Date(),
      changeFrequency: 'weekly',
      priority: 0.5,
    },
  ]
}

Output:
acme.com/sitemap.xml (xml)

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
  <url>
    <loc>https://acme.com</loc>
    <lastmod>2023-04-06T15:02:24.021Z</lastmod>
    <changefreq>yearly</changefreq>
    <priority>1</priority>
  </url>
  <url>
    <loc>https://acme.com/about</loc>
    <lastmod>2023-04-06T15:02:24.021Z</lastmod>
    <changefreq>monthly</changefreq>
    <priority>0.8</priority>
  </url>
  <url>
    <loc>https://acme.com/blog</loc>
    <lastmod>2023-04-06T15:02:24.021Z</lastmod>
    <changefreq>weekly</changefreq>
    <priority>0.5</priority>
  </url>
</urlset>

Generate a localized Sitemap

app/sitemap.ts (ts)

import type { MetadataRoute } from 'next'

export default function sitemap(): MetadataRoute.Sitemap {
  return [
    {
      url: 'https://acme.com',
      lastModified: new Date(),
      alternates: {
        languages: {
          es: 'https://acme.com/es',
          de: 'https://acme.com/de',
        },
      },
    },
    {
      url: 'https://acme.com/about',
      lastModified: new Date(),
      alternates: {
        languages: {
          es: 'https://acme.com/es/about',
          de: 'https://acme.com/de/about',
        },
      },
    },



    {
      url: 'https://acme.com/blog',
      lastModified: new Date(),
      alternates: {
        languages: {
          es: 'https://acme.com/es/blog',
          de: 'https://acme.com/de/blog',
        },
      },
    },
  ]
}

Output:
acme.com/sitemap.xml (xml)

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9" xmlns:xhtml="http://www.w3.org/1999/xhtml">
  <url>
    <loc>https://acme.com</loc>
    <xhtml:link
      rel="alternate"
      hreflang="es"
      href="https://acme.com/es"/>
    <xhtml:link
      rel="alternate"
      hreflang="de"
      href="https://acme.com/de"/>
    <lastmod>2023-04-06T15:02:24.021Z</lastmod>
  </url>
  <url>
    <loc>https://acme.com/about</loc>
    <xhtml:link
      rel="alternate"
      hreflang="es"
      href="https://acme.com/es/about"/>
    <xhtml:link
      rel="alternate"
      hreflang="de"
      href="https://acme.com/de/about"/>
    <lastmod>2023-04-06T15:02:24.021Z</lastmod>
  </url>
  <url>
    <loc>https://acme.com/blog</loc>
    <xhtml:link
      rel="alternate"
      hreflang="es"
      href="https://acme.com/es/blog"/>
    <xhtml:link
      rel="alternate"
      hreflang="de"
      href="https://acme.com/de/blog"/>
    <lastmod>2023-04-06T15:02:24.021Z</lastmod>
  </url>
</urlset>

Generating multiple sitemaps

While a single sitemap will work for most applications. For large web applications, you may need to split a sitemap into multiple files.

There are two ways you can create multiple sitemaps:

By nesting sitemap.(xml|js|ts) inside multiple route segments e.g. app/sitemap.xml and app/products/sitemap.xml.
By using the generateSitemaps function.

For example, to split a sitemap using generateSitemaps, return an array of objects with the sitemap id. Then, use the id to generate
the unique sitemaps.

app/product/sitemap.ts (ts)

import type { MetadataRoute } from 'next'
import { BASE_URL } from '@/app/lib/constants'

export async function generateSitemaps() {
  // Fetch the total number of products and calculate the number of sitemaps needed
  return [{ id: 0 }, { id: 1 }, { id: 2 }, { id: 3 }]
}

file:///docs/app/api-reference/functions/generate-sitemaps


export default async function sitemap({
  id,
}: {
  id: number
}): Promise<MetadataRoute.Sitemap> {
  // Google's limit is 50,000 URLs per sitemap
  const start = id * 50000
  const end = start + 50000
  const products = await getProducts(
    `SELECT id, date FROM products WHERE id BETWEEN ${start} AND ${end}`
  )
  return products.map((product) => ({
    url: `${BASE_URL}/product/${id}`,
    lastModified: product.date,
  }))
}

app/product/sitemap.js (js)

import { BASE_URL } from '@/app/lib/constants'

export async function generateSitemaps() {
  // Fetch the total number of products and calculate the number of sitemaps needed
  return [{ id: 0 }, { id: 1 }, { id: 2 }, { id: 3 }]
}

export default async function sitemap({ id }) {
  // Google's limit is 50,000 URLs per sitemap
  const start = id * 50000
  const end = start + 50000
  const products = await getProducts(
    `SELECT id, date FROM products WHERE id BETWEEN ${start} AND ${end}`
  )
  return products.map((product) => ({
    url: `${BASE_URL}/product/${id}`,
    lastModified: product.date,
  }))
}

Your generated sitemaps will be available at /.../sitemap/[id]. For example, /product/sitemap/1.

See the generateSitemaps API reference for more information.

Returns

The default function exported from sitemap.(xml|ts|js) should return an array of objects with the following properties:

type Sitemap = Array<{
  url: string
  lastModified?: string | Date
  changeFrequency?:
    | 'always'
    | 'hourly'
    | 'daily'
    | 'weekly'
    | 'monthly'
    | 'yearly'
    | 'never'
  priority?: number
  alternates?: {
    languages?: Languages<string>
  }
}>

Version History

Version Changes

v13.4.5 Add changeFrequency and priority attributes to sitemaps.

v13.3.0 sitemap introduced.

file:///docs/app/api-reference/functions/generate-sitemaps


3.2.2.2 - default.js
Documentation path: /02-app/02-api-reference/02-file-conventions/default

Description: API Reference for the default.js file.

Related:

Title: Learn more about Parallel Routes

Related Description: No related description

Links:

app/building-your-application/routing/parallel-routes

The default.js file is used to render a fallback within Parallel Routes when Next.js cannot recover a slot’s active state after a full-page
load.

During soft navigation, Next.js keeps track of the active state (subpage) for each slot. However, for hard navigations (full-page load),
Next.js cannot recover the active state. In this case, a default.js file can be rendered for subpages that don’t match the current URL.

Consider the following folder structure. The @team slot has a settings page, but @analytics does not.

When navigating to /settings, the @team slot will render the settings page while maintaining the currently active page for the
@analytics slot.

On refresh, Next.js will render a default.js for @analytics. If default.js doesn’t exist, a 404 is rendered instead.

Additionally, since children is an implicit slot, you also need to create a default.js file to render a fallback for children when
Next.js cannot recover the active state of the parent page.

Props

paramsparams  (optional)

An object containing the dynamic route parameters from the root segment down to the slot’s subpages. For example:

Example URL paramsparams

app/[artist]/@sidebar/default.js /zack { artist: 'zack' }

app/[artist]/[album]/@sidebar/default.js /zack/next { artist: 'zack', album: 'next' }

file:///docs/app/building-your-application/routing/parallel-routes
file:///docs/app/building-your-application/routing/parallel-routes#slots
file:///docs/app/building-your-application/routing/linking-and-navigating#5-soft-navigation
file:///docs/app/building-your-application/routing/dynamic-routes


3.2.2.3 - error.js
Documentation path: /02-app/02-api-reference/02-file-conventions/error

Description: API reference for the error.js special file.

Related:

Title: Learn more about error handling

Related Description: No related description

Links:

app/building-your-application/routing/error-handling

An error file defines an error UI boundary for a route segment.

It is useful for catching unexpected errors that occur in Server Components and Client Components and displaying a fallback UI.
app/dashboard/error.tsx (tsx)

'use client' // Error components must be Client Components

import { useEffect } from 'react'

export default function Error({
  error,
  reset,
}: {
  error: Error & { digest?: string }
  reset: () => void
}) {
  useEffect(() => {
    // Log the error to an error reporting service
    console.error(error)
  }, [error])

  return (
    <div>
      <h2>Something went wrong!</h2>
      <button
        onClick={
          // Attempt to recover by trying to re-render the segment
          () => reset()
        }
      >
        Try again
      </button>
    </div>
  )
}

app/dashboard/error.js (jsx)

'use client' // Error components must be Client Components

import { useEffect } from 'react'

export default function Error({ error, reset }) {
  useEffect(() => {
    // Log the error to an error reporting service
    console.error(error)
  }, [error])

  return (
    <div>
      <h2>Something went wrong!</h2>
      <button
        onClick={
          // Attempt to recover by trying to re-render the segment
          () => reset()
        }
      >
        Try again
      </button>
    </div>
  )
}



Props

errorerror

An instance of an Error object forwarded to the error.js Client Component.

error.messageerror.message

The error message.

For errors forwarded from Client Components, this will be the original Error’s message.
For errors forwarded from Server Components, this will be a generic error message to avoid leaking sensitive details.
errors.digest can be used to match the corresponding error in server-side logs.

error.digesterror.digest

An automatically generated hash of the error thrown in a Server Component. It can be used to match the corresponding error in server-
side logs.

resetreset

A function to reset the error boundary. When executed, the function will try to re-render the Error boundary’s contents. If successful,
the fallback error component is replaced with the result of the re-render.

Can be used to prompt the user to attempt to recover from the error.

Good to know:

error.js boundaries must be Client Components.
In Production builds, errors forwarded from Server Components will be stripped of specific error details to avoid leaking
sensitive information.
An error.js boundary will not handle errors thrown in a layout.js component in the same segment because the error
boundary is nested inside that layouts component.
To handle errors for a specific layout, place an error.js file in the layouts parent segment.
To handle errors within the root layout or template, use a variation of error.js called app/global-error.js.

global-error.jsglobal-error.js
To specifically handle errors in root layout.js, use a variation of error.js called app/global-error.js located in the root app
directory.

app/global-error.tsx (tsx)

'use client'

export default function GlobalError({
  error,
  reset,
}: {
  error: Error & { digest?: string }
  reset: () => void
}) {
  return (
    <html>
      <body>
        <h2>Something went wrong!</h2>
        <button onClick={() => reset()}>Try again</button>
      </body>
    </html>
  )
}

app/global-error.js (jsx)

'use client'

export default function GlobalError({ error, reset }) {
  return (
    <html>
      <body>

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Error
file:///docs/app/building-your-application/rendering/client-components


        <h2>Something went wrong!</h2>
        <button onClick={() => reset()}>Try again</button>
      </body>
    </html>
  )
}

Good to know:

global-error.js replaces the root layout.js when active and so must define its own <html> and <body> tags.
While designing error UI, you may find it helpful to use the React Developer Tools to manually toggle Error boundaries.

not-found.js

The not-found file is used to render UI when the notFound() function is thrown within a route segment.

Version History

Version Changes

v13.1.0 global-error introduced.

v13.0.0 error introduced.

https://react.dev/learn/react-developer-tools
https://nextjs.org/docs/app/api-reference/file-conventions/not-found


3.2.2.4 - instrumentation.js
Documentation path: /02-app/02-api-reference/02-file-conventions/instrumentation

Description: API reference for the instrumentation.js file.

Related:

Title: Learn more about Instrumentation

Related Description: No related description

Links:

app/building-your-application/optimizing/instrumentation

The instrumentation.js|ts file is used to integrate monitoring and logging tools into your application. This allows you to track the
performance and behavior of your application, and to debug issues in production.

To use it, place the file in the root of your application or inside a src folder if using one.

Config Option

Instrumentation is currently an experimental feature, to use the instrumentation file, you must explicitly opt-in by defining
experimental.instrumentationHook = true; in your next.config.js:

next.config.js (js)

module.exports = {
  experimental: {
    instrumentationHook: true,
  },
}

Exports

registerregister  (required)

The file exports a register function that is called once when a new Next.js server instance is initiated. register can be an async
function.

instrumentation.ts (ts)

import { registerOTel } from '@vercel/otel'

export function register() {
  registerOTel('next-app')
}

instrumentation.js (js)

import { registerOTel } from '@vercel/otel'

export function register() {
  registerOTel('next-app')
}

Version History

Version Changes

v14.0.4 Turbopack support for instrumentation

v13.2.0 instrumentation introduced as an experimental feature

file:///docs/app/building-your-application/configuring/src-directory
file:///docs/app/api-reference/next-config-js/instrumentationHook


3.2.2.5 - layout.js
Documentation path: /02-app/02-api-reference/02-file-conventions/layout

Description: API reference for the layout.js file.

A layout is UI that is shared between routes.
app/dashboard/layout.tsx (tsx)

export default function DashboardLayout({
  children,
}: {
  children: React.ReactNode
}) {
  return <section>{children}</section>
}

app/dashboard/layout.js (jsx)

export default function DashboardLayout({ children }) {
  return <section>{children}</section>
}

A root layout is the top-most layout in the root app directory. It is used to define the <html> and <body> tags and other globally
shared UI.

app/layout.tsx (tsx)

export default function RootLayout({
  children,
}: {
  children: React.ReactNode
}) {
  return (
    <html lang="en">
      <body>{children}</body>
    </html>
  )
}

app/layout.js (jsx)

export default function RootLayout({ children }) {
  return (
    <html lang="en">
      <body>{children}</body>
    </html>
  )
}

Props

childrenchildren  (required)

Layout components should accept and use a children prop. During rendering, children will be populated with the route segments
the layout is wrapping. These will primarily be the component of a child Layout (if it exists) or Page, but could also be other special files
like Loading or Error when applicable.

paramsparams  (optional)

The dynamic route parameters object from the root segment down to that layout.

Example URL paramsparams

app/dashboard/[team]/layout.js /dashboard/1 { team: '1' }

app/shop/[tag]/[item]/layout.js /shop/1/2 { tag: '1', item: '2' }

app/blog/[...slug]/layout.js /blog/1/2 { slug: ['1', '2'] }

For example:

file:///docs/app/building-your-application/routing/pages
file:///docs/app/building-your-application/routing/pages
file:///docs/app/building-your-application/routing/loading-ui-and-streaming
file:///docs/app/building-your-application/routing/error-handling
file:///docs/app/building-your-application/routing/dynamic-routes


app/shop/[tag]/[item]/layout.tsx (tsx)

export default function ShopLayout({
  children,
  params,
}: {
  children: React.ReactNode
  params: {
    tag: string
    item: string
  }
}) {
  // URL -> /shop/shoes/nike-air-max-97
  // `params` -> { tag: 'shoes', item: 'nike-air-max-97' }
  return <section>{children}</section>
}

app/shop/[tag]/[item]/layout.js (jsx)

export default function ShopLayout({ children, params }) {
  // URL -> /shop/shoes/nike-air-max-97
  // `params` -> { tag: 'shoes', item: 'nike-air-max-97' }
  return <section>{children}</section>
}

Good to know

Root Layouts

The app directory must include a root app/layout.js.
The root layout must define <html> and <body> tags.
You should not manually add <head> tags such as <title> and <meta> to root layouts. Instead, you should use the Metadata API
which automatically handles advanced requirements such as streaming and de-duplicating <head> elements.
You can use route groups to create multiple root layouts.
Navigating across multiple root layouts will cause a full page load (as opposed to a client-side navigation). For example,
navigating from /cart that uses app/(shop)/layout.js to /blog that uses app/(marketing)/layout.js will cause a full page
load. This only applies to multiple root layouts.

Layouts do not receive searchParamssearchParams

Unlike Pages, Layout components do not receive the searchParams prop. This is because a shared layout is not re-rendered during
navigation which could lead to stale searchParams between navigations.

When using client-side navigation, Next.js automatically only renders the part of the page below the common layout between two
routes.

For example, in the following directory structure, dashboard/layout.tsx is the common layout for both /dashboard/settings and
/dashboard/analytics:

When navigating from /dashboard/settings to /dashboard/analytics, page.tsx in /dashboard/analytics will rerender on
the server, while dashboard/layout.tsx will not rerender because it’s a common UI shared between the two routes.

file:///docs/app/api-reference/functions/generate-metadata
file:///docs/app/building-your-application/routing/route-groups
file:///docs/app/api-reference/file-conventions/page
file:///docs/app/building-your-application/routing/linking-and-navigating#4-partial-rendering


This performance optimization allows navigation between pages that share a layout to be quicker as only the data fetching and
rendering for the page has to run, instead of the entire route that could include shared layouts that fetch their own data.

Because dashboard/layout.tsx doesn’t re-render, the searchParams prop in the layout Server Component might become stale
after navigation.

Instead, use the Page searchParams prop or the useSearchParams hook in a Client Component, which is re-rendered on the client
with the latest searchParams.

Layouts cannot access pathnamepathname

Layouts cannot access pathname. This is because layouts are Server Components by default, and don’t rerender during client-side
navigation, which could lead to pathname becoming stale between navigations. To prevent staleness, Next.js would need to refetch all
segments of a route, losing the benefits of caching and increasing the RSC payload size on navigation.

Instead, you can extract the logic that depends on pathname into a Client Component and import it into your layouts. Since Client
Components rerender (but are not refetched) during navigation, you can use Next.js hooks such as usePathname to access the current
pathname and prevent staleness.

app/dashboard/layout.tsx (tsx)

import { ClientComponent } from '@/app/ui/ClientComponent'

export default function Layout({ children }: { children: React.ReactNode }) {
  return (
    <>
      <ClientComponent />
      {/* Other Layout UI */}
      <main>{children}</main>
    <>
  )
}

app/dashboard/layout.js (jsx)

import { ClientComponent } from '@/app/ui/ClientComponent'

export default function Layout({ children }) {
  return (
    <>
      <ClientComponent />
      {/* Other Layout UI */}
      <main>{children}</main>
    <>
  )
}

Common pathname patterns can also be implemented with params prop.

See the examples section for more information.

Version History

Version Changes

v13.0.0 layout introduced.

file:///docs/app/api-reference/file-conventions/page#searchparams-optional
file:///docs/app/api-reference/functions/use-search-params
file:///docs/app/building-your-application/routing/linking-and-navigating#4-partial-rendering
file:///docs/app/building-your-application/rendering/server-components#what-is-the-react-server-component-payload-rsc
https://nextjs.org/docs/app/api-reference/functions/use-pathname
file:///docs/app/building-your-application/routing/layouts-and-templates#examples


3.2.2.6 - loading.js
Documentation path: /02-app/02-api-reference/02-file-conventions/loading

Description: API reference for the loading.js file.

A loading file can create instant loading states built on Suspense.

By default, this file is a Server Component - but can also be used as a Client Component through the "use client" directive.

app/feed/loading.tsx (tsx)

export default function Loading() {
  // Or a custom loading skeleton component
  return <p>Loading...</p>
}

app/feed/loading.js (jsx)

export default function Loading() {
  // Or a custom loading skeleton component
  return <p>Loading...</p>
}

Loading UI components do not accept any parameters.

Good to know

While designing loading UI, you may find it helpful to use the React Developer Tools to manually toggle Suspense
boundaries.

Version History

Version Changes

v13.0.0 loading introduced.

file:///docs/app/building-your-application/routing/loading-ui-and-streaming
file:///docs/app/building-your-application/rendering/server-components
https://react.dev/learn/react-developer-tools


3.2.2.7 - mdx-components.js
Documentation path: /02-app/02-api-reference/02-file-conventions/mdx-components

Description: API reference for the mdx-components.js file.

Related:

Title: Learn more about MDX Components

Related Description: No related description

Links:

app/building-your-application/configuring/mdx

The mdx-components.js|tsx file is required to use @next/mdx with App Router and will not work without it. Additionally, you can
use it to customize styles.

Use the file mdx-components.tsx (or .js) in the root of your project to define MDX Components. For example, at the same level as
pages or app, or inside src if applicable.

mdx-components.tsx (tsx)

import type { MDXComponents } from 'mdx/types'

export function useMDXComponents(components: MDXComponents): MDXComponents {
  return {
    ...components,
  }
}

mdx-components.js (js)

export function useMDXComponents(components) {
  return {
    ...components,
  }
}

Exports

useMDXComponentsuseMDXComponents  function

The file must export a single function, either as a default export or named useMDXComponents.

mdx-components.tsx (tsx)

import type { MDXComponents } from 'mdx/types'

export function useMDXComponents(components: MDXComponents): MDXComponents {
  return {
    ...components,
  }
}

mdx-components.js (js)

export function useMDXComponents(components) {
  return {
    ...components,
  }
}

Params

componentscomponents

When defining MDX Components, the export function accepts a single parameter, components. This parameter is an instance of
MDXComponents.

The key is the name of the HTML element to override.
The value is the component to render instead.

Good to know: Remember to pass all other components (i.e. ...components) that do not have overrides.

file:///docs/app/building-your-application/configuring/mdx
file:///docs/app/building-your-application/configuring/mdx#using-custom-styles-and-components


Version History

Version Changes

v13.1.2 MDX Components added



3.2.2.8 - middleware.js
Documentation path: /02-app/02-api-reference/02-file-conventions/middleware

Description: API reference for the middleware.js file.

Related:

Title: Learn more about Middleware

Related Description: No related description

Links:

app/building-your-application/routing/middleware

The middleware.js|ts file is used to write Middleware and run code on the server before a request is completed. Then, based on the
incoming request, you can modify the response by rewriting, redirecting, modifying the request or response headers, or responding
directly.

Middleware executes before routes are rendered. It’s particularly useful for implementing custom server-side logic like authentication,
logging, or handling redirects.

Use the file middleware.ts (or .js) in the root of your project to define Middleware. For example, at the same level as app or pages, or
inside src if applicable.

middleware.ts (tsx)

import { NextResponse, NextRequest } from 'next/server'

// This function can be marked `async` if using `await` inside
export function middleware(request: NextRequest) {
  return NextResponse.redirect(new URL('/home', request.url))
}

export const config = {
  matcher: '/about/:path*',
}

middleware.js (js)

import { NextResponse } from 'next/server'

// This function can be marked `async` if using `await` inside
export function middleware(request) {
  return NextResponse.redirect(new URL('/home', request.url))
}

export const config = {
  matcher: '/about/:path*',
}

Exports

Middleware function

The file must export a single function, either as a default export or named middleware. Note that multiple middleware from the same
file are not supported.

middleware.js (js)

// Example of default export
export default function middleware(request) {
  // Middleware logic
}

Config object (optional)

Optionally, a config object can be exported alongside the Middleware function. This object includes the matcher to specify paths where
the Middleware applies.

Matcher

The matcher option allows you to target specific paths for the Middleware to run on. You can specify these paths in several ways:

For a single path: Directly use a string to define the path, like '/about'.

file:///docs/app/building-your-application/routing/middleware


For multiple paths: Use an array to list multiple paths, such as matcher: ['/about', '/contact'], which applies the
Middleware to both /about and /contact.

Additionally, matcher supports complex path specifications through regular expressions, such as matcher:
['/((?!api|_next/static|_next/image|.*\\.png$).*)'], enabling precise control over which paths to include or exclude.

The matcher option also accepts an array of objects with the following keys:

source: The path or pattern used to match the request paths. It can be a string for direct path matching or a pattern for more
complex matching.
regexp (optional): A regular expression string that fine-tunes the matching based on the source. It provides additional control over
which paths are included or excluded.
locale (optional): A boolean that, when set to false, ignores locale-based routing in path matching.
has (optional): Specifies conditions based on the presence of specific request elements such as headers, query parameters, or
cookies.
missing (optional): Focuses on conditions where certain request elements are absent, like missing headers or cookies.

middleware.js (js)

export const config = {
  matcher: [
    {
      source: '/api/*',
      regexp: '^/api/(.*)',
      locale: false,
      has: [
        { type: 'header', key: 'Authorization', value: 'Bearer Token' },
        { type: 'query', key: 'userId', value: '123' },
      ],
      missing: [{ type: 'cookie', key: 'session', value: 'active' }],
    },
  ],
}

Params

requestrequest

When defining Middleware, the default export function accepts a single parameter, request. This parameter is an instance of
NextRequest, which represents the incoming HTTP request.

middleware.ts (tsx)

import type { NextRequest } from 'next/server'

export function middleware(request: NextRequest) {
  // Middleware logic goes here
}

middleware.js (js)

export function middleware(request) {
  // Middleware logic goes here
}

Good to know:

NextRequest is a type that represents incoming HTTP requests in Next.js Middleware, whereas NextResponse is a class
used to manipulate and send back HTTP responses.

NextResponse

Middleware can use the NextResponse object which extends the Web Response API. By returning a NextResponse object, you can
directly manipulate cookies, set headers, implement redirects, and rewrite paths.

Good to know: For redirects, you can also use Response.redirect instead of NextResponse.redirect.

Runtime

Middleware only supports the Edge runtime. The Node.js runtime cannot be used.

file:///docs/app/building-your-application/routing/middleware#nextresponse
https://developer.mozilla.org/en-US/docs/Web/API/Response
file:///docs/app/building-your-application/rendering/edge-and-nodejs-runtimes


Version History

Version Changes

v13.1.0 Advanced Middleware flags added

v13.0.0 Middleware can modify request headers, response headers, and send responses

v12.2.0 Middleware is stable, please see the upgrade guide

v12.0.9 Enforce absolute URLs in Edge Runtime (PR)

v12.0.0 Middleware (Beta) added

file:///docs/messages/middleware-upgrade-guide
https://github.com/vercel/next.js/pull/33410


3.2.2.9 - not-found.js
Documentation path: /02-app/02-api-reference/02-file-conventions/not-found

Description: API reference for the not-found.js file.

The not-found file is used to render UI when the notFound function is thrown within a route segment. Along with serving a custom UI,
Next.js will return a 200 HTTP status code for streamed responses, and 404 for non-streamed responses.

app/not-found.tsx (tsx)

import Link from 'next/link'

export default function NotFound() {
  return (
    <div>
      <h2>Not Found</h2>
      <p>Could not find requested resource</p>
      <Link href="/">Return Home</Link>
    </div>
  )
}

app/blog/not-found.js (jsx)

import Link from 'next/link'

export default function NotFound() {
  return (
    <div>
      <h2>Not Found</h2>
      <p>Could not find requested resource</p>
      <Link href="/">Return Home</Link>
    </div>
  )
}

Good to know: In addition to catching expected notFound() errors, the root app/not-found.js file also handles any
unmatched URLs for your whole application. This means users that visit a URL that is not handled by your app will be shown the
UI exported by the app/not-found.js file.

Props

not-found.js components do not accept any props.

Data Fetching

By default, not-found is a Server Component. You can mark it as async to fetch and display data:

app/not-found.tsx (tsx)

import Link from 'next/link'
import { headers } from 'next/headers'

export default async function NotFound() {
  const headersList = headers()
  const domain = headersList.get('host')
  const data = await getSiteData(domain)
  return (
    <div>
      <h2>Not Found: {data.name}</h2>
      <p>Could not find requested resource</p>
      <p>
        View <Link href="/blog">all posts</Link>
      </p>
    </div>
  )
}

app/not-found.jsx (jsx)

import Link from 'next/link'
import { headers } from 'next/headers'

file:///docs/app/api-reference/functions/not-found


export default async function NotFound() {
  const headersList = headers()
  const domain = headersList.get('host')
  const data = await getSiteData(domain)
  return (
    <div>
      <h2>Not Found: {data.name}</h2>
      <p>Could not find requested resource</p>
      <p>
        View <Link href="/blog">all posts</Link>
      </p>
    </div>
  )
}

If you need to use Client Component hooks like usePathname to display content based on the path, you must fetch data on the client-
side instead.

Version History

Version Changes

v13.3.0 Root app/not-found handles global unmatched URLs.

v13.0.0 not-found introduced.



3.2.2.10 - page.js
Documentation path: /02-app/02-api-reference/02-file-conventions/page

Description: API reference for the page.js file.

A page is UI that is unique to a route.
app/blog/[slug]/page.tsx (tsx)

export default function Page({
  params,
  searchParams,
}: {
  params: { slug: string }
  searchParams: { [key: string]: string | string[] | undefined }
}) {
  return <h1>My Page</h1>
}

app/blog/[slug]/page.js (jsx)

export default function Page({ params, searchParams }) {
  return <h1>My Page</h1>
}

Props

paramsparams  (optional)

An object containing the dynamic route parameters from the root segment down to that page. For example:

Example URL paramsparams

app/shop/[slug]/page.js /shop/1 { slug: '1' }

app/shop/[category]/[item]/page.js /shop/1/2 { category: '1', item: '2' }

app/shop/[...slug]/page.js /shop/1/2 { slug: ['1', '2'] }

searchParamssearchParams  (optional)

An object containing the search parameters of the current URL. For example:

URL searchParamssearchParams

/shop?a=1 { a: '1' }

/shop?a=1&b=2 { a: '1', b: '2' }

/shop?a=1&a=2 { a: ['1', '2'] }

Good to know:

searchParams is a Dynamic API whose values cannot be known ahead of time. Using it will opt the page into dynamic
rendering at request time.
searchParams returns a plain JavaScript object and not a URLSearchParams instance.

Version History

Version Changes

v13.0.0 page introduced.

file:///docs/app/building-your-application/routing/dynamic-routes
https://developer.mozilla.org/docs/Learn/Common_questions/What_is_a_URL#parameters
file:///docs/app/building-your-application/rendering/server-components#server-rendering-strategies#dynamic-functions
file:///docs/app/building-your-application/rendering/server-components#dynamic-rendering


3.2.2.11 - Route Segment Config
Documentation path: /02-app/02-api-reference/02-file-conventions/route-segment-config

Description: Learn about how to configure options for Next.js route segments.

The Route Segment options allows you to configure the behavior of a Page, Layout, or Route Handler by directly exporting the following
variables:

Option Type Default

dynamic 'auto' \| 'force-dynamic' \| 'error' \| 'force-static' 'auto'

dynamicParams boolean true

revalidate false \| 0 \| number false

fetchCache 'auto' \| 'default-cache' \| 'only-cache' \| 'force-cache' \| 'force-no-
store' \| 'default-no-store' \| 'only-no-store' 'auto'

runtime 'nodejs' \| 'edge' 'nodejs'

preferredRegion 'auto' \| 'global' \| 'home' \| string \| string[] 'auto'

maxDuration number
Set by
deployment
platform

Options

dynamicdynamic

Change the dynamic behavior of a layout or page to fully static or fully dynamic.
layout.tsx | page.tsx | route.ts (tsx)

export const dynamic = 'auto'
// 'auto' | 'force-dynamic' | 'error' | 'force-static'

layout.js | page.js | route.js (js)

export const dynamic = 'auto'
// 'auto' | 'force-dynamic' | 'error' | 'force-static'

Good to know: The new model in the app directory favors granular caching control at the fetch request level over the binary
all-or-nothing model of getServerSideProps and getStaticProps at the page-level in the pages directory. The dynamic
option is a way to opt back in to the previous model as a convenience and provides a simpler migration path.

'auto''auto' (default): The default option to cache as much as possible without preventing any components from opting into dynamic
behavior.

'force-dynamic''force-dynamic': Force dynamic rendering, which will result in routes being rendered for each user at request time. This option
is equivalent to:

getServerSideProps() in the pages directory.

Setting the option of every fetch() request in a layout or page to { cache: 'no-store', next: { revalidate: 0 } }.

Setting the segment config to export const fetchCache = 'force-no-store'
'error''error': Force static rendering and cache the data of a layout or page by causing an error if any components use dynamic
functions or uncached data. This option is equivalent to:

getStaticProps() in the pages directory.
Setting the option of every fetch() request in a layout or page to { cache: 'force-cache' }.
Setting the segment config to fetchCache = 'only-cache', dynamicParams = false.
dynamic = 'error' changes the default of dynamicParams from true to false. You can opt back into dynamically rendering
pages for dynamic params not generated by generateStaticParams by manually setting dynamicParams = true.
'force-static''force-static': Force static rendering and cache the data of a layout or page by forcing cookies(), headers() and
useSearchParams() to return empty values.

Good to know:

file:///docs/app/building-your-application/routing/layouts-and-templates
file:///docs/app/building-your-application/routing/layouts-and-templates
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/rendering/server-components#dynamic-rendering
file:///docs/app/building-your-application/rendering/server-components#dynamic-functions
file:///docs/app/api-reference/functions/cookies
file:///docs/app/api-reference/functions/headers
file:///docs/app/api-reference/functions/use-search-params


Instructions on how to migrate from getServerSideProps and getStaticProps to dynamic: 'force-dynamic' and
dynamic: 'error' can be found in the upgrade guide.

dynamicParamsdynamicParams

Control what happens when a dynamic segment is visited that was not generated with generateStaticParams.
layout.tsx | page.tsx (tsx)

export const dynamicParams = true // true | false,

layout.js | page.js | route.js (js)

export const dynamicParams = true // true | false,

truetrue (default): Dynamic segments not included in generateStaticParams are generated on demand.
falsefalse: Dynamic segments not included in generateStaticParams will return a 404.

Good to know:

This option replaces the fallback: true | false | blocking option of getStaticPaths in the pages directory.
When dynamicParams = true, the segment uses Streaming Server Rendering.
If the dynamic = 'error' and dynamic = 'force-static' are used, it’ll change the default of dynamicParams to
false.

revalidaterevalidate

Set the default revalidation time for a layout or page. This option does not override the revalidate value set by individual fetch
requests.

layout.tsx | page.tsx | route.ts (tsx)

export const revalidate = false
// false | 0 | number

layout.js | page.js | route.js (js)

export const revalidate = false
// false | 0 | number

falsefalse (default): The default heuristic to cache any fetch requests that set their cache option to 'force-cache' or are
discovered before a dynamic function is used. Semantically equivalent to revalidate: Infinity which effectively means the
resource should be cached indefinitely. It is still possible for individual fetch requests to use cache: 'no-store' or
revalidate: 0 to avoid being cached and make the route dynamically rendered. Or set revalidate to a positive number lower
than the route default to increase the revalidation frequency of a route.
00: Ensure a layout or page is always dynamically rendered even if no dynamic functions or uncached data fetches are discovered.
This option changes the default of fetch requests that do not set a cache option to 'no-store' but leaves fetch requests that
opt into 'force-cache' or use a positive revalidate as is.
numbernumber: (in seconds) Set the default revalidation frequency of a layout or page to n seconds.

Good to know:

The revalidate value needs to be statically analyzable. For example revalidate = 600 is valid, but revalidate = 60 *
10 is not.
The revalidate value is not available when using runtime = 'edge'.

Revalidation Frequency

The lowest revalidate across each layout and page of a single route will determine the revalidation frequency of the entire route.
This ensures that child pages are revalidated as frequently as their parent layouts.
Individual fetch requests can set a lower revalidate than the route’s default revalidate to increase the revalidation frequency
of the entire route. This allows you to dynamically opt-in to more frequent revalidation for certain routes based on some criteria.

fetchCachefetchCache

This is an advanced option that should only be used if you specifically need to override the default behavior.

runtimeruntime

file:///docs/app/building-your-application/upgrading/app-router-migration#step-6-migrating-data-fetching-methods
file:///docs/app/building-your-application/upgrading/app-router-migration#step-6-migrating-data-fetching-methods
file:///docs/app/api-reference/functions/generate-static-params
file:///docs/app/building-your-application/routing/loading-ui-and-streaming#streaming-with-suspense
file:///docs/app/building-your-application/rendering/server-components#server-rendering-strategies#dynamic-functions
file:///docs/app/building-your-application/rendering/server-components#dynamic-rendering


We recommend using the Node.js runtime for rendering your application, and the Edge runtime for Middleware (only supported
option).

layout.tsx | page.tsx | route.ts (tsx)

export const runtime = 'nodejs'
// 'nodejs' | 'edge'

layout.js | page.js | route.js (js)

export const runtime = 'nodejs'
// 'nodejs' | 'edge'

'nodejs''nodejs' (default)
'edge''edge'

Learn more about the different runtimes.

preferredRegionpreferredRegion

layout.tsx | page.tsx | route.ts (tsx)

export const preferredRegion = 'auto'
// 'auto' | 'global' | 'home' | ['iad1', 'sfo1']

layout.js | page.js | route.js (js)

export const preferredRegion = 'auto'
// 'auto' | 'global' | 'home' | ['iad1', 'sfo1']

Support for preferredRegion, and regions supported, is dependent on your deployment platform.

Good to know:

If a preferredRegion is not specified, it will inherit the option of the nearest parent layout.
The root layout defaults to all regions.

maxDurationmaxDuration

By default, Next.js does not limit the execution of server-side logic (rendering a page or handling an API). Deployment platforms can use
maxDuration from the Next.js build output to add specific execution limits. For example, on Vercel.

Note: This settings requires Next.js 13.4.10 or higher.

layout.tsx | page.tsx | route.ts (tsx)

export const maxDuration = 5

layout.js | page.js | route.js (js)

export const maxDuration = 5

Good to know:

If using Server Actions, set the maxDuration at the page level to change the default timeout of all Server Actions used on
the page.

generateStaticParamsgenerateStaticParams

The generateStaticParams function can be used in combination with dynamic route segments to define the list of route segment
parameters that will be statically generated at build time instead of on-demand at request time.

See the API reference for more details.

file:///docs/app/building-your-application/rendering/edge-and-nodejs-runtimes
https://vercel.com/docs/functions/serverless-functions/runtimes#max-duration
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/routing/dynamic-routes
file:///docs/app/api-reference/functions/generate-static-params


3.2.2.12 - route.js
Documentation path: /02-app/02-api-reference/02-file-conventions/route

Description: API reference for the route.js special file.

Route Handlers allow you to create custom request handlers for a given route using the Web Request and Response APIs.

HTTP Methods

A route file allows you to create custom request handlers for a given route. The following HTTP methods are supported: GET, POST,
PUT, PATCH, DELETE, HEAD, and OPTIONS.

route.ts (ts)

export async function GET(request: Request) {}

export async function HEAD(request: Request) {}

export async function POST(request: Request) {}

export async function PUT(request: Request) {}

export async function DELETE(request: Request) {}

export async function PATCH(request: Request) {}

// If `OPTIONS` is not defined, Next.js will automatically implement `OPTIONS` and  set the appropriate Response `Allow` header depending on the other methods defined in the route handler.
export async function OPTIONS(request: Request) {}

route.js (js)

export async function GET(request) {}

export async function HEAD(request) {}

export async function POST(request) {}

export async function PUT(request) {}

export async function DELETE(request) {}

export async function PATCH(request) {}

// If `OPTIONS` is not defined, Next.js will automatically implement `OPTIONS` and  set the appropriate Response `Allow` header depending on the other methods defined in the route handler.
export async function OPTIONS(request) {}

Good to know: Route Handlers are only available inside the app directory. You do not need to use API Routes (pages) and
Route Handlers (app) together, as Route Handlers should be able to handle all use cases.

Parameters

requestrequest  (optional)

The request object is a NextRequest object, which is an extension of the Web Request API. NextRequest gives you further control
over the incoming request, including easily accessing cookies and an extended, parsed, URL object nextUrl.

contextcontext  (optional)

app/dashboard/[team]/route.ts (ts)

type Params = {
  team: string
}

export async function GET(request: Request, context: { params: Params }) {
  const team = context.params.team // '1'
}

// Define params type according to your route parameters (see table below)

app/dashboard/[team]/route.js (js)

https://developer.mozilla.org/docs/Web/API/Request
https://developer.mozilla.org/docs/Web/API/Response
https://developer.mozilla.org/docs/Web/HTTP/Methods
file:///docs/app/api-reference/functions/next-request
https://developer.mozilla.org/docs/Web/API/Request


export async function GET(request, context: { params }) {
  const team = context.params.team // '1'
}

Currently, the only value of context is params, which is an object containing the dynamic route parameters for the current route.

Example URL paramsparams

app/dashboard/[team]/route.js /dashboard/1 { team: '1' }

app/shop/[tag]/[item]/route.js /shop/1/2 { tag: '1', item: '2' }

app/blog/[...slug]/route.js /blog/1/2 { slug: ['1', '2'] }

NextResponse

Route Handlers can extend the Web Response API by returning a NextResponse object. This allows you to easily set cookies, headers,
redirect, and rewrite. View the API reference.

Version History

Version Changes

v13.2.0 Route handlers are introduced.

file:///docs/app/building-your-application/routing/dynamic-routes
file:///docs/app/api-reference/functions/next-response


3.2.2.13 - template.js
Documentation path: /02-app/02-api-reference/02-file-conventions/template

Description: API Reference for the template.js file.

A template file is similar to a layout in that it wraps a layout or page. Unlike layouts that persist across routes and maintain state,
templates are given a unique key, meaning children Client Components reset their state on navigation.

app/template.tsx (tsx)

export default function Template({ children }: { children: React.ReactNode }) {
  return <div>{children}</div>
}

app/template.jsx (jsx)

export default function Template({ children }) {
  return <div>{children}</div>
}

While less common, you might choose to use a template over a layout if you want:

Features that rely on useEffect (e.g logging page views) and useState (e.g a per-page feedback form).
To change the default framework behavior. For example, Suspense Boundaries inside layouts only show the fallback the first time
the Layout is loaded and not when switching pages. For templates, the fallback is shown on each navigation.

Props

childrenchildren  (required)

Template accepts a children prop. For example:

Output (jsx)

<Layout>
  {/* Note that the template is automatically given a unique key. */}
  <Template key={routeParam}>{children}</Template>
</Layout>

Good to know:

By default, template is a Server Component, but can also be used as a Client Component through the "use client"
directive.
When a user navigates between routes that share a template, a new instance of the component is mounted, DOM
elements are recreated, state is not preserved in Client Components, and effects are re-synchronized.

Version History

Version Changes

v13.0.0 template introduced.

file:///docs/app/building-your-application/routing/layouts-and-templates#layouts
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/rendering/client-components


3.2.3 - Functions
Documentation path: /02-app/02-api-reference/04-functions/index

Description: API Reference for Next.js Functions and Hooks.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}



3.2.3.1 - cookies
Documentation path: /02-app/02-api-reference/04-functions/cookies

Description: API Reference for the cookies function.

Related:

Title: Next Steps

Related Description: For more information on what to do next, we recommend the following sections

Links:

app/building-your-application/data-fetching/server-actions-and-mutations

The cookies function allows you to read the HTTP incoming request cookies from a Server Component or write outgoing request
cookies in a Server Action or Route Handler.

Good to know: cookies() is a Dynamic Function whose returned values cannot be known ahead of time. Using it in a layout
or page will opt a route into dynamic rendering at request time.

cookies().get(name)cookies().get(name)
A method that takes a cookie name and returns an object with name and value. If a cookie with name isn’t found, it returns undefined.
If multiple cookies match, it will only return the first match.

app/page.js (jsx)

import { cookies } from 'next/headers'

export default function Page() {
  const cookieStore = cookies()
  const theme = cookieStore.get('theme')
  return '...'
}

cookies().getAll()cookies().getAll()
A method that is similar to get, but returns a list of all the cookies with a matching name. If name is unspecified, it returns all the
available cookies.

app/page.js (jsx)

import { cookies } from 'next/headers'

export default function Page() {
  const cookieStore = cookies()
  return cookieStore.getAll().map((cookie) => (
    <div key={cookie.name}>
      <p>Name: {cookie.name}</p>
      <p>Value: {cookie.value}</p>
    </div>
  ))
}

cookies().has(name)cookies().has(name)
A method that takes a cookie name and returns a boolean based on if the cookie exists (true) or not (false).

app/page.js (jsx)

import { cookies } from 'next/headers'

export default function Page() {
  const cookieStore = cookies()
  const hasCookie = cookieStore.has('theme')
  return '...'
}

cookies().set(name, value, options)cookies().set(name, value, options)

file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/rendering/server-components#server-rendering-strategies#dynamic-functions
file:///docs/app/building-your-application/rendering/server-components#dynamic-rendering


A method that takes a cookie name, value, and options and sets the outgoing request cookie.

Good to know: HTTP does not allow setting cookies after streaming starts, so you must use .set() in a Server Action or Route
Handler.

app/actions.js (js)

'use server'

import { cookies } from 'next/headers'

async function create(data) {
  cookies().set('name', 'lee')
  // or
  cookies().set('name', 'lee', { secure: true })
  // or
  cookies().set({
    name: 'name',
    value: 'lee',
    httpOnly: true,
    path: '/',
  })
}

Deleting cookies

Good to know: You can only delete cookies in a Server Action or Route Handler.

There are several options for deleting a cookie:

cookies().delete(name)cookies().delete(name)

You can explicitly delete a cookie with a given name.
app/actions.js (js)

'use server'

import { cookies } from 'next/headers'

async function delete(data) {
  cookies().delete('name')
}

cookies().set(name, '')cookies().set(name, '')

Alternatively, you can set a new cookie with the same name and an empty value.
app/actions.js (js)

'use server'

import { cookies } from 'next/headers'

async function delete(data) {
  cookies().set('name', '')
}

Good to know: .set() is only available in a Server Action or Route Handler.

cookies().set(name, value, { maxAge: 0 })cookies().set(name, value, { maxAge: 0 })

Setting maxAge to 0 will immediately expire a cookie.

app/actions.js (js)

'use server'

import { cookies } from 'next/headers'

async function delete(data) {
  cookies().set('name', 'value', { maxAge: 0 })
}

cookies().set(name, value, { expires: timestamp })cookies().set(name, value, { expires: timestamp })

file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/routing/route-handlers


Setting expires to any value in the past will immediately expire a cookie.

app/actions.js (js)

'use server'

import { cookies } from 'next/headers'

async function delete(data) {
  const oneDay = 24 * 60 * 60 * 1000
  cookies().set('name', 'value', { expires: Date.now() - oneDay })
}

Good to know: You can only delete cookies that belong to the same domain from which .set() is called. Additionally, the
code must be executed on the same protocol (HTTP or HTTPS) as the cookie you want to delete.

Version History

Version Changes

v13.0.0 cookies introduced.



3.2.3.2 - draftMode
Documentation path: /02-app/02-api-reference/04-functions/draft-mode

Description: API Reference for the draftMode function.

The draftMode function allows you to detect Draft Mode inside a Server Component.

app/page.js (jsx)

import { draftMode } from 'next/headers'

export default function Page() {
  const { isEnabled } = draftMode()
  return (
    <main>
      <h1>My Blog Post</h1>
      <p>Draft Mode is currently {isEnabled ? 'Enabled' : 'Disabled'}</p>
    </main>
  )
}

Version History

Version Changes

v13.4.0 draftMode introduced.

file:///docs/app/building-your-application/configuring/draft-mode
file:///docs/app/building-your-application/rendering/server-components


3.2.3.3 - fetch
Documentation path: /02-app/02-api-reference/04-functions/fetch

Description: API reference for the extended fetch function.

Next.js extends the native Web fetch() API to allow each request on the server to set its own persistent caching semantics.

In the browser, the cache option indicates how a fetch request will interact with the browser’s HTTP cache. With this extension, cache
indicates how a server-side fetch request will interact with the framework’s persistent HTTP cache.

You can call fetch with async and await directly within Server Components.

app/page.tsx (tsx)

export default async function Page() {
  // This request should be cached until manually invalidated.
  // Similar to `getStaticProps`.
  // `force-cache` is the default and can be omitted.
  const staticData = await fetch(`https://...`, { cache: 'force-cache' })

  // This request should be refetched on every request.
  // Similar to `getServerSideProps`.
  const dynamicData = await fetch(`https://...`, { cache: 'no-store' })

  // This request should be cached with a lifetime of 10 seconds.
  // Similar to `getStaticProps` with the `revalidate` option.
  const revalidatedData = await fetch(`https://...`, {
    next: { revalidate: 10 },
  })

  return <div>...</div>
}

app/page.js (jsx)

export default async function Page() {
  // This request should be cached until manually invalidated.
  // Similar to `getStaticProps`.
  // `force-cache` is the default and can be omitted.
  const staticData = await fetch(`https://...`, { cache: 'force-cache' })

  // This request should be refetched on every request.
  // Similar to `getServerSideProps`.
  const dynamicData = await fetch(`https://...`, { cache: 'no-store' })

  // This request should be cached with a lifetime of 10 seconds.
  // Similar to `getStaticProps` with the `revalidate` option.
  const revalidatedData = await fetch(`https://...`, {
    next: { revalidate: 10 },
  })

  return <div>...</div>
}

fetch(url, options)fetch(url, options)
Since Next.js extends the Web fetch() API, you can use any of the native options available.

options.cacheoptions.cache

Configure how the request should interact with Next.js Data Cache.

fetch(`https://...`, { cache: 'force-cache' | 'no-store' })

force-cacheforce-cache (default) - Next.js looks for a matching request in its Data Cache.
If there is a match and it is fresh, it will be returned from the cache.
If there is no match or a stale match, Next.js will fetch the resource from the remote server and update the cache with the
downloaded resource.
no-storeno-store - Next.js fetches the resource from the remote server on every request without looking in the cache, and it will not
update the cache with the downloaded resource.

Good to know:

https://developer.mozilla.org/docs/Web/API/Fetch_API
https://developer.mozilla.org/docs/Web/API/Fetch_API
https://developer.mozilla.org/docs/Web/API/fetch#parameters
file:///docs/app/building-your-application/caching#data-cache


If you don’t provide a cache option, Next.js will default to force-cache, unless a dynamic function such as cookies() is
used, in which case it will default to no-store.
The no-cache option behaves the same way as no-store in Next.js.

options.next.revalidateoptions.next.revalidate

fetch(`https://...`, { next: { revalidate: false | 0 | number } })

Set the cache lifetime of a resource (in seconds).

falsefalse - Cache the resource indefinitely. Semantically equivalent to revalidate: Infinity. The HTTP cache may evict older
resources over time.
00 - Prevent the resource from being cached.
numbernumber - (in seconds) Specify the resource should have a cache lifetime of at most n seconds.

Good to know:

If an individual fetch() request sets a revalidate number lower than the default revalidate of a route, the whole
route revalidation interval will be decreased.
If two fetch requests with the same URL in the same route have different revalidate values, the lower value will be used.
As a convenience, it is not necessary to set the cache option if revalidate is set to a number since 0 implies cache:
'no-store' and a positive value implies cache: 'force-cache'.
Conflicting options such as { revalidate: 0, cache: 'force-cache' } or { revalidate: 10, cache: 'no-
store' } will cause an error.

options.next.tagsoptions.next.tags

fetch(`https://...`, { next: { tags: ['collection'] } })

Set the cache tags of a resource. Data can then be revalidated on-demand using revalidateTag. The max length for a custom tag is
256 characters and the max tag items is 64.

Version History

Version Changes

v13.0.0 fetch introduced.

file:///docs/app/building-your-application/rendering/server-components#server-rendering-strategies#dynamic-functions
file:///docs/app/api-reference/file-conventions/route-segment-config#revalidate
https://nextjs.org/docs/app/api-reference/functions/revalidateTag


3.2.3.4 - generateImageMetadata
Documentation path: /02-app/02-api-reference/04-functions/generate-image-metadata

Description: Learn how to generate multiple images in a single Metadata API special file.

Related:

Title: Next Steps

Related Description: View all the Metadata API options.

Links:

app/api-reference/file-conventions/metadata
app/building-your-application/optimizing/metadata

You can use generateImageMetadata to generate different versions of one image or return multiple images for one route segment.
This is useful for when you want to avoid hard-coding metadata values, such as for icons.

Parameters

generateImageMetadata function accepts the following parameters:

paramsparams (optional)

An object containing the dynamic route parameters object from the root segment down to the segment generateImageMetadata is
called from.

icon.tsx (tsx)

export function generateImageMetadata({
  params,
}: {
  params: { slug: string }
}) {
  // ...
}

icon.js (jsx)

export function generateImageMetadata({ params }) {
  // ...
}

Route URL paramsparams

app/shop/icon.js /shop undefined

app/shop/[slug]/icon.js /shop/1 { slug: '1' }

app/shop/[tag]/[item]/icon.js /shop/1/2 { tag: '1', item: '2' }

app/shop/[...slug]/icon.js /shop/1/2 { slug: ['1', '2'] }

Returns

The generateImageMetadata function should return an array of objects containing the image’s metadata such as alt and size. In
addition, each item must include an id value which will be passed to the props of the image generating function.

Image Metadata Object Type

id string (required)

alt string

size { width: number; height: number }

contentType string

icon.tsx (tsx)

file:///docs/app/building-your-application/routing/dynamic-routes


import { ImageResponse } from 'next/og'

export function generateImageMetadata() {
  return [
    {
      contentType: 'image/png',
      size: { width: 48, height: 48 },
      id: 'small',
    },
    {
      contentType: 'image/png',
      size: { width: 72, height: 72 },
      id: 'medium',
    },
  ]
}

export default function Icon({ id }: { id: string }) {
  return new ImageResponse(
    (
      <div
        style={{
          width: '100%',
          height: '100%',
          display: 'flex',
          alignItems: 'center',
          justifyContent: 'center',
          fontSize: 88,
          background: '#000',
          color: '#fafafa',
        }}
      >
        Icon {id}
      </div>
    )
  )
}

icon.js (jsx)

import { ImageResponse } from 'next/og'

export function generateImageMetadata() {
  return [
    {
      contentType: 'image/png',
      size: { width: 48, height: 48 },
      id: 'small',
    },
    {
      contentType: 'image/png',
      size: { width: 72, height: 72 },
      id: 'medium',
    },
  ]
}

export default function Icon({ id }) {
  return new ImageResponse(
    (
      <div
        style={{
          width: '100%',
          height: '100%',
          display: 'flex',
          alignItems: 'center',
          justifyContent: 'center',
          fontSize: 88,
          background: '#000',
          color: '#fafafa',
        }}
      >
        Icon {id}
      </div>
    )
  )
}



Examples

Using external data

This example uses the params object and external data to generate multiple Open Graph images for a route segment.

app/products/[id]/opengraph-image.tsx (tsx)

import { ImageResponse } from 'next/og'
import { getCaptionForImage, getOGImages } from '@/app/utils/images'

export async function generateImageMetadata({
  params,
}: {
  params: { id: string }
}) {
  const images = await getOGImages(params.id)

  return images.map((image, idx) => ({
    id: idx,
    size: { width: 1200, height: 600 },
    alt: image.text,
    contentType: 'image/png',
  }))
}

export default async function Image({
  params,
  id,
}: {
  params: { id: string }
  id: number
}) {
  const productId = params.id
  const imageId = id
  const text = await getCaptionForImage(productId, imageId)

  return new ImageResponse(
    (
      <div
        style={
          {
            // ...
          }
        }
      >
        {text}
      </div>
    )
  )
}

app/products/[id]/opengraph-image.js (jsx)

import { ImageResponse } from 'next/og'
import { getCaptionForImage, getOGImages } from '@/app/utils/images'

export async function generateImageMetadata({ params }) {
  const images = await getOGImages(params.id)

  return images.map((image, idx) => ({
    id: idx,
    size: { width: 1200, height: 600 },
    alt: image.text,
    contentType: 'image/png',
  }))
}

export default async function Image({ params, id }) {
  const productId = params.id
  const imageId = id
  const text = await getCaptionForImage(productId, imageId)

  return new ImageResponse(
    (
      <div
        style={
          {

file:///docs/app/api-reference/file-conventions/metadata/opengraph-image


            // ...
          }
        }
      >
        {text}
      </div>
    )
  )
}

Version History

Version Changes

v13.3.0 generateImageMetadata introduced.



3.2.3.5 - Metadata Object and generateMetadata Options
Documentation path: /02-app/02-api-reference/04-functions/generate-metadata

Description: Learn how to add Metadata to your Next.js application for improved search engine optimization (SEO) and web
shareability.

Related:

Title: Next Steps

Related Description: View all the Metadata API options.

Links:

app/api-reference/file-conventions/metadata
app/api-reference/functions/generate-viewport
app/building-your-application/optimizing/metadata

This page covers all Config-based Metadata options with generateMetadata and the static metadata object.

layout.tsx | page.tsx (tsx)

import type { Metadata } from 'next'

// either Static metadata
export const metadata: Metadata = {
  title: '...',
}

// or Dynamic metadata
export async function generateMetadata({ params }) {
  return {
    title: '...',
  }
}

layout.js | page.js (jsx)

// either Static metadata
export const metadata = {
  title: '...',
}

// or Dynamic metadata
export async function generateMetadata({ params }) {
  return {
    title: '...',
  }
}

Good to know:

The metadata object and generateMetadata function exports are only supported in Server Components.
You cannot export both the metadata object and generateMetadata function from the same route segment.

The metadatametadata object

To define static metadata, export a Metadata object from a layout.js or page.js file.

layout.tsx | page.tsx (tsx)

import type { Metadata } from 'next'

export const metadata: Metadata = {
  title: '...',
  description: '...',
}

export default function Page() {}

layout.js | page.js (jsx)

export const metadata = {
  title: '...',
  description: '...',



}

export default function Page() {}

See the Metadata Fields for a complete list of supported options.

generateMetadatagenerateMetadata function

Dynamic metadata depends on dynamic information, such as the current route parameters, external data, or metadata in parent
segments, can be set by exporting a generateMetadata function that returns a Metadata object.

app/products/[id]/page.tsx (tsx)

import type { Metadata, ResolvingMetadata } from 'next'

type Props = {
  params: { id: string }
  searchParams: { [key: string]: string | string[] | undefined }
}

export async function generateMetadata(
  { params, searchParams }: Props,
  parent: ResolvingMetadata
): Promise<Metadata> {
  // read route params
  const id = params.id

  // fetch data
  const product = await fetch(`https://.../${id}`).then((res) => res.json())

  // optionally access and extend (rather than replace) parent metadata
  const previousImages = (await parent).openGraph?.images || []

  return {
    title: product.title,
    openGraph: {
      images: ['/some-specific-page-image.jpg', ...previousImages],
    },
  }
}

export default function Page({ params, searchParams }: Props) {}

app/products/[id]/page.js (jsx)

export async function generateMetadata({ params, searchParams }, parent) {
  // read route params
  const id = params.id

  // fetch data
  const product = await fetch(`https://.../${id}`).then((res) => res.json())

  // optionally access and extend (rather than replace) parent metadata
  const previousImages = (await parent).openGraph?.images || []

  return {
    title: product.title,
    openGraph: {
      images: ['/some-specific-page-image.jpg', ...previousImages],
    },
  }
}

export default function Page({ params, searchParams }) {}

Parameters

generateMetadata function accepts the following parameters:

props - An object containing the parameters of the current route:

params - An object containing the dynamic route parameters object from the root segment down to the segment
generateMetadata is called from. Examples:

file:///docs/app/building-your-application/routing/dynamic-routes


Route URL paramsparams

app/shop/[slug]/page.js /shop/1 { slug: '1' }

app/shop/[tag]/[item]/page.js /shop/1/2 { tag: '1', item: '2' }

app/shop/[...slug]/page.js /shop/1/2 { slug: ['1', '2'] }

searchParams - An object containing the current URL’s search params. Examples:

URL searchParamssearchParams

/shop?a=1 { a: '1' }

/shop?a=1&b=2 { a: '1', b: '2' }

/shop?a=1&a=2 { a: ['1', '2'] }

parent - A promise of the resolved metadata from parent route segments.

Returns

generateMetadata should return a Metadata object containing one or more metadata fields.

Good to know:

If metadata doesn’t depend on runtime information, it should be defined using the static metadata object rather than
generateMetadata.
fetch requests are automatically memoized for the same data across generateMetadata, generateStaticParams,
Layouts, Pages, and Server Components. React cache can be used if fetch is unavailable.
searchParams are only available in page.js segments.
The redirect() and notFound() Next.js methods can also be used inside generateMetadata.

Metadata Fields

titletitle

The title attribute is used to set the title of the document. It can be defined as a simple string or an optional template object.

String

layout.js | page.js (jsx)

export const metadata = {
  title: 'Next.js',
}

```html filename=” output” hideLineNumbers

Template object

<div class="code-header"><i>app/layout.tsx (tsx)</i></div>
```tsx
import type { Metadata } from 'next'

export const metadata: Metadata = {
  title: {
    template: '...',
    default: '...',
    absolute: '...',
  },
}

app/layout.js (jsx)

export const metadata = {
  title: {
    default: '...',

https://developer.mozilla.org/docs/Learn/Common_questions/What_is_a_URL#parameters
file:///docs/app/building-your-application/caching#request-memoization
file:///docs/app/building-your-application/caching#request-memoization
file:///docs/app/api-reference/functions/redirect
file:///docs/app/api-reference/functions/not-found


    template: '...',
    absolute: '...',
  },
}

Default

title.default can be used to provide a fallback title to child route segments that don’t define a title.

app/layout.tsx (tsx)

import type { Metadata } from 'next'

export const metadata: Metadata = {
  title: {
    default: 'Acme',
  },
}

app/about/page.tsx (tsx)

import type { Metadata } from 'next'

export const metadata: Metadata = {}

// Output: <title>Acme</title>

Template

title.template can be used to add a prefix or a suffix to titles defined in child route segments.

app/layout.tsx (tsx)

import type { Metadata } from 'next'

export const metadata: Metadata = {
  title: {
    template: '%s | Acme',
    default: 'Acme', // a default is required when creating a template
  },
}

app/layout.js (jsx)

export const metadata = {
  title: {
    template: '%s | Acme',
    default: 'Acme', // a default is required when creating a template
  },
}

app/about/page.tsx (tsx)

import type { Metadata } from 'next'

export const metadata: Metadata = {
  title: 'About',
}

// Output: <title>About | Acme</title>

app/about/page.js (jsx)

export const metadata = {
  title: 'About',
}

// Output: <title>About | Acme</title>

Good to know:

title.template applies to child route segments and not the segment it’s defined in. This means:

title.default is required when you add a title.template.

title.template defined in layout.js will not apply to a title defined in a page.js of the same route segment.

title.template defined in page.js has no effect because a page is always the terminating segment (it doesn’t have any
children route segments).



title.template has no effect if a route has not defined a title or title.default.

Absolute

title.absolute can be used to provide a title that ignores title.template set in parent segments.

app/layout.tsx (tsx)

import type { Metadata } from 'next'

export const metadata: Metadata = {
  title: {
    template: '%s | Acme',
  },
}

app/layout.js (jsx)

export const metadata = {
  title: {
    template: '%s | Acme',
  },
}

app/about/page.tsx (tsx)

import type { Metadata } from 'next'

export const metadata: Metadata = {
  title: {
    absolute: 'About',
  },
}

// Output: <title>About</title>

app/about/page.js (jsx)

export const metadata = {
  title: {
    absolute: 'About',
  },
}

// Output: <title>About</title>

Good to know:

layout.js
title (string) and title.default define the default title for child segments (that do not define their own title). It will
augment title.template from the closest parent segment if it exists.

title.absolute defines the default title for child segments. It ignores title.template from parent segments.

title.template defines a new title template for child segments.

page.js
If a page does not define its own title the closest parents resolved title will be used.
title (string) defines the routes title. It will augment title.template from the closest parent segment if it exists.
title.absolute defines the route title. It ignores title.template from parent segments.
title.template has no effect in page.js because a page is always the terminating segment of a route.

descriptiondescription

layout.js | page.js (jsx)

export const metadata = {
  description: 'The React Framework for the Web',
}

```html filename=” output” hideLineNumbers

Basic Fields

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx



export const metadata = {
  generator: 'Next.js',
  applicationName: 'Next.js',
  referrer: 'origin-when-cross-origin',
  keywords: ['Next.js', 'React', 'JavaScript'],
  authors: [{ name: 'Seb' }, { name: 'Josh', url: 'https://nextjs.org' }],
  creator: 'Jiachi Liu',
  publisher: 'Sebastian Markbåge',
  formatDetection: {
    email: false,
    address: false,
    telephone: false,
  },
}

```html filename=” output” hideLineNumbers

`metadataBase`

`metadataBase` is a convenience option to set a base URL prefix for `metadata` fields that require a fully

- `metadataBase` allows URL-based `metadata` fields defined in the **current route segment and below** to
- The field's relative path will be composed with `metadataBase` to form a fully qualified URL.
- If not configured, `metadataBase` is **automatically populated** with a [default value](#default-value).

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  metadataBase: new URL('https://acme.com'),
  alternates: {
    canonical: '/',
    languages: {
      'en-US': '/en-US',
      'de-DE': '/de-DE',
    },
  },
  openGraph: {
    images: '/og-image.png',
  },
}

```html filename=” output” hideLineNumbers

> **Good to know**:
>
> - `metadataBase` is typically set in root `app/layout.js` to apply to URL-based `metadata` fields across
> - All URL-based `metadata` fields that require absolute URLs can be configured with a `metadataBase` option
> - `metadataBase` can contain a subdomain e.g. `https://app.acme.com` or base path e.g. `https://acme.com/start/from/here`
> - If a `metadata` field provides an absolute URL, `metadataBase` will be ignored.
> - Using a relative path in a URL-based `metadata` field without configuring a `metadataBase` will cause
> - Next.js will normalize duplicate slashes between `metadataBase` (e.g. `https://acme.com/`) and a relative

Default value

If not configured, `metadataBase` has a **default value**.

> On Vercel:
>
> - For production deployments, `VERCEL_PROJECT_PRODUCTION_URL` will be used.
> - For preview deployments, `VERCEL_BRANCH_URL` will take priority, and fallback to `VERCEL_URL` if it's not present.
>
> If these values are present they will be used as the **default value** of `metadataBase`, otherwise it falls back to `http://localhost:${process.env.PORT || 3000}`. This allows Open Graph images to work on both local build and Vercel preview and production deployments. When overriding the default, we recommend using environment variables to compute the URL. This allows configuring a URL for local development, staging, and production environments.
>
> See more details about these environment variables in the [System Environment Variables](https://vercel.com/docs/concepts/projects/environment-variables/system-environment-variables) docs.

URL Composition

URL composition favors developer intent over default directory traversal semantics.

- Trailing slashes between `metadataBase` and `metadata` fields are normalized.
- An "absolute" path in a `metadata` field (that typically would replace the whole URL path) is treated as a "relative" path (starting from the end of `metadataBase`).

For example, given the following `metadataBase`:

<div class="code-header"><i>app/layout.tsx (tsx)</i></div>
```tsx



import type { Metadata } from 'next'

export const metadata: Metadata = {
  metadataBase: new URL('https://acme.com'),
}

app/layout.js (jsx)

export const metadata = {
  metadataBase: new URL('https://acme.com'),
}

Any metadata fields that inherit the above metadataBase and set their own value will be resolved as follows:

metadatametadata field Resolved URL

/ https://acme.com

./ https://acme.com

payments https://acme.com/payments

/payments https://acme.com/payments

./payments https://acme.com/payments

../payments https://acme.com/payments

https://beta.acme.com/payments https://beta.acme.com/payments

openGraphopenGraph

layout.js | page.js (jsx)

export const metadata = {
  openGraph: {
    title: 'Next.js',
    description: 'The React Framework for the Web',
    url: 'https://nextjs.org',
    siteName: 'Next.js',
    images: [
      {
        url: 'https://nextjs.org/og.png', // Must be an absolute URL
        width: 800,
        height: 600,
      },
      {
        url: 'https://nextjs.org/og-alt.png', // Must be an absolute URL
        width: 1800,
        height: 1600,
        alt: 'My custom alt',
      },
    ],
    locale: 'en_US',
    type: 'website',
  },
}

```html filename=” output” hideLineNumbers

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  openGraph: {
    title: 'Next.js',
    description: 'The React Framework for the Web',
    type: 'article',
    publishedTime: '2023-01-01T00:00:00.000Z',
    authors: ['Seb', 'Josh'],
  },
}

```html filename=” output” hideLineNumbers

> **Good to know**:

>
> - It may be more convenient to use the [file-based Metadata API](/docs/app/api-reference/file-conventions

`robots`

```tsx
import type { Metadata } from 'next'

export const metadata: Metadata = {
  robots: {
    index: false,
    follow: true,
    nocache: true,
    googleBot: {
      index: true,
      follow: false,
      noimageindex: true,
      'max-video-preview': -1,
      'max-image-preview': 'large',
      'max-snippet': -1,
    },
  },
}

```html filename=” output” hideLineNumbers

`icons`

> **Good to know**: We recommend using the [file-based Metadata API](/docs/app/api-reference/file-conventions

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  icons: {
    icon: '/icon.png',
    shortcut: '/shortcut-icon.png',
    apple: '/apple-icon.png',
    other: {
      rel: 'apple-touch-icon-precomposed',
      url: '/apple-touch-icon-precomposed.png',
    },
  },
}

```html filename=” output” hideLineNumbers

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  icons: {
    icon: [
      { url: '/icon.png' },
      new URL('/icon.png', 'https://example.com'),
      { url: '/icon-dark.png', media: '(prefers-color-scheme: dark)' },
    ],
    shortcut: ['/shortcut-icon.png'],
    apple: [
      { url: '/apple-icon.png' },
      { url: '/apple-icon-x3.png', sizes: '180x180', type: 'image/png' },
    ],
    other: [
      {
        rel: 'apple-touch-icon-precomposed',
        url: '/apple-touch-icon-precomposed.png',
      },
    ],
  },
}

```html filename=” output” hideLineNumbers

> **Good to know**: The `msapplication-*` meta tags are no longer supported in Chromium builds of Microsoft

`themeColor`

> **Deprecated**: The `themeColor` option in `metadata` is deprecated as of Next.js 14. Please use the [`viewport`

`manifest`

A web application manifest, as defined in the [Web Application Manifest specification](https://developer.mozilla

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  manifest: 'https://nextjs.org/manifest.json',
}

```html filename=” output” hideLineNumbers

`twitter`

The Twitter specification is (surprisingly) used for more than just X (formerly known as Twitter).

Learn more about the [Twitter Card markup reference](https://developer.twitter.com/en/docs/twitter-for-websites

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  twitter: {
    card: 'summary_large_image',
    title: 'Next.js',
    description: 'The React Framework for the Web',
    siteId: '1467726470533754880',
    creator: '@nextjs',
    creatorId: '1467726470533754880',
    images: ['https://nextjs.org/og.png'], // Must be an absolute URL
  },
}

```html filename=” output” hideLineNumbers

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  twitter: {
    card: 'app',
    title: 'Next.js',
    description: 'The React Framework for the Web',
    siteId: '1467726470533754880',
    creator: '@nextjs',
    creatorId: '1467726470533754880',
    images: {
      url: 'https://nextjs.org/og.png',
      alt: 'Next.js Logo',
    },
    app: {
      name: 'twitter_app',
      id: {
        iphone: 'twitter_app://iphone',
        ipad: 'twitter_app://ipad',
        googleplay: 'twitter_app://googleplay',
      },
      url: {
        iphone: 'https://iphone_url',
        ipad: 'https://ipad_url',
      },
    },
  },
}

```html filename=” output” hideLineNumbers

`viewport`

> **Deprecated**: The `viewport` option in `metadata` is deprecated as of Next.js 14. Please use the [`viewport`

`verification`

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  verification: {



    google: 'google',
    yandex: 'yandex',
    yahoo: 'yahoo',
    other: {
      me: ['my-email', 'my-link'],
    },
  },
}

```html filename=” output” hideLineNumbers

`appleWebApp`

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  itunes: {
    appId: 'myAppStoreID',
    appArgument: 'myAppArgument',
  },
  appleWebApp: {
    title: 'Apple Web App',
    statusBarStyle: 'black-translucent',
    startupImage: [
      '/assets/startup/apple-touch-startup-image-768x1004.png',
      {
        url: '/assets/startup/apple-touch-startup-image-1536x2008.png',
        media: '(device-width: 768px) and (device-height: 1024px)',
      },
    ],
  },
}

```html filename=” output” hideLineNumbers

`alternates`

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  alternates: {
    canonical: 'https://nextjs.org',
    languages: {
      'en-US': 'https://nextjs.org/en-US',
      'de-DE': 'https://nextjs.org/de-DE',
    },
    media: {
      'only screen and (max-width: 600px)': 'https://nextjs.org/mobile',
    },
    types: {
      'application/rss+xml': 'https://nextjs.org/rss',
    },
  },
}

```html filename=” output” hideLineNumbers

`appLinks`

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  appLinks: {
    ios: {
      url: 'https://nextjs.org/ios',
      app_store_id: 'app_store_id',
    },
    android: {
      package: 'com.example.android/package',
      app_name: 'app_name_android',
    },
    web: {
      url: 'https://nextjs.org/web',
      should_fallback: true,
    },
  },



}

```html filename=” output” hideLineNumbers

`archives`

Describes a collection of records, documents, or other materials of historical interest ([source](https://www.w3.org/TR/2011/WD-html5-20110113/links.html#rel-archives)).

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  archives: ['https://nextjs.org/13'],
}

```html filename=” output” hideLineNumbers

`assets`

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  assets: ['https://nextjs.org/assets'],
}

```html filename=” output” hideLineNumbers

`bookmarks`

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  bookmarks: ['https://nextjs.org/13'],
}

```html filename=” output” hideLineNumbers

`category`

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  category: 'technology',
}

```html filename=” output” hideLineNumbers

`other`

All metadata options should be covered using the built-in support. However, there may be custom metadata tags

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  other: {
    custom: 'meta',
  },
}

```html filename=” output” hideLineNumbers

If you want to generate multiple same key meta tags you can use array value.

<div class="code-header"><i>layout.js | page.js (jsx)</i></div>
```jsx
export const metadata = {
  other: {
    custom: ['meta1', 'meta2'],
  },
}

```html filename=” output” hideLineNumbers

Unsupported Metadata

The following metadata types do not currently have built-in support. However, they can still be rendered in

| Metadata | Recommendation
| ----------------------------- | --
| `<meta http-equiv="...">` | Use appropriate HTTP Headers via [`redirect()`](/docs/app/api-reference/
| `<base>` | Render the tag in the layout or page itself.
| `<noscript>` | Render the tag in the layout or page itself.
| `<style>` | Learn more about [styling in Next.js](/docs/app/building-your-application
| `<script>` | Learn more about [using scripts](/docs/app/building-your-application/optimizing
| `<link rel="stylesheet" />` | `import` stylesheets directly in the layout or page itself.
| `<link rel="preload />` | Use [ReactDOM preload method](#link-relpreload) |
| `<link rel="preconnect" />` | Use [ReactDOM preconnect method](#link-relpreconnect)
| `<link rel="dns-prefetch" />` | Use [ReactDOM prefetchDNS method](#link-reldns-prefetch)

Resource hints

The `<link>` element has a number of `rel` keywords that can be used to hint to the browser that an external

While the Metadata API doesn't directly support these hints, you can use new [`ReactDOM` methods](https://github.com/facebook/react/pull/26237) to safely insert them into the `<head>` of the document.

<div class="code-header"><i>app/preload-resources.tsx (tsx)</i></div>
```tsx
'use client'

import ReactDOM from 'react-dom'

export function PreloadResources() {
  ReactDOM.preload('...', { as: '...' })
  ReactDOM.preconnect('...', { crossOrigin: '...' })
  ReactDOM.prefetchDNS('...')

  return null
}

app/preload-resources.js (jsx)

'use client'

import ReactDOM from 'react-dom'

export function PreloadResources() {
  ReactDOM.preload('...', { as: '...' })
  ReactDOM.preconnect('...', { crossOrigin: '...' })
  ReactDOM.prefetchDNS('...')

  return null
}

<link rel="preload"><link rel="preload">

Start loading a resource early in the page rendering (browser) lifecycle. MDN Docs.

ReactDOM.preload(href: string, options: { as: string })

```html filename=” output” hideLineNumbers

`<link rel="preconnect">`

Preemptively initiate a connection to an origin. [MDN Docs](https://developer.mozilla.org/docs/Web/HTML/Attributes/rel/preconnect).

```tsx
ReactDOM.preconnect(href: string, options?: { crossOrigin?: string })

```html filename=” output” hideLineNumbers

`<link rel="dns-prefetch">`

Attempt to resolve a domain name before resources get requested. [MDN Docs](https://developer.mozilla.org/docs/Web/HTML/Attributes/rel/dns-prefetch).

```tsx
ReactDOM.prefetchDNS(href: string)

```html filename=” output” hideLineNumbers

> **Good to know**:
>
> - These methods are currently only supported in Client Components, which are still Server Side Rendered

https://developer.mozilla.org/docs/Web/HTML/Attributes/rel/preload

> - Next.js in-built features such as `next/font`, `next/image` and `next/script` automatically handle relevant

Types

You can add type safety to your metadata by using the `Metadata` type. If you are using the [built-in TypeScript

`metadata` object

```tsx
import type { Metadata } from 'next'

export const metadata: Metadata = {
  title: 'Next.js',
}

generateMetadatagenerateMetadata  function

Regular function

import type { Metadata } from 'next'

export function generateMetadata(): Metadata {
  return {
    title: 'Next.js',
  }
}

Async function

import type { Metadata } from 'next'

export async function generateMetadata(): Promise<Metadata> {
  return {
    title: 'Next.js',
  }
}

With segment props

import type { Metadata } from 'next'

type Props = {
  params: { id: string }
  searchParams: { [key: string]: string | string[] | undefined }
}

export function generateMetadata({ params, searchParams }: Props): Metadata {
  return {
    title: 'Next.js',
  }
}

export default function Page({ params, searchParams }: Props) {}

With parent metadata

import type { Metadata, ResolvingMetadata } from 'next'

export async function generateMetadata(
  { params, searchParams }: Props,
  parent: ResolvingMetadata
): Promise<Metadata> {
  return {
    title: 'Next.js',
  }
}

JavaScript Projects

For JavaScript projects, you can use JSDoc to add type safety.

/** @type {import("next").Metadata} */



export const metadata = {
  title: 'Next.js',
}

Version History

Version Changes

v13.2.0 viewport, themeColor, and colorScheme deprecated in favor of the viewport configuration.

v13.2.0 metadata and generateMetadata introduced.

file:///docs/app/api-reference/functions/generate-viewport


3.2.3.6 - generateSitemaps
Documentation path: /02-app/02-api-reference/04-functions/generate-sitemaps

Description: Learn how to use the generateSiteMaps function to create multiple sitemaps for your application.

Related:

Title: Next Steps

Related Description: Learn how to create sitemaps for your Next.js application.

Links:

app/api-reference/file-conventions/metadata/sitemap

You can use the generateSitemaps function to generate multiple sitemaps for your application.

Returns

The generateSitemaps returns an array of objects with an id property.

URLs

In production, your generated sitemaps will be available at /.../sitemap/[id].xml. For example, /product/sitemap/1.xml.

In development, you can view the generated sitemap on /.../sitemap.xml/[id]. For example, /product/sitemap.xml/1. This
difference is temporary and will follow the production format.

Example

For example, to split a sitemap using generateSitemaps, return an array of objects with the sitemap id. Then, use the id to generate
the unique sitemaps.

app/product/sitemap.ts (ts)

import { BASE_URL } from '@/app/lib/constants'

export async function generateSitemaps() {
  // Fetch the total number of products and calculate the number of sitemaps needed
  return [{ id: 0 }, { id: 1 }, { id: 2 }, { id: 3 }]
}

export default async function sitemap({
  id,
}: {
  id: number
}): Promise<MetadataRoute.Sitemap> {
  // Google's limit is 50,000 URLs per sitemap
  const start = id * 50000
  const end = start + 50000
  const products = await getProducts(
    `SELECT id, date FROM products WHERE id BETWEEN ${start} AND ${end}`
  )
  return products.map((product) => ({
    url: `${BASE_URL}/product/${product.id}`,
    lastModified: product.date,
  }))
}

app/product/sitemap.js (js)

import { BASE_URL } from '@/app/lib/constants'

export async function generateSitemaps() {
  // Fetch the total number of products and calculate the number of sitemaps needed
  return [{ id: 0 }, { id: 1 }, { id: 2 }, { id: 3 }]
}

export default async function sitemap({ id }) {
  // Google's limit is 50,000 URLs per sitemap
  const start = id * 50000
  const end = start + 50000
  const products = await getProducts(



    `SELECT id, date FROM products WHERE id BETWEEN ${start} AND ${end}`
  )
  return products.map((product) => ({
    url: `${BASE_URL}/product/${id}`,
    lastModified: product.date,
  }))
}



3.2.3.7 - generateStaticParams
Documentation path: /02-app/02-api-reference/04-functions/generate-static-params

Description: API reference for the generateStaticParams function.

The generateStaticParams function can be used in combination with dynamic route segments to statically generate routes at build
time instead of on-demand at request time.

app/blog/[slug]/page.js (jsx)

// Return a list of `params` to populate the [slug] dynamic segment
export async function generateStaticParams() {
  const posts = await fetch('https://.../posts').then((res) => res.json())

  return posts.map((post) => ({
    slug: post.slug,
  }))
}

// Multiple versions of this page will be statically generated
// using the `params` returned by `generateStaticParams`
export default function Page({ params }) {
  const { slug } = params
  // ...
}

Good to know

You can use the dynamicParams segment config option to control what happens when a dynamic segment is visited that
was not generated with generateStaticParams.
During next dev, generateStaticParams will be called when you navigate to a route.
During next build, generateStaticParams runs before the corresponding Layouts or Pages are generated.
During revalidation (ISR), generateStaticParams will not be called again.
generateStaticParams replaces the getStaticPaths function in the Pages Router.

Parameters

options.params (optional)

If multiple dynamic segments in a route use generateStaticParams, the child generateStaticParams function is executed once for
each set of params the parent generates.

The params object contains the populated params from the parent generateStaticParams, which can be used to generate the
params in a child segment.

Returns

generateStaticParams should return an array of objects where each object represents the populated dynamic segments of a single
route.

Each property in the object is a dynamic segment to be filled in for the route.
The properties name is the segment’s name, and the properties value is what that segment should be filled in with.

Example Route generateStaticParamsgenerateStaticParams Return Type

/product/[id] { id: string }[]

/products/[category]/[product] { category: string, product: string }[]

/products/[...slug] { slug: string[] }[]

Single Dynamic Segment

app/product/[id]/page.tsx (tsx)

export function generateStaticParams() {
  return [{ id: '1' }, { id: '2' }, { id: '3' }]
}

file:///docs/app/building-your-application/routing/dynamic-routes
file:///docs/app/building-your-application/rendering/server-components#static-rendering-default
file:///docs/app/api-reference/file-conventions/route-segment-config#dynamicparams
file:///docs/pages/api-reference/functions/get-static-paths


// Three versions of this page will be statically generated
// using the `params` returned by `generateStaticParams`
// - /product/1
// - /product/2
// - /product/3
export default function Page({ params }: { params: { id: string } }) {
  const { id } = params
  // ...
}

app/product/[id]/page.js (jsx)

export function generateStaticParams() {
  return [{ id: '1' }, { id: '2' }, { id: '3' }]
}

// Three versions of this page will be statically generated
// using the `params` returned by `generateStaticParams`
// - /product/1
// - /product/2
// - /product/3
export default function Page({ params }) {
  const { id } = params
  // ...
}

Multiple Dynamic Segments

app/products/[category]/[product]/page.tsx (tsx)

export function generateStaticParams() {
  return [
    { category: 'a', product: '1' },
    { category: 'b', product: '2' },
    { category: 'c', product: '3' },
  ]
}

// Three versions of this page will be statically generated
// using the `params` returned by `generateStaticParams`
// - /products/a/1
// - /products/b/2
// - /products/c/3
export default function Page({
  params,
}: {
  params: { category: string; product: string }
}) {
  const { category, product } = params
  // ...
}

app/products/[category]/[product]/page.js (jsx)

export function generateStaticParams() {
  return [
    { category: 'a', product: '1' },
    { category: 'b', product: '2' },
    { category: 'c', product: '3' },
  ]
}

// Three versions of this page will be statically generated
// using the `params` returned by `generateStaticParams`
// - /products/a/1
// - /products/b/2
// - /products/c/3
export default function Page({ params }) {
  const { category, product } = params
  // ...
}

Catch-all Dynamic Segment



app/product/[...slug]/page.tsx (tsx)

export function generateStaticParams() {
  return [{ slug: ['a', '1'] }, { slug: ['b', '2'] }, { slug: ['c', '3'] }]
}

// Three versions of this page will be statically generated
// using the `params` returned by `generateStaticParams`
// - /product/a/1
// - /product/b/2
// - /product/c/3
export default function Page({ params }: { params: { slug: string[] } }) {
  const { slug } = params
  // ...
}

app/product/[...slug]/page.js (jsx)

export function generateStaticParams() {
  return [{ slug: ['a', '1'] }, { slug: ['b', '2'] }, { slug: ['c', '3'] }]
}

// Three versions of this page will be statically generated
// using the `params` returned by `generateStaticParams`
// - /product/a/1
// - /product/b/2
// - /product/c/3
export default function Page({ params }) {
  const { slug } = params
  // ...
}

Examples

Multiple Dynamic Segments in a Route

You can generate params for dynamic segments above the current layout or page, but not below. For example, given the
app/products/[category]/[product] route:

app/products/[category]/[product]/page.js can generate params for both [category] and [product].
app/products/[category]/layout.js can only generate params for [category].

There are two approaches to generating params for a route with multiple dynamic segments:

Generate params from the bottom up

Generate multiple dynamic segments from the child route segment.
app/products/[category]/[product]/page.tsx (tsx)

// Generate segments for both [category] and [product]
export async function generateStaticParams() {
  const products = await fetch('https://.../products').then((res) => res.json())

  return products.map((product) => ({
    category: product.category.slug,
    product: product.id,
  }))
}

export default function Page({
  params,
}: {
  params: { category: string; product: string }
}) {
  // ...
}

app/products/[category]/[product]/page.js (jsx)

// Generate segments for both [category] and [product]
export async function generateStaticParams() {
  const products = await fetch('https://.../products').then((res) => res.json())

  return products.map((product) => ({
    category: product.category.slug,



    product: product.id,
  }))
}

export default function Page({ params }) {
  // ...
}

Generate params from the top down

Generate the parent segments first and use the result to generate the child segments.
app/products/[category]/layout.tsx (tsx)

// Generate segments for [category]
export async function generateStaticParams() {
  const products = await fetch('https://.../products').then((res) => res.json())

  return products.map((product) => ({
    category: product.category.slug,
  }))
}

export default function Layout({ params }: { params: { category: string } }) {
  // ...
}

app/products/[category]/layout.js (jsx)

// Generate segments for [category]
export async function generateStaticParams() {
  const products = await fetch('https://.../products').then((res) => res.json())

  return products.map((product) => ({
    category: product.category.slug,
  }))
}

export default function Layout({ params }) {
  // ...
}

A child route segment’s generateStaticParams function is executed once for each segment a parent generateStaticParams
generates.

The child generateStaticParams function can use the params returned from the parent generateStaticParams function to
dynamically generate its own segments.

app/products/[category]/[product]/page.tsx (tsx)

// Generate segments for [product] using the `params` passed from
// the parent segment's `generateStaticParams` function
export async function generateStaticParams({
  params: { category },
}: {
  params: { category: string }
}) {
  const products = await fetch(
    `https://.../products?category=${category}`
  ).then((res) => res.json())

  return products.map((product) => ({
    product: product.id,
  }))
}

export default function Page({
  params,
}: {
  params: { category: string; product: string }
}) {
  // ...
}

app/products/[category]/[product]/page.js (jsx)

// Generate segments for [product] using the `params` passed from
// the parent segment's `generateStaticParams` function



export async function generateStaticParams({ params: { category } }) {
  const products = await fetch(
    `https://.../products?category=${category}`
  ).then((res) => res.json())

  return products.map((product) => ({
    product: product.id,
  }))
}

export default function Page({ params }) {
  // ...
}

Good to know: fetch requests are automatically memoized for the same data across all generate-prefixed functions,
Layouts, Pages, and Server Components. React cache can be used if fetch is unavailable.

Generate only a subset of params

You can generate a subset of params for a route by returning an array of objects with only the dynamic segments you want to generate.
Then, by using the dynamicParams segment config option, you can control what happens when a dynamic segment is visited that was
not generated with generateStaticParams.

app/blog/[slug]/page.js (jsx)

// All posts besides the top 10 will be a 404
export const dynamicParams = false

export async function generateStaticParams() {
  const posts = await fetch('https://.../posts').then((res) => res.json())
  const topPosts = posts.slice(0, 10)

  return topPosts.map((post) => ({
    slug: post.slug,
  }))
}

Version History

Version Changes

v13.0.0 generateStaticParams introduced.

file:///docs/app/building-your-application/caching#request-memoization
file:///docs/app/building-your-application/caching#request-memoization
file:///docs/app/api-reference/file-conventions/route-segment-config#dynamicparams


3.2.3.8 - generateViewport
Documentation path: /02-app/02-api-reference/04-functions/generate-viewport

Description: API Reference for the generateViewport function.

Related:

Title: Next Steps

Related Description: View all the Metadata API options.

Links:

app/api-reference/file-conventions/metadata
app/building-your-application/optimizing/metadata

You can customize the initial viewport of the page with the static viewport object or the dynamic generateViewport function.

Good to know:

The viewport object and generateViewport function exports are only supported in Server Components.
You cannot export both the viewport object and generateViewport function from the same route segment.
If you’re coming from migrating metadata exports, you can use metadata-to-viewport-export codemod to update your
changes.

The viewportviewport object

To define the viewport options, export a viewport object from a layout.jsx or page.jsx file.

layout.tsx | page.tsx (tsx)

import type { Viewport } from 'next'

export const viewport: Viewport = {
  themeColor: 'black',
}

export default function Page() {}

layout.jsx | page.jsx (jsx)

export const viewport = {
  themeColor: 'black',
}

export default function Page() {}

generateViewportgenerateViewport function

generateViewport should return a Viewport object containing one or more viewport fields.

layout.tsx | page.tsx (tsx)

export function generateViewport({ params }) {
  return {
    themeColor: '...',
  }
}

layout.js | page.js (jsx)

export function generateViewport({ params }) {
  return {
    themeColor: '...',
  }
}

Good to know:

If the viewport doesn’t depend on runtime information, it should be defined using the static viewport object rather than
generateViewport.

file:///docs/app/building-your-application/upgrading/codemods#metadata-to-viewport-export


Viewport Fields

themeColorthemeColor

Learn more about theme-color.

Simple theme color
layout.tsx | page.tsx (tsx)

import type { Viewport } from 'next'

export const viewport: Viewport = {
  themeColor: 'black',
}

layout.jsx | page.jsx (jsx)

export const viewport = {
  themeColor: 'black',
}

```html filename=” output” hideLineNumbers

With media attribute

<div class="code-header"><i>layout.tsx | page.tsx (tsx)</i></div>
```tsx
import type { Viewport } from 'next'

export const viewport: Viewport = {
  themeColor: [
    { media: '(prefers-color-scheme: light)', color: 'cyan' },
    { media: '(prefers-color-scheme: dark)', color: 'black' },
  ],
}

layout.jsx | page.jsx (jsx)

export const viewport = {
  themeColor: [
    { media: '(prefers-color-scheme: light)', color: 'cyan' },
    { media: '(prefers-color-scheme: dark)', color: 'black' },
  ],
}

```html filename=” output” hideLineNumbers

`width`, `initialScale`, `maximumScale` and `userScalable`

> **Good to know**: The `viewport` meta tag is automatically set, and manual configuration is usually unnecessary

<div class="code-header"><i>layout.tsx | page.tsx (tsx)</i></div>
```tsx
import type { Viewport } from 'next'

export const viewport: Viewport = {
  width: 'device-width',
  initialScale: 1,
  maximumScale: 1,
  userScalable: false,
  // Also supported by less commonly used
  // interactiveWidget: 'resizes-visual',
}

layout.jsx | page.jsx (jsx)

export const viewport = {
  width: 'device-width',
  initialScale: 1,
  maximumScale: 1,
  userScalable: false,
  // Also supported by less commonly used
  // interactiveWidget: 'resizes-visual',
}

```html filename=” output” hideLineNumbers

https://developer.mozilla.org/docs/Web/HTML/Element/meta/name/theme-color

`colorScheme`

Learn more about [`color-scheme`](https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta/name#:~:text=color%2Dscheme%3A%20specifies,of%20the%20following%3A).

<div class="code-header"><i>layout.tsx | page.tsx (tsx)</i></div>
```tsx
import type { Viewport } from 'next'

export const viewport: Viewport = {
  colorScheme: 'dark',
}

layout.jsx | page.jsx (jsx)

export const viewport = {
  colorScheme: 'dark',
}

```html filename=” output” hideLineNumbers

Types

You can add type safety to your viewport object by using the `Viewport` type. If you are using the [built-

`viewport` object

```tsx
import type { Viewport } from 'next'

export const viewport: Viewport = {
  themeColor: 'black',
}

generateViewportgenerateViewport  function

Regular function

import type { Viewport } from 'next'

export function generateViewport(): Viewport {
  return {
    themeColor: 'black',
  }
}

With segment props

import type { Viewport } from 'next'

type Props = {
  params: { id: string }
  searchParams: { [key: string]: string | string[] | undefined }
}

export function generateViewport({ params, searchParams }: Props): Viewport {
  return {
    themeColor: 'black',
  }
}

export default function Page({ params, searchParams }: Props) {}

JavaScript Projects

For JavaScript projects, you can use JSDoc to add type safety.

/** @type {import("next").Viewport} */
export const viewport = {
  themeColor: 'black',
}

Version History



Version Changes

v14.0.0 viewport and generateViewport introduced.



3.2.3.9 - headers
Documentation path: /02-app/02-api-reference/04-functions/headers

Description: API reference for the headers function.

The headers function allows you to read the HTTP incoming request headers from a Server Component.

headers()headers()
This API extends the Web Headers API. It is read-only, meaning you cannot set / delete the outgoing request headers.

app/page.tsx (tsx)

import { headers } from 'next/headers'

export default function Page() {
  const headersList = headers()
  const referer = headersList.get('referer')

  return <div>Referer: {referer}</div>
}

app/page.js (jsx)

import { headers } from 'next/headers'

export default function Page() {
  const headersList = headers()
  const referer = headersList.get('referer')

  return <div>Referer: {referer}</div>
}

Good to know:

headers() is a Dynamic Function whose returned values cannot be known ahead of time. Using it in a layout or page will
opt a route into dynamic rendering at request time.

API Reference

const headersList = headers()

Parameters

headers does not take any parameters.

Returns

headers returns a read-only Web Headers object.

Headers.entries(): Returns an iterator allowing to go through all key/value pairs contained in this object.
Headers.forEach(): Executes a provided function once for each key/value pair in this Headers object.
Headers.get(): Returns a String sequence of all the values of a header within a Headers object with a given name.
Headers.has(): Returns a boolean stating whether a Headers object contains a certain header.
Headers.keys(): Returns an iterator allowing you to go through all keys of the key/value pairs contained in this object.
Headers.values(): Returns an iterator allowing you to go through all values of the key/value pairs contained in this object.

Examples

Usage with Data Fetching

headers() can be used in combination with Suspense for Data Fetching.

app/page.js (jsx)

import { Suspense } from 'react'
import { headers } from 'next/headers'

async function User() {
  const authorization = headers().get('authorization')

file:///docs/app/building-your-application/rendering/server-components
https://developer.mozilla.org/docs/Web/API/Headers
file:///docs/app/building-your-application/rendering/server-components#server-rendering-strategies#dynamic-functions
file:///docs/app/building-your-application/rendering/server-components#dynamic-rendering
https://developer.mozilla.org/docs/Web/API/Headers
https://developer.mozilla.org/docs/Web/API/Headers/entries
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/docs/Web/API/Headers/forEach
https://developer.mozilla.org/docs/Web/API/Headers/get
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/docs/Web/API/Headers/has
https://developer.mozilla.org/docs/Web/API/Headers/keys
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/docs/Web/API/Headers/values
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Iteration_protocols
file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating


  const res = await fetch('...', {
    headers: { authorization }, // Forward the authorization header
  })
  const user = await res.json()

  return <h1>{user.name}</h1>
}

export default function Page() {
  return (
    <Suspense fallback={null}>
      <User />
    </Suspense>
  )
}

IP Address

headers() can be used to get the IP address of the client.

app/page.js (jsx)

import { Suspense } from 'react'
import { headers } from 'next/headers'

function IP() {
  const FALLBACK_IP_ADDRESS = '0.0.0.0'
  const forwardedFor = headers().get('x-forwarded-for')

  if (forwardedFor) {
    return forwardedFor.split(',')[0] ?? FALLBACK_IP_ADDRESS
  }

  return headers().get('x-real-ip') ?? FALLBACK_IP_ADDRESS
}

export default function Page() {
  return (
    <Suspense fallback={null}>
      <IP />
    </Suspense>
  )
}

In addition to x-forwarded-for, headers() can also read:

x-real-ip
x-forwarded-host
x-forwarded-port
x-forwarded-proto

Version History

Version Changes

v13.0.0 headers introduced.



3.2.3.10 - ImageResponse
Documentation path: /02-app/02-api-reference/04-functions/image-response

Description: API Reference for the ImageResponse constructor.

The ImageResponse constructor allows you to generate dynamic images using JSX and CSS. This is useful for generating social media
images such as Open Graph images, Twitter cards, and more.

The following options are available for ImageResponse:

import { ImageResponse } from 'next/og'

new ImageResponse(
  element: ReactElement,
  options: {
    width?: number = 1200
    height?: number = 630
    emoji?: 'twemoji' | 'blobmoji' | 'noto' | 'openmoji' = 'twemoji',
    fonts?: {
      name: string,
      data: ArrayBuffer,
      weight: number,
      style: 'normal' | 'italic'
    }[]
    debug?: boolean = false

    // Options that will be passed to the HTTP response
    status?: number = 200
    statusText?: string
    headers?: Record<string, string>
  },
)

Supported CSS Properties

Please refer to Satori’s documentation for a list of supported HTML and CSS features.

Version History

Version Changes

v14.0.0 ImageResponse moved from next/server to next/og

v13.3.0 ImageResponse can be imported from next/server.

v13.0.0 ImageResponse introduced via @vercel/og package.

https://github.com/vercel/satori#css


3.2.3.11 - NextRequest
Documentation path: /02-app/02-api-reference/04-functions/next-request

Description: API Reference for NextRequest.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

NextRequest extends the Web Request API with additional convenience methods.

cookiescookies
Read or mutate the Set-Cookie header of the request.

set(name, value)set(name, value)

Given a name, set a cookie with the given value on the request.

// Given incoming request /home
// Set a cookie to hide the banner
// request will have a `Set-Cookie:show-banner=false;path=/home` header
request.cookies.set('show-banner', 'false')

get(name)get(name)

Given a cookie name, return the value of the cookie. If the cookie is not found, undefined is returned. If multiple cookies are found,
the first one is returned.

// Given incoming request /home
// { name: 'show-banner', value: 'false', Path: '/home' }
request.cookies.get('show-banner')

getAll()getAll()

Given a cookie name, return the values of the cookie. If no name is given, return all cookies on the request.

// Given incoming request /home
// [
//   { name: 'experiments', value: 'new-pricing-page', Path: '/home' },
//   { name: 'experiments', value: 'winter-launch', Path: '/home' },
// ]
request.cookies.getAll('experiments')
// Alternatively, get all cookies for the request
request.cookies.getAll()

delete(name)delete(name)

Given a cookie name, delete the cookie from the request.

// Returns true for deleted, false is nothing is deleted
request.cookies.delete('experiments')

has(name)has(name)

Given a cookie name, return true if the cookie exists on the request.

// Returns true if cookie exists, false if it does not
request.cookies.has('experiments')

clear()clear()

Remove the Set-Cookie header from the request.

request.cookies.clear()

nextUrlnextUrl

https://developer.mozilla.org/docs/Web/API/Request
https://developer.mozilla.org/docs/Web/HTTP/Headers/Set-Cookie


Extends the native URL API with additional convenience methods, including Next.js specific properties.

// Given a request to /home, pathname is /home
request.nextUrl.pathname
// Given a request to /home?name=lee, searchParams is { 'name': 'lee' }
request.nextUrl.searchParams

The following options are available:

Property Type Description

basePath string The base path of the URL.

buildId string | undefined The build identifier of the Next.js application. Can be customized.

defaultLocale string | undefined The default locale for internationalization.

domainLocale

- defaultLocale string The default locale within a domain.

- domain string The domain associated with a specific locale.

- http boolean | undefined Indicates if the domain is using HTTP.

locales string[] | undefined An array of available locales.

locale string | undefined The currently active locale.

url URL The URL object.

Property Type Description

basePath string The base path of the URL.

buildId string | undefined The build identifier of the Next.js application. Can be customized.

pathname string The pathname of the URL.

searchParams Object The search parameters of the URL.

Note: The internationalization properties from the Pages Router are not available for usage in the App Router. Learn more
about internationalization with the App Router.

ipip
The ip property is a string that contains the IP address of the request. This value can optionally be provided by your hosting platform.

Good to know: On Vercel, this value is provided by default. On other platforms, you can use the X-Forwarded-For header to
provide the IP address.

// Provided by Vercel
request.ip
// Self-hosting
request.headers.get('X-Forwarded-For')

geogeo
The geo property is an object that contains the geographic information of the request. This value can optionally be provided by your
hosting platform.

Good to know: On Vercel, this value is provided by default. On other platforms, you can use the X-Forwarded-For header to
provide the IP address, then use a third-party service to lookup the geographic information.

// Provided by Vercel
request.geo.city
request.geo.country
request.geo.region

https://developer.mozilla.org/docs/Web/API/URL
file:///docs/pages/api-reference/next-config-js/basePath
file:///docs/pages/api-reference/next-config-js/generateBuildId
file:///docs/pages/building-your-application/routing/internationalization
file:///docs/app/api-reference/next-config-js/basePath
file:///docs/app/api-reference/next-config-js/generateBuildId
file:///docs/app/building-your-application/routing/internationalization
https://vercel.com/docs/frameworks/nextjs?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Forwarded-For
https://vercel.com/docs/frameworks/nextjs?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Forwarded-For
https://ip-api.com/


request.geo.latitude
request.geo.longitude

// Self-hosting
function getGeo(request) {
  let ip = request.headers.get('X-Forwarded-For')
  // Use a third-party service to lookup the geographic information
}



3.2.3.12 - NextResponse
Documentation path: /02-app/02-api-reference/04-functions/next-response

Description: API Reference for NextResponse.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

NextResponse extends the Web Response API with additional convenience methods.

cookiescookies
Read or mutate the Set-Cookie header of the response.

set(name, value)set(name, value)

Given a name, set a cookie with the given value on the response.

// Given incoming request /home
let response = NextResponse.next()
// Set a cookie to hide the banner
response.cookies.set('show-banner', 'false')
// Response will have a `Set-Cookie:show-banner=false;path=/home` header
return response

get(name)get(name)

Given a cookie name, return the value of the cookie. If the cookie is not found, undefined is returned. If multiple cookies are found,
the first one is returned.

// Given incoming request /home
let response = NextResponse.next()
// { name: 'show-banner', value: 'false', Path: '/home' }
response.cookies.get('show-banner')

getAll()getAll()

Given a cookie name, return the values of the cookie. If no name is given, return all cookies on the response.

// Given incoming request /home
let response = NextResponse.next()
// [
//   { name: 'experiments', value: 'new-pricing-page', Path: '/home' },
//   { name: 'experiments', value: 'winter-launch', Path: '/home' },
// ]
response.cookies.getAll('experiments')
// Alternatively, get all cookies for the response
response.cookies.getAll()

delete(name)delete(name)

Given a cookie name, delete the cookie from the response.

// Given incoming request /home
let response = NextResponse.next()
// Returns true for deleted, false is nothing is deleted
response.cookies.delete('experiments')

json()json()
Produce a response with the given JSON body.

app/api/route.ts (ts)

import { NextResponse } from 'next/server'

export async function GET(request: Request) {
  return NextResponse.json({ error: 'Internal Server Error' }, { status: 500 })
}

https://developer.mozilla.org/docs/Web/API/Response
https://developer.mozilla.org/docs/Web/HTTP/Headers/Set-Cookie


app/api/route.js (js)

import { NextResponse } from 'next/server'

export async function GET(request) {
  return NextResponse.json({ error: 'Internal Server Error' }, { status: 500 })
}

redirect()redirect()
Produce a response that redirects to a URL.

import { NextResponse } from 'next/server'

return NextResponse.redirect(new URL('/new', request.url))

The URL can be created and modified before being used in the NextResponse.redirect() method. For example, you can use the
request.nextUrl property to get the current URL, and then modify it to redirect to a different URL.

import { NextResponse } from 'next/server'

// Given an incoming request...
const loginUrl = new URL('/login', request.url)
// Add ?from=/incoming-url to the /login URL
loginUrl.searchParams.set('from', request.nextUrl.pathname)
// And redirect to the new URL
return NextResponse.redirect(loginUrl)

rewrite()rewrite()
Produce a response that rewrites (proxies) the given URL while preserving the original URL.

import { NextResponse } from 'next/server'

// Incoming request: /about, browser shows /about
// Rewritten request: /proxy, browser shows /about
return NextResponse.rewrite(new URL('/proxy', request.url))

next()next()
The next() method is useful for Middleware, as it allows you to return early and continue routing.

import { NextResponse } from 'next/server'

return NextResponse.next()

You can also forward headers when producing the response:

import { NextResponse } from 'next/server'

// Given an incoming request...
const newHeaders = new Headers(request.headers)
// Add a new header
newHeaders.set('x-version', '123')
// And produce a response with the new headers
return NextResponse.next({
  request: {
    // New request headers
    headers: newHeaders,
  },
})

https://developer.mozilla.org/docs/Web/API/URL
https://developer.mozilla.org/docs/Web/API/URL
https://developer.mozilla.org/docs/Web/API/URL


3.2.3.13 - notFound
Documentation path: /02-app/02-api-reference/04-functions/not-found

Description: API Reference for the notFound function.

The notFound function allows you to render the not-found file within a route segment as well as inject a <meta name="robots"
content="noindex" /> tag.

notFound()notFound()
Invoking the notFound() function throws a NEXT_NOT_FOUND error and terminates rendering of the route segment in which it was
thrown. Specifying a not-found file allows you to gracefully handle such errors by rendering a Not Found UI within the segment.

app/user/[id]/page.js (jsx)

import { notFound } from 'next/navigation'

async function fetchUser(id) {
  const res = await fetch('https://...')
  if (!res.ok) return undefined
  return res.json()
}

export default async function Profile({ params }) {
  const user = await fetchUser(params.id)

  if (!user) {
    notFound()
  }

  // ...
}

Good to know: notFound() does not require you to use return notFound() due to using the TypeScript never type.

Version History

Version Changes

v13.0.0 notFound introduced.

file:///docs/app/api-reference/file-conventions/not-found
file:///docs/app/api-reference/file-conventions/not-found
https://www.typescriptlang.org/docs/handbook/2/functions.html#never


3.2.3.14 - permanentRedirect
Documentation path: /02-app/02-api-reference/04-functions/permanentRedirect

Description: API Reference for the permanentRedirect function.

Related:

Title: Related

Related Description: No related description

Links:

app/api-reference/functions/redirect

The permanentRedirect function allows you to redirect the user to another URL. permanentRedirect can be used in Server
Components, Client Components, Route Handlers, and Server Actions.

When used in a streaming context, this will insert a meta tag to emit the redirect on the client side. When used in a server action, it will
serve a 303 HTTP redirect response to the caller. Otherwise, it will serve a 308 (Permanent) HTTP redirect response to the caller.

If a resource doesn’t exist, you can use the notFound function instead.

Good to know: If you prefer to return a 307 (Temporary) HTTP redirect instead of 308 (Permanent), you can use the redirect
function instead.

Parameters

The permanentRedirect function accepts two arguments:

permanentRedirect(path, type)

Parameter Type Description

path string The URL to redirect to. Can be a relative or absolute path.

type 'replace' (default) or 'push' (default in Server Actions) The type of redirect to perform.

By default, permanentRedirect will use push (adding a new entry to the browser history stack) in Server Actions and replace
(replacing the current URL in the browser history stack) everywhere else. You can override this behavior by specifying the type
parameter.

The type parameter has no effect when used in Server Components.

Returns

permanentRedirect does not return any value.

Example

Invoking the permanentRedirect() function throws a NEXT_REDIRECT error and terminates rendering of the route segment in which
it was thrown.

app/team/[id]/page.js (jsx)

import { permanentRedirect } from 'next/navigation'

async function fetchTeam(id) {
  const res = await fetch('https://...')
  if (!res.ok) return undefined
  return res.json()
}

export default async function Profile({ params }) {
  const team = await fetchTeam(params.id)
  if (!team) {
    permanentRedirect('/login')
  }

  // ...
}

file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/api-reference/functions/not-found
file:///docs/app/api-reference/functions/redirect
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations


Good to know: permanentRedirect does not require you to use return permanentRedirect() as it uses the TypeScript
never type.

https://www.typescriptlang.org/docs/handbook/2/functions.html#never


3.2.3.15 - redirect
Documentation path: /02-app/02-api-reference/04-functions/redirect

Description: API Reference for the redirect function.

Related:

Title: Related

Related Description: No related description

Links:

app/api-reference/functions/permanentRedirect

The redirect function allows you to redirect the user to another URL. redirect can be used in Server Components, Route Handlers,
and Server Actions.

When used in a streaming context, this will insert a meta tag to emit the redirect on the client side. When used in a server action, it will
serve a 303 HTTP redirect response to the caller. Otherwise, it will serve a 307 HTTP redirect response to the caller.

If a resource doesn’t exist, you can use the notFound function instead.

Good to know:

In Server Actions and Route Handlers, redirect should be called after the try/catch block.
If you prefer to return a 308 (Permanent) HTTP redirect instead of 307 (Temporary), you can use the permanentRedirect
function instead.

Parameters

The redirect function accepts two arguments:

redirect(path, type)

Parameter Type Description

path string The URL to redirect to. Can be a relative or absolute path.

type 'replace' (default) or 'push' (default in Server Actions) The type of redirect to perform.

By default, redirect will use push (adding a new entry to the browser history stack) in Server Actions and replace (replacing the
current URL in the browser history stack) everywhere else. You can override this behavior by specifying the type parameter.

The type parameter has no effect when used in Server Components.

Returns

redirect does not return any value.

Example

Server Component

Invoking the redirect() function throws a NEXT_REDIRECT error and terminates rendering of the route segment in which it was
thrown.

app/team/[id]/page.js (jsx)

import { redirect } from 'next/navigation'

async function fetchTeam(id) {
  const res = await fetch('https://...')
  if (!res.ok) return undefined
  return res.json()
}

export default async function Profile({ params }) {
  const team = await fetchTeam(params.id)
  if (!team) {

file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
file:///docs/app/building-your-application/routing/loading-ui-and-streaming#what-is-streaming
file:///docs/app/api-reference/functions/not-found
file:///docs/app/api-reference/functions/permanentRedirect
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations


    redirect('/login')
  }

  // ...
}

Good to know: redirect does not require you to use return redirect() as it uses the TypeScript never type.

Client Component

redirect can be used in a Client Component through a Server Action. If you need to use an event handler to redirect the user, you can
use the useRouter hook.

app/client-redirect.tsx (tsx)

'use client'

import { navigate } from './actions'

export function ClientRedirect() {
  return (
    <form action={navigate}>
      <input type="text" name="id" />
      <button>Submit</button>
    </form>
  )
}

app/client-redirect.jsx (jsx)

'use client'

import { navigate } from './actions'

export function ClientRedirect() {
  return (
    <form action={navigate}>
      <input type="text" name="id" />
      <button>Submit</button>
    </form>
  )
}

app/actions.ts (ts)

'use server'

import { redirect } from 'next/navigation'

export async function navigate(data: FormData) {
  redirect(`/posts/${data.get('id')}`)
}

app/actions.js (js)

'use server'

import { redirect } from 'next/navigation'

export async function navigate(data) {
  redirect(`/posts/${data.get('id')}`)
}

FAQ

Why does redirectredirect  use 307 and 308?

When using redirect() you may notice that the status codes used are 307 for a temporary redirect, and 308 for a permanent
redirect. While traditionally a 302 was used for a temporary redirect, and a 301 for a permanent redirect, many browsers changed the
request method of the redirect, from a POST to GET request when using a 302, regardless of the origins request method.

Taking the following example of a redirect from /users to /people, if you make a POST request to /users to create a new user, and
are conforming to a 302 temporary redirect, the request method will be changed from a POST to a GET request. This doesn’t make
sense, as to create a new user, you should be making a POST request to /people, and not a GET request.

https://www.typescriptlang.org/docs/handbook/2/functions.html#never
file:///docs/app/api-reference/functions/use-router


The introduction of the 307 status code means that the request method is preserved as POST.

302 - Temporary redirect, will change the request method from POST to GET
307 - Temporary redirect, will preserve the request method as POST

The redirect() method uses a 307 by default, instead of a 302 temporary redirect, meaning your requests will always be preserved as
POST requests.

Learn more about HTTP Redirects.

Version History

Version Changes

v13.0.0 redirect introduced.

https://developer.mozilla.org/docs/Web/HTTP/Redirections


3.2.3.16 - revalidatePath
Documentation path: /02-app/02-api-reference/04-functions/revalidatePath

Description: API Reference for the revalidatePath function.

revalidatePath allows you to purge cached data on-demand for a specific path.

Good to know:

revalidatePath is available in both Node.js and Edge runtimes.
revalidatePath only invalidates the cache when the included path is next visited. This means calling revalidatePath
with a dynamic route segment will not immediately trigger many revalidations at once. The invalidation only happens when
the path is next visited.
Currently, revalidatePath invalidates all the routes in the client-side Router Cache. This behavior is temporary and will
be updated in the future to apply only to the specific path.
Using revalidatePath invalidates only the specific path in the server-side Route Cache.

Parameters

revalidatePath(path: string, type?: 'page' | 'layout'): void;

path: Either a string representing the filesystem path associated with the data you want to revalidate (for example,
/product/[slug]/page), or the literal route segment (for example, /product/123). Must be less than 1024 characters. This
value is case-sensitive.
type: (optional) 'page' or 'layout' string to change the type of path to revalidate. If path contains a dynamic segment (for
example, /product/[slug]/page), this parameter is required. If path refers to the literal route segment, e.g., /product/1 for a
dynamic page (e.g., /product/[slug]/page), you should not provide type.

Returns

revalidatePath does not return any value.

Examples

Revalidating A Specific URL

import { revalidatePath } from 'next/cache'
revalidatePath('/blog/post-1')

This will revalidate one specific URL on the next page visit.

Revalidating A Page Path

import { revalidatePath } from 'next/cache'
revalidatePath('/blog/[slug]', 'page')
// or with route groups
revalidatePath('/(main)/post/[slug]', 'page')

This will revalidate any URL that matches the provided page file on the next page visit. This will not invalidate pages beneath the
specific page. For example, /blog/[slug] won’t invalidate /blog/[slug]/[author].

Revalidating A Layout Path

import { revalidatePath } from 'next/cache'
revalidatePath('/blog/[slug]', 'layout')
// or with route groups
revalidatePath('/(main)/post/[slug]', 'layout')

This will revalidate any URL that matches the provided layout file on the next page visit. This will cause pages beneath with the same
layout to revalidate on the next visit. For example, in the above case, /blog/[slug]/[another] would also revalidate on the next
visit.

file:///docs/app/building-your-application/caching
file:///docs/app/building-your-application/rendering/edge-and-nodejs-runtimes
file:///docs/app/building-your-application/caching#router-cache
file:///docs/app/building-your-application/caching#full-route-cache


Revalidating All Data

import { revalidatePath } from 'next/cache'

revalidatePath('/', 'layout')

This will purge the Client-side Router Cache, and revalidate the Data Cache on the next page visit.

Server Action

app/actions.ts (ts)

'use server'

import { revalidatePath } from 'next/cache'

export default async function submit() {
  await submitForm()
  revalidatePath('/')
}

Route Handler

app/api/revalidate/route.ts (ts)

import { revalidatePath } from 'next/cache'
import type { NextRequest } from 'next/server'

export async function GET(request: NextRequest) {
  const path = request.nextUrl.searchParams.get('path')

  if (path) {
    revalidatePath(path)
    return Response.json({ revalidated: true, now: Date.now() })
  }

  return Response.json({
    revalidated: false,
    now: Date.now(),
    message: 'Missing path to revalidate',
  })
}

app/api/revalidate/route.js (js)

import { revalidatePath } from 'next/cache'

export async function GET(request) {
  const path = request.nextUrl.searchParams.get('path')

  if (path) {
    revalidatePath(path)
    return Response.json({ revalidated: true, now: Date.now() })
  }

  return Response.json({
    revalidated: false,
    now: Date.now(),
    message: 'Missing path to revalidate',
  })
}



3.2.3.17 - revalidateTag
Documentation path: /02-app/02-api-reference/04-functions/revalidateTag

Description: API Reference for the revalidateTag function.

revalidateTag allows you to purge cached data on-demand for a specific cache tag.

Good to know:

revalidateTag is available in both Node.js and Edge runtimes.
revalidateTag only invalidates the cache when the path is next visited. This means calling revalidateTag with a
dynamic route segment will not immediately trigger many revalidations at once. The invalidation only happens when the
path is next visited.

Parameters

revalidateTag(tag: string): void;

tag: A string representing the cache tag associated with the data you want to revalidate. Must be less than or equal to 256
characters. This value is case-sensitive.

You can add tags to fetch as follows:

fetch(url, { next: { tags: [...] } });

Returns

revalidateTag does not return any value.

Examples

Server Action

app/actions.ts (ts)

'use server'

import { revalidateTag } from 'next/cache'

export default async function submit() {
  await addPost()
  revalidateTag('posts')
}

app/actions.js (js)

'use server'

import { revalidateTag } from 'next/cache'

export default async function submit() {
  await addPost()
  revalidateTag('posts')
}

Route Handler

app/api/revalidate/route.ts (ts)

import type { NextRequest } from 'next/server'
import { revalidateTag } from 'next/cache'

export async function GET(request: NextRequest) {
  const tag = request.nextUrl.searchParams.get('tag')
  revalidateTag(tag)
  return Response.json({ revalidated: true, now: Date.now() })
}

app/api/revalidate/route.js (js)

file:///docs/app/building-your-application/caching
file:///docs/app/building-your-application/rendering/edge-and-nodejs-runtimes


import { revalidateTag } from 'next/cache'

export async function GET(request) {
  const tag = request.nextUrl.searchParams.get('tag')
  revalidateTag(tag)
  return Response.json({ revalidated: true, now: Date.now() })
}



3.2.3.18 - unstable_cache
Documentation path: /02-app/02-api-reference/04-functions/unstable_cache

Description: API Reference for the unstable_cache function.

unstable_cache allows you to cache the results of expensive operations, like database queries, and reuse them across multiple
requests.

import { getUser } from './data';
import { unstable_cache } from 'next/cache';

const getCachedUser = unstable_cache(
  async (id) => getUser(id),
  ['my-app-user']
);

export default async function Component({ userID }) {
  const user = await getCachedUser(userID);
  ...
}

Good to know:

Accessing dynamic data sources such as headers or cookies inside a cache scope is not supported. If you need this data
inside a cached function use headers outside of the cached function and pass the required dynamic data in as an
argument.
This API uses Next.js’ built-in Data Cache to persist the result across requests and deployments.

Warning: This API is unstable and may change in the future. We will provide migration documentation and codemods, if
needed, as this API stabilizes.

Parameters

const data = unstable_cache(fetchData, keyParts, options)()

fetchData: This is an asynchronous function that fetches the data you want to cache. It must be a function that returns a Promise.
keyParts: This is an array that identifies the cached key. It must contain globally unique values that together identify the key of the
data being cached. The cache key also includes the arguments passed to the function.
options: This is an object that controls how the cache behaves. It can contain the following properties:
tags: An array of tags that can be used to control cache invalidation.
revalidate: The number of seconds after which the cache should be revalidated. Omit or pass false to cache indefinitely or until
matching revalidateTag() or revalidatePath() methods are called.

Returns

unstable_cache returns a function that when invoked, returns a Promise that resolves to the cached data. If the data is not in the
cache, the provided function will be invoked, and its result will be cached and returned.

Version History

Version Changes

v14.0.0 unstable_cache introduced.

file:///docs/app/building-your-application/caching#data-cache


3.2.3.19 - unstable_noStore
Documentation path: /02-app/02-api-reference/04-functions/unstable_noStore

Description: API Reference for the unstable_noStore function.

unstable_noStore can be used to declaratively opt out of static rendering and indicate a particular component should not be cached.

import { unstable_noStore as noStore } from 'next/cache';

export default async function Component() {
  noStore();
  const result = await db.query(...);
  ...
}

Good to know:

unstable_noStore is equivalent to cache: 'no-store' on a fetch
unstable_noStore is preferred over export const dynamic = 'force-dynamic' as it is more granular and can be
used on a per-component basis

Using unstable_noStore inside unstable_cache will not opt out of static generation. Instead, it will defer to the cache
configuration to determine whether to cache the result or not.

Usage

If you prefer not to pass additional options to fetch, like cache: 'no-store' or next: { revalidate: 0 }, you can use
noStore() as a replacement for all of these use cases.

import { unstable_noStore as noStore } from 'next/cache';

export default async function Component() {
  noStore();
  const result = await db.query(...);
  ...
}

Version History

Version Changes

v14.0.0 unstable_noStore introduced.

file:///docs/app/api-reference/functions/unstable_cache


3.2.3.20 - useParams
Documentation path: /02-app/02-api-reference/04-functions/use-params

Description: API Reference for the useParams hook.

useParams is a Client Component hook that lets you read a route’s dynamic params filled in by the current URL.

app/example-client-component.tsx (tsx)

'use client'

import { useParams } from 'next/navigation'

export default function ExampleClientComponent() {
  const params = useParams<{ tag: string; item: string }>()

  // Route -> /shop/[tag]/[item]
  // URL -> /shop/shoes/nike-air-max-97
  // `params` -> { tag: 'shoes', item: 'nike-air-max-97' }
  console.log(params)

  return <></>
}

app/example-client-component.js (jsx)

'use client'

import { useParams } from 'next/navigation'

export default function ExampleClientComponent() {
  const params = useParams()

  // Route -> /shop/[tag]/[item]
  // URL -> /shop/shoes/nike-air-max-97
  // `params` -> { tag: 'shoes', item: 'nike-air-max-97' }
  console.log(params)

  return <></>
}

Parameters

const params = useParams()

useParams does not take any parameters.

Returns

useParams returns an object containing the current route’s filled in dynamic parameters.

Each property in the object is an active dynamic segment.
The properties name is the segment’s name, and the properties value is what the segment is filled in with.
The properties value will either be a string or array of string’s depending on the type of dynamic segment.
If the route contains no dynamic parameters, useParams returns an empty object.
If used in Pages Router, useParams will return null on the initial render and updates with properties following the rules above
once the router is ready.

For example:

Route URL useParams()useParams()

app/shop/page.js /shop {}

app/shop/[slug]/page.js /shop/1 { slug: '1' }

app/shop/[tag]/[item]/page.js /shop/1/2 { tag: '1', item: '2' }

app/shop/[...slug]/page.js /shop/1/2 { slug: ['1', '2'] }

file:///docs/app/building-your-application/routing/dynamic-routes
file:///docs/app/building-your-application/routing/dynamic-routes
file:///docs/app/building-your-application/routing/dynamic-routes


Version History

Version Changes

v13.3.0 useParams introduced.



3.2.3.21 - usePathname
Documentation path: /02-app/02-api-reference/04-functions/use-pathname

Description: API Reference for the usePathname hook.

usePathname is a Client Component hook that lets you read the current URL’s pathname.

app/example-client-component.tsx (tsx)

'use client'

import { usePathname } from 'next/navigation'

export default function ExampleClientComponent() {
  const pathname = usePathname()
  return <p>Current pathname: {pathname}</p>
}

app/example-client-component.js (jsx)

'use client'

import { usePathname } from 'next/navigation'

export default function ExampleClientComponent() {
  const pathname = usePathname()
  return <p>Current pathname: {pathname}</p>
}

usePathname intentionally requires using a Client Component. It’s important to note Client Components are not a de-optimization.
They are an integral part of the Server Components architecture.

For example, a Client Component with usePathname will be rendered into HTML on the initial page load. When navigating to a new
route, this component does not need to be re-fetched. Instead, the component is downloaded once (in the client JavaScript bundle), and
re-renders based on the current state.

Good to know:

Reading the current URL from a Server Component is not supported. This design is intentional to support layout state being
preserved across page navigations.
Compatibility mode:
usePathname can return null when a fallback route is being rendered or when a pages directory page has been
automatically statically optimized by Next.js and the router is not ready.
Next.js will automatically update your types if it detects both an app and pages directory in your project.

Parameters

const pathname = usePathname()

usePathname does not take any parameters.

Returns

usePathname returns a string of the current URL’s pathname. For example:

URL Returned value

/ '/'

/dashboard '/dashboard'

/dashboard?v=2 '/dashboard'

/blog/hello-world '/blog/hello-world'

Examples

Do something in response to a route change

file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/rendering/server-components
file:///docs/pages/api-reference/functions/get-static-paths#fallback-true
file:///docs/pages/building-your-application/rendering/automatic-static-optimization


app/example-client-component.tsx (tsx)

'use client'

import { usePathname, useSearchParams } from 'next/navigation'

function ExampleClientComponent() {
  const pathname = usePathname()
  const searchParams = useSearchParams()
  useEffect(() => {
    // Do something here...
  }, [pathname, searchParams])
}

app/example-client-component.js (jsx)

'use client'

import { usePathname, useSearchParams } from 'next/navigation'

function ExampleClientComponent() {
  const pathname = usePathname()
  const searchParams = useSearchParams()
  useEffect(() => {
    // Do something here...
  }, [pathname, searchParams])
}

Version Changes

v13.0.0 usePathname introduced.



3.2.3.22 - useReportWebVitals
Documentation path: /02-app/02-api-reference/04-functions/use-report-web-vitals

Description: API Reference for the useReportWebVitals function.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

The useReportWebVitals hook allows you to report Core Web Vitals, and can be used in combination with your analytics service.

pages/_app.js (jsx)

import { useReportWebVitals } from 'next/web-vitals'

function MyApp({ Component, pageProps }) {
  useReportWebVitals((metric) => {
    console.log(metric)
  })

  return <Component {...pageProps} />
}

app/_components/web-vitals.js (jsx)

'use client'

import { useReportWebVitals } from 'next/web-vitals'

export function WebVitals() {
  useReportWebVitals((metric) => {
    console.log(metric)
  })
}

app/layout.js (jsx)

import { WebVitals } from './_components/web-vitals'

export default function Layout({ children }) {
  return (
    <html>
      <body>
        <WebVitals />
        {children}
      </body>
    </html>
  )
}

Since the useReportWebVitals hook requires the "use client" directive, the most performant approach is to create a
separate component that the root layout imports. This confines the client boundary exclusively to the WebVitals component.

useReportWebVitals

The metric object passed as the hook’s argument consists of a number of properties:

id: Unique identifier for the metric in the context of the current page load
name: The name of the performance metric. Possible values include names of Web Vitals metrics (TTFB, FCP, LCP, FID, CLS) specific
to a web application.
delta: The difference between the current value and the previous value of the metric. The value is typically in milliseconds and
represents the change in the metric’s value over time.
entries: An array of Performance Entries associated with the metric. These entries provide detailed information about the
performance events related to the metric.
navigationType: Indicates the type of navigation that triggered the metric collection. Possible values include "navigate",
"reload", "back_forward", and "prerender".
rating: A qualitative rating of the metric value, providing an assessment of the performance. Possible values are "good", "needs-
improvement", and "poor". The rating is typically determined by comparing the metric value against predefined thresholds that
indicate acceptable or suboptimal performance.
value: The actual value or duration of the performance entry, typically in milliseconds. The value provides a quantitative measure
of the performance aspect being tracked by the metric. The source of the value depends on the specific metric being measured and

https://web.dev/vitals/
https://developer.mozilla.org/docs/Web/API/PerformanceEntry
https://developer.mozilla.org/docs/Web/API/PerformanceNavigationTiming/type


can come from various Performance APIs.

Web Vitals

Web Vitals are a set of useful metrics that aim to capture the user experience of a web page. The following web vitals are all included:

Time to First Byte (TTFB)
First Contentful Paint (FCP)
Largest Contentful Paint (LCP)
First Input Delay (FID)
Cumulative Layout Shift (CLS)
Interaction to Next Paint (INP)

You can handle all the results of these metrics using the name property.

pages/_app.js (jsx)

import { useReportWebVitals } from 'next/web-vitals'

function MyApp({ Component, pageProps }) {
  useReportWebVitals((metric) => {
    switch (metric.name) {
      case 'FCP': {
        // handle FCP results
      }
      case 'LCP': {
        // handle LCP results
      }
      // ...
    }
  })

  return <Component {...pageProps} />
}

app/components/web-vitals.tsx (tsx)

'use client'

import { useReportWebVitals } from 'next/web-vitals'

export function WebVitals() {
  useReportWebVitals((metric) => {
    switch (metric.name) {
      case 'FCP': {
        // handle FCP results
      }
      case 'LCP': {
        // handle LCP results
      }
      // ...
    }
  })
}

app/components/web-vitals.js (jsx)

'use client'

import { useReportWebVitals } from 'next/web-vitals'

export function WebVitals() {
  useReportWebVitals((metric) => {
    switch (metric.name) {
      case 'FCP': {
        // handle FCP results
      }
      case 'LCP': {
        // handle LCP results
      }
      // ...
    }
  })
}

https://developer.mozilla.org/docs/Web/API/Performance_API
https://web.dev/vitals/
https://developer.mozilla.org/docs/Glossary/Time_to_first_byte
https://developer.mozilla.org/docs/Glossary/First_contentful_paint
https://web.dev/lcp/
https://web.dev/fid/
https://web.dev/cls/
https://web.dev/inp/


Custom Metrics

In addition to the core metrics listed above, there are some additional custom metrics that measure the time it takes for the page to
hydrate and render:

Next.js-hydration: Length of time it takes for the page to start and finish hydrating (in ms)
Next.js-route-change-to-render: Length of time it takes for a page to start rendering after a route change (in ms)
Next.js-render: Length of time it takes for a page to finish render after a route change (in ms)

You can handle all the results of these metrics separately:
pages/_app.js (jsx)

import { useReportWebVitals } from 'next/web-vitals'

function MyApp({ Component, pageProps }) {
  useReportWebVitals((metric) => {
    switch (metric.name) {
      case 'Next.js-hydration':
        // handle hydration results
        break
      case 'Next.js-route-change-to-render':
        // handle route-change to render results
        break
      case 'Next.js-render':
        // handle render results
        break
      default:
        break
    }
  })

  return <Component {...pageProps} />
}

These metrics work in all browsers that support the User Timing API.

Usage on Vercel

Vercel Speed Insights does not useReportWebVitals, but @vercel/speed-insights package instead. useReportWebVitals hook
is useful in local development, or if you’re using a different service for collecting Web Vitals.

Sending results to external systems

You can send results to any endpoint to measure and track real user performance on your site. For example:

useReportWebVitals((metric) => {
  const body = JSON.stringify(metric)
  const url = 'https://example.com/analytics'

  // Use `navigator.sendBeacon()` if available, falling back to `fetch()`.
  if (navigator.sendBeacon) {
    navigator.sendBeacon(url, body)
  } else {
    fetch(url, { body, method: 'POST', keepalive: true })
  }
})

Good to know: If you use Google Analytics, using the id value can allow you to construct metric distributions manually (to
calculate percentiles, etc.)

js useReportWebVitals(metric => { // Use `window.gtag` if you initialized Google Analytics as this
example: // https://github.com/vercel/next.js/blob/canary/examples/with-google-
analytics/pages/_app.js window.gtag('event', metric.name, { value: Math.round(metric.name === 'CLS'
? metric.value * 1000 : metric.value), // values must be integers event_label: metric.id, // id
unique to current page load non_interaction: true, // avoids affecting bounce rate. }); }
Read more about sending results to Google Analytics.

https://caniuse.com/#feat=user-timing
https://vercel.com/docs/speed-insights/quickstart
https://analytics.google.com/analytics/web/
https://github.com/GoogleChrome/web-vitals#send-the-results-to-google-analytics


3.2.3.23 - useRouter
Documentation path: /02-app/02-api-reference/04-functions/use-router

Description: API reference for the useRouter hook.

The useRouter hook allows you to programmatically change routes inside Client Components.

Recommendation: Use the <Link> component for navigation unless you have a specific requirement for using useRouter.

app/example-client-component.tsx (tsx)

'use client'

import { useRouter } from 'next/navigation'

export default function Page() {
  const router = useRouter()

  return (
    <button type="button" onClick={() => router.push('/dashboard')}>
      Dashboard
    </button>
  )
}

app/example-client-component.js (jsx)

'use client'

import { useRouter } from 'next/navigation'

export default function Page() {
  const router = useRouter()

  return (
    <button type="button" onClick={() => router.push('/dashboard')}>
      Dashboard
    </button>
  )
}

useRouter()useRouter()
router.push(href: string, { scroll: boolean }): Perform a client-side navigation to the provided route. Adds a new
entry into the browser’s history stack.
router.replace(href: string, { scroll: boolean }): Perform a client-side navigation to the provided route without
adding a new entry into the browser’s history stack.
router.refresh(): Refresh the current route. Making a new request to the server, re-fetching data requests, and re-rendering
Server Components. The client will merge the updated React Server Component payload without losing unaffected client-side React
(e.g. useState) or browser state (e.g. scroll position).
router.prefetch(href: string): Prefetch the provided route for faster client-side transitions.
router.back(): Navigate back to the previous route in the browser’s history stack.
router.forward(): Navigate forwards to the next page in the browser’s history stack.

Good to know:

The <Link> component automatically prefetch routes as they become visible in the viewport.
refresh() could re-produce the same result if fetch requests are cached. Other dynamic functions like cookies and
headers could also change the response.

Migrating from next/routernext/router

The useRouter hook should be imported from next/navigation and not next/router when using the App Router
The pathname string has been removed and is replaced by usePathname()
The query object has been removed and is replaced by useSearchParams()
router.events has been replaced. See below.

View the full migration guide.

file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/routing/linking-and-navigating#link-component
https://developer.mozilla.org/docs/Web/API/History_API
https://developer.mozilla.org/docs/Web/API/History_API
file:///docs/app/building-your-application/routing/linking-and-navigating#2-prefetching
file:///docs/app/api-reference/functions/use-pathname
file:///docs/app/api-reference/functions/use-search-params
file:///docs/app/building-your-application/upgrading/app-router-migration


Examples

Router events

You can listen for page changes by composing other Client Component hooks like usePathname and useSearchParams.

app/components/navigation-events.js (jsx)

'use client'

import { useEffect } from 'react'
import { usePathname, useSearchParams } from 'next/navigation'

export function NavigationEvents() {
  const pathname = usePathname()
  const searchParams = useSearchParams()

  useEffect(() => {
    const url = `${pathname}?${searchParams}`
    console.log(url)
    // You can now use the current URL
    // ...
  }, [pathname, searchParams])

  return null
}

Which can be imported into a layout.

```jsx filename=”app/layout.js” highlight={2,10-12} import { Suspense } from ‘react’ import { NavigationEvents } from
‘./components/navigation-events’

export default function Layout({ children }) { return (

 <Suspense fallback={null}>
 <NavigationEvents />
 </Suspense>
 </body>
</html>

) }

> **Good to know**: `<NavigationEvents>` is wrapped in a [`Suspense` boundary](/docs/app/building-your-application

Disabling scroll restoration

By default, Next.js will scroll to the top of the page when navigating to a new route. You can disable this

<div class="code-header"><i>app/example-client-component.tsx (tsx)</i></div>
```tsx
'use client'

import { useRouter } from 'next/navigation'

export default function Page() {
  const router = useRouter()

  return (
    <button
      type="button"
      onClick={() => router.push('/dashboard', { scroll: false })}
    >
      Dashboard
    </button>
  )
}

app/example-client-component.jsx (jsx)

'use client'

import { useRouter } from 'next/navigation'

export default function Page() {
  const router = useRouter()

  return (
    <button



      type="button"
      onClick={() => router.push('/dashboard', { scroll: false })}
    >
      Dashboard
    </button>
  )
}

Version History

Version Changes

v13.0.0 useRouter from next/navigation introduced.



3.2.3.24 - useSearchParams
Documentation path: /02-app/02-api-reference/04-functions/use-search-params

Description: API Reference for the useSearchParams hook.

useSearchParams is a Client Component hook that lets you read the current URL’s query string.

useSearchParams returns a read-only version of the URLSearchParams interface.

app/dashboard/search-bar.tsx (tsx)

'use client'

import { useSearchParams } from 'next/navigation'

export default function SearchBar() {
  const searchParams = useSearchParams()

  const search = searchParams.get('search')

  // URL -> `/dashboard?search=my-project`
  // `search` -> 'my-project'
  return <>Search: {search}</>
}

app/dashboard/search-bar.js (jsx)

'use client'

import { useSearchParams } from 'next/navigation'

export default function SearchBar() {
  const searchParams = useSearchParams()

  const search = searchParams.get('search')

  // URL -> `/dashboard?search=my-project`
  // `search` -> 'my-project'
  return <>Search: {search}</>
}

Parameters

const searchParams = useSearchParams()

useSearchParams does not take any parameters.

Returns

useSearchParams returns a read-only version of the URLSearchParams interface, which includes utility methods for reading the
URL’s query string:

URLSearchParams.get(): Returns the first value associated with the search parameter. For example:

URL searchParams.get("a")searchParams.get("a")

/dashboard?a=1 '1'

/dashboard?a= ''

/dashboard?b=3 null

/dashboard?a=1&a=2 '1' - use getAll() to get all values

URLSearchParams.has(): Returns a boolean value indicating if the given parameter exists. For example:

URL searchParams.has("a")searchParams.has("a")

/dashboard?a=1 true

https://developer.mozilla.org/docs/Web/API/URLSearchParams
https://developer.mozilla.org/docs/Web/API/URLSearchParams
https://developer.mozilla.org/docs/Web/API/URLSearchParams/get
https://developer.mozilla.org/docs/Web/API/URLSearchParams/getAll
https://developer.mozilla.org/docs/Web/API/URLSearchParams/has


/dashboard?b=3 false

URL searchParams.has("a")searchParams.has("a")

Learn more about other read-only methods of URLSearchParams, including the getAll(), keys(), values(), entries(),
forEach(), and toString().

Good to know:

useSearchParams is a Client Component hook and is not supported in Server Components to prevent stale values during
partial rendering.
If an application includes the /pages directory, useSearchParams will return ReadonlyURLSearchParams | null. The
null value is for compatibility during migration since search params cannot be known during pre-rendering of a page that
doesn’t use getServerSideProps

Static Rendering

If a route is statically rendered, calling useSearchParams will cause the Client Component tree up to the closest Suspense boundary
to be client-side rendered.

This allows a part of the route to be statically rendered while the dynamic part that uses useSearchParams is client-side rendered.

We recommend wrapping the Client Component that uses useSearchParams in a <Suspense/> boundary. This will allow any Client
Components above it to be statically rendered and sent as part of initial HTML. Example.

For example:
app/dashboard/search-bar.tsx (tsx)

'use client'

import { useSearchParams } from 'next/navigation'

export default function SearchBar() {
  const searchParams = useSearchParams()

  const search = searchParams.get('search')

  // This will not be logged on the server when using static rendering
  console.log(search)

  return <>Search: {search}</>
}

app/dashboard/search-bar.js (jsx)

'use client'

import { useSearchParams } from 'next/navigation'

export default function SearchBar() {
  const searchParams = useSearchParams()

  const search = searchParams.get('search')

  // This will not be logged on the server when using static rendering
  console.log(search)

  return <>Search: {search}</>
}

app/dashboard/page.tsx (tsx)

import { Suspense } from 'react'
import SearchBar from './search-bar'

// This component passed as a fallback to the Suspense boundary
// will be rendered in place of the search bar in the initial HTML.
// When the value is available during React hydration the fallback
// will be replaced with the `<SearchBar>` component.
function SearchBarFallback() {
  return <>placeholder</>
}

export default function Page() {

https://developer.mozilla.org/docs/Web/API/URLSearchParams
https://developer.mozilla.org/docs/Web/API/URLSearchParams/getAll
https://developer.mozilla.org/docs/Web/API/URLSearchParams/keys
https://developer.mozilla.org/docs/Web/API/URLSearchParams/values
https://developer.mozilla.org/docs/Web/API/URLSearchParams/entries
https://developer.mozilla.org/docs/Web/API/URLSearchParams/forEach
https://developer.mozilla.org/docs/Web/API/URLSearchParams/toString
file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/routing/linking-and-navigating#4-partial-rendering
file:///docs/app/building-your-application/rendering/server-components#static-rendering-default
file:///docs/app/building-your-application/routing/loading-ui-and-streaming#example
file:///docs/app/api-reference/functions/use-search-params#static-rendering


  return (
    <>
      <nav>
        <Suspense fallback={<SearchBarFallback />}>
          <SearchBar />
        </Suspense>
      </nav>
      <h1>Dashboard</h1>
    </>
  )
}

app/dashboard/page.js (jsx)

import { Suspense } from 'react'
import SearchBar from './search-bar'

// This component passed as a fallback to the Suspense boundary
// will be rendered in place of the search bar in the initial HTML.
// When the value is available during React hydration the fallback
// will be replaced with the `<SearchBar>` component.
function SearchBarFallback() {
  return <>placeholder</>
}

export default function Page() {
  return (
    <>
      <nav>
        <Suspense fallback={<SearchBarFallback />}>
          <SearchBar />
        </Suspense>
      </nav>
      <h1>Dashboard</h1>
    </>
  )
}

Behavior

Dynamic Rendering

If a route is dynamically rendered, useSearchParams will be available on the server during the initial server render of the Client
Component.

For example:
app/dashboard/search-bar.tsx (tsx)

'use client'

import { useSearchParams } from 'next/navigation'

export default function SearchBar() {
  const searchParams = useSearchParams()

  const search = searchParams.get('search')

  // This will be logged on the server during the initial render
  // and on the client on subsequent navigations.
  console.log(search)

  return <>Search: {search}</>
}

app/dashboard/search-bar.js (jsx)

'use client'

import { useSearchParams } from 'next/navigation'

export default function SearchBar() {
  const searchParams = useSearchParams()

  const search = searchParams.get('search')

  // This will be logged on the server during the initial render

file:///docs/app/building-your-application/rendering/server-components#dynamic-rendering


  // and on the client on subsequent navigations.
  console.log(search)

  return <>Search: {search}</>
}

app/dashboard/page.tsx (tsx)

import SearchBar from './search-bar'

export const dynamic = 'force-dynamic'

export default function Page() {
  return (
    <>
      <nav>
        <SearchBar />
      </nav>
      <h1>Dashboard</h1>
    </>
  )
}

app/dashboard/page.js (jsx)

import SearchBar from './search-bar'

export const dynamic = 'force-dynamic'

export default function Page() {
  return (
    <>
      <nav>
        <SearchBar />
      </nav>
      <h1>Dashboard</h1>
    </>
  )
}

Good to know: Setting the dynamic route segment config option to force-dynamic can be used to force dynamic rendering.

Server Components

Pages

To access search params in Pages (Server Components), use the searchParams prop.

Layouts

Unlike Pages, Layouts (Server Components) do not receive the searchParams prop. This is because a shared layout is not re-rendered
during navigation which could lead to stale searchParams between navigations. View detailed explanation.

Instead, use the Page searchParams prop or the useSearchParams hook in a Client Component, which is re-rendered on the client
with the latest searchParams.

Examples

Updating searchParamssearchParams

You can use useRouter or Link to set new searchParams. After a navigation is performed, the current page.js will receive an
updated searchParams prop.

app/example-client-component.tsx (tsx)

export default function ExampleClientComponent() {
  const router = useRouter()
  const pathname = usePathname()
  const searchParams = useSearchParams()

  // Get a new searchParams string by merging the current
  // searchParams with a provided key/value pair
  const createQueryString = useCallback(
    (name: string, value: string) => {

file:///docs/app/api-reference/file-conventions/route-segment-config#dynamic
file:///docs/app/api-reference/file-conventions/page
file:///docs/app/api-reference/file-conventions/page#searchparams-optional
file:///docs/app/api-reference/file-conventions/layout
file:///docs/app/building-your-application/routing/linking-and-navigating#4-partial-rendering
file:///docs/app/api-reference/file-conventions/layout#layouts-do-not-receive-searchparams
file:///docs/app/api-reference/file-conventions/page
file:///docs/app/api-reference/functions/use-search-params
file:///docs/app/api-reference/functions/use-router
file:///docs/app/api-reference/components/link
file:///docs/app/api-reference/file-conventions/page
file:///docs/app/api-reference/file-conventions/page#searchparams-optional


      const params = new URLSearchParams(searchParams.toString())
      params.set(name, value)

      return params.toString()
    },
    [searchParams]
  )

  return (
    <>
      <p>Sort By</p>

      {/* using useRouter */}
      <button
        onClick={() => {
          // <pathname>?sort=asc
          router.push(pathname + '?' + createQueryString('sort', 'asc'))
        }}
      >
        ASC
      </button>

      {/* using <Link> */}
      <Link
        href={
          // <pathname>?sort=desc
          pathname + '?' + createQueryString('sort', 'desc')
        }
      >
        DESC
      </Link>
    </>
  )
}

app/example-client-component.js (jsx)

export default function ExampleClientComponent() {
  const router = useRouter()
  const pathname = usePathname()
  const searchParams = useSearchParams()

  // Get a new searchParams string by merging the current
  // searchParams with a provided key/value pair
  const createQueryString = useCallback(
    (name, value) => {
      const params = new URLSearchParams(searchParams)
      params.set(name, value)

      return params.toString()
    },
    [searchParams]
  )

  return (
    <>
      <p>Sort By</p>

      {/* using useRouter */}
      <button
        onClick={() => {
          // <pathname>?sort=asc
          router.push(pathname + '?' + createQueryString('sort', 'asc'))
        }}
      >
        ASC
      </button>

      {/* using <Link> */}
      <Link
        href={
          // <pathname>?sort=desc
          pathname + '?' + createQueryString('sort', 'desc')
        }
      >
        DESC
      </Link>



    </>
  )
}

Version History

Version Changes

v13.0.0 useSearchParams introduced.



3.2.3.25 - useSelectedLayoutSegment
Documentation path: /02-app/02-api-reference/04-functions/use-selected-layout-segment

Description: API Reference for the useSelectedLayoutSegment hook.

useSelectedLayoutSegment is a Client Component hook that lets you read the active route segment one level below the Layout it
is called from.

It is useful for navigation UI, such as tabs inside a parent layout that change style depending on the active child segment.
app/example-client-component.tsx (tsx)

'use client'

import { useSelectedLayoutSegment } from 'next/navigation'

export default function ExampleClientComponent() {
  const segment = useSelectedLayoutSegment()

  return <p>Active segment: {segment}</p>
}

app/example-client-component.js (jsx)

'use client'

import { useSelectedLayoutSegment } from 'next/navigation'

export default function ExampleClientComponent() {
  const segment = useSelectedLayoutSegment()

  return <p>Active segment: {segment}</p>
}

Good to know:

Since useSelectedLayoutSegment is a Client Component hook, and Layouts are Server Components by default,
useSelectedLayoutSegment is usually called via a Client Component that is imported into a Layout.
useSelectedLayoutSegment only returns the segment one level down. To return all active segments, see
useSelectedLayoutSegments

Parameters

const segment = useSelectedLayoutSegment(parallelRoutesKey?: string)

useSelectedLayoutSegment optionally accepts a parallelRoutesKey, which allows you to read the active route segment within
that slot.

Returns

useSelectedLayoutSegment returns a string of the active segment or null if one doesn’t exist.

For example, given the Layouts and URLs below, the returned segment would be:

Layout Visited URL Returned Segment

app/layout.js / null

app/layout.js /dashboard 'dashboard'

app/dashboard/layout.js /dashboard null

app/dashboard/layout.js /dashboard/settings 'settings'

app/dashboard/layout.js /dashboard/analytics 'analytics'

app/dashboard/layout.js /dashboard/analytics/monthly 'analytics'

Examples

file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/api-reference/functions/use-selected-layout-segments
file:///docs/app/building-your-application/routing/parallel-routes#useselectedlayoutsegments


Creating an active link component

You can use useSelectedLayoutSegment to create an active link component that changes style depending on the active segment. For
example, a featured posts list in the sidebar of a blog:

app/blog/blog-nav-link.tsx (tsx)

'use client'

import Link from 'next/link'
import { useSelectedLayoutSegment } from 'next/navigation'

// This *client* component will be imported into a blog layout
export default function BlogNavLink({
  slug,
  children,
}: {
  slug: string
  children: React.ReactNode
}) {
  // Navigating to `/blog/hello-world` will return 'hello-world'
  // for the selected layout segment
  const segment = useSelectedLayoutSegment()
  const isActive = slug === segment

  return (
    <Link
      href={`/blog/${slug}`}
      // Change style depending on whether the link is active
      style={{ fontWeight: isActive ? 'bold' : 'normal' }}
    >
      {children}
    </Link>
  )
}

app/blog/blog-nav-link.js (jsx)

'use client'

import Link from 'next/link'
import { useSelectedLayoutSegment } from 'next/navigation'

// This *client* component will be imported into a blog layout
export default function BlogNavLink({ slug, children }) {
  // Navigating to `/blog/hello-world` will return 'hello-world'
  // for the selected layout segment
  const segment = useSelectedLayoutSegment()
  const isActive = slug === segment

  return (
    <Link
      href={`/blog/${slug}`}
      // Change style depending on whether the link is active
      style={{ fontWeight: isActive ? 'bold' : 'normal' }}
    >
      {children}
    </Link>
  )
}

app/blog/layout.tsx (tsx)

// Import the Client Component into a parent Layout (Server Component)
import { BlogNavLink } from './blog-nav-link'
import getFeaturedPosts from './get-featured-posts'

export default async function Layout({
  children,
}: {
  children: React.ReactNode
}) {
  const featuredPosts = await getFeaturedPosts()
  return (
    <div>
      {featuredPosts.map((post) => (
        <div key={post.id}>
          <BlogNavLink slug={post.slug}>{post.title}</BlogNavLink>



        </div>
      ))}
      <div>{children}</div>
    </div>
  )
}

app/blog/layout.js (jsx)

// Import the Client Component into a parent Layout (Server Component)
import { BlogNavLink } from './blog-nav-link'
import getFeaturedPosts from './get-featured-posts'

export default async function Layout({ children }) {
  const featuredPosts = await getFeaturedPosts()
  return (
    <div>
      {featuredPosts.map((post) => (
        <div key={post.id}>
          <BlogNavLink slug={post.slug}>{post.title}</BlogNavLink>
        </div>
      ))}
      <div>{children}</div>
    </div>
  )
}

Version History

Version Changes

v13.0.0 useSelectedLayoutSegment introduced.



3.2.3.26 - useSelectedLayoutSegments
Documentation path: /02-app/02-api-reference/04-functions/use-selected-layout-segments

Description: API Reference for the useSelectedLayoutSegments hook.

useSelectedLayoutSegments is a Client Component hook that lets you read the active route segments below the Layout it is called
from.

It is useful for creating UI in parent Layouts that need knowledge of active child segments such as breadcrumbs.
app/example-client-component.tsx (tsx)

'use client'

import { useSelectedLayoutSegments } from 'next/navigation'

export default function ExampleClientComponent() {
  const segments = useSelectedLayoutSegments()

  return (
    <ul>
      {segments.map((segment, index) => (
        <li key={index}>{segment}</li>
      ))}
    </ul>
  )
}

app/example-client-component.js (jsx)

'use client'

import { useSelectedLayoutSegments } from 'next/navigation'

export default function ExampleClientComponent() {
  const segments = useSelectedLayoutSegments()

  return (
    <ul>
      {segments.map((segment, index) => (
        <li key={index}>{segment}</li>
      ))}
    </ul>
  )
}

Good to know:

Since useSelectedLayoutSegments is a Client Component hook, and Layouts are Server Components by default,
useSelectedLayoutSegments is usually called via a Client Component that is imported into a Layout.
The returned segments include Route Groups, which you might not want to be included in your UI. You can use the
filter() array method to remove items that start with a bracket.

Parameters

const segments = useSelectedLayoutSegments(parallelRoutesKey?: string)

useSelectedLayoutSegments optionally accepts a parallelRoutesKey, which allows you to read the active route segment within
that slot.

Returns

useSelectedLayoutSegments returns an array of strings containing the active segments one level down from the layout the hook
was called from. Or an empty array if none exist.

For example, given the Layouts and URLs below, the returned segments would be:

Layout Visited URL Returned Segments

app/layout.js / []

file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/routing/route-groups
file:///docs/app/building-your-application/routing/parallel-routes#useselectedlayoutsegments


app/layout.js /dashboard ['dashboard']

app/layout.js /dashboard/settings ['dashboard', 'settings']

app/dashboard/layout.js /dashboard []

app/dashboard/layout.js /dashboard/settings ['settings']

Layout Visited URL Returned Segments

Version History

Version Changes

v13.0.0 useSelectedLayoutSegments introduced.



3.2.3.27 - userAgent
Documentation path: /02-app/02-api-reference/04-functions/userAgent

Description: The userAgent helper extends the Web Request API with additional properties and methods to interact with the user
agent object from the request.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

The userAgent helper extends the Web Request API with additional properties and methods to interact with the user agent object
from the request.

middleware.ts (ts)

import { NextRequest, NextResponse, userAgent } from 'next/server'

export function middleware(request: NextRequest) {
  const url = request.nextUrl
  const { device } = userAgent(request)
  const viewport = device.type === 'mobile' ? 'mobile' : 'desktop'
  url.searchParams.set('viewport', viewport)
  return NextResponse.rewrite(url)
}

middleware.js (js)

import { NextResponse, userAgent } from 'next/server'

export function middleware(request) {
  const url = request.nextUrl
  const { device } = userAgent(request)
  const viewport = device.type === 'mobile' ? 'mobile' : 'desktop'
  url.searchParams.set('viewport', viewport)
  return NextResponse.rewrite(url)
}

isBotisBot
A boolean indicating whether the request comes from a known bot.

browserbrowser
An object containing information about the browser used in the request.

name: A string representing the browser’s name, or undefined if not identifiable.
version: A string representing the browser’s version, or undefined.

devicedevice
An object containing information about the device used in the request.

model: A string representing the model of the device, or undefined.
type: A string representing the type of the device, such as console, mobile, tablet, smarttv, wearable, embedded, or
undefined.
vendor: A string representing the vendor of the device, or undefined.

engineengine
An object containing information about the browser’s engine.

name: A string representing the engine’s name. Possible values include: Amaya, Blink, EdgeHTML, Flow, Gecko, Goanna, iCab,
KHTML, Links, Lynx, NetFront, NetSurf, Presto, Tasman, Trident, w3m, WebKit or undefined.
version: A string representing the engine’s version, or undefined.

osos

https://developer.mozilla.org/docs/Web/API/Request


An object containing information about the operating system.

name: A string representing the name of the OS, or undefined.
version: A string representing the version of the OS, or undefined.

cpucpu
An object containing information about the CPU architecture.

architecture: A string representing the architecture of the CPU. Possible values include: 68k, amd64, arm, arm64, armhf, avr,
ia32, ia64, irix, irix64, mips, mips64, pa-risc, ppc, sparc, sparc64 or undefined



3.2.4 - next.config.js Options
Documentation path: /02-app/02-api-reference/05-next-config-js/index

Description: Learn how to configure your application with next.config.js.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js can be configured through a next.config.js file in the root of your project directory (for example, by package.json) with a
default export.

next.config.js (js)

// @ts-check

/** @type {import('next').NextConfig} */
const nextConfig = {
  /* config options here */
}

module.exports = nextConfig

next.config.js is a regular Node.js module, not a JSON file. It gets used by the Next.js server and build phases, and it’s not included
in the browser build.

If you need ECMAScript modules, you can use next.config.mjs:

next.config.mjs (js)

// @ts-check

/**
 * @type {import('next').NextConfig}
 */
const nextConfig = {
  /* config options here */
}

export default nextConfig

You can also use a function:
next.config.mjs (js)

// @ts-check

export default (phase, { defaultConfig }) => {
  /**
   * @type {import('next').NextConfig}
   */
  const nextConfig = {
    /* config options here */
  }
  return nextConfig
}

Since Next.js 12.1.0, you can use an async function:
next.config.js (js)

// @ts-check

module.exports = async (phase, { defaultConfig }) => {
  /**
   * @type {import('next').NextConfig}
   */
  const nextConfig = {
    /* config options here */
  }
  return nextConfig
}

phase is the current context in which the configuration is loaded. You can see the available phases. Phases can be imported from
next/constants:

// @ts-check

https://nodejs.org/api/esm.html
https://github.com/vercel/next.js/blob/5e6b008b561caf2710ab7be63320a3d549474a5b/packages/next/shared/lib/constants.ts#L19-L23


const { PHASE_DEVELOPMENT_SERVER } = require('next/constants')

module.exports = (phase, { defaultConfig }) => {
  if (phase === PHASE_DEVELOPMENT_SERVER) {
    return {
      /* development only config options here */
    }
  }

  return {
    /* config options for all phases except development here */
  }
}

The commented lines are the place where you can put the configs allowed by next.config.js, which are defined in this file.

However, none of the configs are required, and it’s not necessary to understand what each config does. Instead, search for the features
you need to enable or modify in this section and they will show you what to do.

Avoid using new JavaScript features not available in your target Node.js version. next.config.js will not be parsed by
Webpack, Babel or TypeScript.

This page documents all the available configuration options:

https://github.com/vercel/next.js/blob/canary/packages/next/src/server/config-shared.ts


3.2.4.1 - appDir
Documentation path: /02-app/02-api-reference/05-next-config-js/appDir

Description: Enable the App Router to use layouts, streaming, and more.

Good to know: This option is no longer needed as of Next.js 13.4. The App Router is now stable.

The App Router (app directory) enables support for layouts, Server Components, streaming, and colocated data fetching.

Using the app directory will automatically enable React Strict Mode. Learn how to incrementally adopt app.

file:///docs/app/building-your-application/routing
file:///docs/app/building-your-application/routing/layouts-and-templates
file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/routing/loading-ui-and-streaming
file:///docs/app/building-your-application/data-fetching
https://react.dev/reference/react/StrictMode
file:///docs/app/building-your-application/upgrading/app-router-migration#migrating-from-pages-to-app


3.2.4.2 - assetPrefix
Documentation path: /02-app/02-api-reference/05-next-config-js/assetPrefix

Description: Learn how to use the assetPrefix config option to configure your CDN.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Attention: Deploying to Vercel automatically configures a global CDN for your Next.js project. You do not need to manually
setup an Asset Prefix.

Attention: Deploying to Vercel automatically configures a global CDN for your Next.js project. You do not need to manually
setup an Asset Prefix.

Good to know: Next.js 9.5+ added support for a customizable Base Path, which is better suited for hosting your application on
a sub-path like /docs. We do not suggest you use a custom Asset Prefix for this use case.

To set up a CDN, you can set up an asset prefix and configure your CDN’s origin to resolve to the domain that Next.js is hosted on.

Open next.config.js and add the assetPrefix config:

next.config.js (js)

const isProd = process.env.NODE_ENV === 'production'

module.exports = {
  // Use the CDN in production and localhost for development.
  assetPrefix: isProd ? 'https://cdn.mydomain.com' : undefined,
}

Next.js will automatically use your asset prefix for the JavaScript and CSS files it loads from the /_next/ path (.next/static/ folder).
For example, with the above configuration, the following request for a JS chunk:

/_next/static/chunks/4b9b41aaa062cbbfeff4add70f256968c51ece5d.4d708494b3aed70c04f0.js

Would instead become:

https://cdn.mydomain.com/_next/static/chunks/4b9b41aaa062cbbfeff4add70f256968c51ece5d.4d708494b3aed70c04f0.js

The exact configuration for uploading your files to a given CDN will depend on your CDN of choice. The only folder you need to host on
your CDN is the contents of .next/static/, which should be uploaded as _next/static/ as the above URL request indicates. Do
not upload the rest of your .next/.next/ folder, as you should not expose your server code and other configuration to the public.

While assetPrefix covers requests to _next/static, it does not influence the following paths:

Files in the public folder; if you want to serve those assets over a CDN, you’ll have to introduce the prefix yourself

Files in the public folder; if you want to serve those assets over a CDN, you’ll have to introduce the prefix yourself
/_next/data/ requests for getServerSideProps pages. These requests will always be made against the main domain since
they’re not static.
/_next/data/ requests for getStaticProps pages. These requests will always be made against the main domain to support
Incremental Static Generation, even if you’re not using it (for consistency).

file:///docs/app/building-your-application/deploying
file:///docs/pages/building-your-application/deploying
file:///docs/app/api-reference/next-config-js/basePath
https://en.wikipedia.org/wiki/Content_delivery_network
file:///docs/app/building-your-application/optimizing/static-assets
file:///docs/pages/building-your-application/optimizing/static-assets
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration


3.2.4.3 - basePath
Documentation path: /02-app/02-api-reference/05-next-config-js/basePath

Description: Use `basePath` to deploy a Next.js application under a sub-path of a domain.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

To deploy a Next.js application under a sub-path of a domain you can use the basePath config option.

basePath allows you to set a path prefix for the application. For example, to use /docs instead of '' (an empty string, the default),
open next.config.js and add the basePath config:

next.config.js (js)

module.exports = {
  basePath: '/docs',
}

Good to know: This value must be set at build time and cannot be changed without re-building as the value is inlined in the
client-side bundles.

Links

When linking to other pages using next/link and next/router the basePath will be automatically applied.

For example, using /about will automatically become /docs/about when basePath is set to /docs.

export default function HomePage() {
  return (
    <>
      <Link href="/about">About Page</Link>
    </>
  )
}

Output html:

<a href="/docs/about">About Page</a>

This makes sure that you don’t have to change all links in your application when changing the basePath value.

Images

When using the next/image component, you will need to add the basePath in front of src.

When using the next/image component, you will need to add the basePath in front of src.

For example, using /docs/me.png will properly serve your image when basePath is set to /docs.

import Image from 'next/image'

function Home() {
  return (
    <>
      <h1>My Homepage</h1>
      <Image
        src="/docs/me.png"
        alt="Picture of the author"
        width={500}
        height={500}
      />
      <p>Welcome to my homepage!</p>
    </>
  )
}

export default Home

file:///docs/app/api-reference/components/image
file:///docs/pages/api-reference/components/image


3.2.4.4 - compress
Documentation path: /02-app/02-api-reference/05-next-config-js/compress

Description: Next.js provides gzip compression to compress rendered content and static files, it only works with the server target.
Learn more about it here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

By default, Next.js uses gzip to compress rendered content and static files when using next start or a custom server. This is an
optimization for applications that do not have compression configured. If compression is already configured in your application via a
custom server, Next.js will not add compression.

Good to know:

When hosting your application on Vercel, compression uses brotli first, then gzip.
You can check if compression is enabled and which algorithm is used by looking at the Accept-Encoding (browser
accepted options) and Content-Encoding (currently used) headers in the response.

Disabling compression

To disable compression, set the compress config option to false:

next.config.js (js)

module.exports = {
  compress: false,
}

We do not recommend disabling compression unless you have compression configured on your server, as compression reduces
bandwidth usage and improves the performance of your application.

Changing the compression algorithm

To change your compression algorithm, you will need to configure your custom server and set the compress option to false in your
next.config.js file.

For example, you’re using nginx and want to switch to brotli, set the compress option to false to allow nginx to handle
compression.

Good to know:

For Next.js applications on Vercel, compression is handled by the Vercel’s Edge Network and not Next.js. See the Vercel
documentation for more information.

https://vercel.com/docs/edge-network/compression
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Encoding
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Encoding
https://www.nginx.com/
https://vercel.com/docs/edge-network/compression


3.2.4.5 - crossOrigin
Documentation path: /02-app/02-api-reference/05-next-config-js/crossOrigin

Description: Use the `crossOrigin` option to add a crossOrigin tag on the `script` tags generated by `next/script`.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Use the crossOrigin option to add a crossOrigin attribute in all <script> tags generated by the next/script component
next/script and next/headcomponents, and define how cross-origin requests should be handled.

next.config.js (js)

module.exports = {
  crossOrigin: 'anonymous',
}

Options

'anonymous': Adds crossOrigin="anonymous" attribute.
'use-credentials': Adds crossOrigin="use-credentials".

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/crossorigin
file:///docs/app/building-your-application/optimizing/scripts
file:///docs/pages/building-your-application/optimizing/scripts
file:///docs/pages/api-reference/components/head
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/crossorigin#anonymous
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/crossorigin#use-credentials


3.2.4.6 - devIndicators
Documentation path: /02-app/02-api-reference/05-next-config-js/devIndicators

Description: Optimized pages include an indicator to let you know if it's being statically optimized. You can opt-out of it here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

When you edit your code, and Next.js is compiling the application, a compilation indicator appears in the bottom right corner of the
page.

Good to know: This indicator is only present in development mode and will not appear when building and running the app in
production mode.

In some cases this indicator can be misplaced on your page, for example, when conflicting with a chat launcher. To change its position,
open next.config.js and set the buildActivityPosition in the devIndicators object to bottom-right (default), bottom-
left, top-right or top-left:

next.config.js (js)

module.exports = {
  devIndicators: {
    buildActivityPosition: 'bottom-right',
  },
}

In some cases this indicator might not be useful for you. To remove it, open next.config.js and disable the buildActivity config
in devIndicators object:

next.config.js (js)

module.exports = {
  devIndicators: {
    buildActivity: false,
  },
}

Good to know: This indicator was removed in Next.js version 10.0.1. We recommend upgrading to the latest version of Next.js.

When a page qualifies for Automatic Static Optimization we show an indicator to let you know.

This is helpful since automatic static optimization can be very beneficial and knowing immediately in development if the page qualifies
can be useful.

In some cases this indicator might not be useful, like when working on electron applications. To remove it open next.config.js and
disable the autoPrerender config in devIndicators:

next.config.js (js)

module.exports = {
  devIndicators: {
    autoPrerender: false,
  },
}

file:///docs/pages/building-your-application/rendering/automatic-static-optimization


3.2.4.7 - distDir
Documentation path: /02-app/02-api-reference/05-next-config-js/distDir

Description: Set a custom build directory to use instead of the default .next directory.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

You can specify a name to use for a custom build directory to use instead of .next.

Open next.config.js and add the distDir config:

next.config.js (js)

module.exports = {
  distDir: 'build',
}

Now if you run next build Next.js will use build instead of the default .next folder.

distDir should not leave your project directory. For example, ../build is an invalid directory.



3.2.4.8 - env
Documentation path: /02-app/02-api-reference/05-next-config-js/env

Description: Learn to add and access environment variables in your Next.js application at build time.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Since the release of Next.js 9.4 we now have a more intuitive and ergonomic experience for adding environment variables. Give
it a try!

Since the release of Next.js 9.4 we now have a more intuitive and ergonomic experience for adding environment variables. Give
it a try!

Good to know: environment variables specified in this way will always be included in the JavaScript bundle, prefixing the
environment variable name with NEXT_PUBLIC_ only has an effect when specifying them through the environment or .env files.

Good to know: environment variables specified in this way will always be included in the JavaScript bundle, prefixing the
environment variable name with NEXT_PUBLIC_ only has an effect when specifying them through the environment or .env files.

To add environment variables to the JavaScript bundle, open next.config.js and add the env config:

next.config.js (js)

module.exports = {
  env: {
    customKey: 'my-value',
  },
}

Now you can access process.env.customKey in your code. For example:

function Page() {
  return <h1>The value of customKey is: {process.env.customKey}</h1>
}

export default Page

Next.js will replace process.env.customKey with 'my-value' at build time. Trying to destructure process.env variables won’t
work due to the nature of webpack DefinePlugin.

For example, the following line:

return <h1>The value of customKey is: {process.env.customKey}</h1>

Will end up being:

return <h1>The value of customKey is: {'my-value'}</h1>

https://nextjs.org/blog/next-9-4
file:///docs/app/building-your-application/configuring/environment-variables
https://nextjs.org/blog/next-9-4
file:///docs/pages/building-your-application/configuring/environment-variables
file:///docs/app/building-your-application/configuring/environment-variables
file:///docs/pages/building-your-application/configuring/environment-variables
https://webpack.js.org/plugins/define-plugin/


3.2.4.9 - eslint
Documentation path: /02-app/02-api-reference/05-next-config-js/eslint

Description: Next.js reports ESLint errors and warnings during builds by default. Learn how to opt-out of this behavior here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

When ESLint is detected in your project, Next.js fails your production build (next build) when errors are present.

If you’d like Next.js to produce production code even when your application has ESLint errors, you can disable the built-in linting step
completely. This is not recommended unless you already have ESLint configured to run in a separate part of your workflow (for
example, in CI or a pre-commit hook).

Open next.config.js and enable the ignoreDuringBuilds option in the eslint config:

next.config.js (js)

module.exports = {
  eslint: {
    // Warning: This allows production builds to successfully complete even if
    // your project has ESLint errors.
    ignoreDuringBuilds: true,
  },
}



3.2.4.10 - exportPathMap (Deprecated)
Documentation path: /02-app/02-api-reference/05-next-config-js/exportPathMap

Description: Customize the pages that will be exported as HTML files when using `next export`.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

This feature is exclusive to next export and currently deprecated in favor of getStaticPaths with pages or
generateStaticParams with app.

Examples

exportPathMap allows you to specify a mapping of request paths to page destinations, to be used during export. Paths defined in
exportPathMap will also be available when using next dev.

Let’s start with an example, to create a custom exportPathMap for an app with the following pages:

pages/index.js
pages/about.js
pages/post.js

Open next.config.js and add the following exportPathMap config:

next.config.js (js)

module.exports = {
  exportPathMap: async function (
    defaultPathMap,
    { dev, dir, outDir, distDir, buildId }
  ) {
    return {
      '/': { page: '/' },
      '/about': { page: '/about' },
      '/p/hello-nextjs': { page: '/post', query: { title: 'hello-nextjs' } },
      '/p/learn-nextjs': { page: '/post', query: { title: 'learn-nextjs' } },
      '/p/deploy-nextjs': { page: '/post', query: { title: 'deploy-nextjs' } },
    }
  },
}

Good to know: the query field in exportPathMap cannot be used with automatically statically optimized pages or
getStaticProps pages as they are rendered to HTML files at build-time and additional query information cannot be provided
during next export.

The pages will then be exported as HTML files, for example, /about will become /about.html.

exportPathMap is an async function that receives 2 arguments: the first one is defaultPathMap, which is the default map used by
Next.js. The second argument is an object with:

dev - true when exportPathMap is being called in development. false when running next export. In development
exportPathMap is used to define routes.
dir - Absolute path to the project directory
outDir - Absolute path to the out/ directory (configurable with -o). When dev is true the value of outDir will be null.
distDir - Absolute path to the .next/ directory (configurable with the distDir config)
buildId - The generated build id

The returned object is a map of pages where the key is the pathname and the value is an object that accepts the following fields:

page: String - the page inside the pages directory to render
query: Object - the query object passed to getInitialProps when prerendering. Defaults to {}

The exported pathname can also be a filename (for example, /readme.md), but you may need to set the Content-Type header
to text/html when serving its content if it is different than .html.

Adding a trailing slash

It is possible to configure Next.js to export pages as index.html files and require trailing slashes, /about becomes

file:///docs/app/api-reference/next-cli#development
file:///docs/pages/building-your-application/rendering/automatic-static-optimization
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/api-reference/next-config-js/distDir


/about/index.html and is routable via /about/. This was the default behavior prior to Next.js 9.

To switch back and add a trailing slash, open next.config.js and enable the trailingSlash config:

next.config.js (js)

module.exports = {
  trailingSlash: true,
}

Customizing the output directory

next export will use out as the default output directory, you can customize this using the -o argument, like so:

next export will use out as the default output directory, you can customize this using the -o argument, like so:

Terminal (bash)

next export -o outdir

Warning: Using exportPathMap is deprecated and is overridden by getStaticPaths inside pages. We don’t recommend
using them together.

file:///docs/app/building-your-application/deploying/static-exports
file:///docs/pages/building-your-application/deploying/static-exports


3.2.4.11 - generateBuildId
Documentation path: /02-app/02-api-reference/05-next-config-js/generateBuildId

Description: Configure the build id, which is used to identify the current build in which your application is being served.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js generates an ID during next build to identify which version of your application is being served. The same build should be used
and boot up multiple containers.

If you are rebuilding for each stage of your environment, you will need to generate a consistent build ID to use between containers. Use
the generateBuildId command in next.config.js:

next.config.js (jsx)

module.exports = {
  generateBuildId: async () => {
    // This could be anything, using the latest git hash
    return process.env.GIT_HASH
  },
}



3.2.4.12 - generateEtags
Documentation path: /02-app/02-api-reference/05-next-config-js/generateEtags

Description: Next.js will generate etags for every page by default. Learn more about how to disable etag generation here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js will generate etags for every page by default. You may want to disable etag generation for HTML pages depending on your
cache strategy.

Open next.config.js and disable the generateEtags option:

next.config.js (js)

module.exports = {
  generateEtags: false,
}

https://en.wikipedia.org/wiki/HTTP_ETag


3.2.4.13 - headers
Documentation path: /02-app/02-api-reference/05-next-config-js/headers

Description: Add custom HTTP headers to your Next.js app.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Headers allow you to set custom HTTP headers on the response to an incoming request on a given path.

To set custom HTTP headers you can use the headers key in next.config.js:

next.config.js (js)

module.exports = {
  async headers() {
    return [
      {
        source: '/about',
        headers: [
          {
            key: 'x-custom-header',
            value: 'my custom header value',
          },
          {
            key: 'x-another-custom-header',
            value: 'my other custom header value',
          },
        ],
      },
    ]
  },
}

headers is an async function that expects an array to be returned holding objects with source and headers properties:

source is the incoming request path pattern.
headers is an array of response header objects, with key and value properties.
basePath: false or undefined - if false the basePath won’t be included when matching, can be used for external rewrites only.
locale: false or undefined - whether the locale should not be included when matching.
has is an array of has objects with the type, key and value properties.
missing is an array of missing objects with the type, key and value properties.

Headers are checked before the filesystem which includes pages and /public files.

Header Overriding Behavior

If two headers match the same path and set the same header key, the last header key will override the first. Using the below headers,
the path /hello will result in the header x-hello being world due to the last header value set being world.

next.config.js (js)

module.exports = {
  async headers() {
    return [
      {
        source: '/:path*',
        headers: [
          {
            key: 'x-hello',
            value: 'there',
          },
        ],
      },
      {
        source: '/hello',
        headers: [
          {
            key: 'x-hello',
            value: 'world',
          },
        ],
      },



    ]
  },
}

Path Matching

Path matches are allowed, for example /blog/:slug will match /blog/hello-world (no nested paths):

next.config.js (js)

module.exports = {
  async headers() {
    return [
      {
        source: '/blog/:slug',
        headers: [
          {
            key: 'x-slug',
            value: ':slug', // Matched parameters can be used in the value
          },
          {
            key: 'x-slug-:slug', // Matched parameters can be used in the key
            value: 'my other custom header value',
          },
        ],
      },
    ]
  },
}

Wildcard Path Matching

To match a wildcard path you can use * after a parameter, for example /blog/:slug* will match /blog/a/b/c/d/hello-world:

next.config.js (js)

module.exports = {
  async headers() {
    return [
      {
        source: '/blog/:slug*',
        headers: [
          {
            key: 'x-slug',
            value: ':slug*', // Matched parameters can be used in the value
          },
          {
            key: 'x-slug-:slug*', // Matched parameters can be used in the key
            value: 'my other custom header value',
          },
        ],
      },
    ]
  },
}

Regex Path Matching

To match a regex path you can wrap the regex in parenthesis after a parameter, for example /blog/:slug(\\d{1,}) will match
/blog/123 but not /blog/abc:

next.config.js (js)

module.exports = {
  async headers() {
    return [
      {
        source: '/blog/:post(\\d{1,})',
        headers: [
          {
            key: 'x-post',
            value: ':post',
          },
        ],
      },
    ]
  },



}

The following characters (, ), {, }, :, *, +, ? are used for regex path matching, so when used in the source as non-special values they
must be escaped by adding \\ before them:

next.config.js (js)

module.exports = {
  async headers() {
    return [
      {
        // this will match `/english(default)/something` being requested
        source: '/english\\(default\\)/:slug',
        headers: [
          {
            key: 'x-header',
            value: 'value',
          },
        ],
      },
    ]
  },
}

Header, Cookie, and Query Matching

To only apply a header when header, cookie, or query values also match the has field or don’t match the missing field can be used.
Both the source and all has items must match and all missing items must not match for the header to be applied.

has and missing items can have the following fields:

type: String - must be either header, cookie, host, or query.
key: String - the key from the selected type to match against.
value: String or undefined - the value to check for, if undefined any value will match. A regex like string can be used to capture
a specific part of the value, e.g. if the value first-(?<paramName>.*) is used for first-second then second will be usable in
the destination with :paramName.

next.config.js (js)

module.exports = {
  async headers() {
    return [
      // if the header `x-add-header` is present,
      // the `x-another-header` header will be applied
      {
        source: '/:path*',
        has: [
          {
            type: 'header',
            key: 'x-add-header',
          },
        ],
        headers: [
          {
            key: 'x-another-header',
            value: 'hello',
          },
        ],
      },
      // if the header `x-no-header` is not present,
      // the `x-another-header` header will be applied
      {
        source: '/:path*',
        missing: [
          {
            type: 'header',
            key: 'x-no-header',
          },
        ],
        headers: [
          {
            key: 'x-another-header',
            value: 'hello',
          },
        ],



      },
      // if the source, query, and cookie are matched,
      // the `x-authorized` header will be applied
      {
        source: '/specific/:path*',
        has: [
          {
            type: 'query',
            key: 'page',
            // the page value will not be available in the
            // header key/values since value is provided and
            // doesn't use a named capture group e.g. (?<page>home)
            value: 'home',
          },
          {
            type: 'cookie',
            key: 'authorized',
            value: 'true',
          },
        ],
        headers: [
          {
            key: 'x-authorized',
            value: ':authorized',
          },
        ],
      },
      // if the header `x-authorized` is present and
      // contains a matching value, the `x-another-header` will be applied
      {
        source: '/:path*',
        has: [
          {
            type: 'header',
            key: 'x-authorized',
            value: '(?<authorized>yes|true)',
          },
        ],
        headers: [
          {
            key: 'x-another-header',
            value: ':authorized',
          },
        ],
      },
      // if the host is `example.com`,
      // this header will be applied
      {
        source: '/:path*',
        has: [
          {
            type: 'host',
            value: 'example.com',
          },
        ],
        headers: [
          {
            key: 'x-another-header',
            value: ':authorized',
          },
        ],
      },
    ]
  },
}

Headers with basePath support

When leveraging basePath support with headers each source is automatically prefixed with the basePath unless you add basePath:
false to the header:

next.config.js (js)

module.exports = {
  basePath: '/docs',

file:///docs/app/api-reference/next-config-js/basePath


  async headers() {
    return [
      {
        source: '/with-basePath', // becomes /docs/with-basePath
        headers: [
          {
            key: 'x-hello',
            value: 'world',
          },
        ],
      },
      {
        source: '/without-basePath', // is not modified since basePath: false is set
        headers: [
          {
            key: 'x-hello',
            value: 'world',
          },
        ],
        basePath: false,
      },
    ]
  },
}

Headers with i18n support

When leveraging i18n support with headers each source is automatically prefixed to handle the configured locales unless you add
locale: false to the header. If locale: false is used you must prefix the source with a locale for it to be matched correctly.

When leveraging i18n support with headers each source is automatically prefixed to handle the configured locales unless you add
locale: false to the header. If locale: false is used you must prefix the source with a locale for it to be matched correctly.

next.config.js (js)

module.exports = {
  i18n: {
    locales: ['en', 'fr', 'de'],
    defaultLocale: 'en',
  },

  async headers() {
    return [
      {
        source: '/with-locale', // automatically handles all locales
        headers: [
          {
            key: 'x-hello',
            value: 'world',
          },
        ],
      },
      {
        // does not handle locales automatically since locale: false is set
        source: '/nl/with-locale-manual',
        locale: false,
        headers: [
          {
            key: 'x-hello',
            value: 'world',
          },
        ],
      },
      {
        // this matches '/' since `en` is the defaultLocale
        source: '/en',
        locale: false,
        headers: [
          {
            key: 'x-hello',
            value: 'world',
          },
        ],
      },
      {
        // this gets converted to /(en|fr|de)/(.*) so will not match the top-level

file:///docs/app/building-your-application/routing/internationalization
file:///docs/pages/building-your-application/routing/internationalization


        // `/` or `/fr` routes like /:path* would
        source: '/(.*)',
        headers: [
          {
            key: 'x-hello',
            value: 'world',
          },
        ],
      },
    ]
  },
}

Cache-Control

You cannot set Cache-Control headers in next.config.js for pages or assets, as these headers will be overwritten in production to
ensure that responses and static assets are cached effectively.

Learn more about caching with the App Router.

If you need to revalidate the cache of a page that has been statically generated, you can do so by setting the revalidate prop in the
page’s getStaticProps function.

You can set the Cache-Control header in your API Routes by using the res.setHeader method:

pages/api/hello.ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'

type ResponseData = {
  message: string
}

export default function handler(
  req: NextApiRequest,
  res: NextApiResponse<ResponseData>
) {
  res.setHeader('Cache-Control', 's-maxage=86400')
  res.status(200).json({ message: 'Hello from Next.js!' })
}

pages/api/hello.js (js)

export default function handler(req, res) {
  res.setHeader('Cache-Control', 's-maxage=86400')
  res.status(200).json({ message: 'Hello from Next.js!' })
}

Options

CORS

Cross-Origin Resource Sharing (CORS) is a security feature that allows you to control which sites can access your resources. You can set
the Access-Control-Allow-Origin header to allow a specific origin to access your API EndpointsRoute Handlers.

async headers() {
    return [
      {
        source: "/api/:path*",
        headers: [
          {
            key: "Access-Control-Allow-Origin",
            value: "*", // Set your origin
          },
          {
            key: "Access-Control-Allow-Methods",
            value: "GET, POST, PUT, DELETE, OPTIONS",
          },
          {
            key: "Access-Control-Allow-Headers",
            value: "Content-Type, Authorization",
          },
        ],
      },
    ];
  },

file:///docs/app/building-your-application/caching
file:///docs/pages/building-your-application/rendering/static-site-generation
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/routing/api-routes
https://developer.mozilla.org/docs/Web/HTTP/CORS


X-DNS-Prefetch-Control

This header controls DNS prefetching, allowing browsers to proactively perform domain name resolution on external links, images,
CSS, JavaScript, and more. This prefetching is performed in the background, so the DNS is more likely to be resolved by the time the
referenced items are needed. This reduces latency when the user clicks a link.

{
  key: 'X-DNS-Prefetch-Control',
  value: 'on'
}

Strict-Transport-Security

This header informs browsers it should only be accessed using HTTPS, instead of using HTTP. Using the configuration below, all present
and future subdomains will use HTTPS for a max-age of 2 years. This blocks access to pages or subdomains that can only be served
over HTTP.

If you’re deploying to Vercel, this header is not necessary as it’s automatically added to all deployments unless you declare headers in
your next.config.js.

{
  key: 'Strict-Transport-Security',
  value: 'max-age=63072000; includeSubDomains; preload'
}

X-Frame-Options

This header indicates whether the site should be allowed to be displayed within an iframe. This can prevent against clickjacking
attacks.

This header has been superseded by CSP’s frame-ancestorsframe-ancestors option, which has better support in modern browsers (see Content
Security Policy for configuration details).

{
  key: 'X-Frame-Options',
  value: 'SAMEORIGIN'
}

Permissions-Policy

This header allows you to control which features and APIs can be used in the browser. It was previously named Feature-Policy.

{
  key: 'Permissions-Policy',
  value: 'camera=(), microphone=(), geolocation=(), browsing-topics=()'
}

X-Content-Type-Options

This header prevents the browser from attempting to guess the type of content if the Content-Type header is not explicitly set. This
can prevent XSS exploits for websites that allow users to upload and share files.

For example, a user trying to download an image, but having it treated as a different Content-Type like an executable, which could be
malicious. This header also applies to downloading browser extensions. The only valid value for this header is nosniff.

{
  key: 'X-Content-Type-Options',
  value: 'nosniff'
}

Referrer-Policy

This header controls how much information the browser includes when navigating from the current website (origin) to another.

{
  key: 'Referrer-Policy',
  value: 'origin-when-cross-origin'
}

Content-Security-Policy

https://developer.mozilla.org/docs/Web/HTTP/Headers/X-DNS-Prefetch-Control
https://developer.mozilla.org/docs/Glossary/DNS
https://developer.mozilla.org/docs/Web/HTTP/Headers/Strict-Transport-Security
https://vercel.com/docs/concepts/edge-network/headers#strict-transport-security?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Frame-Options
file:///docs/app/building-your-application/configuring/content-security-policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/Permissions-Policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/docs/Web/HTTP/Headers/Referrer-Policy


Learn more about adding a Content Security Policy to your application.

Version History

Version Changes

v13.3.0 missing added.

v10.2.0 has added.

v9.5.0 Headers added.

file:///docs/app/building-your-application/configuring/content-security-policy


3.2.4.14 - httpAgentOptions
Documentation path: /02-app/02-api-reference/05-next-config-js/httpAgentOptions

Description: Next.js will automatically use HTTP Keep-Alive by default. Learn more about how to disable HTTP Keep-Alive here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

In Node.js versions prior to 18, Next.js automatically polyfills fetch() with undici and enables HTTP Keep-Alive by default.

To disable HTTP Keep-Alive for all fetch() calls on the server-side, open next.config.js and add the httpAgentOptions config:

next.config.js (js)

module.exports = {
  httpAgentOptions: {
    keepAlive: false,
  },
}

file:///docs/architecture/supported-browsers#polyfills
https://developer.mozilla.org/docs/Web/HTTP/Headers/Keep-Alive


3.2.4.15 - images
Documentation path: /02-app/02-api-reference/05-next-config-js/images

Description: Custom configuration for the next/image loader

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

If you want to use a cloud provider to optimize images instead of using the Next.js built-in Image Optimization API, you can configure
next.config.js with the following:

next.config.js (js)

module.exports = {
  images: {
    loader: 'custom',
    loaderFile: './my/image/loader.js',
  },
}

This loaderFile must point to a file relative to the root of your Next.js application. The file must export a default function that returns
a string, for example:

my/image/loader.js (js)

'use client'

export default function myImageLoader({ src, width, quality }) {
  return `https://example.com/${src}?w=${width}&q=${quality || 75}`
}

Alternatively, you can use the loader prop to pass the function to each instance of next/image.

Good to know: Customizing the image loader file, which accepts a function, requires using Client Components to serialize the
provided function.

To learn more about configuring the behavior of the built-in Image Optimization API and the Image Component, see Image
Configuration Options for available options.

my/image/loader.js (js)

export default function myImageLoader({ src, width, quality }) {
  return `https://example.com/${src}?w=${width}&q=${quality || 75}`
}

Alternatively, you can use the loader prop to pass the function to each instance of next/image.

To learn more about configuring the behavior of the built-in Image Optimization API and the Image Component, see Image
Configuration Options for available options.

Example Loader Configuration

Akamai
AWS CloudFront
Cloudinary
Cloudflare
Contentful
Fastly
Gumlet
ImageEngine
Imgix
PixelBin
Sanity
Sirv
Supabase
Thumbor

Akamai

// Docs: https://techdocs.akamai.com/ivm/reference/test-images-on-demand
export default function akamaiLoader({ src, width, quality }) {

file:///docs/app/api-reference/components/image#loader
file:///docs/app/building-your-application/rendering/client-components
file:///docs/app/building-your-application/optimizing/images
file:///docs/app/api-reference/components/image
file:///docs/app/api-reference/components/image#configuration-options
file:///docs/pages/api-reference/components/image#loader
file:///docs/pages/building-your-application/optimizing/images
file:///docs/pages/api-reference/components/image
file:///docs/pages/api-reference/components/image#configuration-options


  return `https://example.com/${src}?imwidth=${width}`
}

AWS CloudFront

// Docs: https://aws.amazon.com/developer/application-security-performance/articles/image-optimization
export default function cloudfrontLoader({ src, width, quality }) {
  const url = new URL(`https://example.com${src}`)
  url.searchParams.set('format', 'auto')
  url.searchParams.set('width', width.toString())
  url.searchParams.set('quality', (quality || 75).toString())
  return url.href

Cloudinary

// Demo: https://res.cloudinary.com/demo/image/upload/w_300,c_limit,q_auto/turtles.jpg
export default function cloudinaryLoader({ src, width, quality }) {
  const params = ['f_auto', 'c_limit', `w_${width}`, `q_${quality || 'auto'}`]
  return `https://example.com/${params.join(',')}${src}`
}

Cloudflare

// Docs: https://developers.cloudflare.com/images/url-format
export default function cloudflareLoader({ src, width, quality }) {
  const params = [`width=${width}`, `quality=${quality || 75}`, 'format=auto']
  return `https://example.com/cdn-cgi/image/${params.join(',')}/${src}`
}

Contentful

// Docs: https://www.contentful.com/developers/docs/references/images-api/
export default function contentfulLoader({ src, width, quality }) {
  const url = new URL(`https://example.com${src}`)
  url.searchParams.set('fm', 'webp')
  url.searchParams.set('w', width.toString())
  url.searchParams.set('q', (quality || 75).toString())
  return url.href
}

Fastly

// Docs: https://developer.fastly.com/reference/io/
export default function fastlyLoader({ src, width, quality }) {
  const url = new URL(`https://example.com${src}`)
  url.searchParams.set('auto', 'webp')
  url.searchParams.set('width', width.toString())
  url.searchParams.set('quality', (quality || 75).toString())
  return url.href
}

Gumlet

// Docs: https://docs.gumlet.com/reference/image-transform-size
export default function gumletLoader({ src, width, quality }) {
  const url = new URL(`https://example.com${src}`)
  url.searchParams.set('format', 'auto')
  url.searchParams.set('w', width.toString())
  url.searchParams.set('q', (quality || 75).toString())
  return url.href
}

ImageEngine

// Docs: https://support.imageengine.io/hc/en-us/articles/360058880672-Directives
export default function imageengineLoader({ src, width, quality }) {
  const compression = 100 - (quality || 50)
  const params = [`w_${width}`, `cmpr_${compression}`)]
  return `https://example.com${src}?imgeng=/${params.join('/')`



}

Imgix

// Demo: https://static.imgix.net/daisy.png?format=auto&fit=max&w=300
export default function imgixLoader({ src, width, quality }) {
  const url = new URL(`https://example.com${src}`)
  const params = url.searchParams
  params.set('auto', params.getAll('auto').join(',') || 'format')
  params.set('fit', params.get('fit') || 'max')
  params.set('w', params.get('w') || width.toString())
  params.set('q', (quality || 50).toString())
  return url.href
}

PixelBin

// Doc (Resize): https://www.pixelbin.io/docs/transformations/basic/resize/#width-w
// Doc (Optimise): https://www.pixelbin.io/docs/optimizations/quality/#image-quality-when-delivering
// Doc (Auto Format Delivery): https://www.pixelbin.io/docs/optimizations/format/#automatic-format-selection-with-f_auto-url-parameter
export default function pixelBinLoader({ src, width, quality }) {
  const name = '<your-cloud-name>'
  const opt = `t.resize(w:${width})~t.compress(q:${quality || 75})`
  return `https://cdn.pixelbin.io/v2/${name}/${opt}/${src}?f_auto=true`
}

Sanity

// Docs: https://www.sanity.io/docs/image-urls
export default function sanityLoader({ src, width, quality }) {
  const prj = 'zp7mbokg'
  const dataset = 'production'
  const url = new URL(`https://cdn.sanity.io/images/${prj}/${dataset}${src}`)
  url.searchParams.set('auto', 'format')
  url.searchParams.set('fit', 'max')
  url.searchParams.set('w', width.toString())
  if (quality) {
    url.searchParams.set('q', quality.toString())
  }
  return url.href
}

Sirv

// Docs: https://sirv.com/help/articles/dynamic-imaging/
export default function sirvLoader({ src, width, quality }) {
  const url = new URL(`https://example.com${src}`)
  const params = url.searchParams
  params.set('format', params.getAll('format').join(',') || 'optimal')
  params.set('w', params.get('w') || width.toString())
  params.set('q', (quality || 85).toString())
  return url.href
}

Supabase

// Docs: https://supabase.com/docs/guides/storage/image-transformations#nextjs-loader
export default function supabaseLoader({ src, width, quality }) {
  const url = new URL(`https://example.com${src}`)
  url.searchParams.set('width', width.toString())
  url.searchParams.set('quality', (quality || 75).toString())
  return url.href
}

Thumbor

// Docs: https://thumbor.readthedocs.io/en/latest/
export default function thumborLoader({ src, width, quality }) {
  const params = [`${width}x0`, `filters:quality(${quality || 75})`]
  return `https://example.com${params.join('/')}${src}`



}



3.2.4.16 - Custom Next.js Cache Handler
Documentation path: /02-app/02-api-reference/05-next-config-js/incrementalCacheHandlerPath

Description: Configure the Next.js cache used for storing and revalidating data to use any external service like Redis, Memcached, or
others.

In Next.js, the default cache handler for the Pages and App Router uses the filesystem cache. This requires no configuration, however,
you can customize the cache handler by using the cacheHandler field in next.config.js.

next.config.js (js)

module.exports = {
  cacheHandler: require.resolve('./cache-handler.js'),
  cacheMaxMemorySize: 0, // disable default in-memory caching
}

View an example of a custom cache handler and learn more about implementation.

API Reference

The cache handler can implement the following methods: get, set, and revalidateTag.

get()get()

Parameter Type Description

key string The key to the cached value.

Returns the cached value or null if not found.

set()set()

Parameter Type Description

key string The key to store the data under.

data Data or null The data to be cached.

ctx { tags: [] } The cache tags provided.

Returns Promise<void>.

revalidateTag()revalidateTag()

Parameter Type Description

tag string The cache tag to revalidate.

Returns Promise<void>. Learn more about revalidating data or the revalidateTag() function.

Good to know:

revalidatePath is a convenience layer on top of cache tags. Calling revalidatePath will call your revalidateTag function,
which you can then choose if you want to tag cache keys based on the path.

Version History

Version Changes

v14.1.0 Renamed cacheHandler is stable.

v13.4.0 incrementalCacheHandlerPath (experimental) supports revalidateTag.

file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating
file:///docs/app/building-your-application/deploying#configuring-caching
file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating
file:///docs/app/api-reference/functions/revalidateTag


v13.4.0 incrementalCacheHandlerPath (experimental) supports standalone output.

v12.2.0 incrementalCacheHandlerPath (experimental) is added.

Version Changes



3.2.4.17 - instrumentationHook
Documentation path: /02-app/02-api-reference/05-next-config-js/instrumentationHook

Description: Use the instrumentationHook option to set up instrumentation in your Next.js App.

Related:

Title: Learn more about Instrumentation

Related Description: No related description

Links:

app/api-reference/file-conventions/instrumentation
app/building-your-application/optimizing/instrumentation

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

The experimental instrumentationHook option allows you to set up instrumentation via the instrumentation file in your Next.js
App.

next.config.js (js)

module.exports = {
  experimental: {
    instrumentationHook: true,
  },
}

file:///docs/app/api-reference/file-conventions/instrumentation


3.2.4.18 - logging
Documentation path: /02-app/02-api-reference/05-next-config-js/logging

Description: Configure how data fetches are logged to the console when running Next.js in development mode.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

You can configure the logging level and whether the full URL is logged to the console when running Next.js in development mode.

Currently, logging only applies to data fetching using the fetch API. It does not yet apply to other logs inside of Next.js.

next.config.js (js)

module.exports = {
  logging: {
    fetches: {
      fullUrl: true,
    },
  },
}



3.2.4.19 - mdxRs
Documentation path: /02-app/02-api-reference/05-next-config-js/mdxRs

Description: Use the new Rust compiler to compile MDX files in the App Router.

For use with @next/mdx. Compile MDX files using the new Rust compiler.

next.config.js (js)

const withMDX = require('@next/mdx')()

/** @type {import('next').NextConfig} */
const nextConfig = {
  pageExtensions: ['ts', 'tsx', 'mdx'],
  experimental: {
    mdxRs: true,
  },
}

module.exports = withMDX(nextConfig)



3.2.4.20 - onDemandEntries
Documentation path: /02-app/02-api-reference/05-next-config-js/onDemandEntries

Description: Configure how Next.js will dispose and keep in memory pages created in development.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js exposes some options that give you some control over how the server will dispose or keep in memory built pages in
development.

To change the defaults, open next.config.js and add the onDemandEntries config:

next.config.js (js)

module.exports = {
  onDemandEntries: {
    // period (in ms) where the server will keep pages in the buffer
    maxInactiveAge: 25 * 1000,
    // number of pages that should be kept simultaneously without being disposed
    pagesBufferLength: 2,
  },
}



3.2.4.21 - optimizePackageImports
Documentation path: /02-app/02-api-reference/05-next-config-js/optimizePackageImports

Description: API Reference for optimizePackageImports Next.js Config Option

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Some packages can export hundreds or thousands of modules, which can cause performance issues in development and production.

Adding a package to experimental.optimizePackageImports will only load the modules you are actually using, while still giving
you the convenience of writing import statements with many named exports.

next.config.js (js)

module.exports = {
  experimental: {
    optimizePackageImports: ['package-name'],
  },
}

The following libraries are optimized by default:

lucide-react
date-fns
lodash-es
ramda
antd
react-bootstrap
ahooks
@ant-design/icons
@headlessui/react
@headlessui-float/react
@heroicons/react/20/solid
@heroicons/react/24/solid
@heroicons/react/24/outline
@visx/visx
@tremor/react
rxjs
@mui/material
@mui/icons-material
recharts
react-use
@material-ui/core
@material-ui/icons
@tabler/icons-react
mui-core
react-icons/*



3.2.4.22 - output
Documentation path: /02-app/02-api-reference/05-next-config-js/output

Description: Next.js automatically traces which files are needed by each page to allow for easy deployment of your application. Learn
how it works here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

During a build, Next.js will automatically trace each page and its dependencies to determine all of the files that are needed for
deploying a production version of your application.

This feature helps reduce the size of deployments drastically. Previously, when deploying with Docker you would need to have all files
from your package’s dependencies installed to run next start. Starting with Next.js 12, you can leverage Output File Tracing in the
.next/ directory to only include the necessary files.

Furthermore, this removes the need for the deprecated serverless target which can cause various issues and also creates
unnecessary duplication.

How it Works

During next build, Next.js will use @vercel/nft to statically analyze import, require, and fs usage to determine all files that a
page might load.

Next.js’ production server is also traced for its needed files and output at .next/next-server.js.nft.json which can be leveraged
in production.

To leverage the .nft.json files emitted to the .next output directory, you can read the list of files in each trace that are relative to
the .nft.json file and then copy them to your deployment location.

Automatically Copying Traced Files

Next.js can automatically create a standalone folder that copies only the necessary files for a production deployment including select
files in node_modules.

To leverage this automatic copying you can enable it in your next.config.js:

next.config.js (js)

module.exports = {
  output: 'standalone',
}

This will create a folder at .next/standalone which can then be deployed on its own without installing node_modules.

Additionally, a minimal server.js file is also output which can be used instead of next start. This minimal server does not copy the
public or .next/static folders by default as these should ideally be handled by a CDN instead, although these folders can be copied
to the standalone/public and standalone/.next/static folders manually, after which server.js file will serve these
automatically.

Good to know:

If your project needs to listen to a specific port or hostname, you can define PORT or HOSTNAME environment variables
before running server.js. For example, run PORT=8080 HOSTNAME=0.0.0.0 node server.js to start the server on
http://0.0.0.0:8080.
If your project uses Image Optimization with the default loader, you must install sharp as a dependency:

Good to know:

next.config.js is read during next build and serialized into the server.js output file. If the legacy
serverRuntimeConfig or publicRuntimeConfig options are being used, the values will be specific to values at build
time.
If your project needs to listen to a specific port or hostname, you can define PORT or HOSTNAME environment variables
before running server.js. For example, run PORT=8080 HOSTNAME=0.0.0.0 node server.js to start the server on
http://0.0.0.0:8080.
If your project uses Image Optimization with the default loader, you must install sharp as a dependency:

Terminal (bash)

https://github.com/vercel/nft
file:///docs/app/building-your-application/optimizing/images
file:///docs/pages/api-reference/next-config-js/runtime-configuration
file:///docs/pages/building-your-application/optimizing/images


npm i sharp

Terminal (bash)

yarn add sharp

Terminal (bash)

pnpm add sharp

Terminal (bash)

bun add sharp

Caveats

While tracing in monorepo setups, the project directory is used for tracing by default. For next build packages/web-app,
packages/web-app would be the tracing root and any files outside of that folder will not be included. To include files outside of
this folder you can set experimental.outputFileTracingRoot in your next.config.js.

packages/web-app/next.config.js (js)

module.exports = {
  experimental: {
    // this includes files from the monorepo base two directories up
    outputFileTracingRoot: path.join(__dirname, '../../'),
  },
}

There are some cases in which Next.js might fail to include required files, or might incorrectly include unused files. In those cases,
you can leverage experimental.outputFileTracingExcludes and experimental.outputFileTracingIncludes
respectively in next.config.js. Each config accepts an object with minimatch globs for the key to match specific pages and a
value of an array with globs relative to the project’s root to either include or exclude in the trace.

next.config.js (js)

module.exports = {
  experimental: {
    outputFileTracingExcludes: {
      '/api/hello': ['./un-necessary-folder/**/*'],
    },
    outputFileTracingIncludes: {
      '/api/another': ['./necessary-folder/**/*'],
    },
  },
}

Currently, Next.js does not do anything with the emitted .nft.json files. The files must be read by your deployment platform, for
example Vercel, to create a minimal deployment. In a future release, a new command is planned to utilize these .nft.json files.

Experimental turbotraceturbotrace
Tracing dependencies can be slow because it requires very complex computations and analysis. We created turbotrace in Rust as a
faster and smarter alternative to the JavaScript implementation.

To enable it, you can add the following configuration to your next.config.js:

next.config.js (js)

module.exports = {
  experimental: {
    turbotrace: {
      // control the log level of the turbotrace, default is `error`
      logLevel?:
      | 'bug'
      | 'fatal'
      | 'error'
      | 'warning'
      | 'hint'
      | 'note'
      | 'suggestions'
      | 'info',
      // control if the log of turbotrace should contain the details of the analysis, default is `false`
      logDetail?: boolean

https://www.npmjs.com/package/minimatch
https://vercel.com


      // show all log messages without limit
      // turbotrace only show 1 log message for each categories by default
      logAll?: boolean
      // control the context directory of the turbotrace
      // files outside of the context directory will not be traced
      // set the `experimental.outputFileTracingRoot` has the same effect
      // if the `experimental.outputFileTracingRoot` and this option are both set, the `experimental.turbotrace.contextDirectory` will be used
      contextDirectory?: string
      // if there is `process.cwd()` expression in your code, you can set this option to tell `turbotrace` the value of `process.cwd()` while tracing.
      // for example the require(process.cwd() + '/package.json') will be traced as require('/path/to/cwd/package.json')
      processCwd?: string
      // control the maximum memory usage of the `turbotrace`, in `MB`, default is `6000`.
      memoryLimit?: number
    },
  },
}



3.2.4.23 - pageExtensions
Documentation path: /02-app/02-api-reference/05-next-config-js/pageExtensions

Description: Extend the default page extensions used by Next.js when resolving pages in the Pages Router.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

By default, Next.js accepts files with the following extensions: .tsx, .ts, .jsx, .js. This can be modified to allow other extensions like
markdown (.md, .mdx).

next.config.js (js)

const withMDX = require('@next/mdx')()

/** @type {import('next').NextConfig} */
const nextConfig = {
  pageExtensions: ['ts', 'tsx', 'mdx'],
  experimental: {
    mdxRs: true,
  },
}

module.exports = withMDX(nextConfig)

You can extend the default Page extensions (.tsx, .ts, .jsx, .js) used by Next.js. Inside next.config.js, add the pageExtensions
config:

next.config.js (js)

module.exports = {
  pageExtensions: ['mdx', 'md', 'jsx', 'js', 'tsx', 'ts'],
}

Changing these values affects all Next.js pages, including the following:

middleware.js
instrumentation.js
pages/_document.js
pages/_app.js
pages/api/

For example, if you reconfigure .ts page extensions to .page.ts, you would need to rename pages like middleware.page.ts,
instrumentation.page.ts, _app.page.ts.

Including non-page files in the pagespages directory

You can colocate test files or other files used by components in the pages directory. Inside next.config.js, add the
pageExtensions config:

next.config.js (js)

module.exports = {
  pageExtensions: ['page.tsx', 'page.ts', 'page.jsx', 'page.js'],
}

Then, rename your pages to have a file extension that includes .page (e.g. rename MyPage.tsx to MyPage.page.tsx). Ensure you
rename all Next.js pages, including the files mentioned above.

file:///docs/pages/building-your-application/routing/middleware
file:///docs/pages/building-your-application/optimizing/instrumentation


3.2.4.24 - Partial Prerendering (experimental)
Documentation path: /02-app/02-api-reference/05-next-config-js/partial-prerendering

Description: Learn how to enable Partial Prerendering (experimental) in Next.js 14.

Warning: Partial Prerendering is an experimental feature and is currently not suitable for production environments.

Partial Prerendering is an experimental feature that allows static portions of a route to be prerendered and served from the cache with
dynamic holes streamed in, all in a single HTTP request.

Partial Prerendering is available in next@canary:

Terminal (bash)

npm install next@canary

You can enable Partial Prerendering by setting the experimental ppr flag:

next.config.js (js)

/** @type {import('next').NextConfig} */
const nextConfig = {
  experimental: {
    ppr: true,
  },
}

module.exports = nextConfig

Good to know:

Partial Prerendering does not yet apply to client-side navigations. We are actively working on this.
Partial Prerendering is designed for the Node.js runtime only. Using the subset of the Node.js runtime is not needed when
you can instantly serve the static shell.

Learn more about Partial Prerendering in the Next.js Learn course.

file:///docs/app/building-your-application/rendering/edge-and-nodejs-runtimes
file:///learn/dashboard-app/partial-prerendering


3.2.4.25 - poweredByHeader
Documentation path: /02-app/02-api-reference/05-next-config-js/poweredByHeader

Description: Next.js will add the `x-powered-by` header by default. Learn to opt-out of it here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

By default Next.js will add the x-powered-by header. To opt-out of it, open next.config.js and disable the poweredByHeader
config:

next.config.js (js)

module.exports = {
  poweredByHeader: false,
}



3.2.4.26 - productionBrowserSourceMaps
Documentation path: /02-app/02-api-reference/05-next-config-js/productionBrowserSourceMaps

Description: Enables browser source map generation during the production build.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Source Maps are enabled by default during development. During production builds, they are disabled to prevent you leaking your
source on the client, unless you specifically opt-in with the configuration flag.

Next.js provides a configuration flag you can use to enable browser source map generation during the production build:
next.config.js (js)

module.exports = {
  productionBrowserSourceMaps: true,
}

When the productionBrowserSourceMaps option is enabled, the source maps will be output in the same directory as the JavaScript
files. Next.js will automatically serve these files when requested.

Adding source maps can increase next build time
Increases memory usage during next build



3.2.4.27 - reactStrictMode
Documentation path: /02-app/02-api-reference/05-next-config-js/reactStrictMode

Description: The complete Next.js runtime is now Strict Mode-compliant, learn how to opt-in

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Good to know: Since Next.js 13.4, Strict Mode is true by default with app router, so the above configuration is only necessary
for pages. You can still disable Strict Mode by setting reactStrictMode: false.

Suggested: We strongly suggest you enable Strict Mode in your Next.js application to better prepare your application for the
future of React.

React’s Strict Mode is a development mode only feature for highlighting potential problems in an application. It helps to identify unsafe
lifecycles, legacy API usage, and a number of other features.

The Next.js runtime is Strict Mode-compliant. To opt-in to Strict Mode, configure the following option in your next.config.js:

next.config.js (js)

module.exports = {
  reactStrictMode: true,
}

If you or your team are not ready to use Strict Mode in your entire application, that’s OK! You can incrementally migrate on a page-by-
page basis using <React.StrictMode>.

https://react.dev/reference/react/StrictMode


3.2.4.28 - redirects
Documentation path: /02-app/02-api-reference/05-next-config-js/redirects

Description: Add redirects to your Next.js app.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Redirects allow you to redirect an incoming request path to a different destination path.

To use redirects you can use the redirects key in next.config.js:

next.config.js (js)

module.exports = {
  async redirects() {
    return [
      {
        source: '/about',
        destination: '/',
        permanent: true,
      },
    ]
  },
}

redirects is an async function that expects an array to be returned holding objects with source, destination, and permanent
properties:

source is the incoming request path pattern.
destination is the path you want to route to.
permanent true or false - if true will use the 308 status code which instructs clients/search engines to cache the redirect
forever, if false will use the 307 status code which is temporary and is not cached.

Why does Next.js use 307 and 308? Traditionally a 302 was used for a temporary redirect, and a 301 for a permanent
redirect, but many browsers changed the request method of the redirect to GET, regardless of the original method. For
example, if the browser made a request to POST /v1/users which returned status code 302 with location /v2/users, the
subsequent request might be GET /v2/users instead of the expected POST /v2/users. Next.js uses the 307 temporary
redirect, and 308 permanent redirect status codes to explicitly preserve the request method used.

basePath: false or undefined - if false the basePath won’t be included when matching, can be used for external redirects only.
locale: false or undefined - whether the locale should not be included when matching.
has is an array of has objects with the type, key and value properties.
missing is an array of missing objects with the type, key and value properties.

Redirects are checked before the filesystem which includes pages and /public files.

When using the Pages Router, redirects are not applied to client-side routing (Link, router.push) unless Middleware is present and
matches the path.

When a redirect is applied, any query values provided in the request will be passed through to the redirect destination. For example,
see the following redirect configuration:

{
  source: '/old-blog/:path*',
  destination: '/blog/:path*',
  permanent: false
}

When /old-blog/post-1?hello=world is requested, the client will be redirected to /blog/post-1?hello=world.

Path Matching

Path matches are allowed, for example /old-blog/:slug will match /old-blog/hello-world (no nested paths):

next.config.js (js)

module.exports = {
  async redirects() {
    return [
      {

file:///docs/app/building-your-application/routing/middleware


        source: '/old-blog/:slug',
        destination: '/news/:slug', // Matched parameters can be used in the destination
        permanent: true,
      },
    ]
  },
}

Wildcard Path Matching

To match a wildcard path you can use * after a parameter, for example /blog/:slug* will match /blog/a/b/c/d/hello-world:

next.config.js (js)

module.exports = {
  async redirects() {
    return [
      {
        source: '/blog/:slug*',
        destination: '/news/:slug*', // Matched parameters can be used in the destination
        permanent: true,
      },
    ]
  },
}

Regex Path Matching

To match a regex path you can wrap the regex in parentheses after a parameter, for example /post/:slug(\\d{1,}) will match
/post/123 but not /post/abc:

next.config.js (js)

module.exports = {
  async redirects() {
    return [
      {
        source: '/post/:slug(\\d{1,})',
        destination: '/news/:slug', // Matched parameters can be used in the destination
        permanent: false,
      },
    ]
  },
}

The following characters (, ), {, }, :, *, +, ? are used for regex path matching, so when used in the source as non-special values they
must be escaped by adding \\ before them:

next.config.js (js)

module.exports = {
  async redirects() {
    return [
      {
        // this will match `/english(default)/something` being requested
        source: '/english\\(default\\)/:slug',
        destination: '/en-us/:slug',
        permanent: false,
      },
    ]
  },
}

Header, Cookie, and Query Matching

To only match a redirect when header, cookie, or query values also match the has field or don’t match the missing field can be used.
Both the source and all has items must match and all missing items must not match for the redirect to be applied.

has and missing items can have the following fields:

type: String - must be either header, cookie, host, or query.
key: String - the key from the selected type to match against.
value: String or undefined - the value to check for, if undefined any value will match. A regex like string can be used to capture
a specific part of the value, e.g. if the value first-(?<paramName>.*) is used for first-second then second will be usable in



the destination with :paramName.

next.config.js (js)

module.exports = {
  async redirects() {
    return [
      // if the header `x-redirect-me` is present,
      // this redirect will be applied
      {
        source: '/:path((?!another-page$).*)',
        has: [
          {
            type: 'header',
            key: 'x-redirect-me',
          },
        ],
        permanent: false,
        destination: '/another-page',
      },
      // if the header `x-dont-redirect` is present,
      // this redirect will NOT be applied
      {
        source: '/:path((?!another-page$).*)',
        missing: [
          {
            type: 'header',
            key: 'x-do-not-redirect',
          },
        ],
        permanent: false,
        destination: '/another-page',
      },
      // if the source, query, and cookie are matched,
      // this redirect will be applied
      {
        source: '/specific/:path*',
        has: [
          {
            type: 'query',
            key: 'page',
            // the page value will not be available in the
            // destination since value is provided and doesn't
            // use a named capture group e.g. (?<page>home)
            value: 'home',
          },
          {
            type: 'cookie',
            key: 'authorized',
            value: 'true',
          },
        ],
        permanent: false,
        destination: '/another/:path*',
      },
      // if the header `x-authorized` is present and
      // contains a matching value, this redirect will be applied
      {
        source: '/',
        has: [
          {
            type: 'header',
            key: 'x-authorized',
            value: '(?<authorized>yes|true)',
          },
        ],
        permanent: false,
        destination: '/home?authorized=:authorized',
      },
      // if the host is `example.com`,
      // this redirect will be applied
      {
        source: '/:path((?!another-page$).*)',
        has: [
          {
            type: 'host',
            value: 'example.com',



          },
        ],
        permanent: false,
        destination: '/another-page',
      },
    ]
  },
}

Redirects with basePath support

When leveraging basePath support with redirects each source and destination is automatically prefixed with the basePath unless
you add basePath: false to the redirect:

next.config.js (js)

module.exports = {
  basePath: '/docs',

  async redirects() {
    return [
      {
        source: '/with-basePath', // automatically becomes /docs/with-basePath
        destination: '/another', // automatically becomes /docs/another
        permanent: false,
      },
      {
        // does not add /docs since basePath: false is set
        source: '/without-basePath',
        destination: 'https://example.com',
        basePath: false,
        permanent: false,
      },
    ]
  },
}

Redirects with i18n support

When leveraging i18n support with redirects each source and destination is automatically prefixed to handle the configured
locales unless you add locale: false to the redirect. If locale: false is used you must prefix the source and destination
with a locale for it to be matched correctly.

When leveraging i18n support with redirects each source and destination is automatically prefixed to handle the configured
locales unless you add locale: false to the redirect. If locale: false is used you must prefix the source and destination
with a locale for it to be matched correctly.

next.config.js (js)

module.exports = {
  i18n: {
    locales: ['en', 'fr', 'de'],
    defaultLocale: 'en',
  },

  async redirects() {
    return [
      {
        source: '/with-locale', // automatically handles all locales
        destination: '/another', // automatically passes the locale on
        permanent: false,
      },
      {
        // does not handle locales automatically since locale: false is set
        source: '/nl/with-locale-manual',
        destination: '/nl/another',
        locale: false,
        permanent: false,
      },
      {
        // this matches '/' since `en` is the defaultLocale
        source: '/en',
        destination: '/en/another',
        locale: false,
        permanent: false,
      },

file:///docs/app/api-reference/next-config-js/basePath
file:///docs/app/building-your-application/routing/internationalization
file:///docs/pages/building-your-application/routing/internationalization


      // it's possible to match all locales even when locale: false is set
      {
        source: '/:locale/page',
        destination: '/en/newpage',
        permanent: false,
        locale: false,
      },
      {
        // this gets converted to /(en|fr|de)/(.*) so will not match the top-level
        // `/` or `/fr` routes like /:path* would
        source: '/(.*)',
        destination: '/another',
        permanent: false,
      },
    ]
  },
}

In some rare cases, you might need to assign a custom status code for older HTTP Clients to properly redirect. In these cases, you can
use the statusCode property instead of the permanent property, but not both. To to ensure IE11 compatibility, a Refresh header is
automatically added for the 308 status code.

Other Redirects

Inside API Routes and Route Handlers, you can redirect based on the incoming request.
Inside getStaticProps and getServerSideProps, you can redirect specific pages at request-time.

Version History

Version Changes

v13.3.0 missing added.

v10.2.0 has added.

v9.5.0 redirects added.

file:///docs/pages/building-your-application/routing/api-routes
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/data-fetching/get-server-side-props


3.2.4.29 - rewrites
Documentation path: /02-app/02-api-reference/05-next-config-js/rewrites

Description: Add rewrites to your Next.js app.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Rewrites allow you to map an incoming request path to a different destination path.

Rewrites act as a URL proxy and mask the destination path, making it appear the user hasn’t changed their location on the site. In
contrast, redirects will reroute to a new page and show the URL changes.

Rewrites act as a URL proxy and mask the destination path, making it appear the user hasn’t changed their location on the site. In
contrast, redirects will reroute to a new page and show the URL changes.

To use rewrites you can use the rewrites key in next.config.js:

next.config.js (js)

module.exports = {
  async rewrites() {
    return [
      {
        source: '/about',
        destination: '/',
      },
    ]
  },
}

Rewrites are applied to client-side routing, a <Link href="/about"> will have the rewrite applied in the above example.

rewrites is an async function that expects to return either an array or an object of arrays (see below) holding objects with source and
destination properties:

source: String - is the incoming request path pattern.
destination: String is the path you want to route to.
basePath: false or undefined - if false the basePath won’t be included when matching, can be used for external rewrites only.
locale: false or undefined - whether the locale should not be included when matching.
has is an array of has objects with the type, key and value properties.
missing is an array of missing objects with the type, key and value properties.

When the rewrites function returns an array, rewrites are applied after checking the filesystem (pages and /public files) and before
dynamic routes. When the rewrites function returns an object of arrays with a specific shape, this behavior can be changed and more
finely controlled, as of v10.1 of Next.js:

next.config.js (js)

module.exports = {
  async rewrites() {
    return {
      beforeFiles: [
        // These rewrites are checked after headers/redirects
        // and before all files including _next/public files which
        // allows overriding page files
        {
          source: '/some-page',
          destination: '/somewhere-else',
          has: [{ type: 'query', key: 'overrideMe' }],
        },
      ],
      afterFiles: [
        // These rewrites are checked after pages/public files
        // are checked but before dynamic routes
        {
          source: '/non-existent',
          destination: '/somewhere-else',
        },
      ],
      fallback: [
        // These rewrites are checked after both pages/public files
        // and dynamic routes are checked
        {

file:///docs/app/api-reference/next-config-js/redirects
file:///docs/pages/api-reference/next-config-js/redirects


          source: '/:path*',
          destination: `https://my-old-site.com/:path*`,
        },
      ],
    }
  },
}

Good to know: rewrites in beforeFiles do not check the filesystem/dynamic routes immediately after matching a source,
they continue until all beforeFiles have been checked.

The order Next.js routes are checked is:

1. headers are checked/applied
2. redirects are checked/applied
3. beforeFiles rewrites are checked/applied
4. static files from the public directory, _next/static files, and non-dynamic pages are checked/served
5. afterFiles rewrites are checked/applied, if one of these rewrites is matched we check dynamic routes/static files after each

match
6. fallback rewrites are checked/applied, these are applied before rendering the 404 page and after dynamic routes/all static assets

have been checked. If you use fallback: true/’blocking’ in getStaticPaths, the fallback rewrites defined in your
next.config.js will not be run.

1. headers are checked/applied
2. redirects are checked/applied
3. beforeFiles rewrites are checked/applied
4. static files from the public directory, _next/static files, and non-dynamic pages are checked/served
5. afterFiles rewrites are checked/applied, if one of these rewrites is matched we check dynamic routes/static files after each

match
6. fallback rewrites are checked/applied, these are applied before rendering the 404 page and after dynamic routes/all static assets

have been checked. If you use fallback: true/’blocking’ in getStaticPaths, the fallback rewrites defined in your
next.config.js will not be run.

Rewrite parameters

When using parameters in a rewrite the parameters will be passed in the query by default when none of the parameters are used in the
destination.

next.config.js (js)

module.exports = {
  async rewrites() {
    return [
      {
        source: '/old-about/:path*',
        destination: '/about', // The :path parameter isn't used here so will be automatically passed in the query
      },
    ]
  },
}

If a parameter is used in the destination none of the parameters will be automatically passed in the query.
next.config.js (js)

module.exports = {
  async rewrites() {
    return [
      {
        source: '/docs/:path*',
        destination: '/:path*', // The :path parameter is used here so will not be automatically passed in the query
      },
    ]
  },
}

You can still pass the parameters manually in the query if one is already used in the destination by specifying the query in the
destination.

next.config.js (js)

module.exports = {

file:///docs/app/api-reference/next-config-js/headers
file:///docs/app/api-reference/next-config-js/redirects
file:///docs/app/building-your-application/optimizing/static-assets
file:///docs/pages/api-reference/functions/get-static-paths#fallback-true
file:///docs/pages/api-reference/next-config-js/headers
file:///docs/pages/api-reference/next-config-js/redirects
file:///docs/pages/building-your-application/optimizing/static-assets
file:///docs/pages/api-reference/functions/get-static-paths#fallback-true


  async rewrites() {
    return [
      {
        source: '/:first/:second',
        destination: '/:first?second=:second',
        // Since the :first parameter is used in the destination the :second parameter
        // will not automatically be added in the query although we can manually add it
        // as shown above
      },
    ]
  },
}

Good to know: Static pages from Automatic Static Optimization or prerendering params from rewrites will be parsed on the
client after hydration and provided in the query.

Path Matching

Path matches are allowed, for example /blog/:slug will match /blog/hello-world (no nested paths):

next.config.js (js)

module.exports = {
  async rewrites() {
    return [
      {
        source: '/blog/:slug',
        destination: '/news/:slug', // Matched parameters can be used in the destination
      },
    ]
  },
}

Wildcard Path Matching

To match a wildcard path you can use * after a parameter, for example /blog/:slug* will match /blog/a/b/c/d/hello-world:

next.config.js (js)

module.exports = {
  async rewrites() {
    return [
      {
        source: '/blog/:slug*',
        destination: '/news/:slug*', // Matched parameters can be used in the destination
      },
    ]
  },
}

Regex Path Matching

To match a regex path you can wrap the regex in parenthesis after a parameter, for example /blog/:slug(\\d{1,}) will match
/blog/123 but not /blog/abc:

next.config.js (js)

module.exports = {
  async rewrites() {
    return [
      {
        source: '/old-blog/:post(\\d{1,})',
        destination: '/blog/:post', // Matched parameters can be used in the destination
      },
    ]
  },
}

The following characters (, ), {, }, [, ], |, \, ^, ., :, *, +, -, ?, $ are used for regex path matching, so when used in the source as non-
special values they must be escaped by adding \\ before them:

next.config.js (js)

module.exports = {
  async rewrites() {
    return [
      {

file:///docs/pages/building-your-application/rendering/automatic-static-optimization
file:///docs/pages/building-your-application/data-fetching/get-static-props


        // this will match `/english(default)/something` being requested
        source: '/english\\(default\\)/:slug',
        destination: '/en-us/:slug',
      },
    ]
  },
}

Header, Cookie, and Query Matching

To only match a rewrite when header, cookie, or query values also match the has field or don’t match the missing field can be used.
Both the source and all has items must match and all missing items must not match for the rewrite to be applied.

has and missing items can have the following fields:

type: String - must be either header, cookie, host, or query.
key: String - the key from the selected type to match against.
value: String or undefined - the value to check for, if undefined any value will match. A regex like string can be used to capture
a specific part of the value, e.g. if the value first-(?<paramName>.*) is used for first-second then second will be usable in
the destination with :paramName.

next.config.js (js)

module.exports = {
  async rewrites() {
    return [
      // if the header `x-rewrite-me` is present,
      // this rewrite will be applied
      {
        source: '/:path*',
        has: [
          {
            type: 'header',
            key: 'x-rewrite-me',
          },
        ],
        destination: '/another-page',
      },
      // if the header `x-rewrite-me` is not present,
      // this rewrite will be applied
      {
        source: '/:path*',
        missing: [
          {
            type: 'header',
            key: 'x-rewrite-me',
          },
        ],
        destination: '/another-page',
      },
      // if the source, query, and cookie are matched,
      // this rewrite will be applied
      {
        source: '/specific/:path*',
        has: [
          {
            type: 'query',
            key: 'page',
            // the page value will not be available in the
            // destination since value is provided and doesn't
            // use a named capture group e.g. (?<page>home)
            value: 'home',
          },
          {
            type: 'cookie',
            key: 'authorized',
            value: 'true',
          },
        ],
        destination: '/:path*/home',
      },
      // if the header `x-authorized` is present and
      // contains a matching value, this rewrite will be applied
      {



        source: '/:path*',
        has: [
          {
            type: 'header',
            key: 'x-authorized',
            value: '(?<authorized>yes|true)',
          },
        ],
        destination: '/home?authorized=:authorized',
      },
      // if the host is `example.com`,
      // this rewrite will be applied
      {
        source: '/:path*',
        has: [
          {
            type: 'host',
            value: 'example.com',
          },
        ],
        destination: '/another-page',
      },
    ]
  },
}

Rewriting to an external URL

Examples

Rewrites allow you to rewrite to an external url. This is especially useful for incrementally adopting Next.js. The following is an example
rewrite for redirecting the /blog route of your main app to an external site.

next.config.js (js)

module.exports = {
  async rewrites() {
    return [
      {
        source: '/blog',
        destination: 'https://example.com/blog',
      },
      {
        source: '/blog/:slug',
        destination: 'https://example.com/blog/:slug', // Matched parameters can be used in the destination
      },
    ]
  },
}

If you’re using trailingSlash: true, you also need to insert a trailing slash in the source parameter. If the destination server is also
expecting a trailing slash it should be included in the destination parameter as well.

next.config.js (js)

module.exports = {
  trailingSlash: true,
  async rewrites() {
    return [
      {
        source: '/blog/',
        destination: 'https://example.com/blog/',
      },
      {
        source: '/blog/:path*/',
        destination: 'https://example.com/blog/:path*/',
      },
    ]
  },
}

Incremental adoption of Next.js

You can also have Next.js fall back to proxying to an existing website after checking all Next.js routes.

This way you don’t have to change the rewrites configuration when migrating more pages to Next.js
next.config.js (js)



module.exports = {
  async rewrites() {
    return {
      fallback: [
        {
          source: '/:path*',
          destination: `https://custom-routes-proxying-endpoint.vercel.app/:path*`,
        },
      ],
    }
  },
}

Rewrites with basePath support

When leveraging basePath support with rewrites each source and destination is automatically prefixed with the basePath unless
you add basePath: false to the rewrite:

next.config.js (js)

module.exports = {
  basePath: '/docs',

  async rewrites() {
    return [
      {
        source: '/with-basePath', // automatically becomes /docs/with-basePath
        destination: '/another', // automatically becomes /docs/another
      },
      {
        // does not add /docs to /without-basePath since basePath: false is set
        // Note: this can not be used for internal rewrites e.g. `destination: '/another'`
        source: '/without-basePath',
        destination: 'https://example.com',
        basePath: false,
      },
    ]
  },
}

Rewrites with i18n support

When leveraging i18n support with rewrites each source and destination is automatically prefixed to handle the configured
locales unless you add locale: false to the rewrite. If locale: false is used you must prefix the source and destination with
a locale for it to be matched correctly.

When leveraging i18n support with rewrites each source and destination is automatically prefixed to handle the configured
locales unless you add locale: false to the rewrite. If locale: false is used you must prefix the source and destination with
a locale for it to be matched correctly.

next.config.js (js)

module.exports = {
  i18n: {
    locales: ['en', 'fr', 'de'],
    defaultLocale: 'en',
  },

  async rewrites() {
    return [
      {
        source: '/with-locale', // automatically handles all locales
        destination: '/another', // automatically passes the locale on
      },
      {
        // does not handle locales automatically since locale: false is set
        source: '/nl/with-locale-manual',
        destination: '/nl/another',
        locale: false,
      },
      {
        // this matches '/' since `en` is the defaultLocale
        source: '/en',
        destination: '/en/another',
        locale: false,
      },

file:///docs/app/api-reference/next-config-js/basePath
file:///docs/app/building-your-application/routing/internationalization
file:///docs/pages/building-your-application/routing/internationalization


      {
        // it's possible to match all locales even when locale: false is set
        source: '/:locale/api-alias/:path*',
        destination: '/api/:path*',
        locale: false,
      },
      {
        // this gets converted to /(en|fr|de)/(.*) so will not match the top-level
        // `/` or `/fr` routes like /:path* would
        source: '/(.*)',
        destination: '/another',
      },
    ]
  },
}

Version History

Version Changes

v13.3.0 missing added.

v10.2.0 has added.

v9.5.0 Headers added.



3.2.4.30 - serverActions
Documentation path: /02-app/02-api-reference/05-next-config-js/serverActions

Description: Configure Server Actions behavior in your Next.js application.

Options for configuring Server Actions behavior in your Next.js application.

allowedOriginsallowedOrigins
A list of extra safe origin domains from which Server Actions can be invoked. Next.js compares the origin of a Server Action request
with the host domain, ensuring they match to prevent CSRF attacks. If not provided, only the same origin is allowed.

next.config.js (js)

/** @type {import('next').NextConfig} */

module.exports = {
  experimental: {
    serverActions: {
      allowedOrigins: ['my-proxy.com', '*.my-proxy.com'],
    },
  },
}

bodySizeLimitbodySizeLimit
By default, the maximum size of the request body sent to a Server Action is 1MB, to prevent the consumption of excessive server
resources in parsing large amounts of data, as well as potential DDoS attacks.

However, you can configure this limit using the serverActions.bodySizeLimit option. It can take the number of bytes or any string
format supported by bytes, for example 1000, '500kb' or '3mb'.

next.config.js (js)

/** @type {import('next').NextConfig} */

module.exports = {
  experimental: {
    serverActions: {
      bodySizeLimit: '2mb',
    },
  },
}

Enabling Server Actions (v13)

Server Actions became a stable feature in Next.js 14, and are enabled by default. However, if you are using an earlier version of Next.js,
you can enable them by setting experimental.serverActions to true.

next.config.js (js)

/** @type {import('next').NextConfig} */
const config = {
  experimental: {
    serverActions: true,
  },
}

module.exports = config



3.2.4.31 - serverExternalPackages
Documentation path: /02-app/02-api-reference/05-next-config-js/serverExternalPackages

Description: Opt-out specific dependencies from the Server Components bundling and use native Node.js `require`.

Dependencies used inside Server Components and Route Handlers will automatically be bundled by Next.js.

If a dependency is using Node.js specific features, you can choose to opt-out specific dependencies from the Server Components
bundling and use native Node.js require.

next.config.js (js)

/** @type {import('next').NextConfig} */
const nextConfig = {
  serverExternalPackages: ['@acme/ui'],
}

module.exports = nextConfig

Next.js includes a short list of popular packages that currently are working on compatibility and automatically opt-ed out:

@appsignal/nodejs
@aws-sdk/client-s3
@aws-sdk/s3-presigned-post
@blockfrost/blockfrost-js
@highlight-run/node
@jpg-store/lucid-cardano
@libsql/client
@mikro-orm/core
@mikro-orm/knex
@node-rs/argon2
@node-rs/bcrypt
@prisma/client
@react-pdf/renderer
@sentry/profiling-node
@swc/core
argon2
autoprefixer
aws-crt
bcrypt
better-sqlite3
canvas
cpu-features
cypress
eslint
express
firebase-admin
isolated-vm
jest
jsdom
libsql
mdx-bundler
mongodb
mongoose
next-mdx-remote
next-seo
node-pty
node-web-audio-api
oslo
pg
playwright

file:///docs/app/building-your-application/rendering/server-components
file:///docs/app/building-your-application/routing/route-handlers
https://github.com/vercel/next.js/blob/canary/packages/next/src/lib/server-external-packages.json


postcss
prettier
prisma
puppeteer-core
puppeteer
rimraf
sharp
shiki
sqlite3
tailwindcss
ts-node
typescript
vscode-oniguruma
webpack
websocket
zeromq



3.2.4.32 - StaleTimes (experimental)
Documentation path: /02-app/02-api-reference/05-next-config-js/staleTimes

Description: Learn how to override the invalidation time of the Client Router Cache.

Warning: The staleTimes configuration is an experimental feature. This configuration strategy will likely change in the future.

staleTimes is an experimental feature that allows configuring the invalidation period of the client router cache.

This configuration option is available as of v14.2.0.

You can enable this experimental feature & provide custom revalidation times by setting the experimental staleTimes flag:

next.config.js (js)

/** @type {import('next').NextConfig} */
const nextConfig = {
  experimental: {
    staleTimes: {
      dynamic: 30,
      static: 180,
    },
  },
}

module.exports = nextConfig

The static and dynamic properties correspond with the time period (in seconds) based on different types of link prefetching.

The dynamic property is used when the prefetch prop on Link is left unspecified or is set to false.
Default: 30 seconds
The static property is used when the prefetch prop on Link is set to true, or when calling router.prefetch.
Default: 5 minutes

Good to know:

Loading boundaries are considered reusable for the static period defined in this configuration.
This doesn’t disable partial rendering support, meaning shared layouts won’t automatically be refetched every
navigation, only the new segment data.
This doesn’t change back/forward caching behavior to prevent layout shift & to prevent losing the browser scroll position.
The different properties of this config refer to variable levels of “liveness” and are unrelated to whether the segment itself is
opting into static or dynamic rendering. In other words, the current static default of 5 minutes suggests that data feels
static by virtue of it being revalidated infrequently.

You can learn more about the Client Router Cache here.

file:///docs/app/building-your-application/caching#duration-3
https://github.com/vercel/next.js/releases/tag/v14.2.0
file:///docs/app/api-reference/components/link#prefetch
file:///docs/app/building-your-application/caching#routerprefetch
file:///docs/app/api-reference/file-conventions/loading
file:///docs/app/building-your-application/routing/linking-and-navigating#4-partial-rendering
file:///docs/app/building-your-application/caching#router-cache
file:///docs/app/building-your-application/caching#router-cache


3.2.4.33 - trailingSlash
Documentation path: /02-app/02-api-reference/05-next-config-js/trailingSlash

Description: Configure Next.js pages to resolve with or without a trailing slash.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

By default Next.js will redirect urls with trailing slashes to their counterpart without a trailing slash. For example /about/ will redirect
to /about. You can configure this behavior to act the opposite way, where urls without trailing slashes are redirected to their
counterparts with trailing slashes.

Open next.config.js and add the trailingSlash config:

next.config.js (js)

module.exports = {
  trailingSlash: true,
}

With this option set, urls like /about will redirect to /about/.

When used with output: "export" configuration, the /about page will output /about/index.html (instead of the default
/about.html).

Version History

Version Changes

v9.5.0 trailingSlash added.

file:///docs/app/building-your-application/deploying/static-exports


3.2.4.34 - transpilePackages
Documentation path: /02-app/02-api-reference/05-next-config-js/transpilePackages

Description: Automatically transpile and bundle dependencies from local packages (like monorepos) or from external dependencies
(`node_modules`).

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js can automatically transpile and bundle dependencies from local packages (like monorepos) or from external dependencies
(node_modules). This replaces the next-transpile-modules package.

next.config.js (js)

/** @type {import('next').NextConfig} */
const nextConfig = {
  transpilePackages: ['@acme/ui', 'lodash-es'],
}

module.exports = nextConfig

Version History

Version Changes

v13.0.0 transpilePackages added.



3.2.4.35 - turbo (Experimental)
Documentation path: /02-app/02-api-reference/05-next-config-js/turbo

Description: Configure Next.js with Turbopack-specific options

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Turbopack can be customized to transform different files and change how modules are resolved.

Good to know:

These features are experimental and will only work with next --turbo.
Turbopack for Next.js does not require loaders nor loader configuration for built-in functionality. Turbopack has built-in
support for css and compiling modern JavaScript, so there’s no need for css-loader, postcss-loader, or babel-loader
if you’re using @babel/preset-env.

webpack loaders

If you need loader support beyond what’s built in, many webpack loaders already work with Turbopack. There are currently some
limitations:

Only a core subset of the webpack loader API is implemented. Currently, there is enough coverage for some popular loaders, and
we’ll expand our API support in the future.
Only loaders that return JavaScript code are supported. Loaders that transform files like stylesheets or images are not currently
supported.
Options passed to webpack loaders must be plain JavaScript primitives, objects, and arrays. For example, it’s not possible to pass
require()d plugin modules as option values.

To configure loaders, add the names of the loaders you’ve installed and any options in next.config.js, mapping file extensions to a
list of loaders:

next.config.js (js)

module.exports = {
  experimental: {
    turbo: {
      rules: {
        '*.svg': {
          loaders: ['@svgr/webpack'],
          as: '*.js',
        },
      },
    },
  },
}

Good to know: Prior to Next.js version 13.4.4, experimental.turbo.rules was named experimental.turbo.loaders
and only accepted file extensions like .mdx instead of *.mdx.

Supported loaders

The following loaders have been tested to work with Turbopack’s webpack loader implementation:

babel-loader
@svgr/webpack
svg-inline-loader
yaml-loader
string-replace-loader
raw-loader
sass-loader

Resolve aliases

Through next.config.js, Turbopack can be configured to modify module resolution through aliases, similar to webpack’s
resolve.alias configuration.

https://www.npmjs.com/package/babel-loader
https://www.npmjs.com/package/@svgr/webpack
https://www.npmjs.com/package/svg-inline-loader
https://www.npmjs.com/package/yaml-loader
https://www.npmjs.com/package/string-replace-loader
https://www.npmjs.com/package/raw-loader
https://www.npmjs.com/package/sass-loader
https://webpack.js.org/configuration/resolve/#resolvealias


To configure resolve aliases, map imported patterns to their new destination in next.config.js:

next.config.js (js)

module.exports = {
  experimental: {
    turbo: {
      resolveAlias: {
        underscore: 'lodash',
        mocha: { browser: 'mocha/browser-entry.js' },
      },
    },
  },
}

This aliases imports of the underscore package to the lodash package. In other words, import underscore from 'underscore'
will load the lodash module instead of underscore.

Turbopack also supports conditional aliasing through this field, similar to Node.js’s conditional exports. At the moment only the
browser condition is supported. In the case above, imports of the mocha module will be aliased to mocha/browser-entry.js when
Turbopack targets browser environments.

Resolve extensions

Through next.config.js, Turbopack can be configured to resolve modules with custom extensions, similar to webpack’s
resolve.extensions configuration.

To configure resolve extensions, use the resolveExtensions field in next.config.js:

next.config.js (js)

module.exports = {
  experimental: {
    turbo: {
      resolveExtensions: [
        '.mdx',
        '.tsx',
        '.ts',
        '.jsx',
        '.js',
        '.mjs',
        '.json',
      ],
    },
  },
}

This overwrites the original resolve extensions with the provided list. Make sure to include the default extensions.

For more information and guidance for how to migrate your app to Turbopack from webpack, see Turbopack’s documentation on
webpack compatibility.

https://nodejs.org/docs/latest-v18.x/api/packages.html#conditional-exports
https://webpack.js.org/configuration/resolve/#resolveextensions
https://turbo.build/pack/docs/migrating-from-webpack


3.2.4.36 - typedRoutes (experimental)
Documentation path: /02-app/02-api-reference/05-next-config-js/typedRoutes

Description: Enable experimental support for statically typed links.

Experimental support for statically typed links. This feature requires using the App Router as well as TypeScript in your project.
next.config.js (js)

/** @type {import('next').NextConfig} */
const nextConfig = {
  experimental: {
    typedRoutes: true,
  },
}

module.exports = nextConfig

file:///docs/app/building-your-application/configuring/typescript#statically-typed-links


3.2.4.37 - typescript
Documentation path: /02-app/02-api-reference/05-next-config-js/typescript

Description: Next.js reports TypeScript errors by default. Learn to opt-out of this behavior here.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Next.js fails your production build (next build) when TypeScript errors are present in your project.

If you’d like Next.js to dangerously produce production code even when your application has errors, you can disable the built-in type
checking step.

If disabled, be sure you are running type checks as part of your build or deploy process, otherwise this can be very dangerous.

Open next.config.js and enable the ignoreBuildErrors option in the typescript config:

next.config.js (js)

module.exports = {
  typescript: {
    // !! WARN !!
    // Dangerously allow production builds to successfully complete even if
    // your project has type errors.
    // !! WARN !!
    ignoreBuildErrors: true,
  },
}



3.2.4.38 - urlImports
Documentation path: /02-app/02-api-reference/05-next-config-js/urlImports

Description: Configure Next.js to allow importing modules from external URLs (experimental).

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

URL imports are an experimental feature that allows you to import modules directly from external servers (instead of from the local
disk).

Warning: This feature is experimental. Only use domains that you trust to download and execute on your machine. Please
exercise discretion, and caution until the feature is flagged as stable.

To opt-in, add the allowed URL prefixes inside next.config.js:

next.config.js (js)

module.exports = {
  experimental: {
    urlImports: ['https://example.com/assets/', 'https://cdn.skypack.dev'],
  },
}

Then, you can import modules directly from URLs:

import { a, b, c } from 'https://example.com/assets/some/module.js'

URL Imports can be used everywhere normal package imports can be used.

Security Model

This feature is being designed with security as the top priority. To start, we added an experimental flag forcing you to explicitly allow
the domains you accept URL imports from. We’re working to take this further by limiting URL imports to execute in the browser
sandbox using the Edge Runtime.

Lockfile

When using URL imports, Next.js will create a next.lock directory containing a lockfile and fetched assets. This directory must be
committed to Git, not ignored by .gitignore.

When running next dev, Next.js will download and add all newly discovered URL Imports to your lockfile
When running next build, Next.js will use only the lockfile to build the application for production

Typically, no network requests are needed and any outdated lockfile will cause the build to fail. One exception is resources that
respond with Cache-Control: no-cache. These resources will have a no-cache entry in the lockfile and will always be fetched from
the network on each build.

Examples

Skypack

import confetti from 'https://cdn.skypack.dev/canvas-confetti'
import { useEffect } from 'react'

export default () => {
  useEffect(() => {
    confetti()
  })
  return <p>Hello</p>
}

Static Image Imports

import Image from 'next/image'
import logo from 'https://example.com/assets/logo.png'

file:///docs/app/api-reference/edge


export default () => (
  <div>
    <Image src={logo} placeholder="blur" />
  </div>
)

URLs in CSS

.className {
  background: url('https://example.com/assets/hero.jpg');
}

Asset Imports

const logo = new URL('https://example.com/assets/file.txt', import.meta.url)

console.log(logo.pathname)

// prints "/_next/static/media/file.a9727b5d.txt"



3.2.4.39 - webVitalsAttribution
Documentation path: /02-app/02-api-reference/05-next-config-js/webVitalsAttribution

Description: Learn how to use the webVitalsAttribution option to pinpoint the source of Web Vitals issues.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

When debugging issues related to Web Vitals, it is often helpful if we can pinpoint the source of the problem. For example, in the case
of Cumulative Layout Shift (CLS), we might want to know the first element that shifted when the single largest layout shift occurred. Or,
in the case of Largest Contentful Paint (LCP), we might want to identify the element corresponding to the LCP for the page. If the LCP
element is an image, knowing the URL of the image resource can help us locate the asset we need to optimize.

Pinpointing the biggest contributor to the Web Vitals score, aka attribution, allows us to obtain more in-depth information like entries
for PerformanceEventTiming, PerformanceNavigationTiming and PerformanceResourceTiming.

Attribution is disabled by default in Next.js but can be enabled per metric by specifying the following in next.config.js.

next.config.js (js)

experimental: {
  webVitalsAttribution: ['CLS', 'LCP']
}

Valid attribution values are all web-vitals metrics specified in the NextWebVitalsMetric type.

https://github.com/GoogleChrome/web-vitals/blob/4ca38ae64b8d1e899028c692f94d4c56acfc996c/README.md#attribution
https://developer.mozilla.org/docs/Web/API/PerformanceEventTiming
https://developer.mozilla.org/docs/Web/API/PerformanceNavigationTiming
https://developer.mozilla.org/docs/Web/API/PerformanceResourceTiming
https://github.com/vercel/next.js/blob/442378d21dd56d6e769863eb8c2cb521a463a2e0/packages/next/shared/lib/utils.ts#L43


3.2.4.40 - Custom Webpack Config
Documentation path: /02-app/02-api-reference/05-next-config-js/webpack

Description: Learn how to customize the webpack config used by Next.js

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

Good to know: changes to webpack config are not covered by semver so proceed at your own risk

Before continuing to add custom webpack configuration to your application make sure Next.js doesn’t already support your use-case:

CSS imports
CSS modules
Sass/SCSS imports
Sass/SCSS modules

CSS imports
CSS modules
Sass/SCSS imports
Sass/SCSS modules
Customizing babel configuration

Some commonly asked for features are available as plugins:

@next/mdx
@next/bundle-analyzer

In order to extend our usage of webpack, you can define a function that extends its config inside next.config.js, like so:

next.config.js (js)

module.exports = {
  webpack: (
    config,
    { buildId, dev, isServer, defaultLoaders, nextRuntime, webpack }
  ) => {
    // Important: return the modified config
    return config
  },
}

The webpack function is executed three times, twice for the server (nodejs / edge runtime) and once for the client. This allows
you to distinguish between client and server configuration using the isServer property.

The second argument to the webpack function is an object with the following properties:

buildId: String - The build id, used as a unique identifier between builds
dev: Boolean - Indicates if the compilation will be done in development
isServer: Boolean - It’s true for server-side compilation, and false for client-side compilation
nextRuntime: String | undefined - The target runtime for server-side compilation; either "edge" or "nodejs", it’s undefined
for client-side compilation.
defaultLoaders: Object - Default loaders used internally by Next.js:
babel: Object - Default babel-loader configuration

Example usage of defaultLoaders.babel:

// Example config for adding a loader that depends on babel-loader
// This source was taken from the @next/mdx plugin source:
// https://github.com/vercel/next.js/tree/canary/packages/next-mdx
module.exports = {
  webpack: (config, options) => {
    config.module.rules.push({
      test: /\.mdx/,
      use: [
        options.defaultLoaders.babel,
        {
          loader: '@mdx-js/loader',
          options: pluginOptions.options,
        },

file:///docs/app/building-your-application/styling
file:///docs/app/building-your-application/styling/css-modules
file:///docs/app/building-your-application/styling/sass
file:///docs/app/building-your-application/styling/sass
file:///docs/pages/building-your-application/styling
file:///docs/pages/building-your-application/styling/css-modules
file:///docs/pages/building-your-application/styling/sass
file:///docs/pages/building-your-application/styling/sass
file:///docs/pages/building-your-application/configuring/babel
https://github.com/vercel/next.js/tree/canary/packages/next-mdx
https://github.com/vercel/next.js/tree/canary/packages/next-bundle-analyzer


      ],
    })

    return config
  },
}

nextRuntimenextRuntime

Notice that isServer is true when nextRuntime is "edge" or "nodejs", nextRuntime “edge” is currently for middleware and Server
Components in edge runtime only.



3.2.5 - create-next-app
Documentation path: /02-app/02-api-reference/06-create-next-app

Description: Create Next.js apps in one command with create-next-app.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

The easiest way to get started with Next.js is by using create-next-app. This CLI tool enables you to quickly start building a new
Next.js application, with everything set up for you.

You can create a new app using the default Next.js template, or by using one of the official Next.js examples.

Interactive

You can create a new project interactively by running:
Terminal (bash)

npx create-next-app@latest

Terminal (bash)

yarn create next-app

Terminal (bash)

pnpm create next-app

Terminal (bash)

bun create next-app

You will then be asked the following prompts:
Terminal (txt)

What is your project named?  my-app
Would you like to use TypeScript?  No / Yes
Would you like to use ESLint?  No / Yes
Would you like to use Tailwind CSS?  No / Yes
Would you like to use `src/` directory?  No / Yes
Would you like to use App Router? (recommended)  No / Yes
Would you like to customize the default import alias (@/*)?  No / Yes

Once you’ve answered the prompts, a new project will be created with the correct configuration depending on your answers.

Non-interactive

You can also pass command line arguments to set up a new project non-interactively.

Further, you can negate default options by prefixing them with --no- (e.g. --no-eslint).

See create-next-app --help:

Terminal (bash)

Usage: create-next-app <project-directory> [options]

Options:
  -V, --version                        output the version number
  --ts, --typescript

    Initialize as a TypeScript project. (default)

  --js, --javascript

    Initialize as a JavaScript project.

  --tailwind

    Initialize with Tailwind CSS config. (default)

  --eslint

    Initialize with ESLint config.

  --app

https://github.com/vercel/next.js/tree/canary/examples


    Initialize as an App Router project.

  --src-dir

    Initialize inside a `src/` directory.

  --import-alias <alias-to-configure>

    Specify import alias to use (default "@/*").

  --empty

    Initialize an empty project.

  --use-npm

    Explicitly tell the CLI to bootstrap the app using npm

  --use-pnpm

    Explicitly tell the CLI to bootstrap the app using pnpm

  --use-yarn

    Explicitly tell the CLI to bootstrap the app using Yarn

  --use-bun

    Explicitly tell the CLI to bootstrap the app using Bun

  -e, --example [name]|[github-url]

    An example to bootstrap the app with. You can use an example name
    from the official Next.js repo or a public GitHub URL. The URL can use
    any branch and/or subdirectory

  --example-path <path-to-example>

    In a rare case, your GitHub URL might contain a branch name with
    a slash (e.g. bug/fix-1) and the path to the example (e.g. foo/bar).
    In this case, you must specify the path to the example separately:
    --example-path foo/bar

  --reset-preferences

    Explicitly tell the CLI to reset any stored preferences

  --skip-install

    Explicitly tell the CLI to skip installing packages

  -h, --help                           output usage information

Why use Create Next App?

create-next-app allows you to create a new Next.js app within seconds. It is officially maintained by the creators of Next.js, and
includes a number of benefits:

Interactive Experience: Running npx create-next-app@latest (with no arguments) launches an interactive experience that
guides you through setting up a project.
Zero Dependencies: Initializing a project is as quick as one second. Create Next App has zero dependencies.
Offline Support: Create Next App will automatically detect if you’re offline and bootstrap your project using your local package
cache.
Support for Examples: Create Next App can bootstrap your application using an example from the Next.js examples collection
(e.g. npx create-next-app --example api-routes) or any public GitHub repository.
Tested: The package is part of the Next.js monorepo and tested using the same integration test suite as Next.js itself, ensuring it
works as expected with every release.



3.2.6 - Edge Runtime
Documentation path: /02-app/02-api-reference/07-edge

Description: API Reference for the Edge Runtime.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

The Next.js Edge Runtime is used for Middleware and supports the following APIs:

Network APIs

API Description

Blob Represents a blob

fetch Fetches a resource

FetchEvent Represents a fetch event

File Represents a file

FormData Represents form data

Headers Represents HTTP headers

Request Represents an HTTP request

Response Represents an HTTP response

URLSearchParams Represents URL search parameters

WebSocket Represents a websocket connection

Encoding APIs

API Description

atob Decodes a base-64 encoded string

btoa Encodes a string in base-64

TextDecoder Decodes a Uint8Array into a string

TextDecoderStream Chainable decoder for streams

TextEncoder Encodes a string into a Uint8Array

TextEncoderStream Chainable encoder for streams

Stream APIs

API Description

ReadableStream Represents a readable stream

ReadableStreamBYOBReader Represents a reader of a ReadableStream

ReadableStreamDefaultReader Represents a reader of a ReadableStream

TransformStream Represents a transform stream

WritableStream Represents a writable stream

WritableStreamDefaultWriter Represents a writer of a WritableStream

Crypto APIs

https://developer.mozilla.org/docs/Web/API/Blob
https://developer.mozilla.org/docs/Web/API/Fetch_API
https://developer.mozilla.org/docs/Web/API/FetchEvent
https://developer.mozilla.org/docs/Web/API/File
https://developer.mozilla.org/docs/Web/API/FormData
https://developer.mozilla.org/docs/Web/API/Headers
https://developer.mozilla.org/docs/Web/API/Request
https://developer.mozilla.org/docs/Web/API/Response
https://developer.mozilla.org/docs/Web/API/URLSearchParams
https://developer.mozilla.org/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/atob
https://developer.mozilla.org/en-US/docs/Web/API/btoa
https://developer.mozilla.org/docs/Web/API/TextDecoder
https://developer.mozilla.org/docs/Web/API/TextDecoderStream
https://developer.mozilla.org/docs/Web/API/TextEncoder
https://developer.mozilla.org/docs/Web/API/TextEncoderStream
https://developer.mozilla.org/docs/Web/API/ReadableStream
https://developer.mozilla.org/docs/Web/API/ReadableStreamBYOBReader
https://developer.mozilla.org/docs/Web/API/ReadableStreamDefaultReader
https://developer.mozilla.org/docs/Web/API/TransformStream
https://developer.mozilla.org/docs/Web/API/WritableStream
https://developer.mozilla.org/docs/Web/API/WritableStreamDefaultWriter


API Description

crypto Provides access to the cryptographic functionality of the platform

CryptoKey Represents a cryptographic key

SubtleCrypto Provides access to common cryptographic primitives, like hashing, signing, encryption or decryption

Web Standard APIs

API Description

AbortController Allows you to abort one or more DOM requests as and when desired

Array Represents an array of values

ArrayBuffer Represents a generic, fixed-length raw binary data buffer

Atomics Provides atomic operations as static methods

BigInt Represents a whole number with arbitrary precision

BigInt64Array Represents a typed array of 64-bit signed integers

BigUint64Array Represents a typed array of 64-bit unsigned integers

Boolean Represents a logical entity and can have two values: true and false

clearInterval Cancels a timed, repeating action which was previously established by a call to setInterval()

clearTimeout Cancels a timed, repeating action which was previously established by a call to setTimeout()

console Provides access to the browser’s debugging console

DataView Represents a generic view of an ArrayBuffer

Date Represents a single moment in time in a platform-independent format

decodeURI Decodes a Uniform Resource Identifier (URI) previously created by encodeURI or by a similar routine

decodeURIComponent Decodes a Uniform Resource Identifier (URI) component previously created by encodeURIComponent or by a
similar routine

DOMException Represents an error that occurs in the DOM

encodeURI Encodes a Uniform Resource Identifier (URI) by replacing each instance of certain characters by one, two,
three, or four escape sequences representing the UTF-8 encoding of the character

encodeURIComponent Encodes a Uniform Resource Identifier (URI) component by replacing each instance of certain characters by
one, two, three, or four escape sequences representing the UTF-8 encoding of the character

Error Represents an error when trying to execute a statement or accessing a property

EvalError Represents an error that occurs regarding the global function eval()

Float32Array Represents a typed array of 32-bit floating point numbers

Float64Array Represents a typed array of 64-bit floating point numbers

Function Represents a function

Infinity Represents the mathematical Infinity value

Int8Array Represents a typed array of 8-bit signed integers

Int16Array Represents a typed array of 16-bit signed integers

Int32Array Represents a typed array of 32-bit signed integers

Intl Provides access to internationalization and localization functionality

isFinite Determines whether a value is a finite number

isNaN Determines whether a value is NaN or not

https://developer.mozilla.org/docs/Web/API/Window/crypto
https://developer.mozilla.org/docs/Web/API/CryptoKey
https://developer.mozilla.org/docs/Web/API/SubtleCrypto
https://developer.mozilla.org/docs/Web/API/AbortController
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Atomics
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/BigInt64Array
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/BigUint64Array
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/docs/Web/API/WindowOrWorkerGlobalScope/clearInterval
https://developer.mozilla.org/docs/Web/API/WindowOrWorkerGlobalScope/clearTimeout
https://developer.mozilla.org/docs/Web/API/Console
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/DataView
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/decodeURI
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent
https://developer.mozilla.org/docs/Web/API/DOMException
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/encodeURI
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/EvalError
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Float32Array
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Float64Array
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Infinity
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Int8Array
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Int16Array
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Int32Array
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/isFinite
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/isNaN


JSON Provides functionality to convert JavaScript values to and from the JSON format

Map Represents a collection of values, where each value may occur only once

Math Provides access to mathematical functions and constants

Number Represents a numeric value

Object Represents the object that is the base of all JavaScript objects

parseFloat Parses a string argument and returns a floating point number

parseInt Parses a string argument and returns an integer of the specified radix

Promise Represents the eventual completion (or failure) of an asynchronous operation, and its resulting value

Proxy Represents an object that is used to define custom behavior for fundamental operations (e.g. property
lookup, assignment, enumeration, function invocation, etc)

queueMicrotask Queues a microtask to be executed

RangeError Represents an error when a value is not in the set or range of allowed values

ReferenceError Represents an error when a non-existent variable is referenced

Reflect Provides methods for interceptable JavaScript operations

RegExp Represents a regular expression, allowing you to match combinations of characters

Set Represents a collection of values, where each value may occur only once

setInterval Repeatedly calls a function, with a fixed time delay between each call

setTimeout Calls a function or evaluates an expression after a specified number of milliseconds

SharedArrayBuffer Represents a generic, fixed-length raw binary data buffer

String Represents a sequence of characters

structuredClone Creates a deep copy of a value

Symbol Represents a unique and immutable data type that is used as the key of an object property

SyntaxError Represents an error when trying to interpret syntactically invalid code

TypeError Represents an error when a value is not of the expected type

Uint8Array Represents a typed array of 8-bit unsigned integers

Uint8ClampedArray Represents a typed array of 8-bit unsigned integers clamped to 0-255

Uint32Array Represents a typed array of 32-bit unsigned integers

URIError Represents an error when a global URI handling function was used in a wrong way

URL Represents an object providing static methods used for creating object URLs

URLPattern Represents a URL pattern

URLSearchParams Represents a collection of key/value pairs

WeakMap Represents a collection of key/value pairs in which the keys are weakly referenced

WeakSet Represents a collection of objects in which each object may occur only once

WebAssembly Provides access to WebAssembly

API Description

Next.js Specific Polyfills

AsyncLocalStorage

Environment Variables

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/parseFloat
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/docs/Web/API/queueMicrotask
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/RangeError
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/ReferenceError
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Reflect
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/docs/Web/API/setInterval
https://developer.mozilla.org/docs/Web/API/setTimeout
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/docs/Web/API/Web_Workers_API/Structured_clone_algorithm
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/SyntaxError
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/TypeError
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Uint8Array
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Uint8ClampedArray
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Uint32Array
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/URIError
https://developer.mozilla.org/docs/Web/API/URL
https://developer.mozilla.org/docs/Web/API/URLPattern
https://developer.mozilla.org/docs/Web/API/URLSearchParams
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/WeakMap
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/WeakSet
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly
https://nodejs.org/api/async_context.html#class-asynclocalstorage


You can use process.env to access Environment Variables for both next dev and next build.

Unsupported APIs

The Edge Runtime has some restrictions including:

Native Node.js APIs are not supported. For example, you can’t read or write to the filesystem.
node_modules can be used, as long as they implement ES Modules and do not use native Node.js APIs.
Calling require directly is not allowed. Use ES Modules instead.

The following JavaScript language features are disabled, and will not work:

API Description

eval Evaluates JavaScript code represented as a string

new Function(evalString) Creates a new function with the code provided as an argument

WebAssembly.compile Compiles a WebAssembly module from a buffer source

WebAssembly.instantiate Compiles and instantiates a WebAssembly module from a buffer source

In rare cases, your code could contain (or import) some dynamic code evaluation statements which can not be reached at runtime and
which can not be removed by treeshaking. You can relax the check to allow specific files with your Middleware configuration:

middleware.ts (javascript)

export const config = {
  unstable_allowDynamic: [
    // allows a single file
    '/lib/utilities.js',
    // use a glob to allow anything in the function-bind 3rd party module
    '/node_modules/function-bind/**',
  ],
}

unstable_allowDynamic is a glob, or an array of globs, ignoring dynamic code evaluation for specific files. The globs are relative to
your application root folder.

Be warned that if these statements are executed on the Edge, they will throw and cause a runtime error.

file:///docs/app/building-your-application/configuring/environment-variables
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/compile
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/instantiate
https://github.com/micromatch/micromatch#matching-features


3.2.7 - Next.js CLI
Documentation path: /02-app/02-api-reference/08-next-cli

Description: Learn how the Next.js CLI allows you to develop, build, and start your application, and more.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}

The Next.js CLI allows you to develop, build, start your application, and more.

To get a list of the available CLI commands, run the following command inside your project directory:
Terminal (bash)

next -h

The output should look like this:
Terminal (bash)

Usage next [options] [command]

The Next.js CLI allows you to develop, build, start your application, and more.

Options:
  -v, --version                Outputs the Next.js version.
  -h, --help                   Displays this message.

Commands:
  build [directory] [options]  Creates an optimized production build of your application.
                               The output displays information about each route.
  dev [directory] [options]    Starts Next.js in development mode with hot-code reloading,
                               error reporting, and more.
  info [options]               Prints relevant details about the current system which can be
                               used to report Next.js bugs.
  lint [directory] [options]   Runs ESLint for all files in the `/src`, `/app`, `/pages`,
                               `/components`, and `/lib` directories. It also provides a
                               guided setup to install any required dependencies if ESLint
                               is not already configured in your application.
  start [directory] [options]  Starts Next.js in production mode. The application should be
                               compiled with `next build` first.
  telemetry [options]          Allows you to enable or disable Next.js' completely
                               anonymous telemetry collection.

You can pass any node arguments to next commands:

Terminal (bash)

NODE_OPTIONS='--throw-deprecation' next
NODE_OPTIONS='-r esm' next
NODE_OPTIONS='--inspect' next

Good to know: Running next without a command is the same as running next dev

Development

next dev starts the application in development mode with hot-code reloading, error reporting, and more.

To get a list of the available options with next dev, run the following command inside your project directory:

Terminal (bash)

next dev -h

The output should look like this:
Terminal (bash)

Usage: next dev [directory] [options]

Starts Next.js in development mode with hot-code reloading, error reporting, and more.

Arguments:
  [directory]                              A directory on which to build the application.
                                           If no directory is provided, the current
                                           directory will be used.

Options:

https://nodejs.org/api/cli.html#cli_node_options_options


  --turbo                                  Starts development mode using Turbopack (beta).
  -p, --port <port>                        Specify a port number on which to start the
                                           application. (default: 3000, env: PORT)
  -H, --hostname <hostname>                Specify a hostname on which to start the
                                           application (default: 0.0.0.0).
  --experimental-https                     Starts the server with HTTPS and generates a
                                           self-signed certificate.
  --experimental-https-key, <path>         Path to a HTTPS key file.
  --experimental-https-cert, <path>        Path to a HTTPS certificate file.
  --experimental-https-ca, <path>          Path to a HTTPS certificate authority file.
  --experimental-upload-trace, <traceUrl>  Reports a subset of the debugging trace to a
                                           remote HTTP URL. Includes sensitive data.
  -h, --help                               Displays this message.

The application will start at http://localhost:3000 by default. The default port can be changed with -p, like so:

Terminal (bash)

next dev -p 4000

Or using the PORT environment variable:

Terminal (bash)

PORT=4000 next dev

Good to know:

PORT cannot be set in .env as booting up the HTTP server happens before any other code is initialized.
Next.js will automatically retry with another port until a port is available if a port is not specified with the CLI option --
port or the PORT environment variable.

You can also set the hostname to be different from the default of 0.0.0.0, this can be useful for making the application available for
other devices on the network. The default hostname can be changed with -H, like so:

Terminal (bash)

next dev -H 192.168.1.2

Turbopack

Turbopack (beta), our new bundler, which is being tested and stabilized in Next.js, helps speed up local iterations while working on your
application.

To use Turbopack in development mode, add the --turbo option:

Terminal (bash)

next dev --turbo

HTTPS for Local Development

For certain use cases like webhooks or authentication, it may be required to use HTTPS to have a secure environment on localhost.
Next.js can generate a self-signed certificate with next dev as follows:

Terminal (bash)

next dev --experimental-https

You can also provide a custom certificate and key with --experimental-https-key and --experimental-https-cert. Optionally,
you can provide a custom CA certificate with --experimental-https-ca as well.

Terminal (bash)

next dev --experimental-https --experimental-https-key ./certificates/localhost-key.pem --experimental-https-cert

next dev --experimental-https is only intended for development and creates a locally-trusted certificate with mkcert. In
production, use properly issued certificates from trusted authorities. When deploying to Vercel, HTTPS is automatically configured for
your Next.js application.

Build

next build creates an optimized production build of your application. The output displays information about each route:

Terminal (bash)

Route (app)                               Size     First Load JS

file:///docs/architecture/turbopack
https://vercel.com/docs/security/encryption


┌ ○ /                                     5.3 kB         89.5 kB
├ ○ /_not-found                           885 B          85.1 kB
└ ○ /about                                137 B          84.4 kB
+ First Load JS shared by all             84.2 kB
  ├ chunks/184-d3bb186aac44da98.js        28.9 kB
  ├ chunks/30b509c0-f3503c24f98f3936.js   53.4 kB
  └ other shared chunks (total)

○  (Static)  prerendered as static content

Size: The number of assets downloaded when navigating to the page client-side. The size for each route only includes its
dependencies.
First Load JS: The number of assets downloaded when visiting the page from the server. The amount of JS shared by all is shown as
a separate metric.

Both of these values are compressed with gzip. The first load is indicated by green, yellow, or red. Aim for green for performant
applications.

To get a list of the available options with next build, run the following command inside your project directory:

Terminal (bash)

next build -h

The output should look like this:
Terminal (bash)

Usage: next build [directory] [options]

Creates an optimized production build of your application. The output displays information
about each route.

Arguments:
  [directory]                       A directory on which to build the application. If no
                                    provided, the current directory will be
                                    used.

Options:
  -d, --debug                       Enables a more verbose build output.
  --profile                         Enables production profiling for React.
  --no-lint                         Disables linting.
  --no-mangling                     Disables mangling.
  --experimental-app-only           Builds only App Router routes.
  --experimental-build-mode [mode]  Uses an experimental build mode. (choices: "compile"
                                    "generate", default: "default")
  -h, --help                        Displays this message.

Debug

You can enable more verbose build output with the --debug flag in next build.

Terminal (bash)

next build --debug

With this flag enabled additional build output like rewrites, redirects, and headers will be shown.

Linting

You can disable linting for builds like so:
Terminal (bash)

next build --no-lint

Mangling

You can disable mangling for builds like so:
Terminal (bash)

next build --no-mangling

Good to know: This may affect performance and should only be used for debugging purposes.

Profiling

file:///docs/app/api-reference/next-config-js/compress
https://en.wikipedia.org/wiki/Name_mangling


You can enable production profiling for React with the --profile flag in next build.

Terminal (bash)

next build --profile

After that, you can use the profiler in the same way as you would in development.

Production

next start starts the application in production mode. The application should be compiled with next build first.

To get a list of the available options with next start, run the follow command inside your project directory:

Terminal (bash)

next start -h

The output should look like this:
Terminal (bash)

Usage: next start [directory] [options]

Starts Next.js in production mode. The application should be compiled with `next build`
first.

Arguments:
  [directory]                           A directory on which to start the application.
                                        If not directory is provided, the current
                                        directory will be used.

Options:
  -p, --port <port>                     Specify a port number on which to start the
                                        application. (default: 3000, env: PORT)
  -H, --hostname <hostname>             Specify a hostname on which to start the
                                        application (default: 0.0.0.0).
  --keepAliveTimeout <keepAliveTimeout> Specify the maximum amount of milliseconds to wait
                                        before closing the inactive connections.
  -h, --help                            Displays this message.

The application will start at http://localhost:3000 by default. The default port can be changed with -p, like so:

Terminal (bash)

next start -p 4000

Or using the PORT environment variable:

Terminal (bash)

PORT=4000 next start

Good to know:

PORT cannot be set in .env as booting up the HTTP server happens before any other code is initialized.
next start cannot be used with output: 'standalone' or output: 'export'.

Keep Alive Timeout

When deploying Next.js behind a downstream proxy (e.g. a load-balancer like AWS ELB/ALB) it’s important to configure Next’s
underlying HTTP server with keep-alive timeouts that are larger than the downstream proxy’s timeouts. Otherwise, once a keep-alive
timeout is reached for a given TCP connection, Node.js will immediately terminate that connection without notifying the downstream
proxy. This results in a proxy error whenever it attempts to reuse a connection that Node.js has already terminated.

To configure the timeout values for the production Next.js server, pass --keepAliveTimeout (in milliseconds) to next start, like so:

Terminal (bash)

next start --keepAliveTimeout 70000

Info

next info prints relevant details about the current system which can be used to report Next.js bugs. This information includes
Operating System platform/arch/version, Binaries (Node.js, npm, Yarn, pnpm) and npm package versions (next, react, react-dom).

To get a list of the available options with next info, run the following command inside your project directory:

Terminal (bash)

https://nodejs.org/api/http.html#http_server_keepalivetimeout


next info -h

The output should look like this:
Terminal (bash)

Usage: next info [options]

Prints relevant details about the current system which can be used to report Next.js bugs.

Options:
  --verbose   Collections additional information for debugging.
  -h, --help  Displays this message.

Running next info will give you information like this example:

Terminal (bash)

Operating System:
  Platform: linux
  Arch: x64
  Version: #22-Ubuntu SMP Fri Nov 5 13:21:36 UTC 2021
  Available memory (MB): 31795
  Available CPU cores: 16
Binaries:
  Node: 16.13.0
  npm: 8.1.0
  Yarn: 1.22.17
  pnpm: 6.24.2
Relevant Packages:
  next: 14.1.1-canary.61 // Latest available version is detected (14.1.1-canary.61).
  react: 18.2.0
  react-dom: 18.2.0
Next.js Config:
  output: N/A

This information should then be pasted into GitHub Issues.

You can also run next info --verbose which will print additional information about the system and the installation of packages
related to next.

Lint

next lint runs ESLint for all files in the pages/, app/, components/, lib/, and src/ directories. It also provides a guided setup to
install any required dependencies if ESLint is not already configured in your application.

To get a list of the available options with next lint, run the following command inside your project directory:

Terminal (bash)

next lint -h

The output should look like this:
Terminal (bash)

Usage: next lint [directory] [options]

Runs ESLint for all files in the `/src`, `/app`, `/pages`, `/components`, and `/lib` directories. It also
provides a guided setup to install any required dependencies if ESLint is not already configured in your
application.

Arguments:
  [directory]                                         A base directory on which to lint the application.
                                                      If no directory is provided, the current directory
                                                      will be used.

Options:
  -d, --dir, <dirs...>                                Include directory, or directories, to run ESLint.
  --file, <files...>                                  Include file, or files, to run ESLint.
  --ext, [exts...]                                    Specify JavaScript file extensions. (default:
                                                      [".js", ".mjs", ".cjs", ".jsx", ".ts", ".mts", ".cts"
  -c, --config, <config>                              Uses this configuration file, overriding all other
                                                      configuration options.
  --resolve-plugins-relative-to, <rprt>               Specify a directory where plugins should be resolved
                                                      from.
  --strict                                            Creates a `.eslintrc.json` file using the Next.js
                                                      strict configuration.



  --rulesdir, <rulesdir...>                           Uses additional rules from this directory(s).
  --fix                                               Automatically fix linting issues.
  --fix-type <fixType>                                Specify the types of fixes to apply (e.g., problem,
                                                      suggestion, layout).
  --ignore-path <path>                                Specify a file to ignore.
  --no-ignore <path>                                  Disables the `--ignore-path` option.
  --quiet                                             Reports errors only.
  --max-warnings [maxWarnings]                        Specify the number of warnings before triggering a
                                                      non-zero exit code. (default: -1)
  -o, --output-file, <outputFile>                     Specify a file to write report to.
  -f, --format, <format>                              Uses a specifc output format.
  --no-inline-config                                  Prevents comments from changing config or rules.
  --report-unused-disable-directives-severity <level> Specify severity level for unused eslint-disable
                                                      directives. (choices: "error", "off", "warn")
  --no-cache                                          Disables caching.
  --cache-location, <cacheLocation>                   Specify a location for cache.
  --cache-strategy, [cacheStrategy]                   Specify a strategy to use for detecting changed files
                                                      in the cache. (default: "metadata")
  --error-on-unmatched-pattern                        Reports errors when any file patterns are unmatched.
  -h, --help                                          Displays this message.

If you have other directories that you would like to lint, you can specify them using the --dir flag:

Terminal (bash)

next lint --dir utils

For more information on the other options, check out our ESLint configuration documentation.

Telemetry

Next.js collects completely anonymous telemetry data about general usage. Participation in this anonymous program is optional, and
you may opt-out if you’d not like to share any information.

To get a list of the available options with next telemetry, run the following command in your project directory:

Terminal (bash)

next telemetry -h

The output should look like this:
Terminal (bash)

Usage: next telemetry [options]

Allows you to enable or disable Next.js' completely anonymous telemetry collection.

Options:
  --enable    Eanbles Next.js' telemetry collection.
  --disable   Disables Next.js' telemetry collection.
  -h, --help  Displays this message.

Learn more: https://nextjs.org/telemetry

Learn more about Telemetry.

file:///docs/app/building-your-application/configuring/eslint
file:///telemetry/


4 - Pages Router
Documentation path: /03-pages/index

Description: Before Next.js 13, the Pages Router was the main way to create routes in Next.js with an intuitive file-system router.

Before Next.js 13, the Pages Router was the main way to create routes in Next.js. It used an intuitive file-system router to map each file
to a route. The Pages Router is still supported in newer versions of Next.js, but we recommend migrating to the new App Router to
leverage React’s latest features.

Use this section of the documentation for existing applications that use the Pages Router.

file:///docs/app


4.1 - Building Your Application
Documentation path: /03-pages/01-building-your-application/index

Description: Learn how to use Next.js features to build your application.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.1 - Routing
Documentation path: /03-pages/01-building-your-application/01-routing/index

Description: Learn the fundamentals of routing for front-end applications with the Pages Router.

The Pages Router has a file-system based router built on concepts of pages. When a file is added to the pages directory it’s
automatically available as a route. Learn more about routing in the Pages Router:



4.1.1.1 - Pages and Layouts
Documentation path: /03-pages/01-building-your-application/01-routing/01-pages-and-layouts

Description: Create your first page and shared layout with the Pages Router.

The Pages Router has a file-system based router built on the concept of pages.

When a file is added to the pages directory, it’s automatically available as a route.

In Next.js, a page is a React Component exported from a .js, .jsx, .ts, or .tsx file in the pages directory. Each page is associated
with a route based on its file name.

Example: If you create pages/about.js that exports a React component like below, it will be accessible at /about.

export default function About() {
  return <div>About</div>
}

Index routes

The router will automatically route files named index to the root of the directory.

pages/index.js → /
pages/blog/index.js → /blog

Nested routes

The router supports nested files. If you create a nested folder structure, files will automatically be routed in the same way still.

pages/blog/first-post.js → /blog/first-post
pages/dashboard/settings/username.js → /dashboard/settings/username

Pages with Dynamic Routes

Next.js supports pages with dynamic routes. For example, if you create a file called pages/posts/[id].js, then it will be accessible
at posts/1, posts/2, etc.

To learn more about dynamic routing, check the Dynamic Routing documentation.

Layout Pattern

The React model allows us to deconstruct a page into a series of components. Many of these components are often reused between
pages. For example, you might have the same navigation bar and footer on every page.

components/layout.js (jsx)

import Navbar from './navbar'
import Footer from './footer'

export default function Layout({ children }) {
  return (
    <>
      <Navbar />
      <main>{children}</main>
      <Footer />
    </>
  )
}

Examples

Single Shared Layout with Custom App

If you only have one layout for your entire application, you can create a Custom App and wrap your application with the layout. Since
the <Layout /> component is re-used when changing pages, its component state will be preserved (e.g. input values).

pages/_app.js (jsx)

import Layout from '../components/layout'

https://react.dev/learn/your-first-component
file:///docs/pages/building-your-application/routing/dynamic-routes
file:///docs/pages/building-your-application/routing/pages-and-layouts
file:///docs/pages/building-your-application/routing/custom-app


export default function MyApp({ Component, pageProps }) {
  return (
    <Layout>
      <Component {...pageProps} />
    </Layout>
  )
}

Per-Page Layouts

If you need multiple layouts, you can add a property getLayout to your page, allowing you to return a React component for the layout.
This allows you to define the layout on a per-page basis. Since we’re returning a function, we can have complex nested layouts if
desired.

pages/index.js (jsx)

import Layout from '../components/layout'
import NestedLayout from '../components/nested-layout'

export default function Page() {
  return (
    /** Your content */
  )
}

Page.getLayout = function getLayout(page) {
  return (
    <Layout>
      <NestedLayout>{page}</NestedLayout>
    </Layout>
  )
}

pages/_app.js (jsx)

export default function MyApp({ Component, pageProps }) {
  // Use the layout defined at the page level, if available
  const getLayout = Component.getLayout ?? ((page) => page)

  return getLayout(<Component {...pageProps} />)
}

When navigating between pages, we want to persist page state (input values, scroll position, etc.) for a Single-Page Application (SPA)
experience.

This layout pattern enables state persistence because the React component tree is maintained between page transitions. With the
component tree, React can understand which elements have changed to preserve state.

Good to know: This process is called reconciliation, which is how React understands which elements have changed.

With TypeScript

When using TypeScript, you must first create a new type for your pages which includes a getLayout function. Then, you must create a
new type for your AppProps which overrides the Component property to use the previously created type.

pages/index.tsx (tsx)

import type { ReactElement } from 'react'
import Layout from '../components/layout'
import NestedLayout from '../components/nested-layout'
import type { NextPageWithLayout } from './_app'

const Page: NextPageWithLayout = () => {
  return <p>hello world</p>
}

Page.getLayout = function getLayout(page: ReactElement) {
  return (
    <Layout>
      <NestedLayout>{page}</NestedLayout>
    </Layout>
  )
}

export default Page

https://react.dev/learn/preserving-and-resetting-state


pages/index.js (jsx)

import Layout from '../components/layout'
import NestedLayout from '../components/nested-layout'

const Page = () => {
  return <p>hello world</p>
}

Page.getLayout = function getLayout(page) {
  return (
    <Layout>
      <NestedLayout>{page}</NestedLayout>
    </Layout>
  )
}

export default Page

pages/_app.tsx (tsx)

import type { ReactElement, ReactNode } from 'react'
import type { NextPage } from 'next'
import type { AppProps } from 'next/app'

export type NextPageWithLayout<P = {}, IP = P> = NextPage<P, IP> & {
  getLayout?: (page: ReactElement) => ReactNode
}

type AppPropsWithLayout = AppProps & {
  Component: NextPageWithLayout
}

export default function MyApp({ Component, pageProps }: AppPropsWithLayout) {
  // Use the layout defined at the page level, if available
  const getLayout = Component.getLayout ?? ((page) => page)

  return getLayout(<Component {...pageProps} />)
}

pages/_app.js (jsx)

export default function MyApp({ Component, pageProps }) {
  // Use the layout defined at the page level, if available
  const getLayout = Component.getLayout ?? ((page) => page)

  return getLayout(<Component {...pageProps} />)
}

Data Fetching

Inside your layout, you can fetch data on the client-side using useEffect or a library like SWR. Because this file is not a Page, you
cannot use getStaticProps or getServerSideProps currently.

components/layout.js (jsx)

import useSWR from 'swr'
import Navbar from './navbar'
import Footer from './footer'

export default function Layout({ children }) {
  const { data, error } = useSWR('/api/navigation', fetcher)

  if (error) return <div>Failed to load</div>
  if (!data) return <div>Loading...</div>

  return (
    <>
      <Navbar links={data.links} />
      <main>{children}</main>
      <Footer />
    </>
  )
}

https://swr.vercel.app/
file:///docs/pages/building-your-application/routing/pages-and-layouts


4.1.1.2 - Dynamic Routes
Documentation path: /03-pages/01-building-your-application/01-routing/02-dynamic-routes

Description: Dynamic Routes are pages that allow you to add custom params to your URLs. Start creating Dynamic Routes and learn
more here.

Related:

Title: Next Steps

Related Description: For more information on what to do next, we recommend the following sections

Links:

pages/building-your-application/routing/linking-and-navigating
pages/api-reference/functions/use-router

When you don’t know the exact segment names ahead of time and want to create routes from dynamic data, you can use Dynamic
Segments that are filled in at request time or prerendered at build time.

Convention

A Dynamic Segment can be created by wrapping a file or folder name in square brackets: [segmentName]. For example, [id] or
[slug].

Dynamic Segments can be accessed from useRouter.

Example

For example, a blog could include the following route pages/blog/[slug].js where [slug] is the Dynamic Segment for blog posts.

import { useRouter } from 'next/router'

export default function Page() {
  const router = useRouter()
  return <p>Post: {router.query.slug}</p>
}

Route Example URL paramsparams

pages/blog/[slug].js /blog/a { slug: 'a' }

pages/blog/[slug].js /blog/b { slug: 'b' }

pages/blog/[slug].js /blog/c { slug: 'c' }

Catch-all Segments

Dynamic Segments can be extended to catch-all subsequent segments by adding an ellipsis inside the brackets [...segmentName].

For example, pages/shop/[...slug].js will match /shop/clothes, but also /shop/clothes/tops, /shop/clothes/tops/t-
shirts, and so on.

Route Example URL paramsparams

pages/shop/[...slug].js /shop/a { slug: ['a'] }

pages/shop/[...slug].js /shop/a/b { slug: ['a', 'b'] }

pages/shop/[...slug].js /shop/a/b/c { slug: ['a', 'b', 'c'] }

Optional Catch-all Segments

Catch-all Segments can be made optional by including the parameter in double square brackets: [[...segmentName]].

For example, pages/shop/[[...slug]].js will also match /shop, in addition to /shop/clothes, /shop/clothes/tops,
/shop/clothes/tops/t-shirts.

file:///docs/pages/building-your-application/data-fetching/get-static-paths
file:///docs/pages/api-reference/functions/use-router


The difference between catch-all and optional catch-all segments is that with optional, the route without the parameter is also
matched (/shop in the example above).

Route Example URL paramsparams

pages/shop/[[...slug]].js /shop { slug: undefined }

pages/shop/[[...slug]].js /shop/a { slug: ['a'] }

pages/shop/[[...slug]].js /shop/a/b { slug: ['a', 'b'] }

pages/shop/[[...slug]].js /shop/a/b/c { slug: ['a', 'b', 'c'] }



4.1.1.3 - Linking and Navigating
Documentation path: /03-pages/01-building-your-application/01-routing/03-linking-and-navigating

Description: Learn how navigation works in Next.js, and how to use the Link Component and `useRouter` hook.

The Next.js router allows you to do client-side route transitions between pages, similar to a single-page application.

A React component called Link is provided to do this client-side route transition.

import Link from 'next/link'

function Home() {
  return (
    <ul>
      <li>
        <Link href="/">Home</Link>
      </li>
      <li>
        <Link href="/about">About Us</Link>
      </li>
      <li>
        <Link href="/blog/hello-world">Blog Post</Link>
      </li>
    </ul>
  )
}

export default Home

The example above uses multiple links. Each one maps a path (href) to a known page:

/ → pages/index.js
/about → pages/about.js
/blog/hello-world → pages/blog/[slug].js

Any <Link /> in the viewport (initially or through scroll) will be prefetched by default (including the corresponding data) for pages
using Static Generation. The corresponding data for server-rendered routes is fetched only when the <Link /> is clicked.

Linking to dynamic paths

You can also use interpolation to create the path, which comes in handy for dynamic route segments. For example, to show a list of
posts which have been passed to the component as a prop:

import Link from 'next/link'

function Posts({ posts }) {
  return (
    <ul>
      {posts.map((post) => (
        <li key={post.id}>
          <Link href={`/blog/${encodeURIComponent(post.slug)}`}>
            {post.title}
          </Link>
        </li>
      ))}
    </ul>
  )
}

export default Posts

encodeURIComponent is used in the example to keep the path utf-8 compatible.

Alternatively, using a URL Object:

import Link from 'next/link'

function Posts({ posts }) {
  return (
    <ul>
      {posts.map((post) => (

file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/data-fetching/get-server-side-props
file:///docs/pages/building-your-application/routing/dynamic-routes
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent


        <li key={post.id}>
          <Link
            href={{
              pathname: '/blog/[slug]',
              query: { slug: post.slug },
            }}
          >
            {post.title}
          </Link>
        </li>
      ))}
    </ul>
  )
}

export default Posts

Now, instead of using interpolation to create the path, we use a URL object in href where:

pathname is the name of the page in the pages directory. /blog/[slug] in this case.
query is an object with the dynamic segment. slug in this case.

Injecting the router

Examples

To access the router object in a React component you can use useRouter or withRouter.

In general we recommend using useRouter.

Imperative Routing

next/link should be able to cover most of your routing needs, but you can also do client-side navigations without it, take a look at the
documentation for next/router.

The following example shows how to do basic page navigations with useRouter:

import { useRouter } from 'next/router'

export default function ReadMore() {
  const router = useRouter()

  return (
    <button onClick={() => router.push('/about')}>
      Click here to read more
    </button>
  )
}

Shallow Routing

Examples

Shallow routing allows you to change the URL without running data fetching methods again, that includes getServerSideProps,
getStaticProps, and getInitialProps.

You’ll receive the updated pathname and the query via the router object (added by useRouter or withRouter), without losing state.

To enable shallow routing, set the shallow option to true. Consider the following example:

import { useEffect } from 'react'
import { useRouter } from 'next/router'

// Current URL is '/'
function Page() {
  const router = useRouter()

  useEffect(() => {
    // Always do navigations after the first render
    router.push('/?counter=10', undefined, { shallow: true })
  }, [])

  useEffect(() => {
    // The counter changed!

file:///docs/pages/api-reference/functions/use-router#router-object
file:///docs/pages/api-reference/functions/use-router
file:///docs/pages/api-reference/functions/use-router#withrouter
file:///docs/pages/api-reference/functions/use-router
file:///docs/pages/api-reference/components/link
file:///docs/pages/api-reference/functions/use-router
file:///docs/pages/api-reference/functions/use-router
file:///docs/pages/building-your-application/data-fetching/get-server-side-props
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/api-reference/functions/get-initial-props
file:///docs/pages/api-reference/functions/use-router#router-object
file:///docs/pages/api-reference/functions/use-router
file:///docs/pages/api-reference/functions/use-router#withrouter


  }, [router.query.counter])
}

export default Page

The URL will get updated to /?counter=10 and the page won’t get replaced, only the state of the route is changed.

You can also watch for URL changes via componentDidUpdate as shown below:

componentDidUpdate(prevProps) {
  const { pathname, query } = this.props.router
  // verify props have changed to avoid an infinite loop
  if (query.counter !== prevProps.router.query.counter) {
    // fetch data based on the new query
  }
}

Caveats

Shallow routing only works for URL changes in the current page. For example, let’s assume we have another page called
pages/about.js, and you run this:

router.push('/?counter=10', '/about?counter=10', { shallow: true })

Since that’s a new page, it’ll unload the current page, load the new one and wait for data fetching even though we asked to do shallow
routing.

When shallow routing is used with middleware it will not ensure the new page matches the current page like previously done without
middleware. This is due to middleware being able to rewrite dynamically and can’t be verified client-side without a data fetch which is
skipped with shallow, so a shallow route change must always be treated as shallow.

https://react.dev/reference/react/Component#componentdidupdate


4.1.1.4 - Redirecting
Documentation path: /03-pages/01-building-your-application/01-routing/04-redirecting

Description: Learn the different ways to handle redirects in Next.js.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.1.5 - Custom App
Documentation path: /03-pages/01-building-your-application/01-routing/05-custom-app

Description: Control page initialization and add a layout that persists for all pages by overriding the default App component used by
Next.js.

Next.js uses the App component to initialize pages. You can override it and control the page initialization and:

Create a shared layout between page changes
Inject additional data into pages
Add global CSS

Usage

To override the default App, create the file pages/_app as shown below:

pages/_app.tsx (tsx)

import type { AppProps } from 'next/app'

export default function MyApp({ Component, pageProps }: AppProps) {
  return <Component {...pageProps} />
}

pages/_app.jsx (jsx)

export default function MyApp({ Component, pageProps }) {
  return <Component {...pageProps} />
}

The Component prop is the active page, so whenever you navigate between routes, Component will change to the new page. Therefore,
any props you send to Component will be received by the page.

pageProps is an object with the initial props that were preloaded for your page by one of our data fetching methods, otherwise it’s an
empty object.

Good to know

If your app is running and you added a custom App, you’ll need to restart the development server. Only required if
pages/_app.js didn’t exist before.
App does not support Next.js Data Fetching methods like getStaticProps or getServerSideProps.

getInitialPropsgetInitialProps with AppApp
Using getInitialProps in App will disable Automatic Static Optimization for pages without getStaticProps.

We do not recommend using this pattern. Instead, consider incrementally adopting the App Router, which allows you to more easily
fetch data for pages and layouts.

pages/_app.tsx (tsx)

import App, { AppContext, AppInitialProps, AppProps } from 'next/app'

type AppOwnProps = { example: string }

export default function MyApp({
  Component,
  pageProps,
  example,
}: AppProps & AppOwnProps) {
  return (
    <>
      <p>Data: {example}</p>
      <Component {...pageProps} />
    </>
  )
}

MyApp.getInitialProps = async (
  context: AppContext
): Promise<AppOwnProps & AppInitialProps> => {
  const ctx = await App.getInitialProps(context)

file:///docs/pages/building-your-application/styling
file:///docs/pages/building-your-application/data-fetching
file:///docs/pages/building-your-application/data-fetching
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/data-fetching/get-server-side-props
file:///docs/pages/api-reference/functions/get-initial-props
file:///docs/pages/building-your-application/rendering/automatic-static-optimization
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/app/building-your-application/upgrading/app-router-migration
file:///docs/app/building-your-application/routing/layouts-and-templates


  return { ...ctx, example: 'data' }
}

pages/_app.jsx (jsx)

import App from 'next/app'

export default function MyApp({ Component, pageProps, example }) {
  return (
    <>
      <p>Data: {example}</p>
      <Component {...pageProps} />
    </>
  )
}

MyApp.getInitialProps = async (context) => {
  const ctx = await App.getInitialProps(context)

  return { ...ctx, example: 'data' }
}



4.1.1.6 - Custom Document
Documentation path: /03-pages/01-building-your-application/01-routing/06-custom-document

Description: Extend the default document markup added by Next.js.

A custom Document can update the <html> and <body> tags used to render a Page.

To override the default Document, create the file pages/_document as shown below:

pages/_document.tsx (tsx)

import { Html, Head, Main, NextScript } from 'next/document'

export default function Document() {
  return (
    <Html lang="en">
      <Head />
      <body>
        <Main />
        <NextScript />
      </body>
    </Html>
  )
}

pages/_document.jsx (jsx)

import { Html, Head, Main, NextScript } from 'next/document'

export default function Document() {
  return (
    <Html lang="en">
      <Head />
      <body>
        <Main />
        <NextScript />
      </body>
    </Html>
  )
}

Good to know

_document is only rendered on the server, so event handlers like onClick cannot be used in this file.
<Html>, <Head />, <Main /> and <NextScript /> are required for the page to be properly rendered.

Caveats

The <Head /> component used in _document is not the same as next/head. The <Head /> component used here should only be
used for any <head> code that is common for all pages. For all other cases, such as <title> tags, we recommend using
next/head in your pages or components.
React components outside of <Main /> will not be initialized by the browser. Do not add application logic here or custom CSS (like
styled-jsx). If you need shared components in all your pages (like a menu or a toolbar), read Layouts instead.
Document currently does not support Next.js Data Fetching methods like getStaticProps or getServerSideProps.

Customizing renderPagerenderPage
Customizing renderPage is advanced and only needed for libraries like CSS-in-JS to support server-side rendering. This is not needed
for built-in styled-jsx support.

We do not recommend using this pattern. Instead, consider incrementally adopting the App Router, which allows you to more easily
fetch data for pages and layouts.

pages/_document.tsx (tsx)

import Document, {
  Html,
  Head,
  Main,
  NextScript,
  DocumentContext,

file:///docs/pages/building-your-application/routing/pages-and-layouts
file:///docs/pages/api-reference/components/head
file:///docs/pages/api-reference/components/head
file:///docs/pages/building-your-application/routing/pages-and-layouts#layout-pattern
file:///docs/pages/building-your-application/data-fetching
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/data-fetching/get-server-side-props
file:///docs/app/building-your-application/upgrading/app-router-migration
file:///docs/app/building-your-application/routing/layouts-and-templates


  DocumentInitialProps,
} from 'next/document'

class MyDocument extends Document {
  static async getInitialProps(
    ctx: DocumentContext
  ): Promise<DocumentInitialProps> {
    const originalRenderPage = ctx.renderPage

    // Run the React rendering logic synchronously
    ctx.renderPage = () =>
      originalRenderPage({
        // Useful for wrapping the whole react tree
        enhanceApp: (App) => App,
        // Useful for wrapping in a per-page basis
        enhanceComponent: (Component) => Component,
      })

    // Run the parent `getInitialProps`, it now includes the custom `renderPage`
    const initialProps = await Document.getInitialProps(ctx)

    return initialProps
  }

  render() {
    return (
      <Html lang="en">
        <Head />
        <body>
          <Main />
          <NextScript />
        </body>
      </Html>
    )
  }
}

export default MyDocument

pages/_document.jsx (jsx)

import Document, { Html, Head, Main, NextScript } from 'next/document'

class MyDocument extends Document {
  static async getInitialProps(ctx) {
    const originalRenderPage = ctx.renderPage

    // Run the React rendering logic synchronously
    ctx.renderPage = () =>
      originalRenderPage({
        // Useful for wrapping the whole react tree
        enhanceApp: (App) => App,
        // Useful for wrapping in a per-page basis
        enhanceComponent: (Component) => Component,
      })

    // Run the parent `getInitialProps`, it now includes the custom `renderPage`
    const initialProps = await Document.getInitialProps(ctx)

    return initialProps
  }

  render() {
    return (
      <Html lang="en">
        <Head />
        <body>
          <Main />
          <NextScript />
        </body>
      </Html>
    )
  }
}

export default MyDocument



Good to know

getInitialProps in _document is not called during client-side transitions.
The ctx object for _document is equivalent to the one received in getInitialProps, with the addition of renderPage.

file:///docs/pages/api-reference/functions/get-initial-props#context-object


4.1.1.7 - API Routes
Documentation path: /03-pages/01-building-your-application/01-routing/07-api-routes

Description: Next.js supports API Routes, which allow you to build your API without leaving your Next.js app. Learn how it works here.

Examples

Good to know: If you are using the App Router, you can use Server Components or Route Handlers instead of API Routes.

API routes provide a solution to build a public API with Next.js.

Any file inside the folder pages/api is mapped to /api/* and will be treated as an API endpoint instead of a page. They are server-
side only bundles and won’t increase your client-side bundle size.

For example, the following API route returns a JSON response with a status code of 200:

pages/api/hello.ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'

type ResponseData = {
  message: string
}

export default function handler(
  req: NextApiRequest,
  res: NextApiResponse<ResponseData>
) {
  res.status(200).json({ message: 'Hello from Next.js!' })
}

pages/api/hello.js (js)

export default function handler(req, res) {
  res.status(200).json({ message: 'Hello from Next.js!' })
}

Good to know:

API Routes do not specify CORS headers, meaning they are same-origin only by default. You can customize such behavior
by wrapping the request handler with the CORS request helpers.

API Routes can’t be used with static exports. However, Route Handlers in the App Router can.

API Routes will be affected by pageExtensions configuration in next.config.js.

Parameters

export default function handler(req: NextApiRequest, res: NextApiResponse) {
  // ...
}

req: An instance of http.IncomingMessage
res: An instance of http.ServerResponse

HTTP Methods

To handle different HTTP methods in an API route, you can use req.method in your request handler, like so:

pages/api/hello.ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'

export default function handler(req: NextApiRequest, res: NextApiResponse) {
  if (req.method === 'POST') {
    // Process a POST request
  } else {
    // Handle any other HTTP method
  }
}

pages/api/hello.js (js)

file:///docs/app/building-your-application/data-fetching/fetching-caching-and-revalidating
file:///docs/app/building-your-application/routing/route-handlers
https://developer.mozilla.org/docs/Web/HTTP/CORS
https://github.com/vercel/next.js/tree/canary/examples/api-routes-cors
file:///docs/pages/building-your-application/deploying/static-exports
file:///docs/app/building-your-application/routing/route-handlers
file:///docs/pages/api-reference/next-config-js/pageExtensions
https://nodejs.org/api/http.html#class-httpincomingmessage
https://nodejs.org/api/http.html#class-httpserverresponse


export default function handler(req, res) {
  if (req.method === 'POST') {
    // Process a POST request
  } else {
    // Handle any other HTTP method
  }
}

Request Helpers

API Routes provide built-in request helpers which parse the incoming request (req):

req.cookies - An object containing the cookies sent by the request. Defaults to {}
req.query - An object containing the query string. Defaults to {}
req.body - An object containing the body parsed by content-type, or null if no body was sent

Custom config

Every API Route can export a config object to change the default configuration, which is the following:

export const config = {
  api: {
    bodyParser: {
      sizeLimit: '1mb',
    },
  },
  // Specifies the maximum allowed duration for this function to execute (in seconds)
  maxDuration: 5,
}

bodyParser is automatically enabled. If you want to consume the body as a Stream or with raw-body, you can set this to false.

One use case for disabling the automatic bodyParsing is to allow you to verify the raw body of a webhook request, for example from
GitHub.

export const config = {
  api: {
    bodyParser: false,
  },
}

bodyParser.sizeLimit is the maximum size allowed for the parsed body, in any format supported by bytes, like so:

export const config = {
  api: {
    bodyParser: {
      sizeLimit: '500kb',
    },
  },
}

externalResolver is an explicit flag that tells the server that this route is being handled by an external resolver like express or
connect. Enabling this option disables warnings for unresolved requests.

export const config = {
  api: {
    externalResolver: true,
  },
}

responseLimit is automatically enabled, warning when an API Routes’ response body is over 4MB.

If you are not using Next.js in a serverless environment, and understand the performance implications of not using a CDN or dedicated
media host, you can set this limit to false.

export const config = {
  api: {
    responseLimit: false,
  },
}

responseLimit can also take the number of bytes or any string format supported by bytes, for example 1000, '500kb' or '3mb'.

https://en.wikipedia.org/wiki/Query_string
https://www.npmjs.com/package/raw-body
https://docs.github.com/en/developers/webhooks-and-events/webhooks/securing-your-webhooks#validating-payloads-from-github
https://github.com/visionmedia/bytes.js


This value will be the maximum response size before a warning is displayed. Default is 4MB. (see above)

export const config = {
  api: {
    responseLimit: '8mb',
  },
}

Response Helpers

The Server Response object, (often abbreviated as res) includes a set of Express.js-like helper methods to improve the developer
experience and increase the speed of creating new API endpoints.

The included helpers are:

res.status(code) - A function to set the status code. code must be a valid HTTP status code
res.json(body) - Sends a JSON response. body must be a serializable object
res.send(body) - Sends the HTTP response. body can be a string, an object or a Buffer
res.redirect([status,] path) - Redirects to a specified path or URL. status must be a valid HTTP status code. If not
specified, status defaults to “307” “Temporary redirect”.
res.revalidate(urlPath) - Revalidate a page on demand using getStaticProps. urlPath must be a string.

Setting the status code of a response

When sending a response back to the client, you can set the status code of the response.

The following example sets the status code of the response to 200 (OK) and returns a message property with the value of Hello from
Next.js! as a JSON response:

pages/api/hello.ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'

type ResponseData = {
  message: string
}

export default function handler(
  req: NextApiRequest,
  res: NextApiResponse<ResponseData>
) {
  res.status(200).json({ message: 'Hello from Next.js!' })
}

pages/api/hello.js (js)

export default function handler(req, res) {
  res.status(200).json({ message: 'Hello from Next.js!' })
}

Sending a JSON response

When sending a response back to the client you can send a JSON response, this must be a serializable object. In a real world application
you might want to let the client know the status of the request depending on the result of the requested endpoint.

The following example sends a JSON response with the status code 200 (OK) and the result of the async operation. It’s contained in a try
catch block to handle any errors that may occur, with the appropriate status code and error message caught and sent back to the
client:

pages/api/hello.ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
  req: NextApiRequest,
  res: NextApiResponse
) {
  try {
    const result = await someAsyncOperation()
    res.status(200).json({ result })
  } catch (err) {
    res.status(500).json({ error: 'failed to load data' })
  }
}

https://nodejs.org/api/http.html#http_class_http_serverresponse
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://developer.mozilla.org/docs/Glossary/Serialization
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration#on-demand-revalidation
https://developer.mozilla.org/docs/Glossary/Serialization


pages/api/hello.js (js)

export default async function handler(req, res) {
  try {
    const result = await someAsyncOperation()
    res.status(200).json({ result })
  } catch (err) {
    res.status(500).json({ error: 'failed to load data' })
  }
}

Sending a HTTP response

Sending an HTTP response works the same way as when sending a JSON response. The only difference is that the response body can be
a string, an object or a Buffer.

The following example sends a HTTP response with the status code 200 (OK) and the result of the async operation.

pages/api/hello.ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
  req: NextApiRequest,
  res: NextApiResponse
) {
  try {
    const result = await someAsyncOperation()
    res.status(200).send({ result })
  } catch (err) {
    res.status(500).send({ error: 'failed to fetch data' })
  }
}

pages/api/hello.js (js)

export default async function handler(req, res) {
  try {
    const result = await someAsyncOperation()
    res.status(200).send({ result })
  } catch (err) {
    res.status(500).send({ error: 'failed to fetch data' })
  }
}

Redirects to a specified path or URL

Taking a form as an example, you may want to redirect your client to a specified path or URL once they have submitted the form.

The following example redirects the client to the / path if the form is successfully submitted:

pages/api/hello.ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
  req: NextApiRequest,
  res: NextApiResponse
) {
  const { name, message } = req.body

  try {
    await handleFormInputAsync({ name, message })
    res.redirect(307, '/')
  } catch (err) {
    res.status(500).send({ error: 'Failed to fetch data' })
  }
}

pages/api/hello.js (js)

export default async function handler(req, res) {
  const { name, message } = req.body

  try {
    await handleFormInputAsync({ name, message })
    res.redirect(307, '/')
  } catch (err) {
    res.status(500).send({ error: 'failed to fetch data' })



  }
}

Adding TypeScript types

You can make your API Routes more type-safe by importing the NextApiRequest and NextApiResponse types from next, in addition
to those, you can also type your response data:

import type { NextApiRequest, NextApiResponse } from 'next'

type ResponseData = {
  message: string
}

export default function handler(
  req: NextApiRequest,
  res: NextApiResponse<ResponseData>
) {
  res.status(200).json({ message: 'Hello from Next.js!' })
}

Good to know: The body of NextApiRequest is any because the client may include any payload. You should validate the
type/shape of the body at runtime before using it.

Dynamic API Routes

API Routes support dynamic routes, and follow the same file naming rules used for pages/.

pages/api/post/[pid].ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'

export default function handler(req: NextApiRequest, res: NextApiResponse) {
  const { pid } = req.query
  res.end(`Post: ${pid}`)
}

pages/api/post/[pid].js (js)

export default function handler(req, res) {
  const { pid } = req.query
  res.end(`Post: ${pid}`)
}

Now, a request to /api/post/abc will respond with the text: Post: abc.

Catch all API routes

API Routes can be extended to catch all paths by adding three dots (...) inside the brackets. For example:

pages/api/post/[...slug].js matches /api/post/a, but also /api/post/a/b, /api/post/a/b/c and so on.

Good to know: You can use names other than slug, such as: [...param]

Matched parameters will be sent as a query parameter (slug in the example) to the page, and it will always be an array, so, the path
/api/post/a will have the following query object:

{ "slug": ["a"] }

And in the case of /api/post/a/b, and any other matching path, new parameters will be added to the array, like so:

{ "slug": ["a", "b"] }

For example:
pages/api/post/[...slug].ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'

export default function handler(req: NextApiRequest, res: NextApiResponse) {
  const { slug } = req.query
  res.end(`Post: ${slug.join(', ')}`)
}

file:///docs/pages/building-your-application/routing/dynamic-routes


pages/api/post/[...slug].js (js)

export default function handler(req, res) {
  const { slug } = req.query
  res.end(`Post: ${slug.join(', ')}`)
}

Now, a request to /api/post/a/b/c will respond with the text: Post: a, b, c.

Optional catch all API routes

Catch all routes can be made optional by including the parameter in double brackets ([[...slug]]).

For example, pages/api/post/[[...slug]].js will match /api/post, /api/post/a, /api/post/a/b, and so on.

The main difference between catch all and optional catch all routes is that with optional, the route without the parameter is also
matched (/api/post in the example above).

The query objects are as follows:

{ } // GET `/api/post` (empty object)
{ "slug": ["a"] } // `GET /api/post/a` (single-element array)
{ "slug": ["a", "b"] } // `GET /api/post/a/b` (multi-element array)

Caveats

Predefined API routes take precedence over dynamic API routes, and dynamic API routes over catch all API routes. Take a look at
the following examples:
pages/api/post/create.js - Will match /api/post/create
pages/api/post/[pid].js - Will match /api/post/1, /api/post/abc, etc. But not /api/post/create
pages/api/post/[...slug].js - Will match /api/post/1/2, /api/post/a/b/c, etc. But not /api/post/create,
/api/post/abc

Edge API Routes

If you would like to use API Routes with the Edge Runtime, we recommend incrementally adopting the App Router and using Route
Handlers instead.

The Route Handlers function signature is isomorphic, meaning you can use the same function for both Edge and Node.js runtimes.

file:///docs/app/building-your-application/routing/route-handlers


4.1.1.8 - Custom Errors
Documentation path: /03-pages/01-building-your-application/01-routing/08-custom-error

Description: Override and extend the built-in Error page to handle custom errors.

404 Page

A 404 page may be accessed very often. Server-rendering an error page for every visit increases the load of the Next.js server. This can
result in increased costs and slow experiences.

To avoid the above pitfalls, Next.js provides a static 404 page by default without having to add any additional files.

Customizing The 404 Page

To create a custom 404 page you can create a pages/404.js file. This file is statically generated at build time.

pages/404.js (jsx)

export default function Custom404() {
  return <h1>404 - Page Not Found</h1>
}

Good to know: You can use getStaticProps inside this page if you need to fetch data at build time.

500 Page

Server-rendering an error page for every visit adds complexity to responding to errors. To help users get responses to errors as fast as
possible, Next.js provides a static 500 page by default without having to add any additional files.

Customizing The 500 Page

To customize the 500 page you can create a pages/500.js file. This file is statically generated at build time.

pages/500.js (jsx)

export default function Custom500() {
  return <h1>500 - Server-side error occurred</h1>
}

Good to know: You can use getStaticProps inside this page if you need to fetch data at build time.

More Advanced Error Page Customizing

500 errors are handled both client-side and server-side by the Error component. If you wish to override it, define the file
pages/_error.js and add the following code:

function Error({ statusCode }) {
  return (
    <p>
      {statusCode
        ? `An error ${statusCode} occurred on server`
        : 'An error occurred on client'}
    </p>
  )
}

Error.getInitialProps = ({ res, err }) => {
  const statusCode = res ? res.statusCode : err ? err.statusCode : 404
  return { statusCode }
}

export default Error

pages/_error.js is only used in production. In development you’ll get an error with the call stack to know where the error
originated from.

Reusing the built-in error page

If you want to render the built-in error page you can by importing the Error component:

file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/data-fetching/get-static-props


import Error from 'next/error'

export async function getServerSideProps() {
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const errorCode = res.ok ? false : res.status
  const json = await res.json()

  return {
    props: { errorCode, stars: json.stargazers_count },
  }
}

export default function Page({ errorCode, stars }) {
  if (errorCode) {
    return <Error statusCode={errorCode} />
  }

  return <div>Next stars: {stars}</div>
}

The Error component also takes title as a property if you want to pass in a text message along with a statusCode.

If you have a custom Error component be sure to import that one instead. next/error exports the default component used by
Next.js.

Caveats

Error does not currently support Next.js Data Fetching methods like getStaticProps or getServerSideProps.
_error, like _app, is a reserved pathname. _error is used to define the customized layouts and behaviors of the error pages.
/_error will render 404 when accessed directly via routing or rendering in a custom server.

file:///docs/pages/building-your-application/data-fetching
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/data-fetching/get-server-side-props
file:///docs/pages/building-your-application/routing
file:///docs/pages/building-your-application/configuring/custom-server


4.1.1.9 - Internationalization (i18n) Routing
Documentation path: /03-pages/01-building-your-application/01-routing/10-internationalization

Description: Next.js has built-in support for internationalized routing and language detection. Learn more here.

Examples

Next.js has built-in support for internationalized (i18n) routing since v10.0.0. You can provide a list of locales, the default locale, and
domain-specific locales and Next.js will automatically handle the routing.

The i18n routing support is currently meant to complement existing i18n library solutions like react-intl, react-i18next, lingui,
rosetta, next-intl, next-translate, next-multilingual, tolgee, inlang and others by streamlining the routes and locale
parsing.

Getting started

To get started, add the i18n config to your next.config.js file.

Locales are UTS Locale Identifiers, a standardized format for defining locales.

Generally a Locale Identifier is made up of a language, region, and script separated by a dash: language-region-script. The region
and script are optional. An example:

en-US - English as spoken in the United States
nl-NL - Dutch as spoken in the Netherlands
nl - Dutch, no specific region

If user locale is nl-BE and it is not listed in your configuration, they will be redirected to nl if available, or to the default locale
otherwise. If you don’t plan to support all regions of a country, it is therefore a good practice to include country locales that will act as
fallbacks.

next.config.js (js)

module.exports = {
  i18n: {
    // These are all the locales you want to support in
    // your application
    locales: ['en-US', 'fr', 'nl-NL'],
    // This is the default locale you want to be used when visiting
    // a non-locale prefixed path e.g. `/hello`
    defaultLocale: 'en-US',
    // This is a list of locale domains and the default locale they
    // should handle (these are only required when setting up domain routing)
    // Note: subdomains must be included in the domain value to be matched e.g. "fr.example.com".
    domains: [
      {
        domain: 'example.com',
        defaultLocale: 'en-US',
      },
      {
        domain: 'example.nl',
        defaultLocale: 'nl-NL',
      },
      {
        domain: 'example.fr',
        defaultLocale: 'fr',
        // an optional http field can also be used to test
        // locale domains locally with http instead of https
        http: true,
      },
    ],
  },
}

Locale Strategies

There are two locale handling strategies: Sub-path Routing and Domain Routing.

Sub-path Routing

Sub-path Routing puts the locale in the url path.
next.config.js (js)

https://en.wikipedia.org/wiki/Internationalization_and_localization#Naming
https://formatjs.io/docs/getting-started/installation
https://react.i18next.com/
https://lingui.dev/
https://github.com/lukeed/rosetta
https://github.com/amannn/next-intl
https://github.com/aralroca/next-translate
https://github.com/Avansai/next-multilingual
https://tolgee.io/integrations/next
https://inlang.com/c/nextjs
https://www.unicode.org/reports/tr35/tr35-59/tr35.html#Identifiers


module.exports = {
  i18n: {
    locales: ['en-US', 'fr', 'nl-NL'],
    defaultLocale: 'en-US',
  },
}

With the above configuration en-US, fr, and nl-NL will be available to be routed to, and en-US is the default locale. If you have a
pages/blog.js the following urls would be available:

/blog
/fr/blog
/nl-nl/blog

The default locale does not have a prefix.

Domain Routing

By using domain routing you can configure locales to be served from different domains:
next.config.js (js)

module.exports = {
  i18n: {
    locales: ['en-US', 'fr', 'nl-NL', 'nl-BE'],
    defaultLocale: 'en-US',

    domains: [
      {
        // Note: subdomains must be included in the domain value to be matched
        // e.g. www.example.com should be used if that is the expected hostname
        domain: 'example.com',
        defaultLocale: 'en-US',
      },
      {
        domain: 'example.fr',
        defaultLocale: 'fr',
      },
      {
        domain: 'example.nl',
        defaultLocale: 'nl-NL',
        // specify other locales that should be redirected
        // to this domain
        locales: ['nl-BE'],
      },
    ],
  },
}

For example if you have pages/blog.js the following urls will be available:

example.com/blog
www.example.com/blog
example.fr/blog
example.nl/blog
example.nl/nl-BE/blog

Automatic Locale Detection

When a user visits the application root (generally /), Next.js will try to automatically detect which locale the user prefers based on the
Accept-Language header and the current domain.

If a locale other than the default locale is detected, the user will be redirected to either:

When using Sub-path Routing: The locale prefixed path
When using Domain Routing: The domain with that locale specified as the default

When using Domain Routing, if a user with the Accept-Language header fr;q=0.9 visits example.com, they will be redirected to
example.fr since that domain handles the fr locale by default.

When using Sub-path Routing, the user would be redirected to /fr.

https://developer.mozilla.org/docs/Web/HTTP/Headers/Accept-Language


Prefixing the Default Locale

With Next.js 12 and Middleware, we can add a prefix to the default locale with a workaround.

For example, here’s a next.config.js file with support for a few languages. Note the "default" locale has been added intentionally.

next.config.js (js)

module.exports = {
  i18n: {
    locales: ['default', 'en', 'de', 'fr'],
    defaultLocale: 'default',
    localeDetection: false,
  },
  trailingSlash: true,
}

Next, we can use Middleware to add custom routing rules:
middleware.ts (ts)

import { NextRequest, NextResponse } from 'next/server'

const PUBLIC_FILE = /\.(.*)$/

export async function middleware(req: NextRequest) {
  if (
    req.nextUrl.pathname.startsWith('/_next') ||
    req.nextUrl.pathname.includes('/api/') ||
    PUBLIC_FILE.test(req.nextUrl.pathname)
  ) {
    return
  }

  if (req.nextUrl.locale === 'default') {
    const locale = req.cookies.get('NEXT_LOCALE')?.value || 'en'

    return NextResponse.redirect(
      new URL(`/${locale}${req.nextUrl.pathname}${req.nextUrl.search}`, req.url)
    )
  }
}

This Middleware skips adding the default prefix to API Routes and public files like fonts or images. If a request is made to the default
locale, we redirect to our prefix /en.

Disabling Automatic Locale Detection

The automatic locale detection can be disabled with:
next.config.js (js)

module.exports = {
  i18n: {
    localeDetection: false,
  },
}

When localeDetection is set to false Next.js will no longer automatically redirect based on the user’s preferred locale and will only
provide locale information detected from either the locale based domain or locale path as described above.

Accessing the locale information

You can access the locale information via the Next.js router. For example, using the useRouter() hook the following properties are
available:

locale contains the currently active locale.
locales contains all configured locales.
defaultLocale contains the configured default locale.

When pre-rendering pages with getStaticProps or getServerSideProps, the locale information is provided in the context provided
to the function.

When leveraging getStaticPaths, the configured locales are provided in the context parameter of the function under locales and
the configured defaultLocale under defaultLocale.

file:///docs/pages/building-your-application/routing/middleware
https://github.com/vercel/next.js/discussions/18419
file:///docs/pages/building-your-application/routing/middleware
file:///docs/pages/building-your-application/routing/middleware
file:///docs/pages/building-your-application/routing/api-routes
file:///docs/pages/building-your-application/optimizing/static-assets
file:///docs/pages/api-reference/functions/use-router
file:///docs/pages/building-your-application/rendering/static-site-generation
file:///docs/pages/building-your-application/data-fetching/get-static-props


Transition between locales

You can use next/link or next/router to transition between locales.

For next/link, a locale prop can be provided to transition to a different locale from the currently active one. If no locale prop is
provided, the currently active locale is used during client-transitions. For example:

import Link from 'next/link'

export default function IndexPage(props) {
  return (
    <Link href="/another" locale="fr">
      To /fr/another
    </Link>
  )
}

When using the next/router methods directly, you can specify the locale that should be used via the transition options. For
example:

import { useRouter } from 'next/router'

export default function IndexPage(props) {
  const router = useRouter()

  return (
    <div
      onClick={() => {
        router.push('/another', '/another', { locale: 'fr' })
      }}
    >
      to /fr/another
    </div>
  )
}

Note that to handle switching only the locale while preserving all routing information such as dynamic route query values or hidden
href query values, you can provide the href parameter as an object:

import { useRouter } from 'next/router'
const router = useRouter()
const { pathname, asPath, query } = router
// change just the locale and maintain all other route information including href's query
router.push({ pathname, query }, asPath, { locale: nextLocale })

See here for more information on the object structure for router.push.

If you have a href that already includes the locale you can opt-out of automatically handling the locale prefixing:

import Link from 'next/link'

export default function IndexPage(props) {
  return (
    <Link href="/fr/another" locale={false}>
      To /fr/another
    </Link>
  )
}

Leveraging the NEXT_LOCALENEXT_LOCALE cookie

Next.js allows setting a NEXT_LOCALE=the-locale cookie, which takes priority over the accept-language header. This cookie can be
set using a language switcher and then when a user comes back to the site it will leverage the locale specified in the cookie when
redirecting from / to the correct locale location.

For example, if a user prefers the locale fr in their accept-language header but a NEXT_LOCALE=en cookie is set the en locale when
visiting / the user will be redirected to the en locale location until the cookie is removed or expired.

Search Engine Optimization

Since Next.js knows what language the user is visiting it will automatically add the lang attribute to the <html> tag.

file:///docs/pages/building-your-application/routing/dynamic-routes
file:///docs/pages/api-reference/functions/use-router#with-url-object


Next.js doesn’t know about variants of a page so it’s up to you to add the hreflang meta tags using next/head. You can learn more
about hreflang in the Google Webmasters documentation.

How does this work with Static Generation?

Note that Internationalized Routing does not integrate with output: 'export' as it does not leverage the Next.js routing
layer. Hybrid Next.js applications that do not use output: 'export' are fully supported.

Dynamic Routes and getStaticPropsgetStaticProps  Pages

For pages using getStaticProps with Dynamic Routes, all locale variants of the page desired to be prerendered need to be returned
from getStaticPaths. Along with the params object returned for paths, you can also return a locale field specifying which locale
you want to render. For example:

pages/blog/[slug].js (jsx)

export const getStaticPaths = ({ locales }) => {
  return {
    paths: [
      // if no `locale` is provided only the defaultLocale will be generated
      { params: { slug: 'post-1' }, locale: 'en-US' },
      { params: { slug: 'post-1' }, locale: 'fr' },
    ],
    fallback: true,
  }
}

For Automatically Statically Optimized and non-dynamic getStaticProps pages, a version of the page will be generated for each
locale. This is important to consider because it can increase build times depending on how many locales are configured inside
getStaticProps.

For example, if you have 50 locales configured with 10 non-dynamic pages using getStaticProps, this means getStaticProps will
be called 500 times. 50 versions of the 10 pages will be generated during each build.

To decrease the build time of dynamic pages with getStaticProps, use a fallback mode. This allows you to return only the most
popular paths and locales from getStaticPaths for prerendering during the build. Then, Next.js will build the remaining pages at
runtime as they are requested.

Automatically Statically Optimized Pages

For pages that are automatically statically optimized, a version of the page will be generated for each locale.

Non-dynamic getStaticProps Pages

For non-dynamic getStaticProps pages, a version is generated for each locale like above. getStaticProps is called with each
locale that is being rendered. If you would like to opt-out of a certain locale from being pre-rendered, you can return notFound:
true from getStaticProps and this variant of the page will not be generated.

export async function getStaticProps({ locale }) {
  // Call an external API endpoint to get posts.
  // You can use any data fetching library
  const res = await fetch(`https://.../posts?locale=${locale}`)
  const posts = await res.json()

  if (posts.length === 0) {
    return {
      notFound: true,
    }
  }

  // By returning { props: posts }, the Blog component
  // will receive `posts` as a prop at build time
  return {
    props: {
      posts,
    },
  }
}

Limits for the i18n config

file:///docs/pages/api-reference/components/head
https://support.google.com/webmasters/answer/189077
file:///docs/pages/building-your-application/deploying/static-exports
file:///docs/pages/building-your-application/routing/dynamic-routes
file:///docs/pages/building-your-application/data-fetching/get-static-paths
file:///docs/pages/building-your-application/rendering/automatic-static-optimization
file:///docs/pages/api-reference/functions/get-static-paths#fallback-true
file:///docs/pages/building-your-application/rendering/automatic-static-optimization


locales: 100 total locales
domains: 100 total locale domain items

Good to know: These limits have been added initially to prevent potential performance issues at build time. You can
workaround these limits with custom routing using Middleware in Next.js 12.

file:///docs/pages/building-your-application/routing/middleware


4.1.1.10 - Middleware
Documentation path: /03-pages/01-building-your-application/01-routing/11-middleware

Description: Learn how to use Middleware to run code before a request is completed.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.2 - Rendering
Documentation path: /03-pages/01-building-your-application/02-rendering/index

Description: Learn the fundamentals of rendering in React and Next.js.

By default, Next.js pre-renders every page. This means that Next.js generates HTML for each page in advance, instead of having it all
done by client-side JavaScript. Pre-rendering can result in better performance and SEO.

Each generated HTML is associated with minimal JavaScript code necessary for that page. When a page is loaded by the browser, its
JavaScript code runs and makes the page fully interactive (this process is called hydration in React).

Pre-rendering

Next.js has two forms of pre-rendering: Static Generation and Server-side Rendering. The difference is in when it generates the
HTML for a page.

Static Generation: The HTML is generated at build time and will be reused on each request.
Server-side Rendering: The HTML is generated on each request.

Importantly, Next.js lets you choose which pre-rendering form you’d like to use for each page. You can create a “hybrid” Next.js app by
using Static Generation for most pages and using Server-side Rendering for others.

We recommend using Static Generation over Server-side Rendering for performance reasons. Statically generated pages can be cached
by CDN with no extra configuration to boost performance. However, in some cases, Server-side Rendering might be the only option.

You can also use client-side data fetching along with Static Generation or Server-side Rendering. That means some parts of a page can
be rendered entirely by clientside JavaScript. To learn more, take a look at the Data Fetching documentation.

https://react.dev/reference/react-dom/client/hydrateRoot
file:///docs/pages/building-your-application/data-fetching/client-side


4.1.2.1 - Server-side Rendering (SSR)
Documentation path: /03-pages/01-building-your-application/02-rendering/01-server-side-rendering

Description: Use Server-side Rendering to render pages on each request.

Also referred to as “SSR” or “Dynamic Rendering”.

If a page uses Server-side Rendering, the page HTML is generated on each request.

To use Server-side Rendering for a page, you need to export an async function called getServerSideProps. This function will be
called by the server on every request.

For example, suppose that your page needs to pre-render frequently updated data (fetched from an external API). You can write
getServerSideProps which fetches this data and passes it to Page like below:

export default function Page({ data }) {
  // Render data...
}

// This gets called on every request
export async function getServerSideProps() {
  // Fetch data from external API
  const res = await fetch(`https://.../data`)
  const data = await res.json()

  // Pass data to the page via props
  return { props: { data } }
}

As you can see, getServerSideProps is similar to getStaticProps, but the difference is that getServerSideProps is run on every
request instead of on build time.

To learn more about how getServerSideProps works, check out our Data Fetching documentation.

file:///docs/pages/building-your-application/data-fetching/get-server-side-props


4.1.2.2 - Static Site Generation (SSG)
Documentation path: /03-pages/01-building-your-application/02-rendering/02-static-site-generation

Description: Use Static Site Generation (SSG) to pre-render pages at build time.

Examples

If a page uses Static Generation, the page HTML is generated at build time. That means in production, the page HTML is generated
when you run next build. This HTML will then be reused on each request. It can be cached by a CDN.

In Next.js, you can statically generate pages with or without data. Let’s take a look at each case.

Static Generation without data

By default, Next.js pre-renders pages using Static Generation without fetching data. Here’s an example:

function About() {
  return <div>About</div>
}

export default About

Note that this page does not need to fetch any external data to be pre-rendered. In cases like this, Next.js generates a single HTML file
per page during build time.

Static Generation with data

Some pages require fetching external data for pre-rendering. There are two scenarios, and one or both might apply. In each case, you
can use these functions that Next.js provides:

1. Your page content depends on external data: Use getStaticProps.
2. Your page paths depend on external data: Use getStaticPaths (usually in addition to getStaticProps).

Scenario 1: Your page content depends on external data

Example: Your blog page might need to fetch the list of blog posts from a CMS (content management system).

// TODO: Need to fetch `posts` (by calling some API endpoint)
//       before this page can be pre-rendered.
export default function Blog({ posts }) {
  return (
    <ul>
      {posts.map((post) => (
        <li>{post.title}</li>
      ))}
    </ul>
  )
}

To fetch this data on pre-render, Next.js allows you to export an async function called getStaticProps from the same file. This
function gets called at build time and lets you pass fetched data to the page’s props on pre-render.

export default function Blog({ posts }) {
  // Render posts...
}

// This function gets called at build time
export async function getStaticProps() {
  // Call an external API endpoint to get posts
  const res = await fetch('https://.../posts')
  const posts = await res.json()

  // By returning { props: { posts } }, the Blog component
  // will receive `posts` as a prop at build time
  return {
    props: {
      posts,
    },
  }
}

To learn more about how getStaticProps works, check out the Data Fetching documentation.

file:///docs/pages/building-your-application/data-fetching/get-static-props


Scenario 2: Your page paths depend on external data

Next.js allows you to create pages with dynamic routes. For example, you can create a file called pages/posts/[id].js to show a
single blog post based on id. This will allow you to show a blog post with id: 1 when you access posts/1.

To learn more about dynamic routing, check the Dynamic Routing documentation.

However, which id you want to pre-render at build time might depend on external data.

Example: suppose that you’ve only added one blog post (with id: 1) to the database. In this case, you’d only want to pre-render
posts/1 at build time.

Later, you might add the second post with id: 2. Then you’d want to pre-render posts/2 as well.

So your page paths that are pre-rendered depend on external data. To handle this, Next.js lets you export an async function called
getStaticPaths from a dynamic page (pages/posts/[id].js in this case). This function gets called at build time and lets you
specify which paths you want to pre-render.

// This function gets called at build time
export async function getStaticPaths() {
  // Call an external API endpoint to get posts
  const res = await fetch('https://.../posts')
  const posts = await res.json()

  // Get the paths we want to pre-render based on posts
  const paths = posts.map((post) => ({
    params: { id: post.id },
  }))

  // We'll pre-render only these paths at build time.
  // { fallback: false } means other routes should 404.
  return { paths, fallback: false }
}

Also in pages/posts/[id].js, you need to export getStaticProps so that you can fetch the data about the post with this id and
use it to pre-render the page:

export default function Post({ post }) {
  // Render post...
}

export async function getStaticPaths() {
  // ...
}

// This also gets called at build time
export async function getStaticProps({ params }) {
  // params contains the post `id`.
  // If the route is like /posts/1, then params.id is 1
  const res = await fetch(`https://.../posts/${params.id}`)
  const post = await res.json()

  // Pass post data to the page via props
  return { props: { post } }
}

To learn more about how getStaticPaths works, check out the Data Fetching documentation.

When should I use Static Generation?

We recommend using Static Generation (with and without data) whenever possible because your page can be built once and served by
CDN, which makes it much faster than having a server render the page on every request.

You can use Static Generation for many types of pages, including:

Marketing pages
Blog posts and portfolios
E-commerce product listings
Help and documentation

You should ask yourself: “Can I pre-render this page ahead of a user’s request?” If the answer is yes, then you should choose Static
Generation.

On the other hand, Static Generation is not a good idea if you cannot pre-render a page ahead of a user’s request. Maybe your page
shows frequently updated data, and the page content changes on every request.

file:///docs/pages/building-your-application/routing/dynamic-routes
file:///docs/pages/building-your-application/data-fetching/get-static-paths


In cases like this, you can do one of the following:

Use Static Generation with Client-side data fetching: You can skip pre-rendering some parts of a page and then use client-side
JavaScript to populate them. To learn more about this approach, check out the Data Fetching documentation.
Use Server-Side Rendering: Next.js pre-renders a page on each request. It will be slower because the page cannot be cached by a
CDN, but the pre-rendered page will always be up-to-date. We’ll talk about this approach below.

file:///docs/pages/building-your-application/data-fetching/client-side


4.1.2.3 - Automatic Static Optimization
Documentation path: /03-pages/01-building-your-application/02-rendering/04-automatic-static-optimization

Description: Next.js automatically optimizes your app to be static HTML whenever possible. Learn how it works here.

Next.js automatically determines that a page is static (can be prerendered) if it has no blocking data requirements. This determination
is made by the absence of getServerSideProps and getInitialProps in the page.

This feature allows Next.js to emit hybrid applications that contain both server-rendered and statically generated pages.

Statically generated pages are still reactive: Next.js will hydrate your application client-side to give it full interactivity.

One of the main benefits of this feature is that optimized pages require no server-side computation, and can be instantly streamed to
the end-user from multiple CDN locations. The result is an ultra fast loading experience for your users.

How it works

If getServerSideProps or getInitialProps is present in a page, Next.js will switch to render the page on-demand, per-request
(meaning Server-Side Rendering).

If the above is not the case, Next.js will statically optimize your page automatically by prerendering the page to static HTML.

During prerendering, the router’s query object will be empty since we do not have query information to provide during this phase.
After hydration, Next.js will trigger an update to your application to provide the route parameters in the query object.

The cases where the query will be updated after hydration triggering another render are:

The page is a dynamic-route.
The page has query values in the URL.
Rewrites are configured in your next.config.js since these can have parameters that may need to be parsed and provided in the
query.

To be able to distinguish if the query is fully updated and ready for use, you can leverage the isReady field on next/router.

Good to know: Parameters added with dynamic routes to a page that’s using getStaticProps will always be available inside
the query object.

next build will emit .html files for statically optimized pages. For example, the result for the page pages/about.js would be:

Terminal (bash)

.next/server/pages/about.html

And if you add getServerSideProps to the page, it will then be JavaScript, like so:

Terminal (bash)

.next/server/pages/about.js

Caveats

If you have a custom App with getInitialProps then this optimization will be turned off in pages without Static Generation.
If you have a custom Document with getInitialProps be sure you check if ctx.req is defined before assuming the page is
server-side rendered. ctx.req will be undefined for pages that are prerendered.
Avoid using the asPath value on next/router in the rendering tree until the router’s isReady field is true. Statically optimized
pages only know asPath on the client and not the server, so using it as a prop may lead to mismatch errors. The active-class-
name example demonstrates one way to use asPath as a prop.

file:///docs/pages/building-your-application/rendering/server-side-rendering
file:///docs/pages/building-your-application/routing/dynamic-routes
file:///docs/pages/api-reference/next-config-js/rewrites
file:///docs/pages/api-reference/functions/use-router#router-object
file:///docs/pages/building-your-application/routing/dynamic-routes
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/routing/custom-app
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/routing/custom-document
file:///docs/pages/api-reference/functions/use-router#router-object
https://github.com/vercel/next.js/tree/canary/examples/active-class-name


4.1.2.4 - Client-side Rendering (CSR)
Documentation path: /03-pages/01-building-your-application/02-rendering/05-client-side-rendering

Description: Learn how to implement client-side rendering in the Pages Router.

Related:

Title: Related

Related Description: Learn about the alternative rendering methods in Next.js.

Links:

pages/building-your-application/rendering/server-side-rendering
pages/building-your-application/rendering/static-site-generation
pages/building-your-application/data-fetching/incremental-static-regeneration
app/building-your-application/routing/loading-ui-and-streaming

In Client-Side Rendering (CSR) with React, the browser downloads a minimal HTML page and the JavaScript needed for the page. The
JavaScript is then used to update the DOM and render the page. When the application is first loaded, the user may notice a slight delay
before they can see the full page, this is because the page isn’t fully rendered until all the JavaScript is downloaded, parsed, and
executed.

After the page has been loaded for the first time, navigating to other pages on the same website is typically faster, as only necessary
data needs to be fetched, and JavaScript can re-render parts of the page without requiring a full page refresh.

In Next.js, there are two ways you can implement client-side rendering:

1. Using React’s useEffect() hook inside your pages instead of the server-side rendering methods (getStaticProps and
getServerSideProps).

2. Using a data fetching library like SWR or TanStack Query to fetch data on the client (recommended).

Here’s an example of using useEffect() inside a Next.js page:

pages/index.js (jsx)

import React, { useState, useEffect } from 'react'

export function Page() {
  const [data, setData] = useState(null)

  useEffect(() => {
    const fetchData = async () => {
      const response = await fetch('https://api.example.com/data')
      if (!response.ok) {
        throw new Error(`HTTP error! status: ${response.status}`)
      }
      const result = await response.json()
      setData(result)
    }

    fetchData().catch((e) => {
      // handle the error as needed
      console.error('An error occurred while fetching the data: ', e)
    })
  }, [])

  return <p>{data ? `Your data: ${data}` : 'Loading...'}</p>
}

In the example above, the component starts by rendering Loading.... Then, once the data is fetched, it re-renders and displays the
data.

Although fetching data in a useEffect is a pattern you may see in older React Applications, we recommend using a data-fetching
library for better performance, caching, optimistic updates, and more. Here’s a minimum example using SWR to fetch data on the
client:

pages/index.js (jsx)

import useSWR from 'swr'

export function Page() {
  const { data, error, isLoading } = useSWR(
    'https://api.example.com/data',
    fetcher
  )

file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/data-fetching/get-server-side-props
https://swr.vercel.app/
https://tanstack.com/query/latest/
https://swr.vercel.app/


  if (error) return <p>Failed to load.</p>
  if (isLoading) return <p>Loading...</p>

  return <p>Your Data: {data}</p>
}

Good to know:

Keep in mind that CSR can impact SEO. Some search engine crawlers might not execute JavaScript and therefore only see the
initial empty or loading state of your application. It can also lead to performance issues for users with slower internet
connections or devices, as they need to wait for all the JavaScript to load and run before they can see the full page. Next.js
promotes a hybrid approach that allows you to use a combination of server-side rendering, static site generation, and client-
side rendering, depending on the needs of each page in your application. In the App Router, you can also use Loading UI with
Suspense to show a loading indicator while the page is being rendered.

file:///docs/pages/building-your-application/rendering/server-side-rendering
file:///docs/pages/building-your-application/rendering/static-site-generation
file:///docs/app/building-your-application/routing/loading-ui-and-streaming


4.1.2.5 - Edge and Node.js Runtimes
Documentation path: /03-pages/01-building-your-application/02-rendering/06-edge-and-nodejs-runtimes

Description: Learn more about the switchable runtimes (Edge and Node.js) in Next.js.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.3 - Data Fetching
Documentation path: /03-pages/01-building-your-application/03-data-fetching/index

Description: Next.js allows you to fetch data in multiple ways, with pre-rendering, server-side rendering or static-site generation, and
incremental static regeneration. Learn how to manage your application data in Next.js.

Data fetching in Next.js allows you to render your content in different ways, depending on your application’s use case. These include
pre-rendering with Server-side Rendering or Static Generation, and updating or creating content at runtime with Incremental
Static Regeneration.

Examples

WordPress Example(Demo)
Blog Starter using markdown files (Demo)
DatoCMS Example (Demo)
TakeShape Example (Demo)
Sanity Example (Demo)
Prismic Example (Demo)
Contentful Example (Demo)
Strapi Example (Demo)
Prepr Example (Demo)
Agility CMS Example (Demo)
Cosmic Example (Demo)
ButterCMS Example (Demo)
Storyblok Example (Demo)
GraphCMS Example (Demo)
Kontent Example (Demo)
Static Tweet Demo
Enterspeed Example (Demo)

https://github.com/vercel/next.js/tree/canary/examples/cms-wordpress
https://next-blog-wordpress.vercel.app
https://github.com/vercel/next.js/tree/canary/examples/blog-starter
https://next-blog-starter.vercel.app/
https://github.com/vercel/next.js/tree/canary/examples/cms-datocms
https://next-blog-datocms.vercel.app/
https://github.com/vercel/next.js/tree/canary/examples/cms-takeshape
https://next-blog-takeshape.vercel.app/
https://github.com/vercel/next.js/tree/canary/examples/cms-sanity
https://next-blog-sanity.vercel.app/
https://github.com/vercel/next.js/tree/canary/examples/cms-prismic
https://next-blog-prismic.vercel.app/
https://github.com/vercel/next.js/tree/canary/examples/cms-contentful
https://next-blog-contentful.vercel.app/
https://github.com/vercel/next.js/tree/canary/examples/cms-strapi
https://next-blog-strapi.vercel.app/
https://github.com/vercel/next.js/tree/canary/examples/cms-prepr
https://next-blog-prepr.vercel.app/
https://github.com/vercel/next.js/tree/canary/examples/cms-agilitycms
https://next-blog-agilitycms.vercel.app/
https://github.com/vercel/next.js/tree/canary/examples/cms-cosmic
https://next-blog-cosmic.vercel.app/
https://github.com/vercel/next.js/tree/canary/examples/cms-buttercms
https://next-blog-buttercms.vercel.app/
https://github.com/vercel/next.js/tree/canary/examples/cms-storyblok
https://next-blog-storyblok.vercel.app/
https://github.com/vercel/next.js/tree/canary/examples/cms-graphcms
https://next-blog-graphcms.vercel.app/
https://github.com/vercel/next.js/tree/canary/examples/cms-kontent-ai
https://next-blog-kontent.vercel.app/
https://static-tweet.vercel.app/
https://github.com/vercel/next.js/tree/canary/examples/cms-enterspeed
https://next-blog-demo.enterspeed.com/


4.1.3.1 - getStaticProps
Documentation path: /03-pages/01-building-your-application/03-data-fetching/01-get-static-props

Description: Fetch data and generate static pages with `getStaticProps`. Learn more about this API for data fetching in Next.js.

If you export a function called getStaticProps (Static Site Generation) from a page, Next.js will pre-render this page at build time
using the props returned by getStaticProps.

pages/index.tsx (tsx)

import type { InferGetStaticPropsType, GetStaticProps } from 'next'

type Repo = {
  name: string
  stargazers_count: number
}

export const getStaticProps = (async (context) => {
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const repo = await res.json()
  return { props: { repo } }
}) satisfies GetStaticProps<{
  repo: Repo
}>

export default function Page({
  repo,
}: InferGetStaticPropsType<typeof getStaticProps>) {
  return repo.stargazers_count
}

pages/index.js (jsx)

export async function getStaticProps() {
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const repo = await res.json()
  return { props: { repo } }
}

export default function Page({ repo }) {
  return repo.stargazers_count
}

Note that irrespective of rendering type, any props will be passed to the page component and can be viewed on the client-side
in the initial HTML. This is to allow the page to be hydrated correctly. Make sure that you don’t pass any sensitive information
that shouldn’t be available on the client in props.

The getStaticProps API reference covers all parameters and props that can be used with getStaticProps.

When should I use getStaticProps?

You should use getStaticProps if:

The data required to render the page is available at build time ahead of a user’s request
The data comes from a headless CMS
The page must be pre-rendered (for SEO) and be very fast — getStaticProps generates HTML and JSON files, both of which can be
cached by a CDN for performance
The data can be publicly cached (not user-specific). This condition can be bypassed in certain specific situation by using a
Middleware to rewrite the path.

When does getStaticProps run

getStaticProps always runs on the server and never on the client. You can validate code written inside getStaticProps is removed
from the client-side bundle with this tool.

getStaticProps always runs during next build
getStaticProps runs in the background when using fallback: true
getStaticProps is called before initial render when using fallback: blocking
getStaticProps runs in the background when using revalidate

https://react.dev/reference/react-dom/hydrate
file:///docs/pages/api-reference/functions/get-static-props
https://next-code-elimination.vercel.app/
file:///docs/pages/api-reference/functions/get-static-paths#fallback-true
file:///docs/pages/api-reference/functions/get-static-paths#fallback-blocking


getStaticProps runs on-demand in the background when using revalidate()

When combined with Incremental Static Regeneration, getStaticProps will run in the background while the stale page is being
revalidated, and the fresh page served to the browser.

getStaticProps does not have access to the incoming request (such as query parameters or HTTP headers) as it generates static
HTML. If you need access to the request for your page, consider using Middleware in addition to getStaticProps.

Using getStaticProps to fetch data from a CMS

The following example shows how you can fetch a list of blog posts from a CMS.
pages/blog.tsx (tsx)

// posts will be populated at build time by getStaticProps()
export default function Blog({ posts }) {
  return (
    <ul>
      {posts.map((post) => (
        <li>{post.title}</li>
      ))}
    </ul>
  )
}

// This function gets called at build time on server-side.
// It won't be called on client-side, so you can even do
// direct database queries.
export async function getStaticProps() {
  // Call an external API endpoint to get posts.
  // You can use any data fetching library
  const res = await fetch('https://.../posts')
  const posts = await res.json()

  // By returning { props: { posts } }, the Blog component
  // will receive `posts` as a prop at build time
  return {
    props: {
      posts,
    },
  }
}

pages/blog.js (jsx)

// posts will be populated at build time by getStaticProps()
export default function Blog({ posts }) {
  return (
    <ul>
      {posts.map((post) => (
        <li>{post.title}</li>
      ))}
    </ul>
  )
}

// This function gets called at build time on server-side.
// It won't be called on client-side, so you can even do
// direct database queries.
export async function getStaticProps() {
  // Call an external API endpoint to get posts.
  // You can use any data fetching library
  const res = await fetch('https://.../posts')
  const posts = await res.json()

  // By returning { props: { posts } }, the Blog component
  // will receive `posts` as a prop at build time
  return {
    props: {
      posts,
    },
  }
}

The getStaticProps API reference covers all parameters and props that can be used with getStaticProps.

file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration#on-demand-revalidation
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration
file:///docs/pages/building-your-application/routing/middleware
file:///docs/pages/api-reference/functions/get-static-props


Write server-side code directly

As getStaticProps runs only on the server-side, it will never run on the client-side. It won’t even be included in the JS bundle for the
browser, so you can write direct database queries without them being sent to browsers.

This means that instead of fetching an API route from getStaticProps (that itself fetches data from an external source), you can
write the server-side code directly in getStaticProps.

Take the following example. An API route is used to fetch some data from a CMS. That API route is then called directly from
getStaticProps. This produces an additional call, reducing performance. Instead, the logic for fetching the data from the CMS can be
shared by using a lib/ directory. Then it can be shared with getStaticProps.

lib/load-posts.js (js)

// The following function is shared
// with getStaticProps and API routes
// from a `lib/` directory
export async function loadPosts() {
  // Call an external API endpoint to get posts
  const res = await fetch('https://.../posts/')
  const data = await res.json()

  return data
}

pages/blog.js (jsx)

// pages/blog.js
import { loadPosts } from '../lib/load-posts'

// This function runs only on the server side
export async function getStaticProps() {
  // Instead of fetching your `/api` route you can call the same
  // function directly in `getStaticProps`
  const posts = await loadPosts()

  // Props returned will be passed to the page component
  return { props: { posts } }
}

Alternatively, if you are not using API routes to fetch data, then the fetch() API can be used directly in getStaticProps to fetch
data.

To verify what Next.js eliminates from the client-side bundle, you can use the next-code-elimination tool.

Statically generates both HTML and JSON

When a page with getStaticProps is pre-rendered at build time, in addition to the page HTML file, Next.js generates a JSON file
holding the result of running getStaticProps.

This JSON file will be used in client-side routing through next/link or next/router. When you navigate to a page that’s pre-rendered
using getStaticProps, Next.js fetches this JSON file (pre-computed at build time) and uses it as the props for the page component.
This means that client-side page transitions will not call getStaticProps as only the exported JSON is used.

When using Incremental Static Generation, getStaticProps will be executed in the background to generate the JSON needed for
client-side navigation. You may see this in the form of multiple requests being made for the same page, however, this is intended and
has no impact on end-user performance.

Where can I use getStaticProps

getStaticProps can only be exported from a page. You cannot export it from non-page files, _app, _document, or _error.

One of the reasons for this restriction is that React needs to have all the required data before the page is rendered.

Also, you must use export getStaticProps as a standalone function — it will not work if you add getStaticProps as a property of
the page component.

Good to know: if you have created a custom app, ensure you are passing the pageProps to the page component as shown in
the linked document, otherwise the props will be empty.

Runs on every request in development

In development (next dev), getStaticProps will be called on every request.

https://developer.mozilla.org/docs/Web/API/Fetch_API
https://next-code-elimination.vercel.app/
file:///docs/pages/api-reference/components/link
file:///docs/pages/api-reference/functions/use-router
file:///docs/pages/building-your-application/routing/custom-app


Preview Mode

You can temporarily bypass static generation and render the page at request time instead of build time using Preview Mode. For
example, you might be using a headless CMS and want to preview drafts before they’re published.

file:///docs/pages/building-your-application/configuring/preview-mode


4.1.3.2 - getStaticPaths
Documentation path: /03-pages/01-building-your-application/03-data-fetching/02-get-static-paths

Description: Fetch data and generate static pages with `getStaticPaths`. Learn more about this API for data fetching in Next.js.

If a page has Dynamic Routes and uses getStaticProps, it needs to define a list of paths to be statically generated.

When you export a function called getStaticPaths (Static Site Generation) from a page that uses dynamic routes, Next.js will
statically pre-render all the paths specified by getStaticPaths.

pages/repo/[name].tsx (tsx)

import type {
  InferGetStaticPropsType,
  GetStaticProps,
  GetStaticPaths,
} from 'next'

type Repo = {
  name: string
  stargazers_count: number
}

export const getStaticPaths = (async () => {
  return {
    paths: [
      {
        params: {
          name: 'next.js',
        },
      }, // See the "paths" section below
    ],
    fallback: true, // false or "blocking"
  }
}) satisfies GetStaticPaths

export const getStaticProps = (async (context) => {
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const repo = await res.json()
  return { props: { repo } }
}) satisfies GetStaticProps<{
  repo: Repo
}>

export default function Page({
  repo,
}: InferGetStaticPropsType<typeof getStaticProps>) {
  return repo.stargazers_count
}

pages/repo/[name].js (jsx)

export async function getStaticPaths() {
  return {
    paths: [
      {
        params: {
          name: 'next.js',
        },
      }, // See the "paths" section below
    ],
    fallback: true, // false or "blocking"
  }
}

export async function getStaticProps() {
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const repo = await res.json()
  return { props: { repo } }
}

export default function Page({ repo }) {
  return repo.stargazers_count
}

file:///docs/pages/building-your-application/routing/dynamic-routes


The getStaticPaths API reference covers all parameters and props that can be used with getStaticPaths.

When should I use getStaticPaths?

You should use getStaticPaths if you’re statically pre-rendering pages that use dynamic routes and:

The data comes from a headless CMS
The data comes from a database
The data comes from the filesystem
The data can be publicly cached (not user-specific)
The page must be pre-rendered (for SEO) and be very fast — getStaticProps generates HTML and JSON files, both of which can be
cached by a CDN for performance

When does getStaticPaths run

getStaticPaths will only run during build in production, it will not be called during runtime. You can validate code written inside
getStaticPaths is removed from the client-side bundle with this tool.

How does getStaticProps run with regards to getStaticPaths

getStaticProps runs during next build for any paths returned during build
getStaticProps runs in the background when using fallback: true
getStaticProps is called before initial render when using fallback: blocking

Where can I use getStaticPaths

getStaticPaths must be used with getStaticProps
You cannot use getStaticPaths with getServerSideProps
You can export getStaticPaths from a Dynamic Route that also uses getStaticProps
You cannot export getStaticPaths from non-page file (e.g. your components folder)
You must export getStaticPaths as a standalone function, and not a property of the page component

Runs on every request in development

In development (next dev), getStaticPaths will be called on every request.

Generating paths on-demand

getStaticPaths allows you to control which pages are generated during the build instead of on-demand with fallback. Generating
more pages during a build will cause slower builds.

You can defer generating all pages on-demand by returning an empty array for paths. This can be especially helpful when deploying
your Next.js application to multiple environments. For example, you can have faster builds by generating all pages on-demand for
previews (but not production builds). This is helpful for sites with hundreds/thousands of static pages.

pages/posts/[id].js (jsx)

export async function getStaticPaths() {
  // When this is true (in preview environments) don't
  // prerender any static pages
  // (faster builds, but slower initial page load)
  if (process.env.SKIP_BUILD_STATIC_GENERATION) {
    return {
      paths: [],
      fallback: 'blocking',
    }
  }

  // Call an external API endpoint to get posts
  const res = await fetch('https://.../posts')
  const posts = await res.json()

  // Get the paths we want to prerender based on posts
  // In production environments, prerender all pages
  // (slower builds, but faster initial page load)
  const paths = posts.map((post) => ({
    params: { id: post.id },

file:///docs/pages/api-reference/functions/get-static-paths
https://next-code-elimination.vercel.app/
file:///docs/pages/building-your-application/data-fetching/get-server-side-props
file:///docs/pages/building-your-application/routing/dynamic-routes
file:///docs/pages/api-reference/functions/get-static-paths#fallback-blocking


  }))

  // { fallback: false } means other routes should 404
  return { paths, fallback: false }
}



4.1.3.3 - Forms and Mutations
Documentation path: /03-pages/01-building-your-application/03-data-fetching/03-forms-and-mutations

Description: Learn how to handle form submissions and data mutations with Next.js.

Forms enable you to create and update data in web applications. Next.js provides a powerful way to handle form submissions and data
mutations using API Routes.

Good to know:

We will soon recommend incrementally adopting the App Router and using Server Actions for handling form submissions
and data mutations. Server Actions allow you to define asynchronous server functions that can be called directly from your
components, without needing to manually create an API Route.
API Routes do not specify CORS headers, meaning they are same-origin only by default.
Since API Routes run on the server, we’re able to use sensitive values (like API keys) through Environment Variables without
exposing them to the client. This is critical for the security of your application.

Examples

Server-only form

With the Pages Router, you need to manually create API endpoints to handle securely mutating data on the server.
pages/api/submit.ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
  req: NextApiRequest,
  res: NextApiResponse
) {
  const data = req.body
  const id = await createItem(data)
  res.status(200).json({ id })
}

pages/api/submit.js (js)

export default function handler(req, res) {
  const data = req.body
  const id = await createItem(data)
  res.status(200).json({ id })
}

Then, call the API Route from the client with an event handler:
pages/index.tsx (tsx)

import { FormEvent } from 'react'

export default function Page() {
  async function onSubmit(event: FormEvent<HTMLFormElement>) {
    event.preventDefault()

    const formData = new FormData(event.currentTarget)
    const response = await fetch('/api/submit', {
      method: 'POST',
      body: formData,
    })

    // Handle response if necessary
    const data = await response.json()
    // ...
  }

  return (
    <form onSubmit={onSubmit}>
      <input type="text" name="name" />
      <button type="submit">Submit</button>
    </form>
  )
}

pages/index.jsx (jsx)

file:///docs/app/building-your-application/upgrading/app-router-migration
file:///docs/app/building-your-application/data-fetching/server-actions-and-mutations
https://developer.mozilla.org/docs/Web/HTTP/CORS
file:///docs/pages/building-your-application/configuring/environment-variables


export default function Page() {
  async function onSubmit(event) {
    event.preventDefault()

    const formData = new FormData(event.target)
    const response = await fetch('/api/submit', {
      method: 'POST',
      body: formData,
    })

    // Handle response if necessary
    const data = await response.json()
    // ...
  }

  return (
    <form onSubmit={onSubmit}>
      <input type="text" name="name" />
      <button type="submit">Submit</button>
    </form>
  )
}

Form validation

We recommend using HTML validation like required and type="email" for basic client-side form validation.

For more advanced server-side validation, you can use a schema validation library like zod to validate the form fields before mutating
the data:

pages/api/submit.ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'
import { z } from 'zod'

const schema = z.object({
  // ...
})

export default async function handler(
  req: NextApiRequest,
  res: NextApiResponse
) {
  const parsed = schema.parse(req.body)
  // ...
}

pages/api/submit.js (js)

import { z } from 'zod'

const schema = z.object({
  // ...
})

export default async function handler(req, res) {
  const parsed = schema.parse(req.body)
  // ...
}

Error handling

You can use React state to show an error message when a form submission fails:
pages/index.tsx (tsx)

import React, { useState, FormEvent } from 'react'

export default function Page() {
  const [isLoading, setIsLoading] = useState<boolean>(false)
  const [error, setError] = useState<string | null>(null)

  async function onSubmit(event: FormEvent<HTMLFormElement>) {
    event.preventDefault()
    setIsLoading(true)
    setError(null) // Clear previous errors when a new request starts

https://zod.dev/


    try {
      const formData = new FormData(event.currentTarget)
      const response = await fetch('/api/submit', {
        method: 'POST',
        body: formData,
      })

      if (!response.ok) {
        throw new Error('Failed to submit the data. Please try again.')
      }

      // Handle response if necessary
      const data = await response.json()
      // ...
    } catch (error) {
      // Capture the error message to display to the user
      setError(error.message)
      console.error(error)
    } finally {
      setIsLoading(false)
    }
  }

  return (
    <div>
      {error && <div style={{ color: 'red' }}>{error}</div>}
      <form onSubmit={onSubmit}>
        <input type="text" name="name" />
        <button type="submit" disabled={isLoading}>
          {isLoading ? 'Loading...' : 'Submit'}
        </button>
      </form>
    </div>
  )
}

pages/index.jsx (jsx)

import React, { useState } from 'react'

export default function Page() {
  const [isLoading, setIsLoading] = useState(false)
  const [error, setError] = useState(null)

  async function onSubmit(event) {
    event.preventDefault()
    setIsLoading(true)
    setError(null) // Clear previous errors when a new request starts

    try {
      const formData = new FormData(event.currentTarget)
      const response = await fetch('/api/submit', {
        method: 'POST',
        body: formData,
      })

      if (!response.ok) {
        throw new Error('Failed to submit the data. Please try again.')
      }

      // Handle response if necessary
      const data = await response.json()
      // ...
    } catch (error) {
      // Capture the error message to display to the user
      setError(error.message)
      console.error(error)
    } finally {
      setIsLoading(false)
    }
  }

  return (
    <div>
      {error && <div style={{ color: 'red' }}>{error}</div>}
      <form onSubmit={onSubmit}>
        <input type="text" name="name" />



        <button type="submit" disabled={isLoading}>
          {isLoading ? 'Loading...' : 'Submit'}
        </button>
      </form>
    </div>
  )
}

Displaying loading state

You can use React state to show a loading state when a form is submitting on the server:
pages/index.tsx (tsx)

import React, { useState, FormEvent } from 'react'

export default function Page() {
  const [isLoading, setIsLoading] = useState<boolean>(false)

  async function onSubmit(event: FormEvent<HTMLFormElement>) {
    event.preventDefault()
    setIsLoading(true) // Set loading to true when the request starts

    try {
      const formData = new FormData(event.currentTarget)
      const response = await fetch('/api/submit', {
        method: 'POST',
        body: formData,
      })

      // Handle response if necessary
      const data = await response.json()
      // ...
    } catch (error) {
      // Handle error if necessary
      console.error(error)
    } finally {
      setIsLoading(false) // Set loading to false when the request completes
    }
  }

  return (
    <form onSubmit={onSubmit}>
      <input type="text" name="name" />
      <button type="submit" disabled={isLoading}>
        {isLoading ? 'Loading...' : 'Submit'}
      </button>
    </form>
  )
}

pages/index.jsx (jsx)

import React, { useState } from 'react'

export default function Page() {
  const [isLoading, setIsLoading] = useState(false)

  async function onSubmit(event) {
    event.preventDefault()
    setIsLoading(true) // Set loading to true when the request starts

    try {
      const formData = new FormData(event.currentTarget)
      const response = await fetch('/api/submit', {
        method: 'POST',
        body: formData,
      })

      // Handle response if necessary
      const data = await response.json()
      // ...
    } catch (error) {
      // Handle error if necessary
      console.error(error)
    } finally {
      setIsLoading(false) // Set loading to false when the request completes



    }
  }

  return (
    <form onSubmit={onSubmit}>
      <input type="text" name="name" />
      <button type="submit" disabled={isLoading}>
        {isLoading ? 'Loading...' : 'Submit'}
      </button>
    </form>
  )
}

Redirecting

If you would like to redirect the user to a different route after a mutation, you can redirect to any absolute or relative URL:

pages/api/submit.ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
  req: NextApiRequest,
  res: NextApiResponse
) {
  const id = await addPost()
  res.redirect(307, `/post/${id}`)
}

pages/api/submit.js (js)

export default async function handler(req, res) {
  const id = await addPost()
  res.redirect(307, `/post/${id}`)
}

Setting cookies

You can set cookies inside an API Route using the setHeader method on the response:

pages/api/cookie.ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
  req: NextApiRequest,
  res: NextApiResponse
) {
  res.setHeader('Set-Cookie', 'username=lee; Path=/; HttpOnly')
  res.status(200).send('Cookie has been set.')
}

pages/api/cookie.js (js)

export default async function handler(req, res) {
  res.setHeader('Set-Cookie', 'username=lee; Path=/; HttpOnly')
  res.status(200).send('Cookie has been set.')
}

Reading cookies

You can read cookies inside an API Route using the cookies request helper:

pages/api/cookie.ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
  req: NextApiRequest,
  res: NextApiResponse
) {
  const auth = req.cookies.authorization
  // ...
}

pages/api/cookie.js (js)

export default async function handler(req, res) {

file:///docs/pages/building-your-application/routing/api-routes#response-helpers
file:///docs/pages/building-your-application/routing/api-routes#request-helpers


  const auth = req.cookies.authorization
  // ...
}

Deleting cookies

You can delete cookies inside an API Route using the setHeader method on the response:

pages/api/cookie.ts (ts)

import type { NextApiRequest, NextApiResponse } from 'next'

export default async function handler(
  req: NextApiRequest,
  res: NextApiResponse
) {
  res.setHeader('Set-Cookie', 'username=; Path=/; HttpOnly; Max-Age=0')
  res.status(200).send('Cookie has been deleted.')
}

pages/api/cookie.js (js)

export default async function handler(req, res) {
  res.setHeader('Set-Cookie', 'username=; Path=/; HttpOnly; Max-Age=0')
  res.status(200).send('Cookie has been deleted.')
}



4.1.3.4 - getServerSideProps
Documentation path: /03-pages/01-building-your-application/03-data-fetching/03-get-server-side-props

Description: Fetch data on each request with `getServerSideProps`.

getServerSideProps is a Next.js function that can be used to fetch data and render the contents of a page at request time.

Example

You can use getServerSideProps by exporting it from a Page Component. The example below shows how you can fetch data from a
3rd party API in getServerSideProps, and pass the data to the page as props:

pages/index.tsx (tsx)

import type { InferGetServerSidePropsType, GetServerSideProps } from 'next'

type Repo = {
  name: string
  stargazers_count: number
}

export const getServerSideProps = (async () => {
  // Fetch data from external API
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const repo: Repo = await res.json()
  // Pass data to the page via props
  return { props: { repo } }
}) satisfies GetServerSideProps<{ repo: Repo }>

export default function Page({
  repo,
}: InferGetServerSidePropsType<typeof getServerSideProps>) {
  return (
    <main>
      <p>{repo.stargazers_count}</p>
    </main>
  )
}

pages/index.js (jsx)

export async function getServerSideProps() {
  // Fetch data from external API
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const repo = await res.json()
  // Pass data to the page via props
  return { props: { repo } }
}

export default function Page({ repo }) {
  return (
    <main>
      <p>{repo.stargazers_count}</p>
    </main>
  )
}

When should I use getServerSidePropsgetServerSideProps?

You should use getServerSideProps if you need to render a page that relies on personalized user data, or information that can only
be known at request time. For example, authorization headers or a geolocation.

If you do not need to fetch the data at request time, or would prefer to cache the data and pre-rendered HTML, we recommend using
getStaticProps.

Behavior

getServerSideProps runs on the server.
getServerSideProps can only be exported from a page.
getServerSideProps returns JSON.

file:///docs/pages/building-your-application/data-fetching/get-static-props


When a user visits a page, getServerSideProps will be used to fetch data at request time, and the data is used to render the
initial HTML of the page.
props passed to the page component can be viewed on the client as part of the initial HTML. This is to allow the page to be
hydrated correctly. Make sure that you don’t pass any sensitive information that shouldn’t be available on the client in props.
When a user visits the page through next/link or next/router, Next.js sends an API request to the server, which runs
getServerSideProps.
You do not have to call a Next.js API Route to fetch data when using getServerSideProps since the function runs on the server.
Instead, you can call a CMS, database, or other third-party APIs directly from inside getServerSideProps.

Good to know:

See getServerSideProps API reference for parameters and props that can be used with getServerSideProps.
You can use the next-code-elimination tool to verify what Next.js eliminates from the client-side bundle.

Error Handling

If an error is thrown inside getServerSideProps, it will show the pages/500.js file. Check out the documentation for 500 page to
learn more on how to create it. During development, this file will not be used and the development error overlay will be shown instead.

Edge Cases

Edge Runtime

getServerSideProps can be used with both Serverless and Edge Runtimes, and you can set props in both.

However, currently in the Edge Runtime, you do not have access to the response object. This means that you cannot — for example —
add cookies in getServerSideProps. To have access to the response object, you should continue to use the Node.js runtime,
which is the default runtime.

You can explicitly set the runtime on a per-page basis by modifying the config, for example:

pages/index.js (jsx)

export const config = {
  runtime: 'nodejs', // or "edge"
}

export const getServerSideProps = async () => {}

Caching with Server-Side Rendering (SSR)

You can use caching headers (Cache-Control) inside getServerSideProps to cache dynamic responses. For example, using stale-
while-revalidate.

// This value is considered fresh for ten seconds (s-maxage=10).
// If a request is repeated within the next 10 seconds, the previously
// cached value will still be fresh. If the request is repeated before 59 seconds,
// the cached value will be stale but still render (stale-while-revalidate=59).
//
// In the background, a revalidation request will be made to populate the cache
// with a fresh value. If you refresh the page, you will see the new value.
export async function getServerSideProps({ req, res }) {
  res.setHeader(
    'Cache-Control',
    'public, s-maxage=10, stale-while-revalidate=59'
  )

  return {
    props: {},
  }
}

However, before reaching for cache-control, we recommend seeing if getStaticProps with ISR is a better fit for your use case.

https://react.dev/reference/react-dom/hydrate
file:///docs/pages/api-reference/components/link
file:///docs/pages/api-reference/functions/use-router
file:///docs/pages/building-your-application/routing/api-routes
file:///docs/pages/api-reference/functions/get-server-side-props
https://next-code-elimination.vercel.app/
file:///docs/pages/building-your-application/routing/custom-error#500-page
file:///docs/pages/building-your-application/rendering/edge-and-nodejs-runtimes
https://web.dev/stale-while-revalidate/
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration


4.1.3.5 - Incremental Static Regeneration (ISR)
Documentation path: /03-pages/01-building-your-application/03-data-fetching/04-incremental-static-regeneration

Description: Learn how to create or update static pages at runtime with Incremental Static Regeneration.

Examples

Next.js allows you to create or update static pages after you’ve built your site. Incremental Static Regeneration (ISR) enables you to use
static-generation on a per-page basis, without needing to rebuild the entire site. With ISR, you can retain the benefits of static while
scaling to millions of pages.

Good to know: The edge runtime is currently not compatible with ISR, although you can leverage stale-while-revalidate
by setting the cache-control header manually.

To use ISR, add the revalidate prop to getStaticProps:

function Blog({ posts }) {
  return (
    <ul>
      {posts.map((post) => (
        <li key={post.id}>{post.title}</li>
      ))}
    </ul>
  )
}

// This function gets called at build time on server-side.
// It may be called again, on a serverless function, if
// revalidation is enabled and a new request comes in
export async function getStaticProps() {
  const res = await fetch('https://.../posts')
  const posts = await res.json()

  return {
    props: {
      posts,
    },
    // Next.js will attempt to re-generate the page:
    // - When a request comes in
    // - At most once every 10 seconds
    revalidate: 10, // In seconds
  }
}

// This function gets called at build time on server-side.
// It may be called again, on a serverless function, if
// the path has not been generated.
export async function getStaticPaths() {
  const res = await fetch('https://.../posts')
  const posts = await res.json()

  // Get the paths we want to pre-render based on posts
  const paths = posts.map((post) => ({
    params: { id: post.id },
  }))

  // We'll pre-render only these paths at build time.
  // { fallback: 'blocking' } will server-render pages
  // on-demand if the path doesn't exist.
  return { paths, fallback: 'blocking' }
}

export default Blog

When a request is made to a page that was pre-rendered at build time, it will initially show the cached page.

Any requests to the page after the initial request and before 10 seconds are also cached and instantaneous.
After the 10-second window, the next request will still show the cached (stale) page
Next.js triggers a regeneration of the page in the background.
Once the page generates successfully, Next.js will invalidate the cache and show the updated page. If the background regeneration
fails, the old page would still be unaltered.

When a request is made to a path that hasn’t been generated, Next.js will server-render the page on the first request. Future requests

file:///docs/pages/api-reference/edge


will serve the static file from the cache. ISR on Vercel persists the cache globally and handles rollbacks.

Good to know: Check if your upstream data provider has caching enabled by default. You might need to disable (e.g. useCdn:
false), otherwise a revalidation won’t be able to pull fresh data to update the ISR cache. Caching can occur at a CDN (for an
endpoint being requested) when it returns the Cache-Control header.

On-Demand Revalidation

If you set a revalidate time of 60, all visitors will see the same generated version of your site for one minute. The only way to
invalidate the cache is from someone visiting that page after the minute has passed.

Starting with v12.2.0, Next.js supports On-Demand Incremental Static Regeneration to manually purge the Next.js cache for a specific
page. This makes it easier to update your site when:

Content from your headless CMS is created or updated
Ecommerce metadata changes (price, description, category, reviews, etc.)

Inside getStaticProps, you do not need to specify revalidate to use on-demand revalidation. If revalidate is omitted, Next.js will
use the default value of false (no revalidation) and only revalidate the page on-demand when revalidate() is called.

Good to know: Middleware won’t be executed for On-Demand ISR requests. Instead, call revalidate() on the exact path that
you want revalidated. For example, if you have pages/blog/[slug].js and a rewrite from /post-1 -> /blog/post-1, you
would need to call res.revalidate('/blog/post-1').

Using On-Demand Revalidation

First, create a secret token only known by your Next.js app. This secret will be used to prevent unauthorized access to the revalidation
API Route. You can access the route (either manually or with a webhook) with the following URL structure:

Terminal (bash)

https://<your-site.com>/api/revalidate?secret=<token>

Next, add the secret as an Environment Variable to your application. Finally, create the revalidation API Route:
pages/api/revalidate.js (js)

export default async function handler(req, res) {
  // Check for secret to confirm this is a valid request
  if (req.query.secret !== process.env.MY_SECRET_TOKEN) {
    return res.status(401).json({ message: 'Invalid token' })
  }

  try {
    // this should be the actual path not a rewritten path
    // e.g. for "/blog/[slug]" this should be "/blog/post-1"
    await res.revalidate('/path-to-revalidate')
    return res.json({ revalidated: true })
  } catch (err) {
    // If there was an error, Next.js will continue
    // to show the last successfully generated page
    return res.status(500).send('Error revalidating')
  }
}

View our demo to see on-demand revalidation in action and provide feedback.

Testing on-Demand ISR during development

When running locally with next dev, getStaticProps is invoked on every request. To verify your on-demand ISR configuration is
correct, you will need to create a production build and start the production server:

Terminal (bash)

$ next build
$ next start

Then, you can confirm that static pages have successfully revalidated.

Error handling and revalidation

If there is an error inside getStaticProps when handling background regeneration, or you manually throw an error, the last
successfully generated page will continue to show. On the next subsequent request, Next.js will retry calling getStaticProps.

https://vercel.com/docs/concepts/next.js/incremental-static-regeneration?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
file:///docs/pages/building-your-application/routing/middleware
file:///docs/pages/building-your-application/configuring/environment-variables
https://on-demand-isr.vercel.app
file:///docs/pages/api-reference/next-cli#build
file:///docs/pages/api-reference/next-cli#production


export async function getStaticProps() {
  // If this request throws an uncaught error, Next.js will
  // not invalidate the currently shown page and
  // retry getStaticProps on the next request.
  const res = await fetch('https://.../posts')
  const posts = await res.json()

  if (!res.ok) {
    // If there is a server error, you might want to
    // throw an error instead of returning so that the cache is not updated
    // until the next successful request.
    throw new Error(`Failed to fetch posts, received status ${res.status}`)
  }

  // If the request was successful, return the posts
  // and revalidate every 10 seconds.
  return {
    props: {
      posts,
    },
    revalidate: 10,
  }
}

Self-hosting ISR

Incremental Static Regeneration (ISR) works on self-hosted Next.js sites out of the box when you use next start.

Learn more about self-hosting Next.js.

Version History

Version Changes

v14.1.0 Custom cacheHandler is stable.

v12.2.0 On-Demand ISR is stable

v12.1.0 On-Demand ISR added (beta).

v12.0.0 Bot-aware ISR fallback added.

v9.5.0 Base Path added.

file:///docs/pages/building-your-application/deploying#self-hosting
file:///docs/pages/building-your-application/deploying#self-hosting
https://nextjs.org/blog/next-12#bot-aware-isr-fallback


4.1.3.6 - Client-side Fetching
Documentation path: /03-pages/01-building-your-application/03-data-fetching/05-client-side

Description: Learn about client-side data fetching, and how to use SWR, a data fetching React hook library that handles caching,
revalidation, focus tracking, refetching on interval and more.

Client-side data fetching is useful when your page doesn’t require SEO indexing, when you don’t need to pre-render your data, or when
the content of your pages needs to update frequently. Unlike the server-side rendering APIs, you can use client-side data fetching at the
component level.

If done at the page level, the data is fetched at runtime, and the content of the page is updated as the data changes. When used at the
component level, the data is fetched at the time of the component mount, and the content of the component is updated as the data
changes.

It’s important to note that using client-side data fetching can affect the performance of your application and the load speed of your
pages. This is because the data fetching is done at the time of the component or pages mount, and the data is not cached.

Client-side data fetching with useEffect

The following example shows how you can fetch data on the client side using the useEffect hook.

import { useState, useEffect } from 'react'

function Profile() {
  const [data, setData] = useState(null)
  const [isLoading, setLoading] = useState(true)

  useEffect(() => {
    fetch('/api/profile-data')
      .then((res) => res.json())
      .then((data) => {
        setData(data)
        setLoading(false)
      })
  }, [])

  if (isLoading) return <p>Loading...</p>
  if (!data) return <p>No profile data</p>

  return (
    <div>
      <h1>{data.name}</h1>
      <p>{data.bio}</p>
    </div>
  )
}

Client-side data fetching with SWR

The team behind Next.js has created a React hook library for data fetching called SWR. It is highly recommended if you are fetching
data on the client-side. It handles caching, revalidation, focus tracking, refetching on intervals, and more.

Using the same example as above, we can now use SWR to fetch the profile data. SWR will automatically cache the data for us and will
revalidate the data if it becomes stale.

For more information on using SWR, check out the SWR docs.

import useSWR from 'swr'

const fetcher = (...args) => fetch(...args).then((res) => res.json())

function Profile() {
  const { data, error } = useSWR('/api/profile-data', fetcher)

  if (error) return <div>Failed to load</div>
  if (!data) return <div>Loading...</div>

  return (
    <div>
      <h1>{data.name}</h1>
      <p>{data.bio}</p>
    </div>

https://swr.vercel.app/
https://swr.vercel.app/docs/getting-started


  )
}



4.1.4 - Styling
Documentation path: /03-pages/01-building-your-application/04-styling/index

Description: Learn the different ways you can style your Next.js application.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.4.1 - CSS Modules
Documentation path: /03-pages/01-building-your-application/04-styling/01-css-modules

Description: Style your Next.js Application using CSS Modules.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.4.2 - Tailwind CSS
Documentation path: /03-pages/01-building-your-application/04-styling/02-tailwind-css

Description: Style your Next.js Application using Tailwind CSS.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.4.3 - CSS-in-JS
Documentation path: /03-pages/01-building-your-application/04-styling/03-css-in-js

Description: Use CSS-in-JS libraries with Next.js

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.4.4 - Sass
Documentation path: /03-pages/01-building-your-application/04-styling/04-sass

Description: Learn how to use Sass in your Next.js application.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.5 - Optimizations
Documentation path: /03-pages/01-building-your-application/05-optimizing/index

Description: Optimize your Next.js application for best performance and user experience.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.5.1 - Image Optimization
Documentation path: /03-pages/01-building-your-application/05-optimizing/01-images

Description: Optimize your images with the built-in `next/image` component.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.5.2 - Font Optimization
Documentation path: /03-pages/01-building-your-application/05-optimizing/02-fonts

Description: Optimize your application's web fonts with the built-in `next/font` loaders.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.5.3 - Script Optimization
Documentation path: /03-pages/01-building-your-application/05-optimizing/03-scripts

Description: Optimize 3rd party scripts with the built-in Script component.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.5.4 - Static Assets
Documentation path: /03-pages/01-building-your-application/05-optimizing/05-static-assets

Description: Next.js allows you to serve static files, like images, in the public directory. You can learn how it works here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.5.5 - Bundle Analyzer
Documentation path: /03-pages/01-building-your-application/05-optimizing/06-bundle-analyzer

Description: Analyze the size of your JavaScript bundles using the @next/bundle-analyzer plugin.

Related:

Title: Related

Related Description: Learn more about optimizing your application for production.

Links:

pages/building-your-application/deploying/production-checklist

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.5.6 - Analytics
Documentation path: /03-pages/01-building-your-application/05-optimizing/07-analytics

Description: Measure and track page performance using Next.js Speed Insights

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.5.7 - Lazy Loading
Documentation path: /03-pages/01-building-your-application/05-optimizing/08-lazy-loading

Description: Lazy load imported libraries and React Components to improve your application's loading performance.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.5.8 - Instrumentation
Documentation path: /03-pages/01-building-your-application/05-optimizing/09-instrumentation

Description: Learn how to use instrumentation to run code at server startup in your Next.js app

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.5.9 - OpenTelemetry
Documentation path: /03-pages/01-building-your-application/05-optimizing/10-open-telemetry

Description: Learn how to instrument your Next.js app with OpenTelemetry.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.5.10 - Third Party Libraries
Documentation path: /03-pages/01-building-your-application/05-optimizing/11-third-party-libraries

Description: Optimize the performance of third-party libraries in your application with the `@next/third-parties` package.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.6 - Configuring
Documentation path: /03-pages/01-building-your-application/06-configuring/index

Description: Learn how to configure your Next.js application.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.6.1 - TypeScript
Documentation path: /03-pages/01-building-your-application/06-configuring/01-typescript

Description: Next.js provides a TypeScript-first development experience for building your React application.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.6.2 - ESLint
Documentation path: /03-pages/01-building-your-application/06-configuring/02-eslint

Description: Next.js reports ESLint errors and warnings during builds by default. Learn how to opt-out of this behavior here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.6.3 - Environment Variables
Documentation path: /03-pages/01-building-your-application/06-configuring/03-environment-variables

Description: Learn to add and access environment variables in your Next.js application.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.6.4 - Absolute Imports and Module Path Aliases
Documentation path: /03-pages/01-building-your-application/06-configuring/04-absolute-imports-and-module-aliases

Description: Configure module path aliases that allow you to remap certain import paths.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.6.5 - src Directory
Documentation path: /03-pages/01-building-your-application/06-configuring/05-src-directory

Description: Save pages under the `src` directory as an alternative to the root `pages` directory.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.6.6 - Markdown and MDX
Documentation path: /03-pages/01-building-your-application/06-configuring/06-mdx

Description: Learn how to configure MDX to write JSX in your markdown files.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.6.7 - AMP
Documentation path: /03-pages/01-building-your-application/06-configuring/07-amp

Description: With minimal config, and without leaving React, you can start adding AMP and improve the performance and speed of
your pages.

Examples

With Next.js you can turn any React page into an AMP page, with minimal config, and without leaving React.

You can read more about AMP in the official amp.dev site.

Enabling AMP

To enable AMP support for a page, and to learn more about the different AMP configs, read the API documentation for next/amp.

Caveats

Only CSS-in-JS is supported. CSS Modules aren’t supported by AMP pages at the moment. You can contribute CSS Modules support
to Next.js.

Adding AMP Components

The AMP community provides many components to make AMP pages more interactive. Next.js will automatically import all
components used on a page and there is no need to manually import AMP component scripts:

export const config = { amp: true }

function MyAmpPage() {
  const date = new Date()

  return (
    <div>
      <p>Some time: {date.toJSON()}</p>
      <amp-timeago
        width="0"
        height="15"
        datetime={date.toJSON()}
        layout="responsive"
      >
        .
      </amp-timeago>
    </div>
  )
}

export default MyAmpPage

The above example uses the amp-timeago component.

By default, the latest version of a component is always imported. If you want to customize the version, you can use next/head, as in
the following example:

import Head from 'next/head'

export const config = { amp: true }

function MyAmpPage() {
  const date = new Date()

  return (
    <div>
      <Head>
        <script
          async
          key="amp-timeago"
          custom-element="amp-timeago"
          src="https://cdn.ampproject.org/v0/amp-timeago-0.1.js"
        />
      </Head>

https://amp.dev/
file:///docs/pages/building-your-application/configuring/amp
file:///docs/pages/building-your-application/styling
https://github.com/vercel/next.js/issues/10549
https://amp.dev/documentation/components/
https://amp.dev/documentation/components/amp-timeago/?format=websites


      <p>Some time: {date.toJSON()}</p>
      <amp-timeago
        width="0"
        height="15"
        datetime={date.toJSON()}
        layout="responsive"
      >
        .
      </amp-timeago>
    </div>
  )
}

export default MyAmpPage

AMP Validation

AMP pages are automatically validated with amphtml-validator during development. Errors and warnings will appear in the terminal
where you started Next.js.

Pages are also validated during Static HTML export and any warnings / errors will be printed to the terminal. Any AMP errors will cause
the export to exit with status code 1 because the export is not valid AMP.

Custom Validators

You can set up custom AMP validator in next.config.js as shown below:

module.exports = {
  amp: {
    validator: './custom_validator.js',
  },
}

Skip AMP Validation

To turn off AMP validation add the following code to next.config.js

experimental: {
  amp: {
    skipValidation: true
  }
}

AMP in Static HTML Export

When using Static HTML export statically prerender pages, Next.js will detect if the page supports AMP and change the exporting
behavior based on that.

For example, the hybrid AMP page pages/about.js would output:

out/about.html - HTML page with client-side React runtime
out/about.amp.html - AMP page

And if pages/about.js is an AMP-only page, then it would output:

out/about.html - Optimized AMP page

Next.js will automatically insert a link to the AMP version of your page in the HTML version, so you don’t have to, like so:

<link rel="amphtml" href="/about.amp.html" />

And the AMP version of your page will include a link to the HTML page:

<link rel="canonical" href="/about" />

When trailingSlash is enabled the exported pages for pages/about.js would be:

out/about/index.html - HTML page
out/about.amp/index.html - AMP page

TypeScript

https://www.npmjs.com/package/amphtml-validator
file:///docs/pages/building-your-application/deploying/static-exports
file:///docs/pages/building-your-application/deploying/static-exports
file:///docs/pages/api-reference/next-config-js/trailingSlash


AMP currently doesn’t have built-in types for TypeScript, but it’s in their roadmap (#13791).

As a workaround you can manually create a file called amp.d.ts inside your project and add these custom types.

https://github.com/ampproject/amphtml/issues/13791
https://stackoverflow.com/a/50601125


4.1.6.8 - Babel
Documentation path: /03-pages/01-building-your-application/06-configuring/08-babel

Description: Extend the babel preset added by Next.js with your own configs.

Examples

Next.js includes the next/babel preset to your app, which includes everything needed to compile React applications and server-side
code. But if you want to extend the default Babel configs, it’s also possible.

Adding Presets and Plugins

To start, you only need to define a .babelrc file (or babel.config.js) in the root directory of your project. If such a file is found, it
will be considered as the source of truth, and therefore it needs to define what Next.js needs as well, which is the next/babel preset.

Here’s an example .babelrc file:

.babelrc (json)

{
  "presets": ["next/babel"],
  "plugins": []
}

You can take a look at this file to learn about the presets included by next/babel.

To add presets/plugins without configuring them, you can do it this way:
.babelrc (json)

{
  "presets": ["next/babel"],
  "plugins": ["@babel/plugin-proposal-do-expressions"]
}

Customizing Presets and Plugins

To add presets/plugins with custom configuration, do it on the next/babel preset like so:

.babelrc (json)

{
  "presets": [
    [
      "next/babel",
      {
        "preset-env": {},
        "transform-runtime": {},
        "styled-jsx": {},
        "class-properties": {}
      }
    ]
  ],
  "plugins": []
}

To learn more about the available options for each config, visit babel’s documentation site.

Good to know:

Next.js uses the current Node.js version for server-side compilations.
The modules option on "preset-env" should be kept to false, otherwise webpack code splitting is turned off.

https://github.com/vercel/next.js/blob/canary/packages/next/src/build/babel/preset.ts
https://babeljs.io/docs/
https://github.com/nodejs/release#release-schedule


4.1.6.9 - PostCSS
Documentation path: /03-pages/01-building-your-application/06-configuring/09-post-css

Description: Extend the PostCSS config and plugins added by Next.js with your own.

Examples
- [Tailwind CSS Example](https://github.com/vercel/next.js/tree/canary/examples/with-tailwindcss)

Default Behavior

Next.js compiles CSS for its built-in CSS support using PostCSS.

Out of the box, with no configuration, Next.js compiles CSS with the following transformations:

Autoprefixer automatically adds vendor prefixes to CSS rules (back to IE11).
Cross-browser Flexbox bugs are corrected to behave like the spec.
New CSS features are automatically compiled for Internet Explorer 11 compatibility:
all Property
Break Properties
font-variant Property
Gap Properties
Media Query Ranges

By default, CSS Grid and Custom Properties (CSS variables) are not compiled for IE11 support.

To compile CSS Grid Layout for IE11, you can place the following comment at the top of your CSS file:

/* autoprefixer grid: autoplace */

You can also enable IE11 support for CSS Grid Layout in your entire project by configuring autoprefixer with the configuration shown
below (collapsed). See “Customizing Plugins” below for more information.

Click to view the configuration to enable CSS Grid Layout

CSS variables are not compiled because it is not possible to safely do so. If you must use variables, consider using something like Sass
variables which are compiled away by Sass.

Customizing Target Browsers

Next.js allows you to configure the target browsers (for Autoprefixer and compiled css features) through Browserslist.

To customize browserslist, create a browserslist key in your package.json like so:

package.json (json)

{
  "browserslist": [">0.3%", "not dead", "not op_mini all"]
}

You can use the browsersl.ist tool to visualize what browsers you are targeting.

CSS Modules

No configuration is needed to support CSS Modules. To enable CSS Modules for a file, rename the file to have the extension
.module.css.

You can learn more about Next.js’ CSS Module support here.

Customizing Plugins

Warning: When you define a custom PostCSS configuration file, Next.js completely disables the default behavior. Be sure to
manually configure all the features you need compiled, including Autoprefixer. You also need to install any plugins included in
your custom configuration manually, i.e. npm install postcss-flexbugs-fixes postcss-preset-env.

To customize the PostCSS configuration, create a postcss.config.json file in the root of your project.

This is the default configuration used by Next.js:
postcss.config.json (json)

{
  "plugins": [

file:///docs/pages/building-your-application/styling
https://github.com/postcss/autoprefixer
https://github.com/philipwalton/flexbugs
https://www.w3.org/TR/css-flexbox-1/
https://developer.mozilla.org/docs/Web/CSS/all
https://developer.mozilla.org/docs/Web/CSS/break-after
https://developer.mozilla.org/docs/Web/CSS/font-variant
https://developer.mozilla.org/docs/Web/CSS/gap
https://developer.mozilla.org/docs/Web/CSS/Media_Queries/Using_media_queries#Syntax_improvements_in_Level_4
https://www.w3.org/TR/css-grid-1/
https://developer.mozilla.org/docs/Web/CSS/var
https://developer.mozilla.org/docs/Web/CSS/grid
https://developer.mozilla.org/docs/Web/CSS/grid
https://github.com/MadLittleMods/postcss-css-variables#caveats
https://sass-lang.com/documentation/variables
https://sass-lang.com/
https://github.com/postcss/autoprefixer
https://github.com/browserslist/browserslist
https://browsersl.ist/?q=%253E0.3%2525%252C+not+ie+11%252C+not+dead%252C+not+op_mini+all
file:///docs/pages/building-your-application/styling
https://github.com/postcss/autoprefixer


    "postcss-flexbugs-fixes",
    [
      "postcss-preset-env",
      {
        "autoprefixer": {
          "flexbox": "no-2009"
        },
        "stage": 3,
        "features": {
          "custom-properties": false
        }
      }
    ]
  ]
}

Good to know: Next.js also allows the file to be named .postcssrc.json, or, to be read from the postcss key in
package.json.

It is also possible to configure PostCSS with a postcss.config.js file, which is useful when you want to conditionally include plugins
based on environment:

postcss.config.js (js)

module.exports = {
  plugins:
    process.env.NODE_ENV === 'production'
      ? [
          'postcss-flexbugs-fixes',
          [
            'postcss-preset-env',
            {
              autoprefixer: {
                flexbox: 'no-2009',
              },
              stage: 3,
              features: {
                'custom-properties': false,
              },
            },
          ],
        ]
      : [
          // No transformations in development
        ],
}

Good to know: Next.js also allows the file to be named .postcssrc.js.

Do not use require()require() to import the PostCSS Plugins. Plugins must be provided as strings.

Good to know: If your postcss.config.js needs to support other non-Next.js tools in the same project, you must use the
interoperable object-based format instead:

js module.exports = { plugins: { 'postcss-flexbugs-fixes': {}, 'postcss-preset-env': {
autoprefixer: { flexbox: 'no-2009', }, stage: 3, features: { 'custom-properties': false, }, }, }, }



4.1.6.10 - Custom Server
Documentation path: /03-pages/01-building-your-application/06-configuring/10-custom-server

Description: Start a Next.js app programmatically using a custom server.

Examples

By default, Next.js includes its own server with next start. If you have an existing backend, you can still use it with Next.js (this is not
a custom server). A custom Next.js server allows you to start a server 100% programmatically in order to use custom server patterns.
Most of the time, you will not need this - but it’s available for complete customization.

Good to know:

Before deciding to use a custom server, please keep in mind that it should only be used when the integrated router of
Next.js can’t meet your app requirements. A custom server will remove important performance optimizations, like
serverless functions and Automatic Static Optimization.
A custom server cannot be deployed on Vercel.
Standalone output mode, does not trace custom server files and this mode outputs a separate minimal server.js file
instead.

Take a look at the following example of a custom server:
server.js (js)

const { createServer } = require('http')
const { parse } = require('url')
const next = require('next')

const dev = process.env.NODE_ENV !== 'production'
const hostname = 'localhost'
const port = 3000
// when using middleware `hostname` and `port` must be provided below
const app = next({ dev, hostname, port })
const handle = app.getRequestHandler()

app.prepare().then(() => {
  createServer(async (req, res) => {
    try {
      // Be sure to pass `true` as the second argument to `url.parse`.
      // This tells it to parse the query portion of the URL.
      const parsedUrl = parse(req.url, true)
      const { pathname, query } = parsedUrl

      if (pathname === '/a') {
        await app.render(req, res, '/a', query)
      } else if (pathname === '/b') {
        await app.render(req, res, '/b', query)
      } else {
        await handle(req, res, parsedUrl)
      }
    } catch (err) {
      console.error('Error occurred handling', req.url, err)
      res.statusCode = 500
      res.end('internal server error')
    }
  })
    .once('error', (err) => {
      console.error(err)
      process.exit(1)
    })
    .listen(port, () => {
      console.log(`> Ready on http://${hostname}:${port}`)
    })
})

server.js doesn’t go through babel or webpack. Make sure the syntax and sources this file requires are compatible with the
current node version you are running.

To run the custom server you’ll need to update the scripts in package.json like so:

package.json (json)

{
  "scripts": {
    "dev": "node server.js",

file:///docs/pages/building-your-application/rendering/automatic-static-optimization
https://vercel.com/solutions/nextjs


    "build": "next build",
    "start": "NODE_ENV=production node server.js"
  }
}

The custom server uses the following import to connect the server with the Next.js application:

const next = require('next')
const app = next({})

The above next import is a function that receives an object with the following options:

Option Type Description

conf Object The same object you would use in next.config.js. Defaults to {}

customServer Boolean (Optional) Set to false when the server was created by Next.js

dev Boolean (Optional) Whether or not to launch Next.js in dev mode. Defaults to false

dir String (Optional) Location of the Next.js project. Defaults to '.'

quiet Boolean (Optional) Hide error messages containing server information. Defaults to false

hostname String (Optional) The hostname the server is running behind

port Number (Optional) The port the server is running behind

httpServer node:http#Server (Optional) The HTTP Server that Next.js is running behind

The returned app can then be used to let Next.js handle requests as required.

Disabling file-system routing

By default, Next will serve each file in the pages folder under a pathname matching the filename. If your project uses a custom server,
this behavior may result in the same content being served from multiple paths, which can present problems with SEO and UX.

To disable this behavior and prevent routing based on files in pages, open next.config.js and disable the
useFileSystemPublicRoutes config:

next.config.js (js)

module.exports = {
  useFileSystemPublicRoutes: false,
}

Note that useFileSystemPublicRoutes disables filename routes from SSR; client-side routing may still access those paths.
When using this option, you should guard against navigation to routes you do not want programmatically.

You may also wish to configure the client-side router to disallow client-side redirects to filename routes; for that refer to
router.beforePopState.

file:///docs/pages/api-reference/next-config-js
file:///docs/pages/api-reference/functions/use-router#routerbeforepopstate


4.1.6.11 - Draft Mode
Documentation path: /03-pages/01-building-your-application/06-configuring/11-draft-mode

Description: Next.js has draft mode to toggle between static and dynamic pages. You can learn how it works with Pages Router.

In the Pages documentation and the Data Fetching documentation, we talked about how to pre-render a page at build time (Static
Generation) using getStaticProps and getStaticPaths.

Static Generation is useful when your pages fetch data from a headless CMS. However, it’s not ideal when you’re writing a draft on your
headless CMS and want to view the draft immediately on your page. You’d want Next.js to render these pages at request time instead
of build time and fetch the draft content instead of the published content. You’d want Next.js to bypass Static Generation only for this
specific case.

Next.js has a feature called Draft Mode which solves this problem. Here are instructions on how to use it.

Step 1: Create and access the API route

Take a look at the API Routes documentation first if you’re not familiar with Next.js API Routes.

First, create the API route. It can have any name - e.g. pages/api/draft.ts
In this API route, you need to call setDraftMode on the response object.

export default function handler(req, res) {
  // ...
  res.setDraftMode({ enable: true })
  // ...
}

This will set a cookie to enable draft mode. Subsequent requests containing this cookie will trigger Draft Mode changing the behavior
for statically generated pages (more on this later).

You can test this manually by creating an API route like below and accessing it from your browser manually:
pages/api/draft.ts (ts)

// simple example for testing it manually from your browser.
export default function handler(req, res) {
  res.setDraftMode({ enable: true })
  res.end('Draft mode is enabled')
}

If you open your browser’s developer tools and visit /api/draft, you’ll notice a Set-Cookie response header with a cookie named
__prerender_bypass.

Securely accessing it from your Headless CMS

In practice, you’d want to call this API route securely from your headless CMS. The specific steps will vary depending on which headless
CMS you’re using, but here are some common steps you could take.

These steps assume that the headless CMS you’re using supports setting custom draft URLs. If it doesn’t, you can still use this method
to secure your draft URLs, but you’ll need to construct and access the draft URL manually.

First, you should create a secret token string using a token generator of your choice. This secret will only be known by your Next.js
app and your headless CMS. This secret prevents people who don’t have access to your CMS from accessing draft URLs.

Second, if your headless CMS supports setting custom draft URLs, specify the following as the draft URL. This assumes that your draft
API route is located at pages/api/draft.ts.

Terminal (bash)

https://<your-site>/api/draft?secret=<token>&slug=<path>

<your-site> should be your deployment domain.
<token> should be replaced with the secret token you generated.
<path> should be the path for the page that you want to view. If you want to view /posts/foo, then you should use
&slug=/posts/foo.

Your headless CMS might allow you to include a variable in the draft URL so that <path> can be set dynamically based on the CMS’s
data like so: &slug=/posts/{entry.fields.slug}
Finally, in the draft API route:

file:///docs/pages/building-your-application/routing/pages-and-layouts
file:///docs/pages/building-your-application/data-fetching
file:///docs/pages/building-your-application/routing/api-routes


- Check that the secret matches and that the slugslug parameter exists (if not, the
request should fail).

Call res.setDraftMode.
Then redirect the browser to the path specified by slug. (The following example uses a 307 redirect).

export default async (req, res) => {
  // Check the secret and next parameters
  // This secret should only be known to this API route and the CMS
  if (req.query.secret !== 'MY_SECRET_TOKEN' || !req.query.slug) {
    return res.status(401).json({ message: 'Invalid token' })
  }

  // Fetch the headless CMS to check if the provided `slug` exists
  // getPostBySlug would implement the required fetching logic to the headless CMS
  const post = await getPostBySlug(req.query.slug)

  // If the slug doesn't exist prevent draft mode from being enabled
  if (!post) {
    return res.status(401).json({ message: 'Invalid slug' })
  }

  // Enable Draft Mode by setting the cookie
  res.setDraftMode({ enable: true })

  // Redirect to the path from the fetched post
  // We don't redirect to req.query.slug as that might lead to open redirect vulnerabilities
  res.redirect(post.slug)
}

If it succeeds, then the browser will be redirected to the path you want to view with the draft mode cookie.

Step 2: Update getStaticPropsgetStaticProps
The next step is to update getStaticProps to support draft mode.

If you request a page which has getStaticProps with the cookie set (via res.setDraftMode), then getStaticProps will be called at
request time (instead of at build time).

Furthermore, it will be called with a context object where context.draftMode will be true.

export async function getStaticProps(context) {
  if (context.draftMode) {
    // dynamic data
  }
}

We used res.setDraftMode in the draft API route, so context.draftMode will be true.

If you’re also using getStaticPaths, then context.params will also be available.

Fetch draft data

You can update getStaticProps to fetch different data based on context.draftMode.

For example, your headless CMS might have a different API endpoint for draft posts. If so, you can modify the API endpoint URL like
below:

export async function getStaticProps(context) {
  const url = context.draftMode
    ? 'https://draft.example.com'
    : 'https://production.example.com'
  const res = await fetch(url)
  // ...
}

That’s it! If you access the draft API route (with secret and slug) from your headless CMS or manually, you should now be able to see
the draft content. And if you update your draft without publishing, you should be able to view the draft.

Set this as the draft URL on your headless CMS or access manually, and you should be able to see the draft.
Terminal (bash)

https://<your-site>/api/draft?secret=<token>&slug=<path>

https://developer.mozilla.org/docs/Web/HTTP/Status/307


More Details

Clear the Draft Mode cookie

By default, the Draft Mode session ends when the browser is closed.

To clear the Draft Mode cookie manually, create an API route that calls setDraftMode({ enable: false }):

pages/api/disable-draft.ts (ts)

export default function handler(req, res) {
  res.setDraftMode({ enable: false })
}

Then, send a request to /api/disable-draft to invoke the API Route. If calling this route using next/link, you must pass
prefetch={false} to prevent accidentally deleting the cookie on prefetch.

Works with getServerSidePropsgetServerSideProps

Draft Mode works with getServerSideProps, and is available as a draftMode key in the context object.

Good to know: You shouldn’t set the Cache-Control header when using Draft Mode because it cannot be bypassed. Instead,
we recommend using ISR.

Works with API Routes

API Routes will have access to draftMode on the request object. For example:

export default function myApiRoute(req, res) {
  if (req.draftMode) {
    // get draft data
  }
}

Unique per next buildnext build

A new bypass cookie value will be generated each time you run next build.

This ensures that the bypass cookie can’t be guessed.

Good to know: To test Draft Mode locally over HTTP, your browser will need to allow third-party cookies and local storage
access.

file:///docs/pages/api-reference/components/link
file:///docs/pages/api-reference/functions/get-server-side-props#context-parameter
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration


4.1.6.12 - Error Handling
Documentation path: /03-pages/01-building-your-application/06-configuring/12-error-handling

Description: Handle errors in your Next.js app.

This documentation explains how you can handle development, server-side, and client-side errors.

Handling Errors in Development

When there is a runtime error during the development phase of your Next.js application, you will encounter an overlay. It is a modal
that covers the webpage. It is only visible when the development server runs using next dev via pnpm dev, npm run dev, yarn dev,
or bun dev and will not be shown in production. Fixing the error will automatically dismiss the overlay.

Here is an example of an overlay:

{/ TODO UPDATE SCREENSHOT /} 

Handling Server Errors

Next.js provides a static 500 page by default to handle server-side errors that occur in your application. You can also customize this
page by creating a pages/500.js file.

Having a 500 page in your application does not show specific errors to the app user.

You can also use 404 page to handle specific runtime error like file not found.

Handling Client Errors

React Error Boundaries is a graceful way to handle a JavaScript error on the client so that the other parts of the application continue
working. In addition to preventing the page from crashing, it allows you to provide a custom fallback component and even log error
information.

To use Error Boundaries for your Next.js application, you must create a class component ErrorBoundary and wrap the Component
prop in the pages/_app.js file. This component will be responsible to:

Render a fallback UI after an error is thrown
Provide a way to reset the Application’s state
Log error information

You can create an ErrorBoundary class component by extending React.Component. For example:

class ErrorBoundary extends React.Component {
  constructor(props) {
    super(props)

    // Define a state variable to track whether is an error or not
    this.state = { hasError: false }
  }
  static getDerivedStateFromError(error) {
    // Update state so the next render will show the fallback UI

file:///docs/pages/building-your-application/routing/custom-error#customizing-the-500-page
file:///docs/pages/building-your-application/routing/custom-error#404-page
https://react.dev/reference/react/Component#catching-rendering-errors-with-an-error-boundary


    return { hasError: true }
  }
  componentDidCatch(error, errorInfo) {
    // You can use your own error logging service here
    console.log({ error, errorInfo })
  }
  render() {
    // Check if the error is thrown
    if (this.state.hasError) {
      // You can render any custom fallback UI
      return (
        <div>
          <h2>Oops, there is an error!</h2>
          <button
            type="button"
            onClick={() => this.setState({ hasError: false })}
          >
            Try again?
          </button>
        </div>
      )
    }

    // Return children components in case of no error

    return this.props.children
  }
}

export default ErrorBoundary

The ErrorBoundary component keeps track of an hasError state. The value of this state variable is a boolean. When the value of
hasError is true, then the ErrorBoundary component will render a fallback UI. Otherwise, it will render the children components.

After creating an ErrorBoundary component, import it in the pages/_app.js file to wrap the Component prop in your Next.js
application.

// Import the ErrorBoundary component
import ErrorBoundary from '../components/ErrorBoundary'

function MyApp({ Component, pageProps }) {
  return (
    // Wrap the Component prop with ErrorBoundary component
    <ErrorBoundary>
      <Component {...pageProps} />
    </ErrorBoundary>
  )
}

export default MyApp

You can learn more about Error Boundaries in React’s documentation.

Reporting Errors

To monitor client errors, use a service like Sentry, Bugsnag or Datadog.

https://react.dev/reference/react/Component#catching-rendering-errors-with-an-error-boundary
https://github.com/vercel/next.js/tree/canary/examples/with-sentry


4.1.6.13 - Debugging
Documentation path: /03-pages/01-building-your-application/06-configuring/13-debugging

Description: Learn how to debug your Next.js application with VS Code or Chrome DevTools.

This documentation explains how you can debug your Next.js frontend and backend code with full source maps support using either
the VS Code debugger or Chrome DevTools.

Any debugger that can attach to Node.js can also be used to debug a Next.js application. You can find more details in the Node.js
Debugging Guide.

Debugging with VS Code

Create a file named .vscode/launch.json at the root of your project with the following content:

launch.json (json)

{
  "version": "0.2.0",
  "configurations": [
    {
      "name": "Next.js: debug server-side",
      "type": "node-terminal",
      "request": "launch",
      "command": "npm run dev"
    },
    {
      "name": "Next.js: debug client-side",
      "type": "chrome",
      "request": "launch",
      "url": "http://localhost:3000"
    },
    {
      "name": "Next.js: debug full stack",
      "type": "node",
      "request": "launch",
      "program": "${workspaceFolder}/node_modules/.bin/next",
      "runtimeArgs": ["--inspect"],
      "skipFiles": ["<node_internals>/**"],
      "serverReadyAction": {
        "action": "debugWithEdge",
        "killOnServerStop": true,
        "pattern": "- Local:.+(https?://.+)",
        "uriFormat": "%s",
        "webRoot": "${workspaceFolder}"
      }
    }
  ]
}

npm run dev can be replaced with yarn dev if you’re using Yarn or pnpm dev if you’re using pnpm.

If you’re changing the port number your application starts on, replace the 3000 in http://localhost:3000 with the port you’re using
instead.

If you’re running Next.js from a directory other than root (for example, if you’re using Turborepo) then you need to add cwd to the
server-side and full stack debugging tasks. For example, "cwd": "${workspaceFolder}/apps/web".

Now go to the Debug panel (Ctrl+Shift+D on Windows/Linux, ⇧+⌘+D on macOS), select a launch configuration, then press F5 or
select Debug: Start Debugging from the Command Palette to start your debugging session.

Using the Debugger in Jetbrains WebStorm

Click the drop down menu listing the runtime configuration, and click Edit Configurations.... Create a Javascript Debug debug
configuration with http://localhost:3000 as the URL. Customize to your liking (e.g. Browser for debugging, store as project file),
and click OK. Run this debug configuration, and the selected browser should automatically open. At this point, you should have 2
applications in debug mode: the NextJS node application, and the client/ browser application.

Debugging with Chrome DevTools

Client-side code

https://code.visualstudio.com/docs/editor/debugging
https://developers.google.com/web/tools/chrome-devtools
https://nodejs.org/en/docs/guides/debugging-getting-started/
file:///docs/pages/api-reference/next-cli#development


Start your development server as usual by running next dev, npm run dev, or yarn dev. Once the server starts, open
http://localhost:3000 (or your alternate URL) in Chrome. Next, open Chrome’s Developer Tools (Ctrl+Shift+J on
Windows/Linux, ⌥+⌘+I on macOS), then go to the Sources tab.

Now, any time your client-side code reaches a debugger statement, code execution will pause and that file will appear in the debug
area. You can also press Ctrl+P on Windows/Linux or ⌘+P on macOS to search for a file and set breakpoints manually. Note that when
searching here, your source files will have paths starting with webpack://_N_E/./.

Server-side code

To debug server-side Next.js code with Chrome DevTools, you need to pass the --inspect flag to the underlying Node.js process:

Terminal (bash)

NODE_OPTIONS='--inspect' next dev

If you’re using npm run dev or yarn dev then you should update the dev script on your package.json:

package.json (json)

{
  "scripts": {
    "dev": "NODE_OPTIONS='--inspect' next dev"
  }
}

Launching the Next.js dev server with the --inspect flag will look something like this:

Terminal (bash)

Debugger listening on ws://127.0.0.1:9229/0cf90313-350d-4466-a748-cd60f4e47c95
For help, see: https://nodejs.org/en/docs/inspector
ready - started server on 0.0.0.0:3000, url: http://localhost:3000

Be aware that running NODE_OPTIONS='--inspect' npm run dev or NODE_OPTIONS='--inspect' yarn dev won’t work.
This would try to start multiple debuggers on the same port: one for the npm/yarn process and one for Next.js. You would then
get an error like Starting inspector on 127.0.0.1:9229 failed: address already in use in your console.

Once the server starts, open a new tab in Chrome and visit chrome://inspect, where you should see your Next.js application inside
the Remote Target section. Click inspect under your application to open a separate DevTools window, then go to the Sources tab.

Debugging server-side code here works much like debugging client-side code with Chrome DevTools, except that when you search for
files here with Ctrl+P or ⌘+P, your source files will have paths starting with webpack://{application-name}/./ (where
{application-name} will be replaced with the name of your application according to your package.json file).

Debugging on Windows

Windows users may run into an issue when using NODE_OPTIONS='--inspect' as that syntax is not supported on Windows platforms.
To get around this, install the cross-env package as a development dependency (-D with npm and yarn) and replace the dev script
with the following.

package.json (json)

{
  "scripts": {
    "dev": "cross-env NODE_OPTIONS='--inspect' next dev"
  }
}

cross-env will set the NODE_OPTIONS environment variable regardless of which platform you are on (including Mac, Linux, and
Windows) and allow you to debug consistently across devices and operating systems.

Good to know: Ensure Windows Defender is disabled on your machine. This external service will check every file read, which
has been reported to greatly increase Fast Refresh time with next dev. This is a known issue, not related to Next.js, but it does
affect Next.js development.

More information

To learn more about how to use a JavaScript debugger, take a look at the following documentation:

Node.js debugging in VS Code: Breakpoints
Chrome DevTools: Debug JavaScript

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/debugger
https://nodejs.org/api/cli.html#cli_inspect_host_port
https://www.npmjs.com/package/cross-env
https://code.visualstudio.com/docs/nodejs/nodejs-debugging#_breakpoints
https://developers.google.com/web/tools/chrome-devtools/javascript


4.1.6.14 - Preview Mode
Documentation path: /03-pages/01-building-your-application/06-configuring/14-preview-mode

Description: Next.js has the preview mode for statically generated pages. You can learn how it works here.

Note: This feature is superseded by Draft Mode.

Examples

In the Pages documentation and the Data Fetching documentation, we talked about how to pre-render a page at build time (Static
Generation) using getStaticProps and getStaticPaths.

Static Generation is useful when your pages fetch data from a headless CMS. However, it’s not ideal when you’re writing a draft on your
headless CMS and want to preview the draft immediately on your page. You’d want Next.js to render these pages at request time
instead of build time and fetch the draft content instead of the published content. You’d want Next.js to bypass Static Generation only
for this specific case.

Next.js has a feature called Preview Mode which solves this problem. Here are instructions on how to use it.

Step 1: Create and access a preview API route

Take a look at the API Routes documentation first if you’re not familiar with Next.js API Routes.

First, create a preview API route. It can have any name - e.g. pages/api/preview.js (or .ts if using TypeScript).

In this API route, you need to call setPreviewData on the response object. The argument for setPreviewData should be an object,
and this can be used by getStaticProps (more on this later). For now, we’ll use {}.

export default function handler(req, res) {
  // ...
  res.setPreviewData({})
  // ...
}

res.setPreviewData sets some cookies on the browser which turns on the preview mode. Any requests to Next.js containing these
cookies will be considered as the preview mode, and the behavior for statically generated pages will change (more on this later).

You can test this manually by creating an API route like below and accessing it from your browser manually:
pages/api/preview.js (js)

// simple example for testing it manually from your browser.
export default function handler(req, res) {
  res.setPreviewData({})
  res.end('Preview mode enabled')
}

If you open your browser’s developer tools and visit /api/preview, you’ll notice that the __prerender_bypass and
__next_preview_data cookies will be set on this request.

Securely accessing it from your Headless CMS

In practice, you’d want to call this API route securely from your headless CMS. The specific steps will vary depending on which headless
CMS you’re using, but here are some common steps you could take.

These steps assume that the headless CMS you’re using supports setting custom preview URLs. If it doesn’t, you can still use this
method to secure your preview URLs, but you’ll need to construct and access the preview URL manually.

First, you should create a secret token string using a token generator of your choice. This secret will only be known by your Next.js
app and your headless CMS. This secret prevents people who don’t have access to your CMS from accessing preview URLs.

Second, if your headless CMS supports setting custom preview URLs, specify the following as the preview URL. This assumes that your
preview API route is located at pages/api/preview.js.

Terminal (bash)

https://<your-site>/api/preview?secret=<token>&slug=<path>

<your-site> should be your deployment domain.
<token> should be replaced with the secret token you generated.
<path> should be the path for the page that you want to preview. If you want to preview /posts/foo, then you should use
&slug=/posts/foo.

file:///docs/pages/building-your-application/configuring/draft-mode
file:///docs/pages/building-your-application/routing/pages-and-layouts
file:///docs/pages/building-your-application/data-fetching
file:///docs/pages/building-your-application/routing/api-routes


Your headless CMS might allow you to include a variable in the preview URL so that <path> can be set dynamically based on the CMS’s
data like so: &slug=/posts/{entry.fields.slug}
Finally, in the preview API route:

- Check that the secret matches and that the slugslug parameter exists (if not, the
request should fail).

Call res.setPreviewData.
Then redirect the browser to the path specified by slug. (The following example uses a 307 redirect).

export default async (req, res) => {
  // Check the secret and next parameters
  // This secret should only be known to this API route and the CMS
  if (req.query.secret !== 'MY_SECRET_TOKEN' || !req.query.slug) {
    return res.status(401).json({ message: 'Invalid token' })
  }

  // Fetch the headless CMS to check if the provided `slug` exists
  // getPostBySlug would implement the required fetching logic to the headless CMS
  const post = await getPostBySlug(req.query.slug)

  // If the slug doesn't exist prevent preview mode from being enabled
  if (!post) {
    return res.status(401).json({ message: 'Invalid slug' })
  }

  // Enable Preview Mode by setting the cookies
  res.setPreviewData({})

  // Redirect to the path from the fetched post
  // We don't redirect to req.query.slug as that might lead to open redirect vulnerabilities
  res.redirect(post.slug)
}

If it succeeds, then the browser will be redirected to the path you want to preview with the preview mode cookies being set.

Step 2: Update getStaticPropsgetStaticProps
The next step is to update getStaticProps to support the preview mode.

If you request a page which has getStaticProps with the preview mode cookies set (via res.setPreviewData), then
getStaticProps will be called at request time (instead of at build time).

Furthermore, it will be called with a context object where:

context.preview will be true.
context.previewData will be the same as the argument used for setPreviewData.

export async function getStaticProps(context) {
  // If you request this page with the preview mode cookies set:
  //
  // - context.preview will be true
  // - context.previewData will be the same as
  //   the argument used for `setPreviewData`.
}

We used res.setPreviewData({}) in the preview API route, so context.previewData will be {}. You can use this to pass session
information from the preview API route to getStaticProps if necessary.

If you’re also using getStaticPaths, then context.params will also be available.

Fetch preview data

You can update getStaticProps to fetch different data based on context.preview and/or context.previewData.

For example, your headless CMS might have a different API endpoint for draft posts. If so, you can use context.preview to modify the
API endpoint URL like below:

export async function getStaticProps(context) {
  // If context.preview is true, append "/preview" to the API endpoint

https://developer.mozilla.org/docs/Web/HTTP/Status/307


  // to request draft data instead of published data. This will vary
  // based on which headless CMS you're using.
  const res = await fetch(`https://.../${context.preview ? 'preview' : ''}`)
  // ...
}

That’s it! If you access the preview API route (with secret and slug) from your headless CMS or manually, you should now be able to
see the preview content. And if you update your draft without publishing, you should be able to preview the draft.

Set this as the preview URL on your headless CMS or access manually, and you should be able to see the preview.
Terminal (bash)

https://<your-site>/api/preview?secret=<token>&slug=<path>

More Details

Good to know: during rendering next/router exposes an isPreview flag, see the router object docs for more info.

Specify the Preview Mode duration

setPreviewData takes an optional second parameter which should be an options object. It accepts the following keys:

maxAge: Specifies the number (in seconds) for the preview session to last for.
path: Specifies the path the cookie should be applied under. Defaults to / enabling preview mode for all paths.

setPreviewData(data, {
  maxAge: 60 * 60, // The preview mode cookies expire in 1 hour
  path: '/about', // The preview mode cookies apply to paths with /about
})

Clear the Preview Mode cookies

By default, no expiration date is set for Preview Mode cookies, so the preview session ends when the browser is closed.

To clear the Preview Mode cookies manually, create an API route that calls clearPreviewData():

pages/api/clear-preview-mode-cookies.js (js)

export default function handler(req, res) {
  res.clearPreviewData({})
}

Then, send a request to /api/clear-preview-mode-cookies to invoke the API Route. If calling this route using next/link, you
must pass prefetch={false} to prevent calling clearPreviewData during link prefetching.

If a path was specified in the setPreviewData call, you must pass the same path to clearPreviewData:

pages/api/clear-preview-mode-cookies.js (js)

export default function handler(req, res) {
  const { path } = req.query

  res.clearPreviewData({ path })
}

previewDatapreviewData  size limits

You can pass an object to setPreviewData and have it be available in getStaticProps. However, because the data will be stored in a
cookie, there’s a size limitation. Currently, preview data is limited to 2KB.

Works with getServerSidePropsgetServerSideProps

The preview mode works on getServerSideProps as well. It will also be available on the context object containing preview and
previewData.

Good to know: You shouldn’t set the Cache-Control header when using Preview Mode because it cannot be bypassed.
Instead, we recommend using ISR.

Works with API Routes

API Routes will have access to preview and previewData under the request object. For example:

file:///docs/pages/api-reference/functions/use-router#router-object
file:///docs/pages/api-reference/components/link
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration


export default function myApiRoute(req, res) {
  const isPreview = req.preview
  const previewData = req.previewData
  // ...
}

Unique per next buildnext build

Both the bypass cookie value and the private key for encrypting the previewData change when next build is completed. This
ensures that the bypass cookie can’t be guessed.

Good to know: To test Preview Mode locally over HTTP your browser will need to allow third-party cookies and local storage
access.



4.1.6.15 - Content Security Policy
Documentation path: /03-pages/01-building-your-application/06-configuring/15-content-security-policy

Description: Learn how to set a Content Security Policy (CSP) for your Next.js application.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.7 - Testing
Documentation path: /03-pages/01-building-your-application/07-testing/index

Description: Learn how to set up Next.js with three commonly used testing tools — Cypress, Playwright, Vitest, and Jest.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.7.1 - Setting up Vitest with Next.js
Documentation path: /03-pages/01-building-your-application/07-testing/01-vitest

Description: Learn how to set up Next.js with Vitest and React Testing Library - two popular unit testing libraries.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.7.2 - Setting up Jest with Next.js
Documentation path: /03-pages/01-building-your-application/07-testing/02-jest

Description: Learn how to set up Next.js with Jest for Unit Testing.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.7.3 - Setting up Playwright with Next.js
Documentation path: /03-pages/01-building-your-application/07-testing/03-playwright

Description: Learn how to set up Next.js with Playwright for End-to-End (E2E) and Integration testing.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.7.4 - Setting up Cypress with Next.js
Documentation path: /03-pages/01-building-your-application/07-testing/04-cypress

Description: Learn how to set up Next.js with Cypress for End-to-End (E2E) and Component Testing.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.8 - Authentication
Documentation path: /03-pages/01-building-your-application/08-authentication/index

Description: Learn how to implement authentication in Next.js, covering best practices, securing routes, authorization techniques, and
session management.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.9 - Deploying
Documentation path: /03-pages/01-building-your-application/09-deploying/index

Description: Learn how to deploy your Next.js app to production, either managed or self-hosted.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.9.1 - Production Checklist
Documentation path: /03-pages/01-building-your-application/09-deploying/01-production-checklist

Description: Recommendations to ensure the best performance and user experience before taking your Next.js application to
production.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.9.2 - Static Exports
Documentation path: /03-pages/01-building-your-application/09-deploying/02-static-exports

Description: Next.js enables starting as a static site or Single-Page Application (SPA), then later optionally upgrading to use features
that require a server.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.9.3 - Multi Zones
Documentation path: /03-pages/01-building-your-application/09-deploying/03-multi-zones

Description: Learn how to use multi zones to deploy multiple Next.js apps as a single app.

Examples
- [With Zones](https://github.com/vercel/next.js/tree/canary/examples/with-zones)

A zone is a single deployment of a Next.js app. You can have multiple zones and merge them as a single app.

For example, let’s say you have the following apps:

An app for serving /blog/**
Another app for serving all other pages

With multi zones support, you can merge both these apps into a single one allowing your customers to browse it using a single URL, but
you can develop and deploy both apps independently.

How to define a zone

There are no zone related APIs. You only need to do the following:

Make sure to keep only the pages you need in your app, meaning that an app can’t have pages from another app, if app A has
/blog then app B shouldn’t have it too.
Make sure to configure a basePath to avoid conflicts with pages and static files.

How to merge zones

You can merge zones using rewrites in one of the apps or any HTTP proxy.

For Next.js on Vercel applications, you can use a monorepo to deploy both apps with a single git push.

file:///docs/app/api-reference/next-config-js/basePath
file:///docs/pages/api-reference/next-config-js/rewrites
https://vercel.com?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://vercel.com/blog/monorepos-are-changing-how-teams-build-software?utm_source=next-site&utm_medium=docs&utm_campaign=next-website


4.1.9.4 - Continuous Integration (CI) Build Caching
Documentation path: /03-pages/01-building-your-application/09-deploying/04-ci-build-caching

Description: Learn how to configure CI to cache Next.js builds

To improve build performance, Next.js saves a cache to .next/cache that is shared between builds.

To take advantage of this cache in Continuous Integration (CI) environments, your CI workflow will need to be configured to correctly
persist the cache between builds.

If your CI is not configured to persist .next/cache between builds, you may see a No Cache Detected error.

Here are some example cache configurations for common CI providers:

Vercel

Next.js caching is automatically configured for you. There’s no action required on your part.

CircleCI

Edit your save_cache step in .circleci/config.yml to include .next/cache:

steps:
  - save_cache:
      key: dependency-cache-{{ checksum "yarn.lock" }}
      paths:
        - ./node_modules
        - ./.next/cache

If you do not have a save_cache key, please follow CircleCI’s documentation on setting up build caching.

Travis CI

Add or merge the following into your .travis.yml:

cache:
  directories:
    - $HOME/.cache/yarn
    - node_modules
    - .next/cache

GitLab CI

Add or merge the following into your .gitlab-ci.yml:

cache:
  key: ${CI_COMMIT_REF_SLUG}
  paths:
    - node_modules/
    - .next/cache/

Netlify CI

Use Netlify Plugins with @netlify/plugin-nextjs.

AWS CodeBuild

Add (or merge in) the following to your buildspec.yml:

cache:
  paths:
    - 'node_modules/**/*' # Cache `node_modules` for faster `yarn` or `npm i`
    - '.next/cache/**/*' # Cache Next.js for faster application rebuilds

GitHub Actions

file:///docs/messages/no-cache
https://circleci.com/docs/2.0/caching/
https://www.netlify.com/products/build/plugins/
https://www.npmjs.com/package/@netlify/plugin-nextjs


Using GitHub’s actions/cache, add the following step in your workflow file:

uses: actions/cache@v4
with:
  # See here for caching with `yarn` https://github.com/actions/cache/blob/main/examples.md#node---yarn or you can leverage caching with actions/setup-node https://github.com/actions/setup-node
  path: |
    ~/.npm
    ${{ github.workspace }}/.next/cache
  # Generate a new cache whenever packages or source files change.
  key: ${{ runner.os }}-nextjs-${{ hashFiles('**/package-lock.json') }}-${{ hashFiles('**/*.js', '**/*.jsx', '**/*.ts', '**/*.tsx') }}
  # If source files changed but packages didn't, rebuild from a prior cache.
  restore-keys: |
    ${{ runner.os }}-nextjs-${{ hashFiles('**/package-lock.json') }}-

Bitbucket Pipelines

Add or merge the following into your bitbucket-pipelines.yml at the top level (same level as pipelines):

definitions:
  caches:
    nextcache: .next/cache

Then reference it in the caches section of your pipeline’s step:

- step:
    name: your_step_name
    caches:
      - node
      - nextcache

Heroku

Using Heroku’s custom cache, add a cacheDirectories array in your top-level package.json:

"cacheDirectories": [".next/cache"]

Azure Pipelines

Using Azure Pipelines’ Cache task, add the following task to your pipeline yaml file somewhere prior to the task that executes next
build:

- task: Cache@2
  displayName: 'Cache .next/cache'
  inputs:
    key: next | $(Agent.OS) | yarn.lock
    path: '$(System.DefaultWorkingDirectory)/.next/cache'

Jenkins (Pipeline)

Using Jenkins’ Job Cacher plugin, add the following build step to your Jenkinsfile where you would normally run next build or npm
install:

stage("Restore npm packages") {
    steps {
        // Writes lock-file to cache based on the GIT_COMMIT hash
        writeFile file: "next-lock.cache", text: "$GIT_COMMIT"

        cache(caches: [
            arbitraryFileCache(
                path: "node_modules",
                includes: "**/*",
                cacheValidityDecidingFile: "package-lock.json"
            )
        ]) {
            sh "npm install"
        }
    }
}
stage("Build") {
    steps {
        // Writes lock-file to cache based on the GIT_COMMIT hash

https://github.com/actions/cache
https://devcenter.heroku.com/articles/nodejs-support#custom-caching
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/utility/cache
https://www.jenkins.io/doc/pipeline/steps/jobcacher/


        writeFile file: "next-lock.cache", text: "$GIT_COMMIT"

        cache(caches: [
            arbitraryFileCache(
                path: ".next/cache",
                includes: "**/*",
                cacheValidityDecidingFile: "next-lock.cache"
            )
        ]) {
            // aka `next build`
            sh "npm run build"
        }
    }
}



4.1.10 - Upgrading
Documentation path: /03-pages/01-building-your-application/10-upgrading/index

Description: Learn how to upgrade to the latest versions of Next.js.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.10.1 - Codemods
Documentation path: /03-pages/01-building-your-application/10-upgrading/01-codemods

Description: Use codemods to upgrade your Next.js codebase when new features are released.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.10.2 - From Pages to App
Documentation path: /03-pages/01-building-your-application/10-upgrading/02-app-router-migration

Description: Learn how to upgrade your existing Next.js application from the Pages Router to the App Router.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.10.3 - Migrating from Vite
Documentation path: /03-pages/01-building-your-application/10-upgrading/03-from-vite

Description: Learn how to migrate your existing React application from Vite to Next.js.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.10.4 - Migrating from Create React App
Documentation path: /03-pages/01-building-your-application/10-upgrading/04-from-create-react-app

Description: Learn how to migrate your existing React application from Create React App to Next.js.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.10.5 - Version 14
Documentation path: /03-pages/01-building-your-application/10-upgrading/05-version-14

Description: Upgrade your Next.js Application from Version 13 to 14.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.1.10.6 - Version 13
Documentation path: /03-pages/01-building-your-application/10-upgrading/06-version-13

Description: Upgrade your Next.js Application from Version 12 to 13.

Upgrading from 12 to 13

To update to Next.js version 13, run the following command using your preferred package manager:
Terminal (bash)

npm i next@13 react@latest react-dom@latest eslint-config-next@13

Terminal (bash)

yarn add next@13 react@latest react-dom@latest eslint-config-next@13

Terminal (bash)

pnpm i next@13 react@latest react-dom@latest eslint-config-next@13

Terminal (bash)

bun add next@13 react@latest react-dom@latest eslint-config-next@13

Good to know: If you are using TypeScript, ensure you also upgrade @types/react and @types/react-dom to their latest
versions.

v13 Summary

The Supported Browsers have been changed to drop Internet Explorer and target modern browsers.
The minimum Node.js version has been bumped from 12.22.0 to 16.14.0, since 12.x and 14.x have reached end-of-life.
The minimum React version has been bumped from 17.0.2 to 18.2.0.
The swcMinify configuration property was changed from false to true. See Next.js Compiler for more info.
The next/image import was renamed to next/legacy/image. The next/future/image import was renamed to next/image. A
codemod is available to safely and automatically rename your imports.
The next/link child can no longer be <a>. Add the legacyBehavior prop to use the legacy behavior or remove the <a> to
upgrade. A codemod is available to automatically upgrade your code.
The target configuration property has been removed and superseded by Output File Tracing.

Migrating shared features

Next.js 13 introduces a new app directory with new features and conventions. However, upgrading to Next.js 13 does not require using
the new app directory.

You can continue using pages with new features that work in both directories, such as the updated Image component, Link component,
Script component, and Font optimization.

<Image/><Image/>  Component

Next.js 12 introduced many improvements to the Image Component with a temporary import: next/future/image. These
improvements included less client-side JavaScript, easier ways to extend and style images, better accessibility, and native browser lazy
loading.

Starting in Next.js 13, this new behavior is now the default for next/image.

There are two codemods to help you migrate to the new Image Component:

next-image-to-legacy-image: This codemod will safely and automatically rename next/image imports to next/legacy/image to
maintain the same behavior as Next.js 12. We recommend running this codemod to quickly update to Next.js 13 automatically.
next-image-experimental: After running the previous codemod, you can optionally run this experimental codemod to upgrade
next/legacy/image to the new next/image, which will remove unused props and add inline styles. Please note this codemod is
experimental and only covers static usage (such as <Image src={img} layout="responsive" />) but not dynamic usage (such
as <Image {...props} />).

Alternatively, you can manually update by following the migration guide and also see the legacy comparison.

file:///docs/architecture/supported-browsers
file:///docs/architecture/nextjs-compiler
file:///docs/pages/building-your-application/upgrading/codemods#next-image-to-legacy-image
file:///docs/pages/building-your-application/upgrading/codemods#new-link
file:///docs/pages/api-reference/next-config-js/output
file:///docs/app/building-your-application/routing
file:///docs/app/building-your-application/routing#the-app-router
file:///docs/pages/building-your-application/upgrading/codemods#next-image-to-legacy-image
file:///docs/pages/building-your-application/upgrading/codemods#next-image-experimental
file:///docs/pages/building-your-application/upgrading/codemods#next-image-experimental
file:///docs/pages/api-reference/components/image-legacy#comparison


<Link><Link>  Component

The <Link> Component no longer requires manually adding an <a> tag as a child. This behavior was added as an experimental option
in version 12.2 and is now the default. In Next.js 13, <Link> always renders <a> and allows you to forward props to the underlying tag.

For example:

import Link from 'next/link'

// Next.js 12: `<a>` has to be nested otherwise it's excluded
<Link href="/about">
  <a>About</a>
</Link>

// Next.js 13: `<Link>` always renders `<a>` under the hood
<Link href="/about">
  About
</Link>

To upgrade your links to Next.js 13, you can use the new-link codemod.

<Script><Script>  Component

The behavior of next/script has been updated to support both pages and app. If incrementally adopting app, read the upgrade
guide.

Font Optimization

Previously, Next.js helped you optimize fonts by inlining font CSS. Version 13 introduces the new next/font module which gives you
the ability to customize your font loading experience while still ensuring great performance and privacy.

See Optimizing Fonts to learn how to use next/font.

file:///docs/pages/api-reference/components/link
https://nextjs.org/blog/next-12-2
file:///docs/pages/building-your-application/upgrading/codemods#new-link
file:///docs/pages/api-reference/components/script
file:///docs/pages/building-your-application/upgrading
file:///docs/pages/building-your-application/optimizing/fonts
file:///docs/pages/building-your-application/optimizing/fonts


4.1.10.7 - Version 12
Documentation path: /03-pages/01-building-your-application/10-upgrading/07-version-12

Description: Upgrade your Next.js Application from Version 11 to Version 12.

To upgrade to version 12, run the following command:
Terminal (bash)

npm i next@12 react@17 react-dom@17 eslint-config-next@12

Terminal (bash)

yarn add next@12 react@17 react-dom@17 eslint-config-next@12

Terminal (bash)

pnpm up next@12 react@17 react-dom@17 eslint-config-next@12

Terminal (bash)

bun add next@12 react@17 react-dom@17 eslint-config-next@12

Good to know: If you are using TypeScript, ensure you also upgrade @types/react and @types/react-dom to their
corresponding versions.

Upgrading to 12.2

Middleware - If you were using Middleware prior to 12.2, please see the upgrade guide for more information.

Upgrading to 12.0

Minimum Node.js Version - The minimum Node.js version has been bumped from 12.0.0 to 12.22.0 which is the first version of
Node.js with native ES Modules support.

Minimum React Version - The minimum required React version is 17.0.2. To upgrade you can run the following command in the
terminal:

Terminal (bash)

npm install react@latest react-dom@latest

yarn add react@latest react-dom@latest

pnpm update react@latest react-dom@latest

bun add react@latest react-dom@latest

SWC replacing Babel

Next.js now uses the Rust-based compiler SWC to compile JavaScript/TypeScript. This new compiler is up to 17x faster than Babel when
compiling individual files and up to 5x faster Fast Refresh.

Next.js provides full backward compatibility with applications that have custom Babel configuration. All transformations that Next.js
handles by default like styled-jsx and tree-shaking of getStaticProps / getStaticPaths / getServerSideProps have been ported
to Rust.

When an application has a custom Babel configuration, Next.js will automatically opt-out of using SWC for compiling
JavaScript/Typescript and will fall back to using Babel in the same way that it was used in Next.js 11.

Many of the integrations with external libraries that currently require custom Babel transformations will be ported to Rust-based SWC
transforms in the near future. These include but are not limited to:

Styled Components
Emotion
Relay

In order to prioritize transforms that will help you adopt SWC, please provide your .babelrc on this feedback thread.

SWC replacing Terser for minification

You can opt-in to replacing Terser with SWC for minifying JavaScript up to 7x faster using a flag in next.config.js:

next.config.js (js)

file:///docs/messages/middleware-upgrade-guide
file:///docs/messages/middleware-upgrade-guide
https://nodejs.org/en/
https://react.dev/learn/add-react-to-an-existing-project
https://swc.rs/
file:///docs/pages/building-your-application/configuring/babel
https://github.com/vercel/next.js/discussions/30174


module.exports = {
  swcMinify: true,
}

Minification using SWC is an opt-in flag to ensure it can be tested against more real-world Next.js applications before it becomes the
default in Next.js 12.1. If you have feedback about minification, please leave it on this feedback thread.

Improvements to styled-jsx CSS parsing

On top of the Rust-based compiler we’ve implemented a new CSS parser based on the one used for the styled-jsx Babel transform. This
new parser has improved handling of CSS and now errors when invalid CSS is used that would previously slip through and cause
unexpected behavior.

Because of this change invalid CSS will throw an error during development and next build. This change only affects styled-jsx usage.

next/imagenext/image changed wrapping element

next/image now renders the <img> inside a <span> instead of <div>.

If your application has specific CSS targeting span such as .container span, upgrading to Next.js 12 might incorrectly match the
wrapping element inside the <Image> component. You can avoid this by restricting the selector to a specific class such as .container
span.item and updating the relevant component with that className, such as <span className="item" />.

If your application has specific CSS targeting the next/image <div> tag, for example .container div, it may not match anymore.
You can update the selector .container span, or preferably, add a new <div className="wrapper"> wrapping the <Image>
component and target that instead such as .container .wrapper.

The className prop is unchanged and will still be passed to the underlying <img> element.

See the documentation for more info.

HMR connection now uses a WebSocket

Previously, Next.js used a server-sent events connection to receive HMR events. Next.js 12 now uses a WebSocket connection.

In some cases when proxying requests to the Next.js dev server, you will need to ensure the upgrade request is handled correctly. For
example, in nginx you would need to add the following configuration:

location /_next/webpack-hmr {
    proxy_pass http://localhost:3000/_next/webpack-hmr;
    proxy_http_version 1.1;
    proxy_set_header Upgrade $http_upgrade;
    proxy_set_header Connection "upgrade";
}

If you are using Apache (2.x), you can add the following configuration to enable web sockets to the server. Review the port, host name
and server names.

<VirtualHost *:443>
 # ServerName yourwebsite.local
 ServerName "${WEBSITE_SERVER_NAME}"
 ProxyPass / http://localhost:3000/
 ProxyPassReverse / http://localhost:3000/
 # Next.js 12 uses websocket
 <Location /_next/webpack-hmr>
    RewriteEngine On
    RewriteCond %{QUERY_STRING} transport=websocket [NC]
    RewriteCond %{HTTP:Upgrade} websocket [NC]
    RewriteCond %{HTTP:Connection} upgrade [NC]
    RewriteRule /(.*) ws://localhost:3000/_next/webpack-hmr/$1 [P,L]
    ProxyPass ws://localhost:3000/_next/webpack-hmr retry=0 timeout=30
    ProxyPassReverse ws://localhost:3000/_next/webpack-hmr
 </Location>
</VirtualHost>

For custom servers, such as express, you may need to use app.all to ensure the request is passed correctly, for example:

app.all('/_next/webpack-hmr', (req, res) => {
  nextjsRequestHandler(req, res)
})

Webpack 4 support has been removed

If you are already using webpack 5 you can skip this section.

https://github.com/vercel/next.js/discussions/30237
file:///docs/pages/building-your-application/optimizing/images#styling
https://developer.mozilla.org/docs/Web/API/Server-sent_events


Next.js has adopted webpack 5 as the default for compilation in Next.js 11. As communicated in the webpack 5 upgrading
documentation Next.js 12 removes support for webpack 4.

If your application is still using webpack 4 using the opt-out flag, you will now see an error linking to the webpack 5 upgrading
documentation.

targettarget option deprecated

If you do not have target in next.config.js you can skip this section.

The target option has been deprecated in favor of built-in support for tracing what dependencies are needed to run a page.

During next build, Next.js will automatically trace each page and its dependencies to determine all of the files that are needed for
deploying a production version of your application.

If you are currently using the target option set to serverless, please read the documentation on how to leverage the new output.

file:///docs/messages/webpack5
file:///docs/messages/webpack5
file:///docs/pages/api-reference/next-config-js/output


4.1.10.8 - Version 11
Documentation path: /03-pages/01-building-your-application/10-upgrading/08-version-11

Description: Upgrade your Next.js Application from Version 10 to Version 11.

To upgrade to version 11, run the following command:
Terminal (bash)

npm i next@11 react@17 react-dom@17

Terminal (bash)

yarn add next@11 react@17 react-dom@17

Terminal (bash)

pnpm up next@11 react@17 react-dom@17

Terminal (bash)

bun add next@11 react@17 react-dom@17

Good to know: If you are using TypeScript, ensure you also upgrade @types/react and @types/react-dom to their
corresponding versions.

Webpack 5

Webpack 5 is now the default for all Next.js applications. If you did not have a custom webpack configuration, your application is
already using webpack 5. If you do have a custom webpack configuration, you can refer to the Next.js webpack 5 documentation for
upgrade guidance.

Cleaning the distDirdistDir  is now a default

The build output directory (defaults to .next) is now cleared by default except for the Next.js caches. You can refer to the cleaning
distDir RFC for more information.

If your application was relying on this behavior previously you can disable the new default behavior by adding the cleanDistDir:
false flag in next.config.js.

PORTPORT  is now supported for next devnext dev  and next startnext start

Next.js 11 supports the PORT environment variable to set the port the application runs on. Using -p/--port is still recommended but if
you were prohibited from using -p in any way you can now use PORT as an alternative:

Example:

PORT=4000 next start

next.config.jsnext.config.js  customization to import images

Next.js 11 supports static image imports with next/image. This new feature relies on being able to process image imports. If you
previously added the next-images or next-optimized-images packages you can either move to the new built-in support using
next/image or disable the feature:

next.config.js (js)

module.exports = {
  images: {
    disableStaticImages: true,
  },
}

Remove super.componentDidCatch()super.componentDidCatch()  from pages/_app.jspages/_app.js

The next/app component’s componentDidCatch was deprecated in Next.js 9 as it’s no longer needed and has since been a no-op. In
Next.js 11, it was removed.

If your pages/_app.js has a custom componentDidCatch method you can remove super.componentDidCatch as it is no longer
needed.

file:///docs/messages/webpack5
https://github.com/vercel/next.js/discussions/6009


Remove ContainerContainer  from pages/_app.jspages/_app.js

This export was deprecated in Next.js 9 as it’s no longer needed and has since been a no-op with a warning during development. In
Next.js 11 it was removed.

If your pages/_app.js imports Container from next/app you can remove Container as it was removed. Learn more in the
documentation.

Remove props.urlprops.url  usage from page components

This property was deprecated in Next.js 4 and has since shown a warning during development. With the introduction of
getStaticProps / getServerSideProps these methods already disallowed the usage of props.url. In Next.js 11, it was removed
completely.

You can learn more in the documentation.

Remove unsizedunsized  property on next/imagenext/image

The unsized property on next/image was deprecated in Next.js 10.0.1. You can use layout="fill" instead. In Next.js 11 unsized
was removed.

Remove modulesmodules  property on next/dynamicnext/dynamic

The modules and render option for next/dynamic were deprecated in Next.js 9.5. This was done in order to make the
next/dynamic API closer to React.lazy. In Next.js 11, the modules and render options were removed.

This option hasn’t been mentioned in the documentation since Next.js 8 so it’s less likely that your application is using it.

If your application does use modules and render you can refer to the documentation.

Remove Head.rewindHead.rewind

Head.rewind has been a no-op since Next.js 9.5, in Next.js 11 it was removed. You can safely remove your usage of Head.rewind.

Moment.js locales excluded by default

Moment.js includes translations for a lot of locales by default. Next.js now automatically excludes these locales by default to optimize
bundle size for applications using Moment.js.

To load a specific locale use this snippet:

import moment from 'moment'
import 'moment/locale/ja'

moment.locale('ja')

You can opt-out of this new default by adding excludeDefaultMomentLocales: false to next.config.js if you do not want the
new behavior, do note it’s highly recommended to not disable this new optimization as it significantly reduces the size of Moment.js.

Update usage of router.eventsrouter.events

In case you’re accessing router.events during rendering, in Next.js 11 router.events is no longer provided during pre-rendering.
Ensure you’re accessing router.events in useEffect:

useEffect(() => {
  const handleRouteChange = (url, { shallow }) => {
    console.log(
      `App is changing to ${url} ${
        shallow ? 'with' : 'without'
      } shallow routing`
    )
  }

  router.events.on('routeChangeStart', handleRouteChange)

  // If the component is unmounted, unsubscribe
  // from the event with the `off` method:
  return () => {
    router.events.off('routeChangeStart', handleRouteChange)
  }
}, [router])

file:///docs/messages/app-container-deprecated
file:///docs/messages/url-deprecated
file:///docs/messages/next-dynamic-modules


If your application uses router.router.events which was an internal property that was not public please make sure to use
router.events as well.

React 16 to 17

React 17 introduced a new JSX Transform that brings a long-time Next.js feature to the wider React ecosystem: Not having to import
React from 'react' when using JSX. When using React 17 Next.js will automatically use the new transform. This transform does not
make the React variable global, which was an unintended side-effect of the previous Next.js implementation. A codemod is available to
automatically fix cases where you accidentally used React without importing it.

Most applications already use the latest version of React, with Next.js 11 the minimum React version has been updated to 17.0.2.

To upgrade you can run the following command:

npm install react@latest react-dom@latest

Or using yarn:

yarn add react@latest react-dom@latest

https://reactjs.org/blog/2020/09/22/introducing-the-new-jsx-transform.html
file:///docs/pages/building-your-application/upgrading/codemods#add-missing-react-import


4.1.10.9 - Version 10
Documentation path: /03-pages/01-building-your-application/10-upgrading/09-version-10

Description: Upgrade your Next.js Application from Version 9 to Version 10.

There were no breaking changes between versions 9 and 10.

To upgrade to version 10, run the following command:
Terminal (bash)

npm i next@10

Terminal (bash)

yarn add next@10

Terminal (bash)

pnpm up next@10

Terminal (bash)

bun add next@10

Good to know: If you are using TypeScript, ensure you also upgrade @types/react and @types/react-dom to their
corresponding versions.



4.1.10.10 - Upgrading to Version 9
Documentation path: /03-pages/01-building-your-application/10-upgrading/10-version-9

Description: Upgrade your Next.js Application from Version 8 to Version 9.

To upgrade to version 9, run the following command:
Terminal (bash)

npm i next@9

Terminal (bash)

yarn add next@9

Terminal (bash)

pnpm up next@9

Terminal (bash)

bun add next@9

Good to know: If you are using TypeScript, ensure you also upgrade @types/react and @types/react-dom to their
corresponding versions.

Production Deployment on Vercel

If you previously configured routes in your vercel.json file for dynamic routes, these rules can be removed when leveraging Next.js
9’s new Dynamic Routing feature.

Next.js 9’s dynamic routes are automatically configured on Vercel and do not require any vercel.json customization.

You can read more about Dynamic Routing here.

Check your Custom App File (pages/_app.jspages/_app.js)

If you previously copied the Custom <App> example, you may be able to remove your getInitialProps.

Removing getInitialProps from pages/_app.js (when possible) is important to leverage new Next.js features!

The following getInitialProps does nothing and may be removed:

class MyApp extends App {
  // Remove me, I do nothing!
  static async getInitialProps({ Component, ctx }) {
    let pageProps = {}

    if (Component.getInitialProps) {
      pageProps = await Component.getInitialProps(ctx)
    }

    return { pageProps }
  }

  render() {
    // ... etc
  }
}

Breaking Changes

@zeit/next-typescript@zeit/next-typescript  is no longer necessary

Next.js will now ignore usage @zeit/next-typescript and warn you to remove it. Please remove this plugin from your
next.config.js.

Remove references to @zeit/next-typescript/babel from your custom .babelrc (if present).

The usage of fork-ts-checker-webpack-plugin should also be removed from your next.config.js.

TypeScript Definitions are published with the next package, so you need to uninstall @types/next as they would conflict.

file:///docs/pages/building-your-application/routing/dynamic-routes
https://vercel.com/
file:///docs/pages/building-your-application/routing/dynamic-routes
file:///docs/pages/building-your-application/routing/custom-app
https://github.com/Realytics/fork-ts-checker-webpack-plugin/issues


The following types are different:

This list was created by the community to help you upgrade, if you find other differences please send a pull-request to this list
to help other users.

From:

import { NextContext } from 'next'
import { NextAppContext, DefaultAppIProps } from 'next/app'
import { NextDocumentContext, DefaultDocumentIProps } from 'next/document'

to

import { NextPageContext } from 'next'
import { AppContext, AppInitialProps } from 'next/app'
import { DocumentContext, DocumentInitialProps } from 'next/document'

The configconfig  key is now an export on a page

You may no longer export a custom variable named config from a page (i.e. export { config } / export const config ...).
This exported variable is now used to specify page-level Next.js configuration like Opt-in AMP and API Route features.

You must rename a non-Next.js-purposed config export to something different.

next/dynamicnext/dynamic  no longer renders “loading…” by default while loading

Dynamic components will not render anything by default while loading. You can still customize this behavior by setting the loading
property:

import dynamic from 'next/dynamic'

const DynamicComponentWithCustomLoading = dynamic(
  () => import('../components/hello2'),
  {
    loading: () => <p>Loading</p>,
  }
)

withAmpwithAmp  has been removed in favor of an exported configuration object

Next.js now has the concept of page-level configuration, so the withAmp higher-order component has been removed for consistency.

This change can be automatically migrated by running the following commands in the root of your Next.js project:
Terminal (bash)

curl -L https://github.com/vercel/next-codemod/archive/master.tar.gz | tar -xz --strip=2 next-codemod-master/transforms/withamp-to-config.js

To perform this migration by hand, or view what the codemod will produce, see below:

Before

import { withAmp } from 'next/amp'

function Home() {
  return <h1>My AMP Page</h1>
}

export default withAmp(Home)
// or
export default withAmp(Home, { hybrid: true })

After

export default function Home() {
  return <h1>My AMP Page</h1>
}

export const config = {
  amp: true,
  // or
  amp: 'hybrid',
}

next exportnext export  no longer exports pages as index.htmlindex.html



Previously, exporting pages/about.js would result in out/about/index.html. This behavior has been changed to result in
out/about.html.

You can revert to the previous behavior by creating a next.config.js with the following content:

next.config.js (js)

module.exports = {
  trailingSlash: true,
}

pages/api/pages/api/  is treated differently

Pages in pages/api/ are now considered API Routes. Pages in this directory will no longer contain a client-side bundle.

Deprecated Features

next/dynamicnext/dynamic  has deprecated loading multiple modules at once

The ability to load multiple modules at once has been deprecated in next/dynamic to be closer to React’s implementation
(React.lazy and Suspense).

Updating code that relies on this behavior is relatively straightforward! We’ve provided an example of a before/after to help you
migrate your application:

Before

import dynamic from 'next/dynamic'

const HelloBundle = dynamic({
  modules: () => {
    const components = {
      Hello1: () => import('../components/hello1').then((m) => m.default),
      Hello2: () => import('../components/hello2').then((m) => m.default),
    }

    return components
  },
  render: (props, { Hello1, Hello2 }) => (
    <div>
      <h1>{props.title}</h1>
      <Hello1 />
      <Hello2 />
    </div>
  ),
})

function DynamicBundle() {
  return <HelloBundle title="Dynamic Bundle" />
}

export default DynamicBundle

After

import dynamic from 'next/dynamic'

const Hello1 = dynamic(() => import('../components/hello1'))
const Hello2 = dynamic(() => import('../components/hello2'))

function HelloBundle({ title }) {
  return (
    <div>
      <h1>{title}</h1>
      <Hello1 />
      <Hello2 />
    </div>
  )
}

function DynamicBundle() {
  return <HelloBundle title="Dynamic Bundle" />
}

export default DynamicBundle

https://nextjs.org/blog/next-9#api-routes


4.2 - API Reference
Documentation path: /03-pages/02-api-reference/index

Description: Next.js API Reference for the Pages Router.



4.2.1 - Components
Documentation path: /03-pages/02-api-reference/01-components/index

Description: API Reference for Next.js built-in components in the Pages Router.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.1.1 - Font Module
Documentation path: /03-pages/02-api-reference/01-components/font

Description: API Reference for the Font Module

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.1.2 - <Head>
Documentation path: /03-pages/02-api-reference/01-components/head

Description: Add custom elements to the `head` of your page with the built-in Head component.

Examples

We expose a built-in component for appending elements to the head of the page:

import Head from 'next/head'

function IndexPage() {
  return (
    <div>
      <Head>
        <title>My page title</title>
      </Head>
      <p>Hello world!</p>
    </div>
  )
}

export default IndexPage

Avoid duplicated tags

To avoid duplicate tags in your head you can use the key property, which will make sure the tag is only rendered once, as in the
following example:

import Head from 'next/head'

function IndexPage() {
  return (
    <div>
      <Head>
        <title>My page title</title>
        <meta property="og:title" content="My page title" key="title" />
      </Head>
      <Head>
        <meta property="og:title" content="My new title" key="title" />
      </Head>
      <p>Hello world!</p>
    </div>
  )
}

export default IndexPage

In this case only the second <meta property="og:title" /> is rendered. meta tags with duplicate key attributes are automatically
handled.

The contents of head get cleared upon unmounting the component, so make sure each page completely defines what it needs
in head, without making assumptions about what other pages added.

Use minimal nesting

title, meta or any other elements (e.g. script) need to be contained as direct children of the Head element, or wrapped into
maximum one level of <React.Fragment> or arrays—otherwise the tags won’t be correctly picked up on client-side navigations.

Use next/scriptnext/script for scripts

We recommend using next/script in your component instead of manually creating a <script> in next/head.

No htmlhtml or bodybody tags

You cannot use <Head> to set attributes on <html> or <body> tags. This will result in an next-head-count is missing error.
next/head can only handle tags inside the HTML <head> tag.

file:///docs/pages/building-your-application/optimizing/scripts


4.2.1.3 - <Image> (Legacy)
Documentation path: /03-pages/02-api-reference/01-components/image-legacy

Description: Backwards compatible Image Optimization with the Legacy Image component.

Examples

Starting with Next.js 13, the next/image component was rewritten to improve both the performance and developer experience. In
order to provide a backwards compatible upgrade solution, the old next/image was renamed to next/legacy/image.

View the new next/image API Reference

Comparison

Compared to next/legacy/image, the new next/image component has the following changes:

Removes <span> wrapper around <img> in favor of native computed aspect ratio
Adds support for canonical style prop
Removes layout prop in favor of style or className
Removes objectFit prop in favor of style or className
Removes objectPosition prop in favor of style or className
Removes IntersectionObserver implementation in favor of native lazy loading
Removes lazyBoundary prop since there is no native equivalent
Removes lazyRoot prop since there is no native equivalent
Removes loader config in favor of loader prop
Changed alt prop from optional to required
Changed onLoadingComplete callback to receive reference to <img> element

Required Props

The <Image /> component requires the following properties.

src

Must be one of the following:

A statically imported image file
A path string. This can be either an absolute external URL, or an internal path depending on the loader prop or loader
configuration.

When using an external URL, you must add it to remotePatterns in next.config.js.

width

The width property can represent either the rendered width or original width in pixels, depending on the layout and sizes
properties.

When using layout="intrinsic" or layout="fixed" the width property represents the rendered width in pixels, so it will affect
how large the image appears.

When using layout="responsive", layout="fill", the width property represents the original width in pixels, so it will only affect
the aspect ratio.

The width property is required, except for statically imported images, or those with layout="fill".

height

The height property can represent either the rendered height or original height in pixels, depending on the layout and sizes
properties.

When using layout="intrinsic" or layout="fixed" the height property represents the rendered height in pixels, so it will affect
how large the image appears.

When using layout="responsive", layout="fill", the height property represents the original height in pixels, so it will only affect
the aspect ratio.

The height property is required, except for statically imported images, or those with layout="fill".

file:///docs/pages/api-reference/components/image
https://caniuse.com/mdn-html_elements_img_aspect_ratio_computed_from_attributes
https://caniuse.com/loading-lazy-attr
file:///docs/pages/building-your-application/optimizing/images#local-images
file:///docs/pages/building-your-application/optimizing/images#local-images
file:///docs/pages/building-your-application/optimizing/images#local-images


Optional Props

The <Image /> component accepts a number of additional properties beyond those which are required. This section describes the
most commonly-used properties of the Image component. Find details about more rarely-used properties in the Advanced Props
section.

layout

The layout behavior of the image as the viewport changes size.

layoutlayout Behavior srcSetsrcSet sizessizes Has wrapper
and sizer

intrinsic
(default)

Scale down to fit width of container, up
to image size

1x, 2x (based on imageSizes) N/A yes

fixed Sized to width and height exactly 1x, 2x (based on imageSizes) N/A yes

responsive Scale to fit width of container
640w, 750w, … 2048w, 3840w (based on
imageSizes and deviceSizes)

100vw yes

fill Grow in both X and Y axes to fill
container

640w, 750w, … 2048w, 3840w (based on
imageSizes and deviceSizes)

100vw yes

Demo the intrinsic layout (default)
When intrinsic, the image will scale the dimensions down for smaller viewports, but maintain the original dimensions for larger
viewports.
Demo the fixed layout
When fixed, the image dimensions will not change as the viewport changes (no responsiveness) similar to the native img element.
Demo the responsive layout
When responsive, the image will scale the dimensions down for smaller viewports and scale up for larger viewports.
Ensure the parent element uses display: block in their stylesheet.
Demo the fill layout
When fill, the image will stretch both width and height to the dimensions of the parent element, provided the parent element is
relative.
This is usually paired with the objectFit property.
Ensure the parent element has position: relative in their stylesheet.
Demo background image

loader

A custom function used to resolve URLs. Setting the loader as a prop on the Image component overrides the default loader defined in
the images section of next.config.js.

A loader is a function returning a URL string for the image, given the following parameters:

src
width
quality

Here is an example of using a custom loader:

import Image from 'next/legacy/image'

const myLoader = ({ src, width, quality }) => {
  return `https://example.com/${src}?w=${width}&q=${quality || 75}`
}

const MyImage = (props) => {
  return (
    <Image
      loader={myLoader}
      src="me.png"
      alt="Picture of the author"
      width={500}
      height={500}
    />
  )

https://image-legacy-component.nextjs.gallery/layout-intrinsic
https://image-legacy-component.nextjs.gallery/layout-fixed
https://image-legacy-component.nextjs.gallery/layout-responsive
https://image-legacy-component.nextjs.gallery/layout-fill
https://image-legacy-component.nextjs.gallery/background


}

sizes

A string that provides information about how wide the image will be at different breakpoints. The value of sizes will greatly affect
performance for images using layout="responsive" or layout="fill". It will be ignored for images using layout="intrinsic"
or layout="fixed".

The sizes property serves two important purposes related to image performance:

First, the value of sizes is used by the browser to determine which size of the image to download, from next/legacy/image’s
automatically-generated source set. When the browser chooses, it does not yet know the size of the image on the page, so it selects an
image that is the same size or larger than the viewport. The sizes property allows you to tell the browser that the image will actually
be smaller than full screen. If you don’t specify a sizes value, a default value of 100vw (full screen width) is used.

Second, the sizes value is parsed and used to trim the values in the automatically-created source set. If the sizes property includes
sizes such as 50vw, which represent a percentage of the viewport width, then the source set is trimmed to not include any values which
are too small to ever be necessary.

For example, if you know your styling will cause an image to be full-width on mobile devices, in a 2-column layout on tablets, and a 3-
column layout on desktop displays, you should include a sizes property such as the following:

import Image from 'next/legacy/image'
const Example = () => (
  <div className="grid-element">
    <Image
      src="/example.png"
      layout="fill"
      sizes="(max-width: 768px) 100vw,
              (max-width: 1200px) 50vw,
              33vw"
    />
  </div>
)

This example sizes could have a dramatic effect on performance metrics. Without the 33vw sizes, the image selected from the server
would be 3 times as wide as it needs to be. Because file size is proportional to the square of the width, without sizes the user would
download an image that’s 9 times larger than necessary.

Learn more about srcset and sizes:

web.dev
mdn

quality

The quality of the optimized image, an integer between 1 and 100 where 100 is the best quality. Defaults to 75.

priority

When true, the image will be considered high priority and preload. Lazy loading is automatically disabled for images using priority.

You should use the priority property on any image detected as the Largest Contentful Paint (LCP) element. It may be appropriate to
have multiple priority images, as different images may be the LCP element for different viewport sizes.

Should only be used when the image is visible above the fold. Defaults to false.

placeholder

A placeholder to use while the image is loading. Possible values are blur or empty. Defaults to empty.

When blur, the blurDataURL property will be used as the placeholder. If src is an object from a static import and the imported image
is .jpg, .png, .webp, or .avif, then blurDataURL will be automatically populated.

For dynamic images, you must provide the blurDataURL property. Solutions such as Plaiceholder can help with base64 generation.

When empty, there will be no placeholder while the image is loading, only empty space.

Try it out:

Demo the blur placeholder
Demo the shimmer effect with blurDataURL prop
Demo the color effect with blurDataURL prop

https://web.dev/learn/design/responsive-images/#sizes
https://developer.mozilla.org/docs/Web/HTML/Element/img#attr-sizes
https://web.dev/preload-responsive-images/
https://nextjs.org/learn/seo/web-performance/lcp
file:///docs/pages/building-your-application/optimizing/images#local-images
https://github.com/joe-bell/plaiceholder
https://image-legacy-component.nextjs.gallery/placeholder
https://image-legacy-component.nextjs.gallery/shimmer
https://image-legacy-component.nextjs.gallery/color


Advanced Props

In some cases, you may need more advanced usage. The <Image /> component optionally accepts the following advanced properties.

style

Allows passing CSS styles to the underlying image element.

Note that all layout modes apply their own styles to the image element, and these automatic styles take precedence over the style
prop.

Also keep in mind that the required width and height props can interact with your styling. If you use styling to modify an image’s
width, you must set the height="auto" style as well, or your image will be distorted.

objectFit

Defines how the image will fit into its parent container when using layout="fill".

This value is passed to the object-fit CSS property for the src image.

objectPosition

Defines how the image is positioned within its parent element when using layout="fill".

This value is passed to the object-position CSS property applied to the image.

onLoadingComplete

A callback function that is invoked once the image is completely loaded and the placeholder has been removed.

The onLoadingComplete function accepts one parameter, an object with the following properties:

naturalWidth
naturalHeight

loading

Attention: This property is only meant for advanced usage. Switching an image to load with eager will normally hurt
performance.

We recommend using the priority property instead, which properly loads the image eagerly for nearly all use cases.

The loading behavior of the image. Defaults to lazy.

When lazy, defer loading the image until it reaches a calculated distance from the viewport.

When eager, load the image immediately.

Learn more

blurDataURL

A Data URL to be used as a placeholder image before the src image successfully loads. Only takes effect when combined with
placeholder="blur".

Must be a base64-encoded image. It will be enlarged and blurred, so a very small image (10px or less) is recommended. Including larger
images as placeholders may harm your application performance.

Try it out:

Demo the default blurDataURL prop
Demo the shimmer effect with blurDataURL prop
Demo the color effect with blurDataURL prop

You can also generate a solid color Data URL to match the image.

lazyBoundary

A string (with similar syntax to the margin property) that acts as the bounding box used to detect the intersection of the viewport with
the image and trigger lazy loading. Defaults to "200px".

If the image is nested in a scrollable parent element other than the root document, you will also need to assign the lazyRoot prop.

Learn more

https://developer.mozilla.org/docs/Web/HTML/Element/style
https://developer.mozilla.org/docs/Web/CSS/object-fit
https://developer.mozilla.org/docs/Web/CSS/object-position
https://developer.mozilla.org/docs/Web/API/HTMLImageElement/naturalWidth
https://developer.mozilla.org/docs/Web/API/HTMLImageElement/naturalHeight
https://developer.mozilla.org/docs/Web/HTML/Element/img#attr-loading
https://developer.mozilla.org/docs/Web/HTTP/Basics_of_HTTP/Data_URIs
https://image-legacy-component.nextjs.gallery/placeholder
https://image-legacy-component.nextjs.gallery/shimmer
https://image-legacy-component.nextjs.gallery/color
https://png-pixel.com
https://developer.mozilla.org/docs/Web/API/IntersectionObserver/rootMargin


lazyRoot

A React Ref pointing to the scrollable parent element. Defaults to null (the document viewport).

The Ref must point to a DOM element or a React component that forwards the Ref to the underlying DOM element.

Example pointing to a DOM element

import Image from 'next/legacy/image'
import React from 'react'

const Example = () => {
  const lazyRoot = React.useRef(null)

  return (
    <div ref={lazyRoot} style={{ overflowX: 'scroll', width: '500px' }}>
      <Image lazyRoot={lazyRoot} src="/one.jpg" width="500" height="500" />
      <Image lazyRoot={lazyRoot} src="/two.jpg" width="500" height="500" />
    </div>
  )
}

Example pointing to a React component

import Image from 'next/legacy/image'
import React from 'react'

const Container = React.forwardRef((props, ref) => {
  return (
    <div ref={ref} style={{ overflowX: 'scroll', width: '500px' }}>
      {props.children}
    </div>
  )
})

const Example = () => {
  const lazyRoot = React.useRef(null)

  return (
    <Container ref={lazyRoot}>
      <Image lazyRoot={lazyRoot} src="/one.jpg" width="500" height="500" />
      <Image lazyRoot={lazyRoot} src="/two.jpg" width="500" height="500" />
    </Container>
  )
}

Learn more

unoptimized

When true, the source image will be served as-is instead of changing quality, size, or format. Defaults to false.

import Image from 'next/image'

const UnoptimizedImage = (props) => {
  return <Image {...props} unoptimized />
}

Since Next.js 12.3.0, this prop can be assigned to all images by updating next.config.js with the following configuration:

next.config.js (js)

module.exports = {
  images: {
    unoptimized: true,
  },
}

Other Props

Other properties on the <Image /> component will be passed to the underlying img element with the exception of the following:

srcSet. Use Device Sizes instead.
ref. Use onLoadingComplete instead.
decoding. It is always "async".

https://react.dev/learn/referencing-values-with-refs
https://react.dev/reference/react/forwardRef
https://developer.mozilla.org/docs/Web/API/IntersectionObserver/root


Configuration Options

Remote Patterns

To protect your application from malicious users, configuration is required in order to use external images. This ensures that only
external images from your account can be served from the Next.js Image Optimization API. These external images can be configured
with the remotePatterns property in your next.config.js file, as shown below:

next.config.js (js)

module.exports = {
  images: {
    remotePatterns: [
      {
        protocol: 'https',
        hostname: 'example.com',
        port: '',
        pathname: '/account123/**',
      },
    ],
  },
}

Good to know: The example above will ensure the src property of next/legacy/image must start with
https://example.com/account123/. Any other protocol, hostname, port, or unmatched path will respond with 400 Bad
Request.

Below is another example of the remotePatterns property in the next.config.js file:

next.config.js (js)

module.exports = {
  images: {
    remotePatterns: [
      {
        protocol: 'https',
        hostname: '**.example.com',
        port: '',
      },
    ],
  },
}

Good to know: The example above will ensure the src property of next/legacy/image must start with
https://img1.example.com or https://me.avatar.example.com or any number of subdomains. Any other protocol, port,
or unmatched hostname will respond with 400 Bad Request.

Wildcard patterns can be used for both pathname and hostname and have the following syntax:

* match a single path segment or subdomain
** match any number of path segments at the end or subdomains at the beginning

The ** syntax does not work in the middle of the pattern.

Good to know: When omitting protocol, port or pathname, then the wildcard ** is implied. This is not recommended
because it may allow malicious actors to optimize urls you did not intend.

Domains

Warning: Deprecated since Next.js 14 in favor of strict remotePatterns in order to protect your application from malicious
users. Only use domains if you own all the content served from the domain.

Similar to remotePatterns, the domains configuration can be used to provide a list of allowed hostnames for external images.

However, the domains configuration does not support wildcard pattern matching and it cannot restrict protocol, port, or pathname.

Below is an example of the domains property in the next.config.js file:

next.config.js (js)

module.exports = {
  images: {
    domains: ['assets.acme.com'],
  },
}



Loader Configuration

If you want to use a cloud provider to optimize images instead of using the Next.js built-in Image Optimization API, you can configure
the loader and path prefix in your next.config.js file. This allows you to use relative URLs for the Image src and automatically
generate the correct absolute URL for your provider.

next.config.js (js)

module.exports = {
  images: {
    loader: 'imgix',
    path: 'https://example.com/myaccount/',
  },
}

Built-in Loaders

The following Image Optimization cloud providers are included:

Default: Works automatically with next dev, next start, or a custom server
Vercel: Works automatically when you deploy on Vercel, no configuration necessary. Learn more
Imgix: loader: 'imgix'
Cloudinary: loader: 'cloudinary'
Akamai: loader: 'akamai'
Custom: loader: 'custom' use a custom cloud provider by implementing the loader prop on the next/legacy/image
component

If you need a different provider, you can use the loader prop with next/legacy/image.

Images can not be optimized at build time using output: 'export', only on-demand. To use next/legacy/image with
output: 'export', you will need to use a different loader than the default. Read more in the discussion.

Advanced

The following configuration is for advanced use cases and is usually not necessary. If you choose to configure the properties below, you
will override any changes to the Next.js defaults in future updates.

Device Sizes

If you know the expected device widths of your users, you can specify a list of device width breakpoints using the deviceSizes
property in next.config.js. These widths are used when the next/legacy/image component uses layout="responsive" or
layout="fill" to ensure the correct image is served for user’s device.

If no configuration is provided, the default below is used.
next.config.js (js)

module.exports = {
  images: {
    deviceSizes: [640, 750, 828, 1080, 1200, 1920, 2048, 3840],
  },
}

Image Sizes

You can specify a list of image widths using the images.imageSizes property in your next.config.js file. These widths are
concatenated with the array of device sizes to form the full array of sizes used to generate image srcsets.

The reason there are two separate lists is that imageSizes is only used for images which provide a sizes prop, which indicates that the
image is less than the full width of the screen. Therefore, the sizes in imageSizes should all be smaller than the smallest size in
deviceSizes.

If no configuration is provided, the default below is used.
next.config.js (js)

module.exports = {
  images: {
    imageSizes: [16, 32, 48, 64, 96, 128, 256, 384],
  },
}

Acceptable Formats

https://vercel.com
https://vercel.com/docs/concepts/image-optimization?utm_source=next-site&utm_medium=docs&utm_campaign=next-website
https://www.imgix.com
https://cloudinary.com
https://www.akamai.com
file:///docs/pages/building-your-application/deploying/static-exports
https://github.com/vercel/next.js/discussions/19065
https://developer.mozilla.org/docs/Web/API/HTMLImageElement/srcset


The default Image Optimization API will automatically detect the browser’s supported image formats via the request’s Accept header.

If the Accept head matches more than one of the configured formats, the first match in the array is used. Therefore, the array order
matters. If there is no match (or the source image is animated), the Image Optimization API will fallback to the original image’s format.

If no configuration is provided, the default below is used.
next.config.js (js)

module.exports = {
  images: {
    formats: ['image/webp'],
  },
}

You can enable AVIF support with the following configuration.
next.config.js (js)

module.exports = {
  images: {
    formats: ['image/avif', 'image/webp'],
  },
}

Good to know: AVIF generally takes 20% longer to encode but it compresses 20% smaller compared to WebP. This means that
the first time an image is requested, it will typically be slower and then subsequent requests that are cached will be faster.

Caching Behavior

The following describes the caching algorithm for the default loader. For all other loaders, please refer to your cloud provider’s
documentation.

Images are optimized dynamically upon request and stored in the <distDir>/cache/images directory. The optimized image file will
be served for subsequent requests until the expiration is reached. When a request is made that matches a cached but expired file, the
expired image is served stale immediately. Then the image is optimized again in the background (also called revalidation) and saved to
the cache with the new expiration date.

The cache status of an image can be determined by reading the value of the x-nextjs-cache (x-vercel-cache when deployed on
Vercel) response header. The possible values are the following:

MISS - the path is not in the cache (occurs at most once, on the first visit)
STALE - the path is in the cache but exceeded the revalidate time so it will be updated in the background
HIT - the path is in the cache and has not exceeded the revalidate time

The expiration (or rather Max Age) is defined by either the minimumCacheTTL configuration or the upstream image Cache-Control
header, whichever is larger. Specifically, the max-age value of the Cache-Control header is used. If both s-maxage and max-age are
found, then s-maxage is preferred. The max-age is also passed-through to any downstream clients including CDNs and browsers.

You can configure minimumCacheTTL to increase the cache duration when the upstream image does not include Cache-Control
header or the value is very low.
You can configure deviceSizes and imageSizes to reduce the total number of possible generated images.
You can configure formats to disable multiple formats in favor of a single image format.

Minimum Cache TTL

You can configure the Time to Live (TTL) in seconds for cached optimized images. In many cases, it’s better to use a Static Image Import
which will automatically hash the file contents and cache the image forever with a Cache-Control header of immutable.

next.config.js (js)

module.exports = {
  images: {
    minimumCacheTTL: 60,
  },
}

The expiration (or rather Max Age) of the optimized image is defined by either the minimumCacheTTL or the upstream image Cache-
Control header, whichever is larger.

If you need to change the caching behavior per image, you can configure headers to set the Cache-Control header on the upstream
image (e.g. /some-asset.jpg, not /_next/image itself).

There is no mechanism to invalidate the cache at this time, so its best to keep minimumCacheTTL low. Otherwise you may need to
manually change the src prop or delete <distDir>/cache/images.

file:///docs/pages/building-your-application/optimizing/images#local-images
file:///docs/pages/api-reference/next-config-js/headers


Disable Static Imports

The default behavior allows you to import static files such as import icon from './icon.png' and then pass that to the src
property.

In some cases, you may wish to disable this feature if it conflicts with other plugins that expect the import to behave differently.

You can disable static image imports inside your next.config.js:

next.config.js (js)

module.exports = {
  images: {
    disableStaticImages: true,
  },
}

Dangerously Allow SVG

The default loader does not optimize SVG images for a few reasons. First, SVG is a vector format meaning it can be resized losslessly.
Second, SVG has many of the same features as HTML/CSS, which can lead to vulnerabilities without proper Content Security Policy
(CSP) headers.

Therefore, we recommended using the unoptimized prop when the src prop is known to be SVG. This happens automatically when
src ends with ".svg".

However, if you need to serve SVG images with the default Image Optimization API, you can set dangerouslyAllowSVG inside your
next.config.js:

next.config.js (js)

module.exports = {
  images: {
    dangerouslyAllowSVG: true,
    contentDispositionType: 'attachment',
    contentSecurityPolicy: "default-src 'self'; script-src 'none'; sandbox;",
  },
}

In addition, it is strongly recommended to also set contentDispositionType to force the browser to download the image, as well as
contentSecurityPolicy to prevent scripts embedded in the image from executing.

contentDispositionTypecontentDispositionType

The default loader sets the Content-Disposition header to attachment for added protection since the API can serve arbitrary
remote images.

The default value is attachment which forces the browser to download the image when visiting directly. This is particularly important
when dangerouslyAllowSVG is true.

You can optionally configure inline to allow the browser to render the image when visiting directly, without downloading it.

next.config.js (js)

module.exports = {
  images: {
    contentDispositionType: 'inline',
  },
}

Animated Images

The default loader will automatically bypass Image Optimization for animated images and serve the image as-is.

Auto-detection for animated files is best-effort and supports GIF, APNG, and WebP. If you want to explicitly bypass Image Optimization
for a given animated image, use the unoptimized prop.

Version History

Version Changes

v13.0.0 next/image renamed to next/legacy/image

file:///docs/app/api-reference/next-config-js/headers#content-security-policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Disposition#as_a_response_header_for_the_main_body


4.2.1.4 - <Image>
Documentation path: /03-pages/02-api-reference/01-components/image

Description: Optimize Images in your Next.js Application using the built-in `next/image` Component.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.1.5 - <Link>
Documentation path: /03-pages/02-api-reference/01-components/link

Description: API reference for the <Link> component.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.1.6 - <Script>
Documentation path: /03-pages/02-api-reference/01-components/script

Description: Optimize third-party scripts in your Next.js application using the built-in `next/script` Component.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.2 - Functions
Documentation path: /03-pages/02-api-reference/02-functions/index

Description: API Reference for Functions and Hooks in Pages Router.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.2.1 - getInitialProps
Documentation path: /03-pages/02-api-reference/02-functions/get-initial-props

Description: Fetch dynamic data on the server for your React component with getInitialProps.

Good to know: getInitialProps is a legacy API. We recommend using getStaticProps or getServerSideProps instead.

getInitialProps is an async function that can be added to the default exported React component for the page. It will run on both
the server-side and again on the client-side during page transitions. The result of the function will be forwarded to the React
component as props.

pages/index.tsx (tsx)

import { NextPageContext } from 'next'

Page.getInitialProps = async (ctx: NextPageContext) => {
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const json = await res.json()
  return { stars: json.stargazers_count }
}

export default function Page({ stars }: { stars: number }) {
  return stars
}

pages/index.js (jsx)

Page.getInitialProps = async (ctx) => {
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const json = await res.json()
  return { stars: json.stargazers_count }
}

export default function Page({ stars }) {
  return stars
}

Good to know:

Data returned from getInitialProps is serialized when server rendering. Ensure the returned object from
getInitialProps is a plain Object, and not using Date, Map or Set.
For the initial page load, getInitialProps will run on the server only. getInitialProps will then also run on the client
when navigating to a different route with the next/link component or by using next/router.
If getInitialProps is used in a custom _app.js, and the page being navigated to is using getServerSideProps, then
getInitialProps will also run on the server.

Context Object

getInitialProps receives a single argument called context, which is an object with the following properties:

Name Description

pathname Current route, the path of the page in /pages

query Query string of the URL, parsed as an object

asPath String of the actual path (including the query) shown in the browser

req HTTP request object (server only)

res HTTP response object (server only)

err Error object if any error is encountered during the rendering

Caveats

getInitialProps can only be used in pages/ top level files, and not in nested components. To have nested data fetching at the
component level, consider exploring the App Router.

file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/data-fetching/get-server-side-props
file:///docs/pages/api-reference/components/link
file:///docs/pages/api-reference/functions/use-router
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse
file:///docs/app/building-your-application/data-fetching


Regardless of whether your route is static or dynamic, any data returned from getInitialProps as props will be able to be
examined on the client-side in the initial HTML. This is to allow the page to be hydrated correctly. Make sure that you don’t pass any
sensitive information that shouldn’t be available on the client in props.

https://react.dev/reference/react-dom/hydrate


4.2.2.2 - getServerSideProps
Documentation path: /03-pages/02-api-reference/02-functions/get-server-side-props

Description: API reference for `getServerSideProps`. Learn how to fetch data on each request with Next.js.

When exporting a function called getServerSideProps (Server-Side Rendering) from a page, Next.js will pre-render this page on each
request using the data returned by getServerSideProps. This is useful if you want to fetch data that changes often, and have the
page update to show the most current data.

pages/index.tsx (tsx)

import type { InferGetServerSidePropsType, GetServerSideProps } from 'next'

type Repo = {
  name: string
  stargazers_count: number
}

export const getServerSideProps = (async () => {
  // Fetch data from external API
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const repo: Repo = await res.json()
  // Pass data to the page via props
  return { props: { repo } }
}) satisfies GetServerSideProps<{ repo: Repo }>

export default function Page({
  repo,
}: InferGetServerSidePropsType<typeof getServerSideProps>) {
  return (
    <main>
      <p>{repo.stargazers_count}</p>
    </main>
  )
}

pages/index.js (jsx)

export async function getServerSideProps() {
  // Fetch data from external API
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const repo = await res.json()
  // Pass data to the page via props
  return { props: { repo } }
}

export default function Page({ repo }) {
  return (
    <main>
      <p>{repo.stargazers_count}</p>
    </main>
  )
}

You can import modules in top-level scope for use in getServerSideProps. Imports used will not be bundled for the client-side.
This means you can write server-side code directly in getServerSidePropsgetServerSideProps, including fetching data from your database.

Context parameter

The context parameter is an object containing the following keys:

Name Description

params If this page uses a dynamic route, params contains the route parameters. If the page name is [id].js, then
params will look like { id: ... }.

req The HTTP IncomingMessage object, with an additional cookies prop, which is an object with string keys mapping
to string values of cookies.

res The HTTP response object.

file:///docs/pages/building-your-application/routing/dynamic-routes
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse


query An object representing the query string, including dynamic route parameters.

preview (Deprecated for draftMode) preview is true if the page is in the Preview Mode and false otherwise.

previewData (Deprecated for draftMode) The preview data set by setPreviewData.

draftMode draftMode is true if the page is in the Draft Mode and false otherwise.

resolvedUrl A normalized version of the request URL that strips the _next/data prefix for client transitions and includes
original query values.

locale Contains the active locale (if enabled).

locales Contains all supported locales (if enabled).

defaultLocale Contains the configured default locale (if enabled).

Name Description

getServerSideProps return values

The getServerSideProps function should return an object with any one of the following properties:

propsprops

The props object is a key-value pair, where each value is received by the page component. It should be a serializable object so that any
props passed, could be serialized with JSON.stringify.

export async function getServerSideProps(context) {
  return {
    props: { message: `Next.js is awesome` }, // will be passed to the page component as props
  }
}

notFoundnotFound

The notFound boolean allows the page to return a 404 status and 404 Page. With notFound: true, the page will return a 404 even if
there was a successfully generated page before. This is meant to support use cases like user-generated content getting removed by its
author.

export async function getServerSideProps(context) {
  const res = await fetch(`https://.../data`)
  const data = await res.json()

  if (!data) {
    return {
      notFound: true,
    }
  }

  return {
    props: { data }, // will be passed to the page component as props
  }
}

redirectredirect

The redirect object allows redirecting to internal and external resources. It should match the shape of { destination: string,
permanent: boolean }. In some rare cases, you might need to assign a custom status code for older HTTP clients to properly
redirect. In these cases, you can use the statusCode property instead of the permanent property, but not both.

export async function getServerSideProps(context) {
  const res = await fetch(`https://.../data`)
  const data = await res.json()

  if (!data) {
    return {
      redirect: {
        destination: '/',
        permanent: false,
      },

file:///docs/pages/building-your-application/configuring/preview-mode
file:///docs/pages/building-your-application/configuring/preview-mode
file:///docs/pages/building-your-application/configuring/draft-mode
https://developer.mozilla.org/docs/Glossary/Serialization
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
file:///docs/pages/building-your-application/routing/custom-error#404-page


    }
  }

  return {
    props: {}, // will be passed to the page component as props
  }
}

Version History

Version Changes

v13.4.0 App Router is now stable with simplified data fetching

v10.0.0 locale, locales, defaultLocale, and notFound options added.

v9.3.0 getServerSideProps introduced.

file:///docs/app/building-your-application/data-fetching


4.2.2.3 - getStaticPaths
Documentation path: /03-pages/02-api-reference/02-functions/get-static-paths

Description: API reference for `getStaticPaths`. Learn how to fetch data and generate static pages with `getStaticPaths`.

When exporting a function called getStaticPaths from a page that uses Dynamic Routes, Next.js will statically pre-render all the
paths specified by getStaticPaths.

pages/repo/[name].tsx (tsx)

import type {
  InferGetStaticPropsType,
  GetStaticProps,
  GetStaticPaths,
} from 'next'

type Repo = {
  name: string
  stargazers_count: number
}

export const getStaticPaths = (async () => {
  return {
    paths: [
      {
        params: {
          name: 'next.js',
        },
      }, // See the "paths" section below
    ],
    fallback: true, // false or "blocking"
  }
}) satisfies GetStaticPaths

export const getStaticProps = (async (context) => {
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const repo = await res.json()
  return { props: { repo } }
}) satisfies GetStaticProps<{
  repo: Repo
}>

export default function Page({
  repo,
}: InferGetStaticPropsType<typeof getStaticProps>) {
  return repo.stargazers_count
}

pages/repo/[name].js (jsx)

export async function getStaticPaths() {
  return {
    paths: [
      {
        params: {
          name: 'next.js',
        },
      }, // See the "paths" section below
    ],
    fallback: true, // false or "blocking"
  }
}

export async function getStaticProps() {
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const repo = await res.json()
  return { props: { repo } }
}

export default function Page({ repo }) {
  return repo.stargazers_count
}

getStaticPaths return values

file:///docs/pages/building-your-application/routing/dynamic-routes


The getStaticPaths function should return an object with the following required properties:

pathspaths

The paths key determines which paths will be pre-rendered. For example, suppose that you have a page that uses Dynamic Routes
named pages/posts/[id].js. If you export getStaticPaths from this page and return the following for paths:

return {
  paths: [
    { params: { id: '1' }},
    {
      params: { id: '2' },
      // with i18n configured the locale for the path can be returned as well
      locale: "en",
    },
  ],
  fallback: ...
}

Then, Next.js will statically generate /posts/1 and /posts/2 during next build using the page component in
pages/posts/[id].js.

The value for each params object must match the parameters used in the page name:

If the page name is pages/posts/[postId]/[commentId], then params should contain postId and commentId.
If the page name uses catch-all routes like pages/[...slug], then params should contain slug (which is an array). If this array is
['hello', 'world'], then Next.js will statically generate the page at /hello/world.
If the page uses an optional catch-all route, use null, [], undefined or false to render the root-most route. For example, if you
supply slug: false for pages/[[...slug]], Next.js will statically generate the page /.

The params strings are case-sensitive and ideally should be normalized to ensure the paths are generated correctly. For example, if
WoRLD is returned for a param it will only match if WoRLD is the actual path visited, not world or World.

Separate of the params object a locale field can be returned when i18n is configured, which configures the locale for the path being
generated.

fallback: falsefallback: false

If fallback is false, then any paths not returned by getStaticPaths will result in a 404 page.

When next build is run, Next.js will check if getStaticPaths returned fallback: false, it will then build only the paths returned
by getStaticPaths. This option is useful if you have a small number of paths to create, or new page data is not added often. If you
find that you need to add more paths, and you have fallback: false, you will need to run next build again so that the new paths
can be generated.

The following example pre-renders one blog post per page called pages/posts/[id].js. The list of blog posts will be fetched from a
CMS and returned by getStaticPaths. Then, for each page, it fetches the post data from a CMS using getStaticProps.

pages/posts/[id].js (jsx)

function Post({ post }) {
  // Render post...
}

// This function gets called at build time
export async function getStaticPaths() {
  // Call an external API endpoint to get posts
  const res = await fetch('https://.../posts')
  const posts = await res.json()

  // Get the paths we want to pre-render based on posts
  const paths = posts.map((post) => ({
    params: { id: post.id },
  }))

  // We'll pre-render only these paths at build time.
  // { fallback: false } means other routes should 404.
  return { paths, fallback: false }
}

// This also gets called at build time
export async function getStaticProps({ params }) {
  // params contains the post `id`.

file:///docs/pages/building-your-application/routing/dynamic-routes
file:///docs/pages/building-your-application/routing/dynamic-routes#catch-all-segments
file:///docs/pages/building-your-application/routing/dynamic-routes#optional-catch-all-segments
file:///docs/pages/building-your-application/routing/internationalization
file:///docs/pages/building-your-application/data-fetching/get-static-props


  // If the route is like /posts/1, then params.id is 1
  const res = await fetch(`https://.../posts/${params.id}`)
  const post = await res.json()

  // Pass post data to the page via props
  return { props: { post } }
}

export default Post

fallback: truefallback: true

Examples

If fallback is true, then the behavior of getStaticProps changes in the following ways:

The paths returned from getStaticPaths will be rendered to HTML at build time by getStaticProps.
The paths that have not been generated at build time will not result in a 404 page. Instead, Next.js will serve a “fallback” version of
the page on the first request to such a path. Web crawlers, such as Google, won’t be served a fallback and instead the path will
behave as in fallback: 'blocking'.
When a page with fallback: true is navigated to through next/link or next/router (client-side) Next.js will not serve a
fallback and instead the page will behave as fallback: 'blocking'.
In the background, Next.js will statically generate the requested path HTML and JSON. This includes running getStaticProps.
When complete, the browser receives the JSON for the generated path. This will be used to automatically render the page with the
required props. From the user’s perspective, the page will be swapped from the fallback page to the full page.
At the same time, Next.js adds this path to the list of pre-rendered pages. Subsequent requests to the same path will serve the
generated page, like other pages pre-rendered at build time.

Good to know: fallback: true is not supported when using output: 'export'.

When is fallback: truefallback: true useful?

fallback: true is useful if your app has a very large number of static pages that depend on data (such as a very large e-commerce
site). If you want to pre-render all product pages, the builds would take a very long time.

Instead, you may statically generate a small subset of pages and use fallback: true for the rest. When someone requests a page
that is not generated yet, the user will see the page with a loading indicator or skeleton component.

Shortly after, getStaticProps finishes and the page will be rendered with the requested data. From now on, everyone who requests
the same page will get the statically pre-rendered page.

This ensures that users always have a fast experience while preserving fast builds and the benefits of Static Generation.

fallback: true will not update generated pages, for that take a look at Incremental Static Regeneration.

fallback: 'blocking'fallback: 'blocking'

If fallback is 'blocking', new paths not returned by getStaticPaths will wait for the HTML to be generated, identical to SSR
(hence why blocking), and then be cached for future requests so it only happens once per path.

getStaticProps will behave as follows:

The paths returned from getStaticPaths will be rendered to HTML at build time by getStaticProps.
The paths that have not been generated at build time will not result in a 404 page. Instead, Next.js will SSR on the first request and
return the generated HTML.
When complete, the browser receives the HTML for the generated path. From the user’s perspective, it will transition from “the
browser is requesting the page” to “the full page is loaded”. There is no flash of loading/fallback state.
At the same time, Next.js adds this path to the list of pre-rendered pages. Subsequent requests to the same path will serve the
generated page, like other pages pre-rendered at build time.

fallback: 'blocking' will not update generated pages by default. To update generated pages, use Incremental Static Regeneration
in conjunction with fallback: 'blocking'.

Good to know: fallback: 'blocking' is not supported when using output: 'export'.

Fallback pages

In the “fallback” version of a page:

The page’s props will be empty.

file:///docs/pages/building-your-application/deploying/static-exports
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration
file:///docs/pages/building-your-application/deploying/static-exports


Using the router, you can detect if the fallback is being rendered, router.isFallback will be true.

The following example showcases using isFallback:

pages/posts/[id].js (jsx)

import { useRouter } from 'next/router'

function Post({ post }) {
  const router = useRouter()

  // If the page is not yet generated, this will be displayed
  // initially until getStaticProps() finishes running
  if (router.isFallback) {
    return <div>Loading...</div>
  }

  // Render post...
}

// This function gets called at build time
export async function getStaticPaths() {
  return {
    // Only `/posts/1` and `/posts/2` are generated at build time
    paths: [{ params: { id: '1' } }, { params: { id: '2' } }],
    // Enable statically generating additional pages
    // For example: `/posts/3`
    fallback: true,
  }
}

// This also gets called at build time
export async function getStaticProps({ params }) {
  // params contains the post `id`.
  // If the route is like /posts/1, then params.id is 1
  const res = await fetch(`https://.../posts/${params.id}`)
  const post = await res.json()

  // Pass post data to the page via props
  return {
    props: { post },
    // Re-generate the post at most once per second
    // if a request comes in
    revalidate: 1,
  }
}

export default Post

Version History

Version Changes

v13.4.0 App Router is now stable with simplified data fetching, including generateStaticParams()

v12.2.0 On-Demand Incremental Static Regeneration is stable.

v12.1.0 On-Demand Incremental Static Regeneration added (beta).

v9.5.0 Stable Incremental Static Regeneration

v9.3.0 getStaticPaths introduced.

file:///docs/pages/api-reference/functions/use-router
file:///docs/app/building-your-application/data-fetching
file:///docs/app/api-reference/functions/generate-static-params
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration#on-demand-revalidation
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration#on-demand-revalidation
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration


4.2.2.4 - getStaticProps
Documentation path: /03-pages/02-api-reference/02-functions/get-static-props

Description: API reference for `getStaticProps`. Learn how to use `getStaticProps` to generate static pages with Next.js.

Exporting a function called getStaticProps will pre-render a page at build time using the props returned from the function:

pages/index.tsx (tsx)

import type { InferGetStaticPropsType, GetStaticProps } from 'next'

type Repo = {
  name: string
  stargazers_count: number
}

export const getStaticProps = (async (context) => {
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const repo = await res.json()
  return { props: { repo } }
}) satisfies GetStaticProps<{
  repo: Repo
}>

export default function Page({
  repo,
}: InferGetStaticPropsType<typeof getStaticProps>) {
  return repo.stargazers_count
}

pages/index.js (jsx)

export async function getStaticProps() {
  const res = await fetch('https://api.github.com/repos/vercel/next.js')
  const repo = await res.json()
  return { props: { repo } }
}

export default function Page({ repo }) {
  return repo.stargazers_count
}

You can import modules in top-level scope for use in getStaticProps. Imports used will not be bundled for the client-side. This
means you can write server-side code directly in getStaticPropsgetStaticProps, including fetching data from your database.

Context parameter

The context parameter is an object containing the following keys:

Name Description

params
Contains the route parameters for pages using dynamic routes. For example, if the page name is [id].js, then
params will look like { id: ... }. You should use this together with getStaticPaths, which we’ll explain
later.

preview (Deprecated for draftMode) preview is true if the page is in the Preview Mode and false otherwise.

previewData (Deprecated for draftMode) The preview data set by setPreviewData.

draftMode draftMode is true if the page is in the Draft Mode and false otherwise.

locale Contains the active locale (if enabled).

locales Contains all supported locales (if enabled).

defaultLocale Contains the configured default locale (if enabled).

revalidateReason Provides a reason for why the function was called. Can be one of: “build” (run at build time), “stale” (revalidate
period expired, or running in development mode), “on-demand” (triggered via on-demand revalidation)

file:///docs/pages/building-your-application/routing/dynamic-routes
file:///docs/pages/building-your-application/configuring/preview-mode
file:///docs/pages/building-your-application/configuring/preview-mode
file:///docs/pages/building-your-application/configuring/draft-mode
file:///docs/pages/building-your-application/data-fetching/get-static-props#runs-on-every-request-in-development
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration#on-demand-revalidation


getStaticProps return values

The getStaticProps function should return an object containing either props, redirect, or notFound followed by an optional
revalidate property.

propsprops

The props object is a key-value pair, where each value is received by the page component. It should be a serializable object so that any
props passed, could be serialized with JSON.stringify.

export async function getStaticProps(context) {
  return {
    props: { message: `Next.js is awesome` }, // will be passed to the page component as props
  }
}

revalidaterevalidate

The revalidate property is the amount in seconds after which a page re-generation can occur (defaults to false or no revalidation).

// This function gets called at build time on server-side.
// It may be called again, on a serverless function, if
// revalidation is enabled and a new request comes in
export async function getStaticProps() {
  const res = await fetch('https://.../posts')
  const posts = await res.json()

  return {
    props: {
      posts,
    },
    // Next.js will attempt to re-generate the page:
    // - When a request comes in
    // - At most once every 10 seconds
    revalidate: 10, // In seconds
  }
}

Learn more about Incremental Static Regeneration.

The cache status of a page leveraging ISR can be determined by reading the value of the x-nextjs-cache response header. The
possible values are the following:

MISS - the path is not in the cache (occurs at most once, on the first visit)
STALE - the path is in the cache but exceeded the revalidate time so it will be updated in the background
HIT - the path is in the cache and has not exceeded the revalidate time

notFoundnotFound

The notFound boolean allows the page to return a 404 status and 404 Page. With notFound: true, the page will return a 404 even if
there was a successfully generated page before. This is meant to support use cases like user-generated content getting removed by its
author. Note, notFound follows the same revalidate behavior described here.

export async function getStaticProps(context) {
  const res = await fetch(`https://.../data`)
  const data = await res.json()

  if (!data) {
    return {
      notFound: true,
    }
  }

  return {
    props: { data }, // will be passed to the page component as props
  }
}

Good to know: notFound is not needed for fallback: false mode as only paths returned from getStaticPaths will be
pre-rendered.

https://developer.mozilla.org/docs/Glossary/Serialization
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration
file:///docs/pages/building-your-application/routing/custom-error#404-page
file:///docs/pages/api-reference/functions/get-static-paths#fallback-false


redirectredirect

The redirect object allows redirecting to internal or external resources. It should match the shape of { destination: string,
permanent: boolean }.

In some rare cases, you might need to assign a custom status code for older HTTP clients to properly redirect. In these cases, you can
use the statusCode property instead of the permanent property, but not both. You can also set basePath: false similar to
redirects in next.config.js.

export async function getStaticProps(context) {
  const res = await fetch(`https://...`)
  const data = await res.json()

  if (!data) {
    return {
      redirect: {
        destination: '/',
        permanent: false,
        // statusCode: 301
      },
    }
  }

  return {
    props: { data }, // will be passed to the page component as props
  }
}

If the redirects are known at build-time, they should be added in next.config.js instead.

Reading files: Use process.cwd()process.cwd()
Files can be read directly from the filesystem in getStaticProps.

In order to do so you have to get the full path to a file.

Since Next.js compiles your code into a separate directory you can’t use __dirname as the path it returns will be different from the
Pages Router.

Instead you can use process.cwd() which gives you the directory where Next.js is being executed.

import { promises as fs } from 'fs'
import path from 'path'

// posts will be populated at build time by getStaticProps()
function Blog({ posts }) {
  return (
    <ul>
      {posts.map((post) => (
        <li>
          <h3>{post.filename}</h3>
          <p>{post.content}</p>
        </li>
      ))}
    </ul>
  )
}

// This function gets called at build time on server-side.
// It won't be called on client-side, so you can even do
// direct database queries.
export async function getStaticProps() {
  const postsDirectory = path.join(process.cwd(), 'posts')
  const filenames = await fs.readdir(postsDirectory)

  const posts = filenames.map(async (filename) => {
    const filePath = path.join(postsDirectory, filename)
    const fileContents = await fs.readFile(filePath, 'utf8')

    // Generally you would parse/transform the contents
    // For example you can transform markdown to HTML here

    return {
      filename,
      content: fileContents,

file:///docs/pages/api-reference/next-config-js/redirects


    }
  })
  // By returning { props: { posts } }, the Blog component
  // will receive `posts` as a prop at build time
  return {
    props: {
      posts: await Promise.all(posts),
    },
  }
}

export default Blog

Version History

Version Changes

v13.4.0 App Router is now stable with simplified data fetching

v12.2.0 On-Demand Incremental Static Regeneration is stable.

v12.1.0 On-Demand Incremental Static Regeneration added (beta).

v10.0.0 locale, locales, defaultLocale, and notFound options added.

v10.0.0 fallback: 'blocking' return option added.

v9.5.0 Stable Incremental Static Regeneration

v9.3.0 getStaticProps introduced.

file:///docs/app/building-your-application/data-fetching
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration#on-demand-revalidation
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration#on-demand-revalidation
file:///docs/pages/building-your-application/data-fetching/incremental-static-regeneration


4.2.2.5 - NextRequest
Documentation path: /03-pages/02-api-reference/02-functions/next-request

Description: API Reference for NextRequest.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.2.6 - NextResponse
Documentation path: /03-pages/02-api-reference/02-functions/next-response

Description: API Reference for NextResponse.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.2.7 - useAmp
Documentation path: /03-pages/02-api-reference/02-functions/use-amp

Description: Enable AMP in a page, and control the way Next.js adds AMP to the page with the AMP config.

Examples

AMP support is one of our advanced features, you can read more about AMP here.

To enable AMP, add the following config to your page:
pages/index.js (jsx)

export const config = { amp: true }

The amp config accepts the following values:

true - The page will be AMP-only
'hybrid' - The page will have two versions, one with AMP and another one with HTML

To learn more about the amp config, read the sections below.

AMP First Page

Take a look at the following example:
pages/about.js (jsx)

export const config = { amp: true }

function About(props) {
  return <h3>My AMP About Page!</h3>
}

export default About

The page above is an AMP-only page, which means:

The page has no Next.js or React client-side runtime
The page is automatically optimized with AMP Optimizer, an optimizer that applies the same transformations as AMP caches
(improves performance by up to 42%)
The page has a user-accessible (optimized) version of the page and a search-engine indexable (unoptimized) version of the page

Hybrid AMP Page

Take a look at the following example:
pages/about.js (jsx)

import { useAmp } from 'next/amp'

export const config = { amp: 'hybrid' }

function About(props) {
  const isAmp = useAmp()

  return (
    <div>
      <h3>My AMP About Page!</h3>
      {isAmp ? (
        <amp-img
          width="300"
          height="300"
          src="/my-img.jpg"
          alt="a cool image"
          layout="responsive"
        />
      ) : (
        <img width="300" height="300" src="/my-img.jpg" alt="a cool image" />
      )}
    </div>
  )
}

file:///docs/pages/building-your-application/configuring/amp
https://github.com/ampproject/amp-toolbox/tree/master/packages/optimizer


export default About

The page above is a hybrid AMP page, which means:

The page is rendered as traditional HTML (default) and AMP HTML (by adding ?amp=1 to the URL)
The AMP version of the page only has valid optimizations applied with AMP Optimizer so that it is indexable by search-engines

The page uses useAmp to differentiate between modes, it’s a React Hook that returns true if the page is using AMP, and false
otherwise.

https://react.dev/reference/react


4.2.2.8 - useReportWebVitals
Documentation path: /03-pages/02-api-reference/02-functions/use-report-web-vitals

Description: useReportWebVitals

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.2.9 - useRouter
Documentation path: /03-pages/02-api-reference/02-functions/use-router

Description: Learn more about the API of the Next.js Router, and access the router instance in your page with the useRouter hook.

If you want to access the router object inside any function component in your app, you can use the useRouter hook, take a look at
the following example:

import { useRouter } from 'next/router'

function ActiveLink({ children, href }) {
  const router = useRouter()
  const style = {
    marginRight: 10,
    color: router.asPath === href ? 'red' : 'black',
  }

  const handleClick = (e) => {
    e.preventDefault()
    router.push(href)
  }

  return (
    <a href={href} onClick={handleClick} style={style}>
      {children}
    </a>
  )
}

export default ActiveLink

useRouter is a React Hook, meaning it cannot be used with classes. You can either use withRouter or wrap your class in a
function component.

routerrouter object

The following is the definition of the router object returned by both useRouter and withRouter:

pathname: String - The path for current route file that comes after /pages. Therefore, basePath, locale and trailing slash
(trailingSlash: true) are not included.
query: Object - The query string parsed to an object, including dynamic route parameters. It will be an empty object during
prerendering if the page doesn’t use Server-side Rendering. Defaults to {}
asPath: String - The path as shown in the browser including the search params and respecting the trailingSlash
configuration. basePath and locale are not included.
isFallback: boolean - Whether the current page is in fallback mode.
basePath: String - The active basePath (if enabled).
locale: String - The active locale (if enabled).
locales: String[] - All supported locales (if enabled).
defaultLocale: String - The current default locale (if enabled).
domainLocales: Array<{domain, defaultLocale, locales}> - Any configured domain locales.
isReady: boolean - Whether the router fields are updated client-side and ready for use. Should only be used inside of useEffect
methods and not for conditionally rendering on the server. See related docs for use case with automatically statically optimized
pages
isPreview: boolean - Whether the application is currently in preview mode.

Using the asPath field may lead to a mismatch between client and server if the page is rendered using server-side rendering or
automatic static optimization. Avoid using asPath until the isReady field is true.

The following methods are included inside router:

router.push

Handles client-side transitions, this method is useful for cases where next/link is not enough.

router.push(url, as, options)

https://react.dev/learn#using-hooks
file:///docs/pages/building-your-application/routing/dynamic-routes
file:///docs/pages/building-your-application/data-fetching/get-server-side-props
file:///docs/pages/api-reference/functions/get-static-paths#fallback-true
file:///docs/app/api-reference/next-config-js/basePath
file:///docs/pages/building-your-application/rendering/automatic-static-optimization
file:///docs/pages/building-your-application/configuring/preview-mode
file:///docs/pages/building-your-application/rendering/automatic-static-optimization
file:///docs/pages/api-reference/components/link


url: UrlObject | String - The URL to navigate to (see Node.JS URL module documentation for UrlObject properties).
as: UrlObject | String - Optional decorator for the path that will be shown in the browser URL bar. Before Next.js 9.5.3 this
was used for dynamic routes.
options - Optional object with the following configuration options:
scroll - Optional boolean, controls scrolling to the top of the page after navigation. Defaults to true
shallow: Update the path of the current page without rerunning getStaticProps, getServerSideProps or getInitialProps.
Defaults to false
locale - Optional string, indicates locale of the new page

You don’t need to use router.push for external URLs. window.location is better suited for those cases.

Navigating to pages/about.js, which is a predefined route:

import { useRouter } from 'next/router'

export default function Page() {
  const router = useRouter()

  return (
    <button type="button" onClick={() => router.push('/about')}>
      Click me
    </button>
  )
}

Navigating pages/post/[pid].js, which is a dynamic route:

import { useRouter } from 'next/router'

export default function Page() {
  const router = useRouter()

  return (
    <button type="button" onClick={() => router.push('/post/abc')}>
      Click me
    </button>
  )
}

Redirecting the user to pages/login.js, useful for pages behind authentication:

import { useEffect } from 'react'
import { useRouter } from 'next/router'

// Here you would fetch and return the user
const useUser = () => ({ user: null, loading: false })

export default function Page() {
  const { user, loading } = useUser()
  const router = useRouter()

  useEffect(() => {
    if (!(user || loading)) {
      router.push('/login')
    }
  }, [user, loading])

  return <p>Redirecting...</p>
}

Resetting state after navigation

When navigating to the same page in Next.js, the page’s state will not be reset by default as React does not unmount unless the parent
component has changed.

pages/[slug].js (jsx)

import Link from 'next/link'
import { useState } from 'react'
import { useRouter } from 'next/router'

export default function Page(props) {
  const router = useRouter()
  const [count, setCount] = useState(0)

https://nodejs.org/api/url.html#legacy-urlobject
file:///docs/pages/building-your-application/routing/linking-and-navigating#shallow-routing
file:///docs/pages/building-your-application/data-fetching/get-static-props
file:///docs/pages/building-your-application/data-fetching/get-server-side-props
file:///docs/pages/api-reference/functions/get-initial-props
https://developer.mozilla.org/docs/Web/API/Window/location
file:///docs/pages/building-your-application/authentication


  return (
    <div>
      <h1>Page: {router.query.slug}</h1>
      <p>Count: {count}</p>
      <button onClick={() => setCount(count + 1)}>Increase count</button>
      <Link href="/one">one</Link> <Link href="/two">two</Link>
    </div>
  )
}

In the above example, navigating between /one and /two will not reset the count . The useState is maintained between renders
because the top-level React component, Page, is the same.

If you do not want this behavior, you have a couple of options:

Manually ensure each state is updated using useEffect. In the above example, that could look like:

jsx useEffect(() => { setCount(0) }, [router.query.slug])

Use a React key to tell React to remount the component. To do this for all pages, you can use a custom app:

pages/_app.js (jsx)

  import { useRouter } from 'next/router'

  export default function MyApp({ Component, pageProps }) {
    const router = useRouter()
    return <Component key={router.asPath} {...pageProps} />
  }

With URL object

You can use a URL object in the same way you can use it for next/link. Works for both the url and as parameters:

import { useRouter } from 'next/router'

export default function ReadMore({ post }) {
  const router = useRouter()

  return (
    <button
      type="button"
      onClick={() => {
        router.push({
          pathname: '/post/[pid]',
          query: { pid: post.id },
        })
      }}
    >
      Click here to read more
    </button>
  )
}

router.replace

Similar to the replace prop in next/link, router.replace will prevent adding a new URL entry into the history stack.

router.replace(url, as, options)

The API for router.replace is exactly the same as the API for router.push.

Take a look at the following example:

import { useRouter } from 'next/router'

export default function Page() {
  const router = useRouter()

  return (
    <button type="button" onClick={() => router.replace('/home')}>
      Click me
    </button>
  )
}

https://react.dev/learn/rendering-lists#keeping-list-items-in-order-with-key
file:///docs/pages/api-reference/components/link#with-url-object
file:///docs/pages/api-reference/components/link


router.prefetch

Prefetch pages for faster client-side transitions. This method is only useful for navigations without next/link, as next/link takes
care of prefetching pages automatically.

This is a production only feature. Next.js doesn’t prefetch pages in development.

router.prefetch(url, as, options)

url - The URL to prefetch, including explicit routes (e.g. /dashboard) and dynamic routes (e.g. /product/[id])
as - Optional decorator for url. Before Next.js 9.5.3 this was used to prefetch dynamic routes.
options - Optional object with the following allowed fields:
locale - allows providing a different locale from the active one. If false, url has to include the locale as the active locale won’t be
used.

Let’s say you have a login page, and after a login, you redirect the user to the dashboard. For that case, we can prefetch the dashboard
to make a faster transition, like in the following example:

import { useCallback, useEffect } from 'react'
import { useRouter } from 'next/router'

export default function Login() {
  const router = useRouter()
  const handleSubmit = useCallback((e) => {
    e.preventDefault()

    fetch('/api/login', {
      method: 'POST',
      headers: { 'Content-Type': 'application/json' },
      body: JSON.stringify({
        /* Form data */
      }),
    }).then((res) => {
      // Do a fast client-side transition to the already prefetched dashboard page
      if (res.ok) router.push('/dashboard')
    })
  }, [])

  useEffect(() => {
    // Prefetch the dashboard page
    router.prefetch('/dashboard')
  }, [router])

  return (
    <form onSubmit={handleSubmit}>
      {/* Form fields */}
      <button type="submit">Login</button>
    </form>
  )
}

router.beforePopState

In some cases (for example, if using a Custom Server), you may wish to listen to popstate and do something before the router acts on it.

router.beforePopState(cb)

cb - The function to run on incoming popstate events. The function receives the state of the event as an object with the following
props:
url: String - the route for the new state. This is usually the name of a page
as: String - the url that will be shown in the browser
options: Object - Additional options sent by router.push

If cb returns false, the Next.js router will not handle popstate, and you’ll be responsible for handling it in that case. See Disabling
file-system routing.

You could use beforePopState to manipulate the request, or force a SSR refresh, as in the following example:

import { useEffect } from 'react'
import { useRouter } from 'next/router'

export default function Page() {

file:///docs/pages/api-reference/components/link
file:///docs/pages/building-your-application/configuring/custom-server
https://developer.mozilla.org/docs/Web/Events/popstate
file:///docs/pages/building-your-application/configuring/custom-server#disabling-file-system-routing


  const router = useRouter()

  useEffect(() => {
    router.beforePopState(({ url, as, options }) => {
      // I only want to allow these two routes!
      if (as !== '/' && as !== '/other') {
        // Have SSR render bad routes as a 404.
        window.location.href = as
        return false
      }

      return true
    })
  }, [router])

  return <p>Welcome to the page</p>
}

router.back

Navigate back in history. Equivalent to clicking the browser’s back button. It executes window.history.back().

import { useRouter } from 'next/router'

export default function Page() {
  const router = useRouter()

  return (
    <button type="button" onClick={() => router.back()}>
      Click here to go back
    </button>
  )
}

router.reload

Reload the current URL. Equivalent to clicking the browser’s refresh button. It executes window.location.reload().

import { useRouter } from 'next/router'

export default function Page() {
  const router = useRouter()

  return (
    <button type="button" onClick={() => router.reload()}>
      Click here to reload
    </button>
  )
}

router.events

You can listen to different events happening inside the Next.js Router. Here’s a list of supported events:

routeChangeStart(url, { shallow }) - Fires when a route starts to change
routeChangeComplete(url, { shallow }) - Fires when a route changed completely
routeChangeError(err, url, { shallow }) - Fires when there’s an error when changing routes, or a route load is cancelled
err.cancelled - Indicates if the navigation was cancelled
beforeHistoryChange(url, { shallow }) - Fires before changing the browser’s history
hashChangeStart(url, { shallow }) - Fires when the hash will change but not the page
hashChangeComplete(url, { shallow }) - Fires when the hash has changed but not the page

Good to know: Here url is the URL shown in the browser, including the basePath.

For example, to listen to the router event routeChangeStart, open or create pages/_app.js and subscribe to the event, like so:

import { useEffect } from 'react'
import { useRouter } from 'next/router'

export default function MyApp({ Component, pageProps }) {
  const router = useRouter()

file:///docs/app/api-reference/next-config-js/basePath


  useEffect(() => {
    const handleRouteChange = (url, { shallow }) => {
      console.log(
        `App is changing to ${url} ${
          shallow ? 'with' : 'without'
        } shallow routing`
      )
    }

    router.events.on('routeChangeStart', handleRouteChange)

    // If the component is unmounted, unsubscribe
    // from the event with the `off` method:
    return () => {
      router.events.off('routeChangeStart', handleRouteChange)
    }
  }, [router])

  return <Component {...pageProps} />
}

We use a Custom App (pages/_app.js) for this example to subscribe to the event because it’s not unmounted on page
navigations, but you can subscribe to router events on any component in your application.

Router events should be registered when a component mounts (useEffect or componentDidMount / componentWillUnmount) or
imperatively when an event happens.

If a route load is cancelled (for example, by clicking two links rapidly in succession), routeChangeError will fire. And the passed err
will contain a cancelled property set to true, as in the following example:

import { useEffect } from 'react'
import { useRouter } from 'next/router'

export default function MyApp({ Component, pageProps }) {
  const router = useRouter()

  useEffect(() => {
    const handleRouteChangeError = (err, url) => {
      if (err.cancelled) {
        console.log(`Route to ${url} was cancelled!`)
      }
    }

    router.events.on('routeChangeError', handleRouteChangeError)

    // If the component is unmounted, unsubscribe
    // from the event with the `off` method:
    return () => {
      router.events.off('routeChangeError', handleRouteChangeError)
    }
  }, [router])

  return <Component {...pageProps} />
}

Potential ESLint errors

Certain methods accessible on the router object return a Promise. If you have the ESLint rule, no-floating-promises enabled, consider
disabling it either globally, or for the affected line.

If your application needs this rule, you should either void the promise – or use an async function, await the Promise, then void the
function call. This is not applicable when the method is called from inside an onClickonClick handler.

The affected methods are:

router.push
router.replace
router.prefetch

Potential solutions

import { useEffect } from 'react'
import { useRouter } from 'next/router'

file:///docs/pages/building-your-application/routing/custom-app
https://react.dev/reference/react/useEffect
https://react.dev/reference/react/Component#componentdidmount
https://react.dev/reference/react/Component#componentwillunmount
https://typescript-eslint.io/rules/no-floating-promises


// Here you would fetch and return the user
const useUser = () => ({ user: null, loading: false })

export default function Page() {
  const { user, loading } = useUser()
  const router = useRouter()

  useEffect(() => {
    // disable the linting on the next line - This is the cleanest solution
    // eslint-disable-next-line no-floating-promises
    router.push('/login')

    // void the Promise returned by router.push
    if (!(user || loading)) {
      void router.push('/login')
    }
    // or use an async function, await the Promise, then void the function call
    async function handleRouteChange() {
      if (!(user || loading)) {
        await router.push('/login')
      }
    }
    void handleRouteChange()
  }, [user, loading])

  return <p>Redirecting...</p>
}

withRouter

If useRouter is not the best fit for you, withRouter can also add the same router object to any component.

Usage

import { withRouter } from 'next/router'

function Page({ router }) {
  return <p>{router.pathname}</p>
}

export default withRouter(Page)

TypeScript

To use class components with withRouter, the component needs to accept a router prop:

import React from 'react'
import { withRouter, NextRouter } from 'next/router'

interface WithRouterProps {
  router: NextRouter
}

interface MyComponentProps extends WithRouterProps {}

class MyComponent extends React.Component<MyComponentProps> {
  render() {
    return <p>{this.props.router.pathname}</p>
  }
}

export default withRouter(MyComponent)



4.2.2.10 - userAgent
Documentation path: /03-pages/02-api-reference/02-functions/userAgent

Description: The userAgent helper extends the Web Request API with additional properties and methods to interact with the user
agent object from the request.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3 - next.config.js Options
Documentation path: /03-pages/02-api-reference/03-next-config-js/index

Description: Learn about the options available in next.config.js for the Pages Router.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.1 - assetPrefix
Documentation path: /03-pages/02-api-reference/03-next-config-js/assetPrefix

Description: Learn how to use the assetPrefix config option to configure your CDN.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.2 - basePath
Documentation path: /03-pages/02-api-reference/03-next-config-js/basePath

Description: Use `basePath` to deploy a Next.js application under a sub-path of a domain.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.3 - bundlePagesRouterDependencies
Documentation path: /03-pages/02-api-reference/03-next-config-js/bundlePagesRouterDependencies

Description: Enable automatic dependency bundling for Pages Router

Enable automatic server-side dependency bundling for Pages Router applications. Matches the automatic dependency bundling in App
Router.

next.config.js (js)

/** @type {import('next').NextConfig} */
const nextConfig = {
  bundlePagesRouterDependencies: true,
}

module.exports = nextConfig

Explicitly opt-out certain packages from being bundled using the serverExternalPackages option.

file:///docs/pages/api-reference/next-config-js/serverExternalPackages


4.2.3.4 - compress
Documentation path: /03-pages/02-api-reference/03-next-config-js/compress

Description: Next.js provides gzip compression to compress rendered content and static files, it only works with the server target.
Learn more about it here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.5 - crossOrigin
Documentation path: /03-pages/02-api-reference/03-next-config-js/crossOrigin

Description: Use the `crossOrigin` option to add a crossOrigin tag on the `script` tags generated by `next/script` and `next/head`.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}



4.2.3.6 - devIndicators
Documentation path: /03-pages/02-api-reference/03-next-config-js/devIndicators

Description: Optimized pages include an indicator to let you know if it's being statically optimized. You can opt-out of it here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.7 - distDir
Documentation path: /03-pages/02-api-reference/03-next-config-js/distDir

Description: Set a custom build directory to use instead of the default .next directory.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.8 - env
Documentation path: /03-pages/02-api-reference/03-next-config-js/env

Description: Learn to add and access environment variables in your Next.js application at build time.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.9 - eslint
Documentation path: /03-pages/02-api-reference/03-next-config-js/eslint

Description: Next.js reports ESLint errors and warnings during builds by default. Learn how to opt-out of this behavior here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.10 - exportPathMap
Documentation path: /03-pages/02-api-reference/03-next-config-js/exportPathMap

Description: Customize the pages that will be exported as HTML files when using `next export`.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.11 - generateBuildId
Documentation path: /03-pages/02-api-reference/03-next-config-js/generateBuildId

Description: Configure the build id, which is used to identify the current build in which your application is being served.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.12 - generateEtags
Documentation path: /03-pages/02-api-reference/03-next-config-js/generateEtags

Description: Next.js will generate etags for every page by default. Learn more about how to disable etag generation here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.13 - headers
Documentation path: /03-pages/02-api-reference/03-next-config-js/headers

Description: Add custom HTTP headers to your Next.js app.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.14 - httpAgentOptions
Documentation path: /03-pages/02-api-reference/03-next-config-js/httpAgentOptions

Description: Next.js will automatically use HTTP Keep-Alive by default. Learn more about how to disable HTTP Keep-Alive here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.15 - images
Documentation path: /03-pages/02-api-reference/03-next-config-js/images

Description: Custom configuration for the next/image loader

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.16 - instrumentationHook
Documentation path: /03-pages/02-api-reference/03-next-config-js/instrumentationHook

Description: Use the instrumentationHook option to set up instrumentation in your Next.js App.

{/ The content of this doc is shared between the app and pages router. You can use the <PagesOnly>Content</PagesOnly> component
to add content that is specific to the Pages Router. Any shared content should not be wrapped in a component. /}



4.2.3.17 - onDemandEntries
Documentation path: /03-pages/02-api-reference/03-next-config-js/onDemandEntries

Description: Configure how Next.js will dispose and keep in memory pages created in development.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.18 - optimizePackageImports
Documentation path: /03-pages/02-api-reference/03-next-config-js/optimizePackageImports

Description: API Reference for optimizePackageImports Next.js Config Option

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.19 - output
Documentation path: /03-pages/02-api-reference/03-next-config-js/output

Description: Next.js automatically traces which files are needed by each page to allow for easy deployment of your application. Learn
how it works here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.20 - pageExtensions
Documentation path: /03-pages/02-api-reference/03-next-config-js/pageExtensions

Description: Extend the default page extensions used by Next.js when resolving pages in the Pages Router.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.21 - poweredByHeader
Documentation path: /03-pages/02-api-reference/03-next-config-js/poweredByHeader

Description: Next.js will add the `x-powered-by` header by default. Learn to opt-out of it here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.22 - productionBrowserSourceMaps
Documentation path: /03-pages/02-api-reference/03-next-config-js/productionBrowserSourceMaps

Description: Enables browser source map generation during the production build.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.23 - reactStrictMode
Documentation path: /03-pages/02-api-reference/03-next-config-js/reactStrictMode

Description: The complete Next.js runtime is now Strict Mode-compliant, learn how to opt-in

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.24 - redirects
Documentation path: /03-pages/02-api-reference/03-next-config-js/redirects

Description: Add redirects to your Next.js app.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.25 - rewrites
Documentation path: /03-pages/02-api-reference/03-next-config-js/rewrites

Description: Add rewrites to your Next.js app.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.26 - Runtime Config
Documentation path: /03-pages/02-api-reference/03-next-config-js/runtime-configuration

Description: Add client and server runtime configuration to your Next.js app.

Warning:

This feature is deprecated. We recommend using environment variables instead, which also can support reading runtime
values.
You can run code on server startup using the register function.
This feature does not work with Automatic Static Optimization, Output File Tracing, or React Server Components.

To add runtime configuration to your app, open next.config.js and add the publicRuntimeConfig and serverRuntimeConfig
configs:

next.config.js (js)

module.exports = {
  serverRuntimeConfig: {
    // Will only be available on the server side
    mySecret: 'secret',
    secondSecret: process.env.SECOND_SECRET, // Pass through env variables
  },
  publicRuntimeConfig: {
    // Will be available on both server and client
    staticFolder: '/static',
  },
}

Place any server-only runtime config under serverRuntimeConfig.

Anything accessible to both client and server-side code should be under publicRuntimeConfig.

A page that relies on publicRuntimeConfig must use getInitialProps or getServerSideProps or your application must
have a Custom App with getInitialProps to opt-out of Automatic Static Optimization. Runtime configuration won’t be
available to any page (or component in a page) without being server-side rendered.

To get access to the runtime configs in your app use next/config, like so:

import getConfig from 'next/config'
import Image from 'next/image'

// Only holds serverRuntimeConfig and publicRuntimeConfig
const { serverRuntimeConfig, publicRuntimeConfig } = getConfig()
// Will only be available on the server-side
console.log(serverRuntimeConfig.mySecret)
// Will be available on both server-side and client-side
console.log(publicRuntimeConfig.staticFolder)

function MyImage() {
  return (
    <div>
      <Image
        src={`${publicRuntimeConfig.staticFolder}/logo.png`}
        alt="logo"
        layout="fill"
      />
    </div>
  )
}

export default MyImage

file:///docs/pages/building-your-application/configuring/environment-variables
file:///docs/app/building-your-application/optimizing/instrumentation
file:///docs/pages/building-your-application/rendering/automatic-static-optimization
file:///docs/pages/api-reference/next-config-js/output#automatically-copying-traced-files
file:///docs/app/building-your-application/rendering/server-components
file:///docs/pages/building-your-application/routing/custom-app
file:///docs/pages/building-your-application/rendering/automatic-static-optimization


4.2.3.27 - serverExternalPackages
Documentation path: /03-pages/02-api-reference/03-next-config-js/serverExternalPackages

Description: Opt-out specific dependencies from the dependency bundling enabled by `bundlePagesRouterDependencies`.

Opt-out specific dependencies from being included in the automatic bundling of the bundlePagesRouterDependencies option.

These pages will then use native Node.js require to resolve the dependency.

next.config.js (js)

/** @type {import('next').NextConfig} */
const nextConfig = {
  serverExternalPackages: ['@acme/ui'],
}

module.exports = nextConfig

Next.js includes a short list of popular packages that currently are working on compatibility and automatically opt-ed out:

@appsignal/nodejs
@aws-sdk/client-s3
@aws-sdk/s3-presigned-post
@blockfrost/blockfrost-js
@highlight-run/node
@jpg-store/lucid-cardano
@libsql/client
@mikro-orm/core
@mikro-orm/knex
@node-rs/argon2
@node-rs/bcrypt
@prisma/client
@react-pdf/renderer
@sentry/profiling-node
@swc/core
argon2
autoprefixer
aws-crt
bcrypt
better-sqlite3
canvas
cpu-features
cypress
eslint
express
firebase-admin
isolated-vm
jest
jsdom
libsql
mdx-bundler
mongodb
mongoose
next-mdx-remote
next-seo
node-pty
node-web-audio-api
oslo
pg
playwright
postcss

file:///docs/pages/api-reference/next-config-js/bundlePagesRouterDependencies
https://github.com/vercel/next.js/blob/canary/packages/next/src/lib/server-external-packages.json


prettier
prisma
puppeteer-core
puppeteer
rimraf
sharp
shiki
sqlite3
tailwindcss
ts-node
typescript
vscode-oniguruma
webpack
websocket
zeromq



4.2.3.28 - trailingSlash
Documentation path: /03-pages/02-api-reference/03-next-config-js/trailingSlash

Description: Configure Next.js pages to resolve with or without a trailing slash.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.29 - transpilePackages
Documentation path: /03-pages/02-api-reference/03-next-config-js/transpilePackages

Description: Automatically transpile and bundle dependencies from local packages (like monorepos) or from external dependencies
(`node_modules`).

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.30 - turbo (experimental)
Documentation path: /03-pages/02-api-reference/03-next-config-js/turbo

Description: Configure Next.js with Turbopack-specific options

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.31 - typescript
Documentation path: /03-pages/02-api-reference/03-next-config-js/typescript

Description: Next.js reports TypeScript errors by default. Learn to opt-out of this behavior here.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.32 - urlImports
Documentation path: /03-pages/02-api-reference/03-next-config-js/urlImports

Description: Configure Next.js to allow importing modules from external URLs (experimental).

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.33 - webVitalsAttribution
Documentation path: /03-pages/02-api-reference/03-next-config-js/webVitalsAttribution

Description: Learn how to use the webVitalsAttribution option to pinpoint the source of Web Vitals issues.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.3.34 - Custom Webpack Config
Documentation path: /03-pages/02-api-reference/03-next-config-js/webpack

Description: Learn how to customize the webpack config used by Next.js

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.4 - create-next-app
Documentation path: /03-pages/02-api-reference/04-create-next-app

Description: create-next-app

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.5 - Next.js CLI
Documentation path: /03-pages/02-api-reference/05-next-cli

Description: Next.js CLI

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



4.2.6 - Edge Runtime
Documentation path: /03-pages/02-api-reference/06-edge

Description: API Reference for the Edge Runtime.

{/ DO NOT EDIT. The content of this doc is generated from the source above. To edit the content of this page, navigate to the source page in
your editor. You can use the <PagesOnly>Content</PagesOnly> component to add content that is specific to the Pages Router. Any
shared content should not be wrapped in a component. /}



5 - Architecture
Documentation path: /04-architecture/index

Description: How Next.js Works

Learn about the Next.js architecture and how it works under the hood.



5.1 - Accessibility
Documentation path: /04-architecture/accessibility

Description: The built-in accessibility features of Next.js.

The Next.js team is committed to making Next.js accessible to all developers (and their end-users). By adding accessibility features to
Next.js by default, we aim to make the Web more inclusive for everyone.

Route Announcements

When transitioning between pages rendered on the server (e.g. using the <a href> tag) screen readers and other assistive technology
announce the page title when the page loads so that users understand that the page has changed.

In addition to traditional page navigations, Next.js also supports client-side transitions for improved performance (using next/link).
To ensure that client-side transitions are also announced to assistive technology, Next.js includes a route announcer by default.

The Next.js route announcer looks for the page name to announce by first inspecting document.title, then the <h1> element, and
finally the URL pathname. For the most accessible user experience, ensure that each page in your application has a unique and
descriptive title.

Linting

Next.js provides an integrated ESLint experience out of the box, including custom rules for Next.js. By default, Next.js includes
eslint-plugin-jsx-a11y to help catch accessibility issues early, including warning on:

aria-props
aria-proptypes
aria-unsupported-elements
role-has-required-aria-props
role-supports-aria-props

For example, this plugin helps ensure you add alt text to img tags, use correct aria-* attributes, use correct role attributes, and
more.

Accessibility Resources

WebAIM WCAG checklist
WCAG 2.2 Guidelines
The A11y Project
Check color contrast ratios between foreground and background elements
Use prefers-reduced-motion when working with animations

file:///docs/pages/building-your-application/configuring/eslint
https://github.com/jsx-eslint/eslint-plugin-jsx-a11y/blob/HEAD/docs/rules/aria-props.md?rgh-link-date=2021-06-04T02%253A10%253A36Z
https://github.com/jsx-eslint/eslint-plugin-jsx-a11y/blob/HEAD/docs/rules/aria-proptypes.md?rgh-link-date=2021-06-04T02%253A10%253A36Z
https://github.com/jsx-eslint/eslint-plugin-jsx-a11y/blob/HEAD/docs/rules/aria-unsupported-elements.md?rgh-link-date=2021-06-04T02%253A10%253A36Z
https://github.com/jsx-eslint/eslint-plugin-jsx-a11y/blob/HEAD/docs/rules/role-has-required-aria-props.md?rgh-link-date=2021-06-04T02%253A10%253A36Z
https://github.com/jsx-eslint/eslint-plugin-jsx-a11y/blob/HEAD/docs/rules/role-supports-aria-props.md?rgh-link-date=2021-06-04T02%253A10%253A36Z
https://webaim.org/standards/wcag/checklist
https://www.w3.org/TR/WCAG22/
https://www.a11yproject.com/
https://developer.mozilla.org/docs/Web/Accessibility/Understanding_WCAG/Perceivable/Color_contrast
https://web.dev/prefers-reduced-motion/


5.2 - Fast Refresh
Documentation path: /04-architecture/fast-refresh

Description: Fast Refresh is a hot module reloading experience that gives you instantaneous feedback on edits made to your React
components.

Fast Refresh is a Next.js feature that gives you instantaneous feedback on edits made to your React components. Fast Refresh is
enabled by default in all Next.js applications on 9.4 or newer. With Next.js Fast Refresh enabled, most edits should be visible within a
second, without losing component state.

How It Works

If you edit a file that only exports React component(s), Fast Refresh will update the code only for that file, and re-render your
component. You can edit anything in that file, including styles, rendering logic, event handlers, or effects.
If you edit a file with exports that aren’t React components, Fast Refresh will re-run both that file, and the other files importing it. So
if both Button.js and Modal.js import theme.js, editing theme.js will update both components.
Finally, if you edit a file that’s imported by files outside of the React tree, Fast Refresh will fall back to doing a full reload.
You might have a file which renders a React component but also exports a value that is imported by a non-React component. For
example, maybe your component also exports a constant, and a non-React utility file imports it. In that case, consider migrating the
constant to a separate file and importing it into both files. This will re-enable Fast Refresh to work. Other cases can usually be
solved in a similar way.

Error Resilience

Syntax Errors

If you make a syntax error during development, you can fix it and save the file again. The error will disappear automatically, so you
won’t need to reload the app. You will not lose component state.

Runtime Errors

If you make a mistake that leads to a runtime error inside your component, you’ll be greeted with a contextual overlay. Fixing the error
will automatically dismiss the overlay, without reloading the app.

Component state will be retained if the error did not occur during rendering. If the error did occur during rendering, React will remount
your application using the updated code.

If you have error boundaries in your app (which is a good idea for graceful failures in production), they will retry rendering on the next
edit after a rendering error. This means having an error boundary can prevent you from always getting reset to the root app state.
However, keep in mind that error boundaries shouldn’t be too granular. They are used by React in production, and should always be
designed intentionally.

Limitations

Fast Refresh tries to preserve local React state in the component you’re editing, but only if it’s safe to do so. Here’s a few reasons why
you might see local state being reset on every edit to a file:

Local state is not preserved for class components (only function components and Hooks preserve state).
The file you’re editing might have other exports in addition to a React component.
Sometimes, a file would export the result of calling a higher-order component like HOC(WrappedComponent). If the returned
component is a class, its state will be reset.
Anonymous arrow functions like export default () => <div />; cause Fast Refresh to not preserve local component state.
For large codebases you can use our name-default-component codemod.

As more of your codebase moves to function components and Hooks, you can expect state to be preserved in more cases.

Tips

Fast Refresh preserves React local state in function components (and Hooks) by default.
Sometimes you might want to force the state to be reset, and a component to be remounted. For example, this can be handy if
you’re tweaking an animation that only happens on mount. To do this, you can add // @refresh reset anywhere in the file
you’re editing. This directive is local to the file, and instructs Fast Refresh to remount components defined in that file on every edit.
You can put console.log or debugger; into the components you edit during development.
Remember that imports are case sensitive. Both fast and full refresh can fail, when your import doesn’t match the actual filename.

https://react.dev/reference/react/Component#catching-rendering-errors-with-an-error-boundary
file:///docs/pages/building-your-application/upgrading/codemods#name-default-component


For example, './header' vs './Header'.

Fast Refresh and Hooks

When possible, Fast Refresh attempts to preserve the state of your component between edits. In particular, useState and useRef
preserve their previous values as long as you don’t change their arguments or the order of the Hook calls.

Hooks with dependencies—such as useEffect, useMemo, and useCallback—will always update during Fast Refresh. Their list of
dependencies will be ignored while Fast Refresh is happening.

For example, when you edit useMemo(() => x * 2, [x]) to useMemo(() => x * 10, [x]), it will re-run even though x (the
dependency) has not changed. If React didn’t do that, your edit wouldn’t reflect on the screen!

Sometimes, this can lead to unexpected results. For example, even a useEffect with an empty array of dependencies would still re-
run once during Fast Refresh.

However, writing code resilient to occasional re-running of useEffect is a good practice even without Fast Refresh. It will make it
easier for you to introduce new dependencies to it later on and it’s enforced by React Strict Mode, which we highly recommend
enabling.

file:///docs/pages/api-reference/next-config-js/reactStrictMode


5.3 - Next.js Compiler
Documentation path: /04-architecture/nextjs-compiler

Description: Next.js Compiler, written in Rust, which transforms and minifies your Next.js application.

The Next.js Compiler, written in Rust using SWC, allows Next.js to transform and minify your JavaScript code for production. This
replaces Babel for individual files and Terser for minifying output bundles.

Compilation using the Next.js Compiler is 17x faster than Babel and enabled by default since Next.js version 12. If you have an existing
Babel configuration or are using unsupported features, your application will opt-out of the Next.js Compiler and continue using Babel.

Why SWC?

SWC is an extensible Rust-based platform for the next generation of fast developer tools.

SWC can be used for compilation, minification, bundling, and more – and is designed to be extended. It’s something you can call to
perform code transformations (either built-in or custom). Running those transformations happens through higher-level tools like
Next.js.

We chose to build on SWC for a few reasons:

Extensibility: SWC can be used as a Crate inside Next.js, without having to fork the library or workaround design constraints.
Performance: We were able to achieve ~3x faster Fast Refresh and ~5x faster builds in Next.js by switching to SWC, with more
room for optimization still in progress.
WebAssembly: Rust’s support for WASM is essential for supporting all possible platforms and taking Next.js development
everywhere.
Community: The Rust community and ecosystem are amazing and still growing.

Supported Features

Styled Components

We’re working to port babel-plugin-styled-components to the Next.js Compiler.

First, update to the latest version of Next.js: npm install next@latest. Then, update your next.config.js file:

next.config.js (js)

module.exports = {
  compiler: {
    styledComponents: true,
  },
}

For advanced use cases, you can configure individual properties for styled-components compilation.

Note: minify, transpileTemplateLiterals and pure are not yet implemented. You can follow the progress here. ssr and
displayName transforms are the main requirement for using styled-components in Next.js.

next.config.js (js)

module.exports = {
  compiler: {
    // see https://styled-components.com/docs/tooling#babel-plugin for more info on the options.
    styledComponents: {
      // Enabled by default in development, disabled in production to reduce file size,
      // setting this will override the default for all environments.
      displayName?: boolean,
      // Enabled by default.
      ssr?: boolean,
      // Enabled by default.
      fileName?: boolean,
      // Empty by default.
      topLevelImportPaths?: string[],
      // Defaults to ["index"].
      meaninglessFileNames?: string[],
      // Enabled by default.
      cssProp?: boolean,
      // Empty by default.
      namespace?: string,
      // Not supported yet.
      minify?: boolean,

https://swc.rs/
https://swc.rs/
https://github.com/vercel/next.js/issues/30802


      // Not supported yet.
      transpileTemplateLiterals?: boolean,
      // Not supported yet.
      pure?: boolean,
    },
  },
}

Jest

The Next.js Compiler transpiles your tests and simplifies configuring Jest together with Next.js including:

Auto mocking of .css, .module.css (and their .scss variants), and image imports
Automatically sets up transform using SWC
Loading .env (and all variants) into process.env
Ignores node_modules from test resolving and transforms
Ignoring .next from test resolving
Loads next.config.js for flags that enable experimental SWC transforms

First, update to the latest version of Next.js: npm install next@latest. Then, update your jest.config.js file:

jest.config.js (js)

const nextJest = require('next/jest')

// Providing the path to your Next.js app which will enable loading next.config.js and .env files
const createJestConfig = nextJest({ dir: './' })

// Any custom config you want to pass to Jest
const customJestConfig = {
  setupFilesAfterEnv: ['<rootDir>/jest.setup.js'],
}

// createJestConfig is exported in this way to ensure that next/jest can load the Next.js configuration, which is async
module.exports = createJestConfig(customJestConfig)

Relay

To enable Relay support:
next.config.js (js)

module.exports = {
  compiler: {
    relay: {
      // This should match relay.config.js
      src: './',
      artifactDirectory: './__generated__',
      language: 'typescript',
      eagerEsModules: false,
    },
  },
}

Good to know: In Next.js, all JavaScript files in pages directory are considered routes. So, for relay-compiler you’ll need to
specify artifactDirectory configuration settings outside of the pages, otherwise relay-compiler will generate files next
to the source file in the __generated__ directory, and this file will be considered a route, which will break production builds.

Remove React Properties

Allows to remove JSX properties. This is often used for testing. Similar to babel-plugin-react-remove-properties.

To remove properties matching the default regex ^data-test:

next.config.js (js)

module.exports = {
  compiler: {
    reactRemoveProperties: true,
  },
}

To remove custom properties:
next.config.js (js)

https://relay.dev/


module.exports = {
  compiler: {
    // The regexes defined here are processed in Rust so the syntax is different from
    // JavaScript `RegExp`s. See https://docs.rs/regex.
    reactRemoveProperties: { properties: ['^data-custom$'] },
  },
}

Remove Console

This transform allows for removing all console.* calls in application code (not node_modules). Similar to babel-plugin-
transform-remove-console.

Remove all console.* calls:

next.config.js (js)

module.exports = {
  compiler: {
    removeConsole: true,
  },
}

Remove console.* output except console.error:

next.config.js (js)

module.exports = {
  compiler: {
    removeConsole: {
      exclude: ['error'],
    },
  },
}

Legacy Decorators

Next.js will automatically detect experimentalDecorators in jsconfig.json or tsconfig.json. Legacy decorators are commonly
used with older versions of libraries like mobx.

This flag is only supported for compatibility with existing applications. We do not recommend using legacy decorators in new
applications.

First, update to the latest version of Next.js: npm install next@latest. Then, update your jsconfig.json or tsconfig.json file:

{
  "compilerOptions": {
    "experimentalDecorators": true
  }
}

importSource

Next.js will automatically detect jsxImportSource in jsconfig.json or tsconfig.json and apply that. This is commonly used with
libraries like Theme UI.

First, update to the latest version of Next.js: npm install next@latest. Then, update your jsconfig.json or tsconfig.json file:

{
  "compilerOptions": {
    "jsxImportSource": "theme-ui"
  }
}

Emotion

We’re working to port @emotion/babel-plugin to the Next.js Compiler.

First, update to the latest version of Next.js: npm install next@latest. Then, update your next.config.js file:

next.config.js (js)

module.exports = {
  compiler: {
    emotion: boolean | {
      // default is true. It will be disabled when build type is production.
      sourceMap?: boolean,

https://theme-ui.com


      // default is 'dev-only'.
      autoLabel?: 'never' | 'dev-only' | 'always',
      // default is '[local]'.
      // Allowed values: `[local]` `[filename]` and `[dirname]`
      // This option only works when autoLabel is set to 'dev-only' or 'always'.
      // It allows you to define the format of the resulting label.
      // The format is defined via string where variable parts are enclosed in square brackets [].
      // For example labelFormat: "my-classname--[local]", where [local] will be replaced with the name of the variable the result is assigned to.
      labelFormat?: string,
      // default is undefined.
      // This option allows you to tell the compiler what imports it should
      // look at to determine what it should transform so if you re-export
      // Emotion's exports, you can still use transforms.
      importMap?: {
        [packageName: string]: {
          [exportName: string]: {
            canonicalImport?: [string, string],
            styledBaseImport?: [string, string],
          }
        }
      },
    },
  },
}

Minification

Next.js’ swc compiler is used for minification by default since v13. This is 7x faster than Terser.

If Terser is still needed for any reason this can be configured.
next.config.js (js)

module.exports = {
  swcMinify: false,
}

Module Transpilation

Next.js can automatically transpile and bundle dependencies from local packages (like monorepos) or from external dependencies
(node_modules). This replaces the next-transpile-modules package.

next.config.js (js)

module.exports = {
  transpilePackages: ['@acme/ui', 'lodash-es'],
}

Modularize Imports

This option has been superseded by optimizePackageImports in Next.js 13.5. We recommend upgrading to use the new option that
does not require manual configuration of import paths.

Experimental Features

SWC Trace profiling

You can generate SWC’s internal transform traces as chromium’s trace event format.
next.config.js (js)

module.exports = {
  experimental: {
    swcTraceProfiling: true,
  },
}

Once enabled, swc will generate trace named as swc-trace-profile-${timestamp}.json under .next/. Chromium’s trace viewer
(chrome://tracing/, https://ui.perfetto.dev/), or compatible flamegraph viewer (https://www.speedscope.app/) can load & visualize
generated traces.

SWC Plugins (Experimental)

You can configure swc’s transform to use SWC’s experimental plugin support written in wasm to customize transformation behavior.
next.config.js (js)

file:///docs/app/api-reference/next-config-js/optimizePackageImports
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview?mode=html#%2521=


module.exports = {
  experimental: {
    swcPlugins: [
      [
        'plugin',
        {
          ...pluginOptions,
        },
      ],
    ],
  },
}

swcPlugins accepts an array of tuples for configuring plugins. A tuple for the plugin contains the path to the plugin and an object for
plugin configuration. The path to the plugin can be an npm module package name or an absolute path to the .wasm binary itself.

Unsupported Features

When your application has a .babelrc file, Next.js will automatically fall back to using Babel for transforming individual files. This
ensures backwards compatibility with existing applications that leverage custom Babel plugins.

If you’re using a custom Babel setup, please share your configuration. We’re working to port as many commonly used Babel
transformations as possible, as well as supporting plugins in the future.

Version History

Version Changes

v13.1.0 Module Transpilation and Modularize Imports stable.

v13.0.0 SWC Minifier enabled by default.

v12.3.0 SWC Minifier stable.

v12.2.0 SWC Plugins experimental support added.

v12.1.0 Added support for Styled Components, Jest, Relay, Remove React Properties, Legacy Decorators, Remove Console, and
jsxImportSource.

v12.0.0 Next.js Compiler introduced.

https://github.com/vercel/next.js/discussions/30174
https://nextjs.org/blog/next-13-1#built-in-module-transpilation-stable
https://nextjs.org/blog/next-13-1#import-resolution-for-smaller-bundles
https://nextjs.org/blog/next-12-3#swc-minifier-stable
https://nextjs.org/blog/next-12


5.4 - Supported Browsers
Documentation path: /04-architecture/supported-browsers

Description: Browser support and which JavaScript features are supported by Next.js.

Next.js supports modern browsers with zero configuration.

Chrome 64+
Edge 79+
Firefox 67+
Opera 51+
Safari 12+

Browserslist

If you would like to target specific browsers or features, Next.js supports Browserslist configuration in your package.json file. Next.js
uses the following Browserslist configuration by default:

package.json (json)

{
  "browserslist": [
    "chrome 64",
    "edge 79",
    "firefox 67",
    "opera 51",
    "safari 12"
  ]
}

Polyfills

We inject widely used polyfills, including:

fetch() — Replacing: whatwg-fetch and unfetch.
URL — Replacing: the url package (Node.js API).
Object.assign() — Replacing: object-assign, object.assign, and core-js/object/assign.

If any of your dependencies include these polyfills, they’ll be eliminated automatically from the production build to avoid duplication.

In addition, to reduce bundle size, Next.js will only load these polyfills for browsers that require them. The majority of the web traffic
globally will not download these polyfills.

Custom Polyfills

If your own code or any external npm dependencies require features not supported by your target browsers (such as IE 11), you need to
add polyfills yourself.

In this case, you should add a top-level import for the specific polyfill you need in your Custom <App> or the individual component.

JavaScript Language Features

Next.js allows you to use the latest JavaScript features out of the box. In addition to ES6 features, Next.js also supports:

Async/await (ES2017)
Object Rest/Spread Properties (ES2018)
Dynamic import() (ES2020)
Optional Chaining (ES2020)
Nullish Coalescing (ES2020)
Class Fields and Static Properties (ES2022)
and more!

TypeScript Features

Next.js has built-in TypeScript support. Learn more here.

Customizing Babel Config (Advanced)

https://browsersl.ist
https://github.com/vercel/next.js/blob/canary/packages/next-polyfill-nomodule/src/index.js
https://developer.mozilla.org/docs/Web/API/Fetch_API
https://developer.mozilla.org/docs/Web/API/URL
https://nodejs.org/api/url.html
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
file:///docs/pages/building-your-application/routing/custom-app
https://github.com/lukehoban/es6features
https://github.com/tc39/ecmascript-asyncawait
https://github.com/tc39/proposal-object-rest-spread
https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-optional-chaining
https://github.com/tc39/proposal-nullish-coalescing
https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-static-class-features
file:///docs/pages/building-your-application/configuring/typescript


You can customize babel configuration. Learn more here.

file:///docs/pages/building-your-application/configuring/babel


5.5 - Turbopack
Documentation path: /04-architecture/turbopack

Description: Turbopack is an incremental bundler optimized for JavaScript and TypeScript, written in Rust, and built into Next.js.

Turbopack (beta) is an incremental bundler optimized for JavaScript and TypeScript, written in Rust, and built into Next.js.

Usage

Turbopack can be used in Next.js in both the pages and app directories for faster local development. To enable Turbopack, use the --
turbo flag when running the Next.js development server.

json filename="package.json" highlight={3} { "scripts": { "dev": "next dev --turbo", "build": "next
build", "start": "next start", "lint": "next lint" } }

Supported features

Turbopack in Next.js requires zero-configuration for most users and can be extended for more advanced use cases. To learn more
about the currently supported features for Turbopack, view the API Reference.

Unsupported features

Turbopack currently only supports next dev and does not support next build. We are currently working on support for builds as we
move closer towards stability.

These features are currently not supported:

webpack() configuration in next.config.js
Turbopack replaces Webpack, this means that webpack configuration is not supported.
To configure Turbopack, see the documentation.
A subset of Webpack loaders are supported in Turbopack.
Babel (.babelrc)
Turbopack leverages the SWC compiler for all transpilation and optimizations. This means that Babel is not included by default.
If you have a .babelrc file, you might no longer need it because Next.js includes common Babel plugins as SWC transforms that
can be enabled. You can read more about this in the compiler documentation.
If you still need to use Babel after verifying your particular use case is not covered, you can leverage Turbopack’s support for
custom webpack loaders to include babel-loader.
Creating a root layout automatically in App Router.
This behavior is currently not supported since it changes input files, instead, an error will be shown for you manually add a root
layout in the desired location.
@next/font (legacy font support).
@next/font is deprecated in favor of next/font. next/font is fully supported with Turbopack.
new Worker('file', import.meta.url).
We are planning to implement this in the future.
Relay transforms
We are planning to implement this in the future.
experimental.nextScriptWorkers
We are planning to implement this in the future.
AMP.
We are currently not planning to support AMP in Next.js with Turbopack.
Yarn PnP
We are currently not planning to support Yarn PnP in Next.js with Turbopack.
experimental.urlImports
We are currently not planning to support experimental.urlImports in Next.js with Turbopack.

Generating Trace Files

Trace files allow the Next.js team to investigate and improve performance metrics and memory usage. To generate a trace file, append
NEXT_TURBOPACK_TRACING=1 to the next dev --turbo command, this will generate a .next/trace.log file.

When reporting issues related to Turbopack performance and memory usage, please include the trace file in your GitHub issue.

https://turbo.build/pack
file:///docs/app/api-reference/next-config-js/turbo
file:///docs/app/api-reference/next-config-js/webpack
file:///docs/app/api-reference/next-config-js/turbo
file:///docs/app/api-reference/next-config-js/turbo#webpack-loaders
file:///docs/architecture/nextjs-compiler#why-swc
file:///C:/Users/rseba/AppData/Local/Temp/docs/architecture/nextjs-compiler#supported-features
file:///docs/app/api-reference/next-config-js/turbo#webpack-loaders
file:///docs/app/building-your-application/optimizing/fonts
file:///docs/architecture/nextjs-compiler#relay
file:///docs/pages/building-your-application/configuring/amp
file:///docs/app/api-reference/next-config-js/urlImports
https://github.com/vercel/next.js


6 - Next.js Community
Documentation path: /05-community/index

Description: Get involved in the Next.js community.

With over 5 million weekly downloads, Next.js has a large and active community of developers across the world. Here’s how you can
get involved in our community:

Contributing

There are a couple of ways you can contribute to the development of Next.js:

Documentation: Suggest improvements or even write new sections to help our users understand how to use Next.js.
Examples: Help developers integrate Next.js with other tools and services by creating a new example or improving an existing one.
Codebase: Learn more about the underlying architecture, contribute to bug fixes, errors, and suggest new features.

Discussions

If you have a question about Next.js, or want to help others, you’re always welcome to join the conversation:

GitHub Discussions
Discord
Reddit

Social Media

Follow Next.js on Twitter for the latest updates, and subscribe to the Vercel YouTube channel for Next.js videos.

Code of Conduct

We believe in creating an inclusive, welcoming community. As such, we ask all members to adhere to our Code of Conduct. This
document outlines our expectations for participant behavior. We invite you to read it and help us maintain a safe and respectful
environment.

file:///docs/community/contribution-guide
https://github.com/vercel/next.js/tree/canary/contributing/examples
https://github.com/vercel/next.js/tree/canary/contributing/core
https://github.com/vercel/next.js/discussions
https://discord.com/invite/bUG2bvbtHy
https://www.reddit.com/r/nextjs
https://twitter.com/nextjs
https://www.youtube.com/@VercelHQ
https://github.com/vercel/next.js/blob/canary/CODE_OF_CONDUCT.md


6.1 - Docs Contribution Guide
Documentation path: /05-community/01-contribution-guide

Description: Learn how to contribute to Next.js Documentation

Welcome to the Next.js Docs Contribution Guide! We’re excited to have you here.

This page provides instructions on how to edit the Next.js documentation. Our goal is to ensure that everyone in the community feels
empowered to contribute and improve our docs.

Why Contribute?

Open-source work is never done, and neither is documentation. Contributing to docs is a good way for beginners to get involved in
open-source and for experienced developers to clarify more complex topics while sharing their knowledge with the community.

By contributing to the Next.js docs, you’re helping us build a more robust learning resource for all developers. Whether you’ve found a
typo, a confusing section, or you’ve realized that a particular topic is missing, your contributions are welcomed and appreciated.

How to Contribute

The docs content can be found on the Next.js repo. To contribute, you can edit the files directly on GitHub or clone the repo and edit
the files locally.

GitHub Workflow

If you’re new to GitHub, we recommend reading the GitHub Open Source Guide to learn how to fork a repository, create a branch, and
submit a pull request.

Good to know: The underlying docs code lives in a private codebase that is synced to the Next.js public repo. This means that
you can’t preview the docs locally. However, you’ll see your changes on nextjs.org after merging a pull request.

Writing MDX

The docs are written in MDX, a markdown format that supports JSX syntax. This allows us to embed React components in the docs. See
the GitHub Markdown Guide for a quick overview of markdown syntax.

VSCode

Previewing Changes Locally

VSCode has a built-in markdown previewer that you can use to see your edits locally. To enable the previewer for MDX files, you’ll need
to add a configuration option to your user settings.

Open the command palette (⌘ + ⇧ + P on Mac or Ctrl + Shift + P on Windows) and search from Preferences: Open User
Settings (JSON).

Then, add the following line to your settings.json file:

settings.json (json)

{
  "files.associations": {
    "*.mdx": "markdown"
  }
}

Next, open the command palette again, and search for Markdown: Preview File or Markdown: Open Preview to the Side. This
will open a preview window where you can see your formatted changes.

Extensions

We also recommend the following extensions for VSCode users:

MDX: Intellisense and syntax highlighting for MDX.
Grammarly: Grammar and spell checker.
Prettier: Format MDX files on save.

Review Process

Once you’ve submitted your contribution, the Next.js or Developer Experience teams will review your changes, provide feedback, and

https://github.com/vercel/next.js/tree/canary/docs
https://opensource.guide/how-to-contribute/#opening-a-pull-request
https://nextjs.org/docs
https://mdxjs.com/
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
https://marketplace.visualstudio.com/items?itemName=unifiedjs.vscode-mdx
https://marketplace.visualstudio.com/items?itemName=znck.grammarly
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode


merge the pull request when it’s ready.

Please let us know if you have any questions or need further assistance in your PR’s comments. Thank you for contributing to the
Next.js docs and being a part of our community!

Tip: Run pnpm prettier-fix to run Prettier before submitting your PR.

File Structure

The docs use file-system routing. Each folder and files inside /docs represent a route segment. These segments are used to generate
the URL paths, navigation, and breadcrumbs.

The file structure reflects the navigation that you see on the site, and by default, navigation items are sorted alphabetically. However,
we can change the order of the items by prepending a two-digit number (00-) to the folder or file name.

For example, in the functions API Reference, the pages are sorted alphabetically because it makes it easier for developers to find a
specific function:

03-functions
├── cookies.mdx
├── draft-mode.mdx
├── fetch.mdx
└── ...

But, in the routing section, the files are prefixed with a two-digit number, sorted in the order developers should learn these concepts:

02-routing
├── 01-defining-routes.mdx
├── 02-pages-and-layouts.mdx
├── 03-linking-and-navigating.mdx
└── ...

To quickly find a page, you can use ⌘ + P (Mac) or Ctrl + P (Windows) to open the search bar on VSCode. Then, type the slug of the
page you’re looking for. E.g. defining-routes

Why not use a manifest?

We considered using a manifest file (another popular way to generate the docs navigation), but we found that a manifest would
quickly get out of sync with the files. File-system routing forces us to think about the structure of the docs and feels more native
to Next.js.

Metadata

Each page has a metadata block at the top of the file separated by three dashes.

Required Fields

The following fields are required:

Field Description

title The page’s <h1> title, used for SEO and OG Images.

description The page’s description, used in the <meta name="description"> tag for SEO.

required-fields.mdx (yaml)

---
title: Page Title
description: Page Description
---

It’s good practice to limit the page title to 2-3 words (e.g. Optimizing Images) and the description to 1-2 sentences (e.g. Learn how to
optimize images in Next.js).

Optional Fields

The following fields are optional:

Field Description

https://github.com/vercel/next.js/tree/canary/docs
file:///docs/app/api-reference/functions
file:///docs/app/building-your-application/routing


nav_title
Overrides the page’s title in the navigation. This is useful when the page’s title is too long to fit. If not provided, the
title field is used.

source Pulls content into a shared page. See Shared Pages.

related A list of related pages at the bottom of the document. These will automatically be turned into cards. See Related Links.

Field Description

optional-fields.mdx (yaml)

---
nav_title: Nav Item Title
source: app/building-your-application/optimizing/images
related:
  description: See the image component API reference.
  links:
    - app/api-reference/components/image
---

AppApp and PagesPages Docs

Since most of the features in the App Router and Pages Router are completely different, their docs for each are kept in separate
sections (02-app and 03-pages). However, there are a few features that are shared between them.

Shared Pages

To avoid content duplication and risk the content becoming out of sync, we use the source field to pull content from one page into
another. For example, the <Link> component behaves mostly the same in App and Pages. Instead of duplicating the content, we can
pull the content from app/.../link.mdx into pages/.../link.mdx:

app/.../link.mdx (mdx)

---
title: <Link>
description: API reference for the <Link> component.
---

This API reference will help you understand how to use the props
and configuration options available for the Link Component.

pages/.../link.mdx (mdx)

---
title: <Link>
description: API reference for the <Link> component.
source: app/api-reference/components/link
---

{/* DO NOT EDIT THIS PAGE. */}
{/* The content of this page is pulled from the source above. */}

We can therefore edit the content in one place and have it reflected in both sections.

Shared Content

In shared pages, sometimes there might be content that is App Router or Pages Router specific. For example, the <Link> component
has a shallow prop that is only available in Pages but not in App.

To make sure the content only shows in the correct router, we can wrap content blocks in an <AppOnly> or <PagesOnly>
components:

app/.../link.mdx (mdx)

This content is shared between App and Pages.

<PagesOnly>

This content will only be shown on the Pages docs.

</PagesOnly>

This content is shared between App and Pages.



You’ll likely use these components for examples and code blocks.

Code Blocks

Code blocks should contain a minimum working example that can be copied and pasted. This means that the code should be able to
run without any additional configuration.

For example, if you’re showing how to use the <Link> component, you should include the import statement and the <Link>
component itself.

app/page.tsx (tsx)

import Link from 'next/link'

export default function Page() {
  return <Link href="/about">About</Link>
}

Always run examples locally before committing them. This will ensure that the code is up-to-date and working.

Language and Filename

Code blocks should have a header that includes the language and the filename. Add a filename prop to render a special Terminal
icon that helps orientate users where to input the command. For example:

`
code-example.mdx (mdx)

```bash filename="Terminal"
npx create-next-app

Most examples in the docs are written in `tsx` and `jsx`, and a few in `bash`. However, you can use any supported

When writing JavaScript code blocks, we use the following language and extension combinations.

| | Language | Extension |
| ------------------------------ | -------- | --------- |
| JavaScript files with JSX code | ```jsx | .js |
| JavaScript files without JSX | ```js | .js |
| TypeScript files with JSX | ```tsx | .tsx |
| TypeScript files without JSX | ```ts | .ts |

TS and JS Switcher

Add a language switcher to toggle between TypeScript and JavaScript. Code blocks should be TypeScript first

Currently, we write TS and JS examples one after the other, and link them with `switcher` prop:

`<div class="code-header"><i>code-example.mdx (mdx)</i></div>
```mdx

```tsx filename="app/page.tsx" switcher

```

<div class="code-header"><i>app/page.js (jsx)</i></div>
```jsx

```

Good to know: We plan to automatically compile TypeScript snippets to JavaScript in the future. In the meantime, you can use
transform.tools.

Line Highlighting

Code lines can be highlighted. This is useful when you want to draw attention to a specific part of the code. You can highlight lines by
passing a number to the highlight prop.

Single Line: highlight={1}
```tsx filename=”app/page.tsx” {1} import Link from ‘next/link’

export default function Page() { return About }

Multiple Lines: `highlight={1,3}`

https://transform.tools/typescript-to-javascript


```tsx filename="app/page.tsx" highlight={1,3}
import Link from 'next/link'

export default function Page() {
  return <Link href="/about">About</Link>
}

Range of Lines: highlight={1-5}
```tsx filename=”app/page.tsx” highlight={1-5} import Link from ‘next/link’

export default function Page() { return About }

Icons

The following icons are available for use in the docs:

<div class="code-header"><i>mdx-icon.mdx (mdx)</i></div>
```mdx
<Check size={18} />
<Cross size={18} />

Output:

We do not use emojis in the docs.

Notes

For information that is important but not critical, use notes. Notes are a good way to add information without distracting the user from
the main content.

notes.mdx (mdx)

> **Good to know**: This is a single line note.

> **Good to know**:
>
> - We also use this format for multi-line notes.
> - There are sometimes multiple items worth knowing or keeping in mind.

Output:

Good to know: This is a single line note.

Good to know:

We also use this format for multi-line notes.
There are sometimes multiple item worths knowing or keeping in mind.

Related Links

Related Links guide the user’s learning journey by adding links to logical next steps.

Links will be displayed in cards under the main content of the page.
Links will be automatically generated for pages that have child pages. For example, the Optimizing section has links to all of its
child pages.

Create related links using the related field in the page’s metadata.

example.mdx (yaml)

---
related:
  description: Learn how to quickly get started with your first application.
  links:
    - app/building-your-application/routing/defining-routes
    - app/building-your-application/data-fetching
    - app/api-reference/file-conventions/page
---

Nested Fields

Field Required? Description

title Optional The title of the card list. Defaults to Next Steps.

file:///docs/app/building-your-application/optimizing


description Optional The description of the card list.

links Required
A list of links to other doc pages. Each list item should be a relative URL path (without a leading slash) e.g.
app/api-reference/file-conventions/page

Field Required? Description

Diagrams

Diagrams are a great way to explain complex concepts. We use Figma to create diagrams, following Vercel’s design guide.

The diagrams currently live in the /public folder in our private Next.js site. If you’d like to update or add a diagram, please open a
GitHub issue with your ideas.

Custom Components and HTML

These are the React Components available for the docs: <Image /> (next/image), <PagesOnly />, <AppOnly />, <Cross />, and
<Check />. We do not allow raw HTML in the docs besides the <details> tag.

If you have ideas for new components, please open a GitHub issue.

Style Guide

This section contains guidelines for writing docs for those who are new to technical writing.

Page Templates

While we don’t have a strict template for pages, there are page sections you’ll see repeated across the docs:

Overview: The first paragraph of a page should tell the user what the feature is and what it’s used for. Followed by a minimum
working example or its API reference.
Convention: If the feature has a convention, it should be explained here.
Examples: Show how the feature can be used with different use cases.
API Tables: API Pages should have an overview table at the of the page with jump-to-section links (when possible).
Next Steps (Related Links): Add links to related pages to guide the user’s learning journey.

Feel free to add these sections as needed.

Page Types

Docs pages are also split into two categories: Conceptual and Reference.

Conceptual pages are used to explain a concept or feature. They are usually longer and contain more information than reference
pages. In the Next.js docs, conceptual pages are found in the Building Your Application section.
Reference pages are used to explain a specific API. They are usually shorter and more focused. In the Next.js docs, reference pages
are found in the API Reference section.

Good to know: Depending on the page you’re contributing to, you may need to follow a different voice and style. For example,
conceptual pages are more instructional and use the word you to address the user. Reference pages are more technical, they
use more imperative words like “create, update, accept” and tend to omit the word you.

Voice

Here are some guidelines to maintain a consistent style and voice across the docs:

Write clear, concise sentences. Avoid tangents.
If you find yourself using a lot of commas, consider breaking the sentence into multiple sentences or use a list.
Swap out complex words for simpler ones. For example, use instead of utilize.
Be mindful with the word this. It can be ambiguous and confusing, don’t be afraid to repeat the subject of the sentence if unclear.
For example, Next.js uses React instead of Next.js uses this.
Use an active voice instead of passive. An active sentence is easier to read.
For example, Next.js uses React instead of React is used by Next.js. If you find yourself using words like was and by you may be using a
passive voice.
Avoid using words like easy, quick, simple, just, etc. This is subjective and can be discouraging to users.
Avoid negative words like don’t, can’t, won’t, etc. This can be discouraging to readers.

https://www.figma.com/
https://github.com/vercel/next.js/issues/new?assignees=&labels=template%253A+documentation&projects=&template=4.docs_request.yml&title=Docs%253A+
https://github.com/vercel/next.js/issues/new/choose


For example, “You can use the Link component to create links between pages” instead of “Don’t use the <a> tag to create links between
pages”.
Write in second person (you/your). This is more personal and engaging.
Use gender-neutral language. Use developers, users, or readers, when referring to the audience.
If adding code examples, ensure they are properly formatted and working.

While these guidelines are not exhaustive, they should help you get started. If you’d like to dive deeper into technical writing, check out
the Google Technical Writing Course.

Thank you for contributing to the docs and being part of the Next.js community!

{/ To do: Latest Contributors Component /}

https://developers.google.com/tech-writing/overview

	Table of Contents
	1 - Introduction
	What is Next.js?
	Main Features
	How to Use These Docs
	App Router vs Pages Router
	Pre-Requisite Knowledge
	Accessibility
	Join our Community

	2 - Getting Started
	2.1 - Installation
	Automatic Installation
	Manual Installation
	Creating directories
	The app directory
	The pages directory (optional)
	The public folder (optional)


	Run the Development Server

	2.2 - Next.js Project Structure
	Top-level folders
	Top-level files
	app Routing Conventions
	Routing Files
	Nested Routes
	Dynamic Routes
	Route Groups and Private Folders
	Parallel and Intercepted Routes
	Metadata File Conventions
	App Icons
	Open Graph and Twitter Images
	SEO


	pages Routing Conventions
	Special Files
	Routes
	Dynamic Routes


	3 - App Router
	Frequently Asked Questions
	How can I access the request object in a layout?
	How can I access the URL on a page?
	How can I redirect from a Server Component?
	How can I handle authentication with the App Router?
	How can I set cookies?
	How can I build multi-tenant apps?
	How can I invalidate the App Router cache?
	Are there any comprehensive, open-source applications built on the App Router?

	Learn More

	3.1 - Building Your Application
	3.1.1 - Routing Fundamentals
	Terminology
	The app Router
	Roles of Folders and Files
	Route Segments
	Nested Routes
	File Conventions
	Component Hierarchy
	Colocation
	Advanced Routing Patterns
	Next Steps

	3.1.1.1 - Defining Routes
	Creating Routes
	Creating UI

	3.1.1.2 - Pages
	3.1.1.3 - Layouts and Templates
	Layouts
	Root Layout (Required)
	Nesting Layouts

	Templates
	Examples
	Metadata
	Active Nav Links


	3.1.1.4 - Linking and Navigating
	<Link> Component
	Examples
	Linking to Dynamic Segments
	Checking Active Links
	Scrolling to an id
	Disabling scroll restoration


	useRouter() hook
	redirect function
	Using the native History API
	window.history.pushState
	window.history.replaceState

	How Routing and Navigation Works
	1. Code Splitting
	2. Prefetching
	3. Caching
	4. Partial Rendering
	5. Soft Navigation
	6. Back and Forward Navigation
	7. Routing between pages/ and app/


	3.1.1.5 - Error Handling
	How error.js Works
	Recovering From Errors
	Nested Routes
	Handling Errors in Layouts
	Handling Errors in Root Layouts
	Handling Server Errors
	Securing Sensitive Error Information


	3.1.1.6 - Loading UI and Streaming
	Instant Loading States
	Streaming with Suspense
	What is Streaming?
	Example
	SEO
	Status Codes


	3.1.1.7 - Redirecting
	redirect function
	permanentRedirect function
	useRouter() hook
	redirects in next.config.js
	NextResponse.redirect in Middleware
	Managing redirects at scale (advanced)
	1. Creating and storing a redirect map
	2. Optimizing data lookup performance


	3.1.1.8 - Route Groups
	Convention
	Examples
	Organize routes without affecting the URL path
	Opting specific segments into a layout
	Creating multiple root layouts


	3.1.1.9 - Project Organization and File Colocation
	Safe colocation by default
	Project organization features
	Private Folders
	Route Groups
	src Directory
	Module Path Aliases

	Project organization strategies
	Store project files outside of app
	Store project files in top-level folders inside of app
	Split project files by feature or route


	3.1.1.10 - Dynamic Routes
	Convention
	Example
	Generating Static Params
	Catch-all Segments
	Optional Catch-all Segments
	TypeScript

	3.1.1.11 - Parallel Routes
	Slots
	Active state and navigation
	default.js
	useSelectedLayoutSegment(s)

	Examples
	Conditional Routes
	Tab Groups
	Modals
	Opening the modal
	Closing the modal

	Loading and Error UI


	3.1.1.12 - Intercepting Routes
	Convention
	Examples
	Modals


	3.1.1.13 - Route Handlers
	Convention
	Supported HTTP Methods
	Extended NextRequest and NextResponse APIs

	Behavior
	Caching
	Opting out of caching
	Route Resolution

	Examples
	Revalidating Cached Data
	Dynamic Functions
	Cookies
	Headers

	Redirects
	Dynamic Route Segments
	URL Query Parameters
	Streaming
	Request Body
	Request Body FormData
	CORS
	Webhooks
	Non-UI Responses
	Segment Config Options


	3.1.1.14 - Middleware
	Use Cases
	Convention
	Example
	Matching Paths
	Matcher
	Conditional Statements

	NextResponse
	Using Cookies
	Setting Headers
	CORS

	Producing a Response
	waitUntil and NextFetchEvent

	Advanced Middleware Flags
	Runtime
	Version History

	3.1.1.15 - Internationalization
	Terminology
	Routing Overview
	Localization
	Static Generation
	Resources

	3.1.2 - Data Fetching
	3.1.2.1 - Data Fetching, Caching, and Revalidating
	Fetching Data on the Server with fetch
	Caching Data
	Revalidating Data
	Time-based Revalidation
	On-demand Revalidation
	Error handling and revalidation

	Opting out of Data Caching
	Individual fetch Requests
	Multiple fetch Requests


	Fetching data on the Server with third-party libraries
	Example

	Fetching Data on the Client with Route Handlers
	Fetching Data on the Client with third-party libraries

	3.1.2.2 - Server Actions and Mutations
	Convention
	Server Components
	Client Components

	Behavior
	Examples
	Forms
	Passing Additional Arguments
	Pending states
	Server-side validation and error handling
	Optimistic updates
	Nested elements
	Programmatic form submission

	Non-form Elements
	Event Handlers
	useEffect

	Error Handling
	Revalidating data
	Redirecting
	Cookies

	Security
	Authentication and authorization
	Closures and encryption
	Overwriting encryption keys (advanced)
	Allowed origins (advanced)

	Additional resources

	3.1.2.3 - Patterns and Best Practices
	Fetching data on the server
	Fetching data where it’s needed
	Streaming
	Parallel and sequential data fetching
	Sequential Data Fetching
	Parallel Data Fetching

	Preloading Data
	Using React cache, server-only, and the Preload Pattern

	Preventing sensitive data from being exposed to the client

	3.1.3 - Rendering
	Fundamentals
	Rendering Environments
	Request-Response Lifecycle
	Network Boundary

	Building Hybrid Applications

	3.1.3.1 - Server Components
	Benefits of Server Rendering
	Using Server Components in Next.js
	How are Server Components rendered?
	What is the React Server Component Payload (RSC)?

	Server Rendering Strategies
	Static Rendering (Default)
	Dynamic Rendering
	Switching to Dynamic Rendering
	Dynamic Functions

	Streaming


	3.1.3.2 - Client Components
	Benefits of Client Rendering
	Using Client Components in Next.js
	How are Client Components Rendered?
	Full page load
	Subsequent Navigations

	Going back to the Server Environment

	3.1.3.3 - Server and Client Composition Patterns
	When to use Server and Client Components?
	Server Component Patterns
	Sharing data between components
	Keeping Server-only Code out of the Client Environment
	Using Third-party Packages and Providers
	Using Context Providers
	Advice for Library Authors


	Client Components
	Moving Client Components Down the Tree
	Passing props from Server to Client Components (Serialization)

	Interleaving Server and Client Components
	Unsupported Pattern: Importing Server Components into Client Components
	Supported Pattern: Passing Server Components to Client Components as Props


	3.1.3.4 - Runtimes
	Use Cases
	Caveats

	3.1.4 - Caching in Next.js
	Overview
	Request Memoization
	Duration
	Revalidating
	Opting out

	Data Cache
	Duration
	Revalidating
	Time-based Revalidation
	On-demand Revalidation

	Opting out

	Full Route Cache
	1. React Rendering on the Server
	2. Next.js Caching on the Server (Full Route Cache)
	3. React Hydration and Reconciliation on the Client
	4. Next.js Caching on the Client (Router Cache)
	5. Subsequent Navigations
	Static and Dynamic Rendering
	Duration
	Invalidation
	Opting out

	Router Cache
	Duration
	Invalidation
	Opting out

	Cache Interactions
	Data Cache and Full Route Cache
	Data Cache and Client-side Router cache

	APIs
	<Link>
	router.prefetch
	router.refresh
	fetch
	fetch options.cache
	fetch options.next.revalidate
	fetch options.next.tags and revalidateTag
	revalidatePath
	Dynamic Functions
	cookies

	Segment Config Options
	generateStaticParams
	React cache function


	3.1.5 - Styling
	3.1.5.1 - CSS Modules and Global Styles
	CSS Modules
	Example
	Global Styles
	External Stylesheets
	Import styles from node_modules

	Ordering and Merging
	Additional Features

	3.1.5.2 - Tailwind CSS
	Installing Tailwind
	Configuring Tailwind
	Importing Styles
	Using Classes
	Importing Styles
	Using Classes
	Usage with Turbopack

	3.1.5.3 - CSS-in-JS
	Configuring CSS-in-JS in app
	styled-jsx
	Styled Components
	Disabling JavaScript


	3.1.5.4 - Sass
	Customizing Sass Options
	Sass Variables

	3.1.6 - Optimizations
	Built-in Components
	Metadata
	Static Assets
	Analytics and Monitoring

	3.1.6.1 - Image Optimization
	Usage
	Local Images
	Remote Images
	Domains
	Loaders

	Priority
	Image Sizing
	Styling
	Examples
	Responsive
	Fill Container
	Background Image

	Other Properties
	Configuration

	3.1.6.2 - Video Optimization
	Using <video> and <iframe>
	<video>
	Common <video> tag attributes
	Video best practices
	<iframe>
	Common <iframe> tag attributes
	Choosing a video embedding method
	Embedding externally hosted videos

	Self-hosted videos
	Using Vercel Blob for video hosting
	Adding subtitles to your video

	Resources
	Open source next-video component
	Cloudinary Integration
	Mux Video API
	Fastly


	3.1.6.3 - Font Optimization
	Google Fonts
	Apply the font in <head>
	Single page usage
	Specifying a subset
	Using Multiple Fonts

	Local Fonts
	With Tailwind CSS
	Preloading
	Reusing fonts

	3.1.6.4 - Metadata
	Static Metadata
	Dynamic Metadata
	File-based metadata
	Behavior
	Default Fields
	Ordering
	Merging
	Overwriting fields
	Inheriting fields


	Dynamic Image Generation
	JSON-LD

	3.1.6.5 - Script Optimization
	Layout Scripts
	Application Scripts
	Strategy
	Offloading Scripts To A Web Worker (Experimental)
	Inline Scripts
	Executing Additional Code
	Additional Attributes

	3.1.6.6 - Bundle Analyzer
	Installation
	Analyzing your bundles

	3.1.6.7 - Lazy Loading
	next/dynamic
	Examples
	Importing Client Components
	Skipping SSR
	Importing Server Components
	Loading External Libraries
	Adding a custom loading component
	Importing Named Exports

	With named exports
	With no SSR
	With external libraries

	3.1.6.8 - Analytics
	Build Your Own
	Web Vitals
	Custom Metrics
	Sending results to external systems

	3.1.6.9 - Instrumentation
	Convention
	Examples
	Importing files with side effects
	Importing runtime-specific code


	3.1.6.10 - OpenTelemetry
	Getting Started
	Using @vercel/otel
	Manual OpenTelemetry configuration

	Testing your instrumentation
	Deployment
	Using OpenTelemetry Collector
	Deploying on Vercel
	Self-hosting

	Custom Exporters

	Custom Spans
	Default Spans in Next.js
	[http.method] [next.route]
	render route (app) [next.route]
	fetch [http.method] [http.url]
	executing api route (app) [next.route]
	getServerSideProps [next.route]
	getStaticProps [next.route]
	render route (pages) [next.route]
	generateMetadata [next.page]
	resolve page components
	resolve segment modules
	start response


	3.1.6.11 - Static Assets in `public`
	Caching
	Robots, Favicons, and others

	3.1.6.12 - Third Party Libraries
	Getting Started
	Google Third-Parties
	Google Tag Manager
	Sending Events
	Options

	Google Analytics
	Sending Events
	Tracking Pageviews
	Options

	Google Maps Embed
	Options

	YouTube Embed
	Options



	3.1.6.13 - Memory Usage
	Reduce number of dependencies
	Run next build with --experimental-debug-memory-usage
	Record a heap profile
	Analyze a snapshot of the heap
	Webpack build worker
	Disable Webpack cache
	Disable source maps
	Edge memory issues

	3.1.7 - Configuring
	3.1.7.1 - TypeScript
	New Projects
	Existing Projects
	TypeScript Plugin
	Plugin Features

	Minimum TypeScript Version
	Statically Typed Links
	End-to-End Type Safety
	Async Server Component TypeScript Error
	Passing Data Between Server & Client Components
	Static Generation and Server-side Rendering
	API Routes
	Custom App
	Path aliases and baseUrl
	Type checking next.config.js
	Incremental type checking
	Ignoring TypeScript Errors
	Custom Type Declarations
	Version Changes

	3.1.7.2 - ESLint
	ESLint Config
	ESLint Plugin
	Custom Settings
	rootDir


	Linting Custom Directories and Files
	Caching
	Disabling Rules
	Core Web Vitals

	Usage With Other Tools
	Prettier
	lint-staged

	Migrating Existing Config
	Recommended Plugin Ruleset
	Additional Configurations


	3.1.7.3 - Environment Variables
	Loading Environment Variables

	.env
	you can write with line breaks
	or with \n inside double quotes
	Loading Environment Variables with @next/env
	Referencing Other Variables
	Bundling Environment Variables for the Browser
	Runtime Environment Variables

	Default Environment Variables
	Environment Variables on Vercel
	Test Environment Variables
	Environment Variable Load Order
	Good to know
	Version History

	3.1.7.4 - Absolute Imports and Module Path Aliases
	Absolute Imports
	Module Aliases

	3.1.7.5 - Markdown and MDX
	Install dependencies
	Configure next.config.mjs
	Add a mdx-components.tsx file
	Rendering MDX
	Using file based routing
	Using imports

	Using custom styles and components
	Global styles and components
	Local styles and components
	Shared layouts
	Using Tailwind typography plugin

	Frontmatter
	Remark and Rehype Plugins
	Remote MDX
	Deep Dive: How do you transform markdown into HTML?
	Using the Rust-based MDX compiler (Experimental)
	Helpful Links

	3.1.7.6 - src Directory
	3.1.7.7 - Draft Mode
	Step 1: Create and access the Route Handler
	Securely accessing it from your Headless CMS

	Step 2: Update page
	More Details
	Clear the Draft Mode cookie
	Unique per next build


	3.1.7.8 - Content Security Policy
	Nonces
	Why use a nonce?
	Adding a nonce with Middleware
	Reading the nonce

	Without Nonces
	Version History

	3.1.8 - Testing
	Types of tests
	Async Server Components
	Guides

	3.1.8.1 - Setting up Vitest with Next.js
	Quickstart
	Manual Setup
	Creating your first Vitest Unit Test
	Running your tests
	Additional Resources

	3.1.8.2 - Setting up Jest with Next.js
	Quickstart
	Manual setup
	Setting up Jest (with Babel)
	Handling stylesheets and image imports

	Handling Fonts
	Optional: Handling Absolute Imports and Module Path Aliases
	Optional: Extend Jest with custom matchers
	Add a test script to package.json:

	Home
	Running your tests
	Additional Resources

	3.1.8.3 - Setting up Playwright with Next.js
	Quickstart
	Manual setup
	Creating your first Playwright E2E test
	Running your Playwright tests
	Running Playwright on Continuous Integration (CI)


	3.1.8.4 - Setting up Cypress with Next.js
	Quickstart
	Manual setup
	Creating your first Cypress E2E test
	Running E2E Tests

	Creating your first Cypress component test
	Running Component Tests

	Continuous Integration (CI)

	3.1.9 - Authentication
	Authentication
	Sign-up and login functionality
	1. Capture user credentials
	2. Validate form fields on the server
	3. Create a user or check user credentials


	Session Management
	Stateless Sessions
	1. Generating a secret key
	2. Encrypting and decrypting sessions
	3. Setting cookies (recommended options)
	Updating (or refreshing) sessions
	Deleting the session
	Setting and deleting cookies

	Database Sessions

	Authorization
	Optimistic checks with Middleware (Optional)
	Creating a Data Access Layer (DAL)
	Using Data Transfer Objects (DTO)
	Server Components
	Layouts and auth checks
	Server Actions
	Route Handlers

	Context Providers
	Creating a Data Access Layer (DAL)
	Protecting API Routes


	Resources
	Auth Libraries
	Session Management Libraries

	Further Reading

	3.1.10 - Deploying
	Production Builds
	Managed Next.js with Vercel
	Self-Hosting
	Node.js Server
	Docker Image
	Static HTML Export

	Features
	Image Optimization
	Middleware
	Environment Variables
	Caching and ISR
	Automatic Caching
	Static Assets
	Configuring Caching

	Build Cache
	Version Skew
	Streaming and Suspense

	Manual Graceful Shutdowns

	3.1.10.1 - Production Checklist
	Automatic optimizations
	During development
	Routing and rendering
	Data fetching and caching
	UI and accessibility
	Security
	Metadata and SEO
	Type safety

	Before going to production
	Core Web Vitals
	Analyzing bundles

	After deployment

	3.1.10.2 - Static Exports
	Configuration
	Client Components

	Supported Features
	Image Optimization
	Route Handlers
	Browser APIs

	Unsupported Features
	Deploying
	Version History

	3.1.11 - Upgrade Guide
	3.1.11.1 - Codemods
	Usage
	Next.js Codemods
	14.0
	Migrate ImageResponse imports
	Use viewport export

	13.2
	Use Built-in Font

	13.0
	Rename Next Image Imports
	Migrate to the New Image Component
	Remove <a> Tags From Link Components

	11
	Migrate from CRA

	10
	Add React imports

	9
	Transform Anonymous Components into Named Components

	8
	Transform AMP HOC into page config

	6
	Use withRouter



	3.1.11.2 - App Router Incremental Adoption Guide
	Upgrading
	Node.js Version
	Next.js Version
	ESLint Version

	Next Steps
	Upgrading New Features
	<Image/> Component
	<Link> Component
	<Script> Component
	Font Optimization

	Migrating from pages to app
	Step 1: Creating the app directory
	Step 2: Creating a Root Layout
	Migrating _document.js and _app.js
	Migrating the getLayout() pattern to Layouts (Optional)

	Step 3: Migrating next/head
	Step 4: Migrating Pages
	Step 5: Migrating Routing Hooks
	Step 6: Migrating Data Fetching Methods
	Server-side Rendering (getServerSideProps)
	Accessing Request Object
	Static Site Generation (getStaticProps)
	Dynamic paths (getStaticPaths)
	Replacing fallback
	Incremental Static Regeneration (getStaticProps with revalidate)
	API Routes

	Step 7: Styling
	Tailwind CSS


	Codemods

	3.1.11.3 - Version 14
	Upgrading from 13 to 14
	v14 Summary


	3.1.11.4 - Migrating from Vite
	Why Switch?
	Slow initial page loading time
	No automatic code splitting
	Network waterfalls
	Fast and intentional loading states
	Choose the data fetching strategy
	Middleware
	Built-in Optimizations

	Migration Steps
	Step 1: Install the Next.js Dependency
	Step 2: Create the Next.js Configuration File
	Step 3: Update TypeScript Configuration
	Step 4: Create the Root Layout
	Step 5: Create the Entrypoint Page
	Step 6: Update Static Image Imports
	Step 7: Migrate the Environment Variables
	Step 8: Update Scripts in package.json
	Step 9: Clean Up

	Next Steps

	3.1.11.5 - Migrating from Create React App
	Why Switch?
	Slow initial page loading time
	No automatic code splitting
	Network waterfalls
	Fast and intentional loading states
	Choose the data fetching strategy
	Middleware
	Built-in Optimizations

	Migration Steps
	Step 1: Install the Next.js Dependency
	Step 2: Create the Next.js Configuration File
	Step 3: Update TypeScript Configuration
	Step 4: Create the Root Layout
	Step 5: Metadata
	Step 6: Styles
	Step 7: Create the Entrypoint Page
	Step 8: Update Static Image Imports
	Step 9: Migrate the Environment Variables
	Step 10: Update Scripts in package.json
	Step 11: Clean Up

	Bundler Compatibility
	Next Steps

	3.2 - API Reference
	3.2.1 - Components
	3.2.1.1 - Font Module
	Font Function Arguments
	src
	weight
	style
	subsets
	axes
	display
	preload
	fallback
	adjustFontFallback
	variable
	declarations
	Applying Styles
	className
	style
	CSS Variables

	Using a font definitions file
	Version Changes

	3.2.1.2 - <Image>
	Props
	Required Props
	src
	width
	height
	alt

	Optional Props
	loader
	fill
	sizes
	quality
	priority
	placeholder

	Advanced Props
	style
	onLoadingComplete
	onLoad
	onError
	loading
	blurDataURL
	unoptimized
	overrideSrc
	Other Props

	Configuration Options
	remotePatterns
	domains
	loaderFile

	Advanced
	deviceSizes
	imageSizes
	formats

	Caching Behavior
	minimumCacheTTL
	disableStaticImages
	dangerouslyAllowSVG
	contentDispositionType

	Animated Images
	Responsive Images
	Responsive image using a static import
	Responsive image with aspect ratio
	Responsive image with fill

	Theme Detection CSS
	getImageProps
	Theme Detection Picture
	Art Direction
	Background CSS

	Known Browser Bugs
	Version History

	3.2.1.3 - <Link>
	Props
	href (required)
	replace
	scroll
	prefetch

	Other Props
	legacyBehavior
	passHref
	scroll
	shallow
	locale

	Examples
	Linking to Dynamic Routes
	If the child is a custom component that wraps an <a> tag
	If the child is a functional component
	With URL Object
	Replace the URL instead of push
	Disable scrolling to the top of the page
	Middleware

	Version History

	3.2.1.4 - <Script>
	Props
	Required Props
	src

	Optional Props
	strategy
	beforeInteractive
	afterInteractive
	lazyOnload
	worker
	onLoad
	onReady
	onError

	Version History

	3.2.2 - File Conventions
	3.2.2.1 - Metadata Files API Reference
	3.2.2.1.1 - favicon, icon, and apple-icon
	Image files (.ico, .jpg, .png)
	favicon
	icon
	apple-icon

	Generate icons using code (.js, .ts, .tsx)
	Props
	params (optional)

	Returns
	Config exports
	size
	contentType
	Route Segment Config


	Version History

	3.2.2.1.2 - manifest.json
	Static Manifest file
	Generate a Manifest file
	Manifest Object


	3.2.2.1.3 - opengraph-image and twitter-image
	Image files (.jpg, .png, .gif)
	opengraph-image
	twitter-image
	opengraph-image.alt.txt
	twitter-image.alt.txt

	Generate images using code (.js, .ts, .tsx)
	Props
	params (optional)

	Returns
	Config exports
	alt
	size
	contentType
	Route Segment Config

	Examples
	Using external data
	Using Edge runtime with local assets
	Using Node.js runtime with local assets


	Version History

	3.2.2.1.4 - robots.txt
	Static robots.txt
	Generate a Robots file
	Customizing specific user agents
	Robots object

	Version History

	3.2.2.1.5 - sitemap.xml
	Sitemap files (.xml)
	Generating a sitemap using code (.js, .ts)
	Generate a localized Sitemap
	Generating multiple sitemaps
	Returns
	Version History

	3.2.2.2 - default.js
	Props
	params (optional)


	3.2.2.3 - error.js
	Props
	error
	error.message
	error.digest

	reset

	global-error.js
	not-found.js
	Version History

	3.2.2.4 - instrumentation.js
	Config Option
	Exports
	register (required)

	Version History

	3.2.2.5 - layout.js
	Props
	children (required)
	params (optional)

	Good to know
	Root Layouts
	Layouts do not receive searchParams
	Layouts cannot access pathname

	Version History

	3.2.2.6 - loading.js
	Version History

	3.2.2.7 - mdx-components.js
	Exports
	useMDXComponents function

	Params
	components

	Version History

	3.2.2.8 - middleware.js
	Exports
	Middleware function
	Config object (optional)
	Matcher


	Params
	request

	NextResponse
	Runtime
	Version History

	3.2.2.9 - not-found.js
	Props
	Data Fetching
	Version History

	3.2.2.10 - page.js
	Props
	params (optional)
	searchParams (optional)

	Version History

	3.2.2.11 - Route Segment Config
	Options
	dynamic
	dynamicParams
	revalidate
	Revalidation Frequency

	fetchCache
	runtime
	preferredRegion
	maxDuration
	generateStaticParams


	3.2.2.12 - route.js
	HTTP Methods
	Parameters
	request (optional)
	context (optional)

	NextResponse
	Version History

	3.2.2.13 - template.js
	Props
	children (required)

	Version History

	3.2.3 - Functions
	3.2.3.1 - cookies
	cookies().get(name)
	cookies().getAll()
	cookies().has(name)
	cookies().set(name, value, options)
	Deleting cookies
	cookies().delete(name)
	cookies().set(name, '')
	cookies().set(name, value, { maxAge: 0 })
	cookies().set(name, value, { expires: timestamp })

	Version History

	3.2.3.2 - draftMode
	Version History

	3.2.3.3 - fetch
	fetch(url, options)
	options.cache
	options.next.revalidate
	options.next.tags

	Version History

	3.2.3.4 - generateImageMetadata
	Parameters
	params (optional)

	Returns
	Examples
	Using external data


	Version History

	3.2.3.5 - Metadata Object and generateMetadata Options
	The metadata object
	generateMetadata function
	Parameters
	Returns

	Metadata Fields
	title
	String

	description
	openGraph
	<link rel="preload">

	generateMetadata function
	Regular function
	Async function
	With segment props
	With parent metadata
	JavaScript Projects


	Version History

	3.2.3.6 - generateSitemaps
	Returns
	URLs
	Example

	3.2.3.7 - generateStaticParams
	Parameters
	Returns
	Single Dynamic Segment
	Multiple Dynamic Segments
	Catch-all Dynamic Segment
	Examples
	Multiple Dynamic Segments in a Route
	Generate params from the bottom up
	Generate params from the top down
	Generate only a subset of params

	Version History

	3.2.3.8 - generateViewport
	The viewport object
	generateViewport function
	Viewport Fields
	themeColor
	generateViewport function
	Regular function
	With segment props
	JavaScript Projects


	Version History

	3.2.3.9 - headers
	headers()
	API Reference
	Parameters
	Returns

	Examples
	Usage with Data Fetching
	IP Address


	Version History

	3.2.3.10 - ImageResponse
	Supported CSS Properties
	Version History

	3.2.3.11 - NextRequest
	cookies
	set(name, value)
	get(name)
	getAll()
	delete(name)
	has(name)
	clear()

	nextUrl
	ip
	geo

	3.2.3.12 - NextResponse
	cookies
	set(name, value)
	get(name)
	getAll()
	delete(name)

	json()
	redirect()
	rewrite()
	next()

	3.2.3.13 - notFound
	notFound()
	Version History

	3.2.3.14 - permanentRedirect
	Parameters
	Returns
	Example

	3.2.3.15 - redirect
	Parameters
	Returns
	Example
	Server Component
	Client Component

	FAQ
	Why does redirect use 307 and 308?

	Version History

	3.2.3.16 - revalidatePath
	Parameters
	Returns
	Examples
	Revalidating A Specific URL
	Revalidating A Page Path
	Revalidating A Layout Path
	Revalidating All Data
	Server Action
	Route Handler


	3.2.3.17 - revalidateTag
	Parameters
	Returns
	Examples
	Server Action
	Route Handler


	3.2.3.18 - unstable_cache
	Parameters
	Returns
	Version History

	3.2.3.19 - unstable_noStore
	Usage
	Version History

	3.2.3.20 - useParams
	Parameters
	Returns
	Version History

	3.2.3.21 - usePathname
	Parameters
	Returns
	Examples
	Do something in response to a route change


	3.2.3.22 - useReportWebVitals
	useReportWebVitals
	Web Vitals
	Custom Metrics
	Usage on Vercel
	Sending results to external systems

	3.2.3.23 - useRouter
	useRouter()
	Migrating from next/router

	Examples
	Router events

	Version History

	3.2.3.24 - useSearchParams
	Parameters
	Returns
	Static Rendering

	Behavior
	Dynamic Rendering
	Server Components
	Pages
	Layouts


	Examples
	Updating searchParams

	Version History

	3.2.3.25 - useSelectedLayoutSegment
	Parameters
	Returns
	Examples
	Creating an active link component

	Version History

	3.2.3.26 - useSelectedLayoutSegments
	Parameters
	Returns
	Version History

	3.2.3.27 - userAgent
	isBot
	browser
	device
	engine
	os
	cpu

	3.2.4 - next.config.js Options
	3.2.4.1 - appDir
	3.2.4.2 - assetPrefix
	3.2.4.3 - basePath
	Links
	Images

	3.2.4.4 - compress
	Disabling compression
	Changing the compression algorithm

	3.2.4.5 - crossOrigin
	Options

	3.2.4.6 - devIndicators
	3.2.4.7 - distDir
	3.2.4.8 - env
	3.2.4.9 - eslint
	3.2.4.10 - exportPathMap (Deprecated)
	Adding a trailing slash
	Customizing the output directory

	3.2.4.11 - generateBuildId
	3.2.4.12 - generateEtags
	3.2.4.13 - headers
	Header Overriding Behavior
	Path Matching
	Wildcard Path Matching
	Regex Path Matching

	Header, Cookie, and Query Matching
	Headers with basePath support
	Headers with i18n support
	Cache-Control
	Options
	CORS
	X-DNS-Prefetch-Control
	Strict-Transport-Security
	X-Frame-Options
	Permissions-Policy
	X-Content-Type-Options
	Referrer-Policy
	Content-Security-Policy

	Version History

	3.2.4.14 - httpAgentOptions
	3.2.4.15 - images
	Example Loader Configuration
	Akamai
	AWS CloudFront
	Cloudinary
	Cloudflare
	Contentful
	Fastly
	Gumlet
	ImageEngine
	Imgix
	PixelBin
	Sanity
	Sirv
	Supabase
	Thumbor


	3.2.4.16 - Custom Next.js Cache Handler
	API Reference
	get()
	set()
	revalidateTag()

	Version History

	3.2.4.17 - instrumentationHook
	3.2.4.18 - logging
	3.2.4.19 - mdxRs
	3.2.4.20 - onDemandEntries
	3.2.4.21 - optimizePackageImports
	3.2.4.22 - output
	How it Works
	Automatically Copying Traced Files
	Caveats
	Experimental turbotrace

	3.2.4.23 - pageExtensions
	Including non-page files in the pages directory

	3.2.4.24 - Partial Prerendering (experimental)
	3.2.4.25 - poweredByHeader
	3.2.4.26 - productionBrowserSourceMaps
	3.2.4.27 - reactStrictMode
	3.2.4.28 - redirects
	Path Matching
	Wildcard Path Matching
	Regex Path Matching

	Header, Cookie, and Query Matching
	Redirects with basePath support
	Redirects with i18n support

	Other Redirects
	Version History

	3.2.4.29 - rewrites
	Rewrite parameters
	Path Matching
	Wildcard Path Matching
	Regex Path Matching

	Header, Cookie, and Query Matching
	Rewriting to an external URL
	Incremental adoption of Next.js
	Rewrites with basePath support
	Rewrites with i18n support

	Version History

	3.2.4.30 - serverActions
	allowedOrigins
	bodySizeLimit
	Enabling Server Actions (v13)

	3.2.4.31 - serverExternalPackages
	3.2.4.32 - StaleTimes (experimental)
	3.2.4.33 - trailingSlash
	Version History

	3.2.4.34 - transpilePackages
	Version History

	3.2.4.35 - turbo (Experimental)
	webpack loaders
	Supported loaders

	Resolve aliases
	Resolve extensions

	3.2.4.36 - typedRoutes (experimental)
	3.2.4.37 - typescript
	3.2.4.38 - urlImports
	Security Model
	Lockfile
	Examples
	Skypack
	Static Image Imports
	URLs in CSS
	Asset Imports


	3.2.4.39 - webVitalsAttribution
	3.2.4.40 - Custom Webpack Config
	nextRuntime

	3.2.5 - create-next-app
	Interactive
	Non-interactive
	Why use Create Next App?

	3.2.6 - Edge Runtime
	Network APIs
	Encoding APIs
	Stream APIs
	Crypto APIs
	Web Standard APIs
	Next.js Specific Polyfills
	Environment Variables
	Unsupported APIs

	3.2.7 - Next.js CLI
	Development
	Turbopack
	HTTPS for Local Development

	Build
	Debug
	Linting
	Mangling
	Profiling

	Production
	Keep Alive Timeout

	Info
	Lint
	Telemetry

	4 - Pages Router
	4.1 - Building Your Application
	4.1.1 - Routing
	4.1.1.1 - Pages and Layouts
	Index routes
	Nested routes
	Pages with Dynamic Routes
	Layout Pattern
	Examples
	Single Shared Layout with Custom App
	Per-Page Layouts
	With TypeScript
	Data Fetching


	4.1.1.2 - Dynamic Routes
	Convention
	Example
	Catch-all Segments
	Optional Catch-all Segments

	4.1.1.3 - Linking and Navigating
	Linking to dynamic paths
	Injecting the router
	Imperative Routing
	Shallow Routing
	Caveats


	4.1.1.4 - Redirecting
	4.1.1.5 - Custom App
	Usage
	getInitialProps with App

	4.1.1.6 - Custom Document
	Caveats
	Customizing renderPage

	4.1.1.7 - API Routes
	Parameters
	HTTP Methods
	Request Helpers
	Custom config

	Response Helpers
	Setting the status code of a response
	Sending a JSON response
	Sending a HTTP response
	Redirects to a specified path or URL
	Adding TypeScript types

	Dynamic API Routes
	Catch all API routes
	Optional catch all API routes
	Caveats

	Edge API Routes

	4.1.1.8 - Custom Errors
	404 Page
	Customizing The 404 Page

	500 Page
	Customizing The 500 Page
	More Advanced Error Page Customizing
	Reusing the built-in error page
	Caveats


	4.1.1.9 - Internationalization (i18n) Routing
	Getting started
	Locale Strategies
	Sub-path Routing
	Domain Routing

	Automatic Locale Detection
	Prefixing the Default Locale
	Disabling Automatic Locale Detection

	Accessing the locale information
	Transition between locales
	Leveraging the NEXT_LOCALE cookie
	Search Engine Optimization
	How does this work with Static Generation?
	Dynamic Routes and getStaticProps Pages
	Automatically Statically Optimized Pages
	Non-dynamic getStaticProps Pages

	Limits for the i18n config

	4.1.1.10 - Middleware
	4.1.2 - Rendering
	Pre-rendering

	4.1.2.1 - Server-side Rendering (SSR)
	4.1.2.2 - Static Site Generation (SSG)
	Static Generation without data
	Static Generation with data
	Scenario 1: Your page content depends on external data
	Scenario 2: Your page paths depend on external data

	When should I use Static Generation?

	4.1.2.3 - Automatic Static Optimization
	How it works
	Caveats

	4.1.2.4 - Client-side Rendering (CSR)
	4.1.2.5 - Edge and Node.js Runtimes
	4.1.3 - Data Fetching
	Examples

	4.1.3.1 - getStaticProps
	When should I use getStaticProps?
	When does getStaticProps run
	Using getStaticProps to fetch data from a CMS
	Write server-side code directly
	Statically generates both HTML and JSON
	Where can I use getStaticProps
	Runs on every request in development
	Preview Mode

	4.1.3.2 - getStaticPaths
	When should I use getStaticPaths?
	When does getStaticPaths run
	How does getStaticProps run with regards to getStaticPaths

	Where can I use getStaticPaths
	Runs on every request in development
	Generating paths on-demand

	4.1.3.3 - Forms and Mutations
	Examples
	Server-only form

	Form validation
	Error handling

	Displaying loading state
	Redirecting
	Setting cookies
	Reading cookies
	Deleting cookies


	4.1.3.4 - getServerSideProps
	Example
	When should I use getServerSideProps?
	Behavior
	Error Handling
	Edge Cases
	Edge Runtime
	Caching with Server-Side Rendering (SSR)


	4.1.3.5 - Incremental Static Regeneration (ISR)
	On-Demand Revalidation
	Using On-Demand Revalidation
	Testing on-Demand ISR during development

	Error handling and revalidation
	Self-hosting ISR
	Version History

	4.1.3.6 - Client-side Fetching
	Client-side data fetching with useEffect
	Client-side data fetching with SWR

	4.1.4 - Styling
	4.1.4.1 - CSS Modules
	4.1.4.2 - Tailwind CSS
	4.1.4.3 - CSS-in-JS
	4.1.4.4 - Sass
	4.1.5 - Optimizations
	4.1.5.1 - Image Optimization
	4.1.5.2 - Font Optimization
	4.1.5.3 - Script Optimization
	4.1.5.4 - Static Assets
	4.1.5.5 - Bundle Analyzer
	4.1.5.6 - Analytics
	4.1.5.7 - Lazy Loading
	4.1.5.8 - Instrumentation
	4.1.5.9 - OpenTelemetry
	4.1.5.10 - Third Party Libraries
	4.1.6 - Configuring
	4.1.6.1 - TypeScript
	4.1.6.2 - ESLint
	4.1.6.3 - Environment Variables
	4.1.6.4 - Absolute Imports and Module Path Aliases
	4.1.6.5 - src Directory
	4.1.6.6 - Markdown and MDX
	4.1.6.7 - AMP
	Enabling AMP
	Caveats
	Adding AMP Components
	AMP Validation
	Custom Validators
	Skip AMP Validation
	AMP in Static HTML Export

	TypeScript

	4.1.6.8 - Babel
	Adding Presets and Plugins
	Customizing Presets and Plugins

	4.1.6.9 - PostCSS
	Default Behavior
	Customizing Target Browsers
	CSS Modules
	Customizing Plugins

	4.1.6.10 - Custom Server
	Disabling file-system routing

	4.1.6.11 - Draft Mode
	Step 1: Create and access the API route
	Securely accessing it from your Headless CMS

	- Check that the secret matches and that the slug parameter exists (if not, the request should fail).
	Step 2: Update getStaticProps
	Fetch draft data

	More Details
	Clear the Draft Mode cookie
	Works with getServerSideProps
	Works with API Routes
	Unique per next build


	4.1.6.12 - Error Handling
	Handling Errors in Development
	Handling Server Errors
	Handling Client Errors
	Reporting Errors


	4.1.6.13 - Debugging
	Debugging with VS Code
	Using the Debugger in Jetbrains WebStorm
	Debugging with Chrome DevTools
	Client-side code
	Server-side code
	Debugging on Windows

	More information

	4.1.6.14 - Preview Mode
	Step 1: Create and access a preview API route
	Securely accessing it from your Headless CMS

	- Check that the secret matches and that the slug parameter exists (if not, the request should fail).
	Step 2: Update getStaticProps
	Fetch preview data

	More Details
	Specify the Preview Mode duration
	Clear the Preview Mode cookies
	previewData size limits
	Works with getServerSideProps
	Works with API Routes
	Unique per next build


	4.1.6.15 - Content Security Policy
	4.1.7 - Testing
	4.1.7.1 - Setting up Vitest with Next.js
	4.1.7.2 - Setting up Jest with Next.js
	4.1.7.3 - Setting up Playwright with Next.js
	4.1.7.4 - Setting up Cypress with Next.js
	4.1.8 - Authentication
	4.1.9 - Deploying
	4.1.9.1 - Production Checklist
	4.1.9.2 - Static Exports
	4.1.9.3 - Multi Zones
	How to define a zone
	How to merge zones

	4.1.9.4 - Continuous Integration (CI) Build Caching
	Vercel
	CircleCI
	Travis CI
	GitLab CI
	Netlify CI
	AWS CodeBuild
	GitHub Actions
	Bitbucket Pipelines
	Heroku
	Azure Pipelines
	Jenkins (Pipeline)

	4.1.10 - Upgrading
	4.1.10.1 - Codemods
	4.1.10.2 - From Pages to App
	4.1.10.3 - Migrating from Vite
	4.1.10.4 - Migrating from Create React App
	4.1.10.5 - Version 14
	4.1.10.6 - Version 13
	Upgrading from 12 to 13
	v13 Summary

	Migrating shared features
	<Image/> Component
	<Link> Component
	<Script> Component
	Font Optimization


	4.1.10.7 - Version 12
	Upgrading to 12.2
	Upgrading to 12.0
	SWC replacing Babel
	SWC replacing Terser for minification
	Improvements to styled-jsx CSS parsing
	next/image changed wrapping element
	HMR connection now uses a WebSocket
	Webpack 4 support has been removed
	target option deprecated


	4.1.10.8 - Version 11
	Webpack 5
	Cleaning the distDir is now a default
	PORT is now supported for next dev and next start
	next.config.js customization to import images
	Remove super.componentDidCatch() from pages/_app.js
	Remove Container from pages/_app.js
	Remove props.url usage from page components
	Remove unsized property on next/image
	Remove modules property on next/dynamic
	Remove Head.rewind
	Moment.js locales excluded by default
	Update usage of router.events
	React 16 to 17

	4.1.10.9 - Version 10
	4.1.10.10 - Upgrading to Version 9
	Production Deployment on Vercel
	Check your Custom App File (pages/_app.js)
	Breaking Changes
	@zeit/next-typescript is no longer necessary
	The config key is now an export on a page
	next/dynamic no longer renders “loading…” by default while loading
	withAmp has been removed in favor of an exported configuration object
	next export no longer exports pages as index.html
	pages/api/ is treated differently

	Deprecated Features
	next/dynamic has deprecated loading multiple modules at once


	4.2 - API Reference
	4.2.1 - Components
	4.2.1.1 - Font Module
	4.2.1.2 - <Head>
	Avoid duplicated tags
	Use minimal nesting
	Use next/script for scripts
	No html or body tags

	4.2.1.3 - <Image> (Legacy)
	Comparison
	Required Props
	src
	width
	height

	Optional Props
	layout
	loader
	sizes
	quality
	priority
	placeholder

	Advanced Props
	style
	objectFit
	objectPosition
	onLoadingComplete
	loading
	blurDataURL
	lazyBoundary
	lazyRoot
	unoptimized

	Other Props
	Configuration Options
	Remote Patterns
	Domains
	Loader Configuration
	Built-in Loaders

	Advanced
	Device Sizes
	Image Sizes
	Acceptable Formats

	Caching Behavior
	Minimum Cache TTL
	Disable Static Imports
	Dangerously Allow SVG
	contentDispositionType
	Animated Images

	Version History

	4.2.1.4 - <Image>
	4.2.1.5 - <Link>
	4.2.1.6 - <Script>
	4.2.2 - Functions
	4.2.2.1 - getInitialProps
	Context Object
	Caveats

	4.2.2.2 - getServerSideProps
	Context parameter
	getServerSideProps return values
	props
	notFound
	redirect

	Version History

	4.2.2.3 - getStaticPaths
	getStaticPaths return values
	paths
	fallback: false
	fallback: true
	When is fallback: true useful?

	fallback: 'blocking'
	Fallback pages

	Version History

	4.2.2.4 - getStaticProps
	Context parameter
	getStaticProps return values
	props
	revalidate
	notFound
	redirect

	Reading files: Use process.cwd()
	Version History

	4.2.2.5 - NextRequest
	4.2.2.6 - NextResponse
	4.2.2.7 - useAmp
	AMP First Page
	Hybrid AMP Page

	4.2.2.8 - useReportWebVitals
	4.2.2.9 - useRouter
	router object
	router.push
	Resetting state after navigation
	With URL object

	router.replace
	router.prefetch
	router.beforePopState
	router.back
	router.reload
	router.events

	Potential ESLint errors
	Potential solutions

	withRouter
	Usage
	TypeScript


	4.2.2.10 - userAgent
	4.2.3 - next.config.js Options
	4.2.3.1 - assetPrefix
	4.2.3.2 - basePath
	4.2.3.3 - bundlePagesRouterDependencies
	4.2.3.4 - compress
	4.2.3.5 - crossOrigin
	4.2.3.6 - devIndicators
	4.2.3.7 - distDir
	4.2.3.8 - env
	4.2.3.9 - eslint
	4.2.3.10 - exportPathMap
	4.2.3.11 - generateBuildId
	4.2.3.12 - generateEtags
	4.2.3.13 - headers
	4.2.3.14 - httpAgentOptions
	4.2.3.15 - images
	4.2.3.16 - instrumentationHook
	4.2.3.17 - onDemandEntries
	4.2.3.18 - optimizePackageImports
	4.2.3.19 - output
	4.2.3.20 - pageExtensions
	4.2.3.21 - poweredByHeader
	4.2.3.22 - productionBrowserSourceMaps
	4.2.3.23 - reactStrictMode
	4.2.3.24 - redirects
	4.2.3.25 - rewrites
	4.2.3.26 - Runtime Config
	4.2.3.27 - serverExternalPackages
	4.2.3.28 - trailingSlash
	4.2.3.29 - transpilePackages
	4.2.3.30 - turbo (experimental)
	4.2.3.31 - typescript
	4.2.3.32 - urlImports
	4.2.3.33 - webVitalsAttribution
	4.2.3.34 - Custom Webpack Config
	4.2.4 - create-next-app
	4.2.5 - Next.js CLI
	4.2.6 - Edge Runtime
	5 - Architecture
	5.1 - Accessibility
	Route Announcements
	Linting
	Accessibility Resources

	5.2 - Fast Refresh
	How It Works
	Error Resilience
	Syntax Errors
	Runtime Errors

	Limitations
	Tips
	Fast Refresh and Hooks

	5.3 - Next.js Compiler
	Why SWC?
	Supported Features
	Styled Components
	Jest
	Relay
	Remove React Properties
	Remove Console
	Legacy Decorators
	importSource
	Emotion
	Minification
	Module Transpilation
	Modularize Imports

	Experimental Features
	SWC Trace profiling
	SWC Plugins (Experimental)

	Unsupported Features
	Version History

	5.4 - Supported Browsers
	Browserslist
	Polyfills
	Custom Polyfills

	JavaScript Language Features
	TypeScript Features
	Customizing Babel Config (Advanced)


	5.5 - Turbopack
	Usage
	Supported features
	Unsupported features
	Generating Trace Files

	6 - Next.js Community
	Contributing
	Discussions
	Social Media
	Code of Conduct

	6.1 - Docs Contribution Guide
	Why Contribute?
	How to Contribute
	GitHub Workflow
	Writing MDX
	VSCode
	Previewing Changes Locally
	Extensions

	Review Process

	File Structure
	Metadata
	Required Fields
	Optional Fields

	App and Pages Docs
	Shared Pages
	Shared Content

	Code Blocks
	Language and Filename
	Line Highlighting

	Notes
	Related Links
	Nested Fields

	Diagrams
	Custom Components and HTML
	Style Guide
	Page Templates
	Page Types
	Voice



