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ABSTRACT
We introduce GOLEM — an open-source optimization framework
for automated design of graph-based structures in various scientific
domains. It solves the problem of finding optimal topology and
parameters of graphs using evolutionary algorithms, and does it
in a modular domain-agnostic way. The paper describes the frame-
work and its flexible approach to domain adaptation. Experimental
studies provide several examples of GOLEM application in different
fields: Bayesian networks, drug design, and robotics.
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1 INTRODUCTION
The problem of finding optimal structures in the form of graphs
arises in many scientific and industrial domains [35]. Examples
range from probabilistic models design, as in Bayesian Network
(BN) modeling [24], Neural Architecture Search (NAS) [9], and
automatic design of machine learning pipelines (AutoML) [15], to
real-world applications, such as design of engineering structures
[40], robotic skeletons [31], and molecular structures in drug de-
sign [30]. These types of problems require deep domain expertise
and many rounds of prototyping and experiments, which can take
considerable resources. So, there is need for instrument which can
automate graph design tasks.

We describe this class of tasks as graph search and optimization
[6]. It involves finding the optimal topology (search) and parameters
of the nodes (optimization). Characteristics of this task include:
discrete problem space, small to medium graph size (from 10 to
100 nodes), sometimes with highly heterogeneous nodes requiring
many differing parameters (e.g. AutoML where each node is ML
model with its own set of hyperparameters), and often lacking
solution datasets.

This class is a part of the broader graph learning field, which
includes such tasks as graph, node, and link classification and pre-
diction. While the topic of graph learning have acquired a lot of
attention in recent years, especially with Deep Learning and Graph
Neural Networks (GNN), and have made impressive progress in
many applications, e.g. drug design [21], GNN methods are often
not directly applicable to such tasks. In particular, AutoML field is
still dominated by meta-heuristic methods [15], and deep neural
methods show controversial results [16].

Meta-heuristic methods [1], such as evolutionary search or par-
ticle swarm optimization, represent one of the approaches to graph
learning problems. These methods don’t require gradients and can
work directly on discrete problem spaces. Decades of experience
of using these methods show that it can achieve good results in
complex search spaces [17] showing comparable or even better
results than gradient-based neural network methods [27, 37]. All of
the above makes it an excellent fit for graph optimization, where
solution space has discrete nature.
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To our knowledge, there is no accessible and universal tool for
graph search and optimization despite the generic problem formu-
lation. But why there is no such tool? On the one hand, most of the
effective methods proposed in the literature are task- or domain-
specific and are difficult to generalize [23, 46] On the other hand,
existing general-purpose optimisation frameworks, both gradient-
based and meta-heuristic [2] can not be applied to graphs without
either large dataset of known solutions, which are rarely available in
specific domains, or extensive integration work with meta-heuristic
frameworks which are not designed for graphs.

Our contribution attempts to close this gap.We introduceGOLEM:
a domain-agnostic framework for graph optimization with evolu-
tionary methods. GOLEM supports discrete graph optimization
natively, implements graph-specific mutations and supporting in-
frastructure, significantly lowering the required effort for using it
in a new domain. GOLEM is an open-source project, available on
GitHub1 under BSD-3 license. In the paper we describe successful
applications of GOLEM in several domains: probabilistic modelling,
drug design, robotics, and compare them with baselines.

2 RELATEDWORKS
We have divided the existing approaches in graph learning into
three groups: general-purpose optimisation frameworks, methods
that are based on Graph Neural Network (GNN), and domain appli-
cations.

2.1 General-purpose frameworks for graph
optimization

There are several meta-heuristic frameworks in the field, ranging
from research endeavours to production-ready libraries. DEAP is
a popular framework for fast prototyping of evolutionary algo-
rithms. Two other popular examples are Pymoo [2], a library for
real-valued multi-objective optimization, and PyPop7 [8], which
is a "Pure-PYthon library of POPulation-based OPtimization for
single-objective, real-parameter, black-box problems". They include
a diverse set of black-box optimization methods, including evolu-
tionary algorithms.

Another category is gradient-based evolutionary frameworks
like EvoTorch or EvoJAX based on PyTorch and JAX frameworks
respectively. While its primary application is neuroevolution, it
can be used for optimization in any real-valued domain with an
objective.

The existing meta-heuristic frameworks require a bridge into
graph optimisation domain. For example, in theory, DEAP can be
used for optimization of any discrete structure. However, it requires
considerable implementation effort, as DEAP provides only basic
infrastructure for evolution. It can be trivial to map a graph into its
adjacency matrix to enable optimization with these frameworks,
but this task becomes more complicated for parameterized graphs
or graphs with non-fixed size.

2.2 Graph Neural Networks
Graph Neural Network (GNN) can be considered as efficient tool for
graph design. GNN-based methods are implemented in libraries like

1https://github.com/aimclub/GOLEM

Jraph [11], PyG [10], DGL [45] and others. It shows state-of-the-art
results on a large number of graph-related problems (e.g. optimal
power flow [34], drug discovery [20], NAS [33]). However, main
tasks for GNN are graph, node and edge predictions. There are
several GNN-based methods exist that aimed specifically at graph
search or generation: both domain-specific (e.g. drug discovery [28])
and domain-agnostic (e.g. approaches for labeled graphs [12], so-
lutions based at hierarchical RNN [49], random walks algorithm,
score-based [32] and multi-scale [51] generative models.

However, GNN require large datasets of known solutions, which
are rather rarely available in potential application domains. Even
if suitable data exists, it can introduce significant bias [27]. Meta-
heuristic methods, on the other hand, do not require datasets for
learning, and only need an objective function, or, at most, a handful
of exemplary solutions to compare against. GNN methods are also
less applicable for smaller graphs (from 10 to 100 nodes) and highly
heterogeneous graphs, mostly because of data insufficiency in such
cases for generalisation of node and graph embeddings.

2.3 Graph optimization in specific domains
There are numerous applications in multiple domains aimed at
graph optimization. We highlight only ones that are relevant for
the case studies considered in the paper.

One example is G2o: a general framework for graph optimization
in the field of robotics and simultaneous localization and mapping
(SLAM). Its main idea starts from the observation, that many pop-
ular problems in robotics and computer vision including various
types of SLAM or bundle adjustment (BA) can be formulated as least
squares optimization of an error function that can be represented
by a graph [13].

Graph optimization encompasses the structural learning of BN,
particularly when dataset assumes the form of a graph, where nodes
correspond to features, and edges to dependencies between them.
The graph serves as a model of a multivariate distribution that char-
acterizes the data. Classical BN learning algorithms use conditional
independence tests (CI) [19]. In this direction, the most modern
solution is the 𝑃𝐶 algorithm [5]. A number of learning algorithms
is based on the formulation of the task as an optimization prob-
lem in the space of possible structures with an evaluation function.
Such algorithms include the K2 algorithm, Hill-Climbing, Sparse-
Candidate. There are also hybrid approaches that combine the
CI and score-based algorithms [43]. These algorithms are specific
for learning BN and can not be generalized to different scenarios,
such as nodes containing observations instead of features, or opti-
mization criteria different from quality measures for multivariate
distributions. Finally, the involvement of continuous optimisation
into BN learning provides the promising results [50].

Goal-directed molecule generation can be considered as graph
structure optimisation problem [27]. Although string representa-
tion using SMILES [47] is also quite popular [39], some debate the
efficiency of this approach since symbol changes often result in
invalid structures [18]. Existing solutions can be classified to algo-
rithms involving some of the latest advances in deep learning [44],
and classical optimisation techniques, for instance, evolutionary
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algorithms. However, machine learning based solutions rely heav-
ily on the training data, so such models can be biased to known
molecular structures, which affects their exploration capabilities.

3 PROBLEM STATEMENT
There are various formulations of graph learning tasks in litera-
ture [22, 35]. The problem solved by GOLEM is minimization of the
objective 𝐹 in the discrete space of parameterized directed graphs
G subject to a set of arbitrary graph constraints C. The task is to
find optimal graph𝐺∗ = ⟨𝑉 , 𝐸, 𝑃𝑉 ⟩ with a set of vertex parameters
𝑃𝑉 .

𝐺∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
G

𝐹 𝑤ℎ𝑒𝑟𝑒 G = {𝐺 | C(𝐺) 𝑖𝑠 𝑇𝑟𝑢𝑒}

In multi-objective case the minimization finds Pareto-front of
optimal solutions. Any domain task can be reduced to this optimiza-
tion task as long as we can define a mapping 𝐴 (where 𝐴 stands
for Adapter) from the space of domain structures S into parameter-
ized directed graphs together with its reverse mapping 𝑅 (where 𝑅
stands for Restore). Its role will be explicated further.

𝐴 : S→ G 𝑎𝑛𝑑 𝑅 : G→ S

4 PROPOSED APPROACH
In this section we describe the implemented approach to the stated
problem. The GOLEM framework consists of three logical layers:

• Optimization core that’s responsible for operationwith graphs,
optimization algorithms, objectives, stop conditions etc. It is
domain-independent and works on internal graph represen-
tation.

• Domain specification layer that’s responsible for bidirec-
tional transformation between domain structures and in-
ternal graphs. It is a bridge between a specific domain and
universal optimization core.

• Infrastructural layer that’s responsible for non-core function-
ality such as serialization and visualisation and technical
details of evaluation such as caching and parallelization.
It brings usability, effectiveness, interpretability and repro-
ducibility of experiments.

4.1 Optimization core
Optimization core is a set of abstractions related to: graphs, graph
optimizers, objective functions, adaptive stopping conditions and
specific implementations of optimization algorithms. The aim of
this module is to solve the problem defined in Section 2.3.

Primary optimization algorithm is an implementation of multi-
objective evolutionary algorithm based on SPEA-2 selection with
mutation and crossover operators designed for graphs. The choice
of well-known SPEA-2 is inspired by its successfully application in
various graph-related applications [40]. SPEA-2 selection is used
by default, however, there is a possibility to use custom selection
algorithm or to choose from the ones implemented in GOLEM. Also,
we add a verification step to accommodate custom domain-specific
constraints on graphs.

It is also often a case that the objective is a partial function that
can’t be evaluated for some individuals, for example simulation-
based objectives with timeout. If there’re too many individuals that
cannot be evaluated, performance of the evolutionary algorithm
can degrade due to decreasing and unpredictable population size. To
resolve this practical issue, we add a Reproduction Controller to the
algorithm, that implements proportional controller for population
size to compensate for invalid evaluations.

Figure 1 presents a scheme of the optimization core with evo-
lutionary algorithm integrated. Input parameters of the optimiza-
tion algorithm include graph search space (available node types
and node parameters), objective function and initial population of
graphs. Also, is can optionally include constraints and custom opera-
tors. When evolutionary operators are used (mutations, crossovers),
selection is applied and graph constraint rules are considered at
each iteration on the population of individual solutions. Reproduc-
tion controller keeps population size stable. After evolution the
hyperparameters of the best graphs (parameters of graph nodes)
are optimized with the external tuner.

Mutations include basic single-point graphmodifications: adding,
removing, or exchanging a randomly chosen node or edge. Also, the
complex growth and reducing mutations are implemented for faster
exploration of the search space. For instance, a new subgraph can
be added as a mutation. Single-point graph modifications make mu-
tation set more universal, while more complex growth and reduce
mutations enable faster exploration of the search space.

4.2 Domain adaptation layer
For the definition of the new domain task it’s required to specify the
followingmappings and parameters, according to the task definition
in Section 2.3.

• G: Search space of graphs with parameterized nodes.
• 𝐹 : Objective function to be minimized.
• 𝐴 and 𝑅: Mappings between domain structures and graph
representation.

• C: Set of constraints (optional).

Primary feature of GOLEM is universality. Any domain structure
that can be converted to parameterized graphs can be optimized
with GOLEM. It provides flexibility in definition of domain struc-
tures.

Adapt and Restore mappings enable natural definition in do-
main terms of the objectives, custom evolutionary operators and
custom structure constraints. GOLEM applies these mappings to
adapt provided domain cost functions and domain operators to
graph representations. For example, if there is a domain objective 𝐹
defined on the space of domain structures 𝐹 : S → R, an objective
𝐹 ′ defined for graphs can be obtained: 𝐹 ◦ 𝐴 = 𝐹 ′ : G → R.
Similarly, if there is a domain mutation 𝑀 : S → S, a graph
mutation 𝑅 ◦ 𝑀 ◦ 𝐴 = 𝑀′ : G → G can be obtained. Both 𝐹 ′

and 𝑀′ after described transformations can be used in universal
graph optimizer. The same logic works for constraints on domain
structures. Most importantly, these transformations are applied
automatically by GOLEM. Users are only required to provide Adapt
and Restore mappings by implementing GraphAdapter interface
with corresponding methods adapt and restore.
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Figure 1: The scheme of the GOLEM framework: main blocks and stages

5 CASES AND EXPERIMENTAL STUDIES
Most of the existing benchmarks related to graph learning consider
exclusively graph, node, and link prediction tasks (e.g. [29]), and
do not include graph search tasks (in its current form). One of
the few examples of suitable solutions is single-task drug design
benchmark [4] and more diverse model-based design benchmark
[42]. We combined ideas from the existing benchmarks and de-
signed the setup of experiments on synthetic graph search tasks
and real-world tasks in specific domains.

5.1 Synthetic experiments
For synthetic experiments tree and DAG types of graphs were used.
To generate tree graphs random_tree function from NetworkX is
used, however, for DAG graphs generation gnp_random_graph is
used first and then the result graph is postprocessed by removing
edges until it becomes directed and acyclic.

Metrics for graph comparison were used in according with anal-
ysis in [48]. For this set of experiments, the following metrics that
characterize topology of graphs were used:

• degree_dist is a heuristic metric for graphs where cen-
tral nodes are more important than peripheral ones. The
higher the nodes degree, the more significant the difference
in number of such nodes between two graphs. Thus, degree
histogram is calculated for each graph and then distance
between these histograms is computed. This metric charac-
terizes local topology of a graph.

• sp_adj is characterizes local and global topology of a graph
and is calculated as L2 distance between spectres of adja-
cency matrices of graphs.

Table 1: Comparison of restoration quality and convergence
time for random search (RS) baseline and evolutionary opti-
mizer in GOLEM. The best results are highlighted with bold.

metric degree graph_size sp_adj
Restoration error

target RS Evo RS Evo RS Evo
d_50 0.72 0.70 24.72 23.01 4.94 4.60
d_100 0.62 0.65 94.55 75.64 18.91 15.13
t_50 0.37 0.35 10.49 3.47 2.10 0.69
t_100 0.59 0.80 51.95 25.95 10.39 5.19

• graph_size is the difference between sizes of the graphs. It
is included in experiments as a simplest baseline metric.

The main difference between compared optimizers is that ran-
dom optimizer iteratively applies randomly chooses mutation for
each graph in population, while evolutionary optimizer also uses
evolutionary selection based on SPEA2 and one-point crossover for
each pair of individuals.

Each experiment was launched 15 times for 350 generations. For
each graph type, there were 50 and 100 target graph sizes. The re-
sults are presented in Table 1. Evolutionary optimizer significantly
outperforms random one for the vast majority of setups. Further-
more, to find out the statistical significance of the obtained results, a
non-parametric Mann-Whitney test was used and it was confirmed
that for almost all setups the results are statistically significant.

The examples of convergence plots for sp_adj metric and tree
graph types of size 100 are presented in Figure 2a. It can be seen
that in addition to the fact that the evolutionary optimizer outper-
forms the random one in terms of metrics, it also converges at the
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early stages of optimization, which makes it more optimal even on
launches with fewer generations.

The main advantage of GOLEM framework is that it is applicable
to a variety of domains. So, for example, it is used as the core of
the AutoML framework FEDOT2. However, in machine learning,
in most cases the optimal solution lies among small pipelines con-
sisting of ML models and data preprocessing operations. The full
potential of the GOLEM is revealed in the real-world specific tasks
presented below.

5.2 Bayesian networks
During the analysis of GOLEM performance, we turn our attention
to the task of Bayesian network (BN) structural learning. The field
of evolutionary algorithms has seen notable application in the con-
text of BN structure learning [25]. Nevertheless, it is noteworthy
that prevailing approaches have primarily focused on optimizing
not the underlying graphical structure per se, but rather its encoded
representations, such as the adjacency matrices [14], ordered node
lists [26], among others. Distinctively, the presented GOLEM-based
solution introduces a novel approach, facilitating evolutionary op-
timization directly targeting the BN’s structural configuration.

The implementation of structural learning for Bayesian networks
(BN) entailed the integration of two distinct frameworks: BAMT3,
which specializes in working with Bayesian networks[7], and the
GOLEM framework. Specifically, within the context of the BAMT
framework, we defined the requisite mutation and crossover oper-
ations, the evaluation function, and the guidelines governing the
selection of valid structural configurations. The K2 function was
used as an evaluation function, which has a fairly wide application
in structural learning problems.

To facilitate a comparative analysis of structured learning out-
comes, a series of experiments were conducted on the designated
benchmark datasets [38]. As the foundational baseline, the Greedy
Hill Climbing algorithm was selected. The learning outcomes are
assessed from a dual perspective, utilizing two distinct metrics: F1
score and the evaluation function’s value. In this case, F1 score
shows the quality of the restoration of the structure (the higher,
the more similar the structure is to the reference one). Table 2
shows the comparison results (averaged for ten runs). The compara-
tive analysis revealed that the evolutionary optimization algorithm
integrated into the GOLEM framework effectively addresses the
challenge of structural training for Bayesian networks, yielding
superior outcomes when contrasted with the baseline algorithm.
As the number of nodes increases, a comparable result is achieved.
However further refinement is required on a large number of nodes
to exceed the foundational baseline.

Figure 2b illustrates the convergence plots of solutions from ten
runs, employing the Sachs dataset as an illustrative case. Notably,
even though the solutions ultimately converged to identical values
of the evaluation function, it is worth highlighting that GOLEM
managed to uncover a superior solution when assessed through
the lens of the F1 metric. This phenomenon arises from the notion
of equivalence within the domain of Bayesian networks. Namely,

2https://github.com/aimclub/FEDOT
3https://github.com/aimclub/BAMT

Table 2: Comparison of BN’s structural learning results for
evolutionary algorithm (Evo) and the baseline - greedy algo-
rithm (HC), for each dataset, the number of nodes is indicated
in brackets. The best results are highlighted with bold.

Dataset Evo HC Evo HC
F1 Evaluation function

Asia (8) 0.71 0.29 -2296 -2300
Cancer (5) 0.57 0.57 -2104 -2105

Earthquake (5) 1.00 1.00 -533 -533
Sachs (11) 0.62 0.53 -7400 -7391

Sangiovese (15) 0.2 0.17 -22835 -22878
Mildew (35) 0.28 0.28 -52749 -52076
Barley (48) 0.24 0.23 -63835 -61448

different network structures can correspond to identical evalua-
tion function values. Given that evolutionary algorithms inherently
explore a broader spectrum of solutions, it possesses a higher like-
lihood of converging towards the desired reference structure. In
contrast, the baseline solution typically exhibits a more determinis-
tic convergence pattern towards a consistent structure.

5.3 Drug design
As another case to demonstrate GOLEM’s versatility and effective-
ness we have chosen the drug discovery task. Its purpose is to
discover molecules with specific chemical properties. Exploring
the vast molecular space is a challenging task, primary due to its
extensive size. To tackle the problem of goal-directed molecule
generation, we applied GOLEM framework using RDKit chemical
library.

To obtain new molecular structures we used custom mutations
proposed in [27]. Implemented mutation operators can be divided
into two groups: primary and secondary. Primary mutations are
simple operations like adding, deleting or replacing an atom and
deleting or replacing a bond. More complicated, multi-step actions
correspond to secondarymutations: deleting or moving a functional
group, inserting carbon between two connected atoms (insert car-
bon), removing an atom if it has only two neighbors (cut atom).

We compared our algorithm with SMILES LSTM [39], Graph GA,
CReM [36] and EvoMol [27] on GuacaMol [3] benchmark. The final
benchmark scores are restricted to the interval [0, 1] (1 is the best
score) and are calculated as weighted averages of such molecule
scores as: structural features, physicochemical properties, similarity
or dissimilarity to other molecules, presence and absence of sub-
structures, functional groups, or atom types. Results of comparison
on 10 runs are presented in Table 3.

For the experiment atom types were limited to C, N, O, F, P, S,
Cl and Br, while single, double and triple bonds were used. Number
of generations set to 3000, population size equals 50 and maximal
number of heavy atoms equals 50. To generate only feasible molec-
ular structures the set of possible editing actions is proposed before
applying mutations. For initial population the top 100 best scoring
molecules are selected from GuacaMol dataset for each benchmark.

According to the Table 3 GOLEM-based solution shows com-
parable results (within 4% of performance for total score) to the
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Figure 2: Convergence of a) comparison of random search and evolutionary optimizer for synthetic tree graphs. The convergence
of fitness function is averaged for 15 runs; b) BN structure learning from ten runs on Sachs dataset

Table 3: GuacaMol benchmark results. Custom benchmark metric described in text is used for score evaluation.

benchmark SMILES LSTM Graph GA CReM EvoMol GOLEM EvoMol best GOLEM best
Celecoxib rediscovery 1.000 1.000 1.000 0.978 0.889±0.011 1.000 1.000
Troglitazone rediscovery 1.000 1.000 1.000 1.000 0.926±0.128 1.000 1.000
Thiothixene rediscovery 1.000 1.000 1.000 0.876 0.792±0.026 1.000 0.828
Aripiprazole similarity 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Albuterol similarity 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Mestranol similarity 1.000 1.000 1.000 1.000 0.999 1.000 1.000
C11H24 0.993 0.971 0.966 1.000 0.999 1.000 1.000
C9H10N2O2PF2Cl 0.879 0.982 0.940 0.998 1.000 1.000 1.000
Median molecules 1 0.438 0.406 0.371 0.455 0.382 0.455 0.388
Median molecules 2 0.422 0.432 0.434 0.417 0.405 0.417 0.405
Osimertinib MPO 0.907 0.953 0.995 0.955 0.946 0.969 0.955
Fexofenadine MPO 0.959 0.998 1.000 1.000 0.996 1.000 0.999
Ranolazine MPO 0.855 0.920 0.969 0.966 0.882±0.017 0.957 0.911
Perindopril MPO 0.808 0.792 0.815 0.845 0.751±0.032 0.827 0.782
Amlodipine MPO 0.894 0.894 0.902 0.867 0.918 0.869 0.920
Sitagliptin MPO 0.545 0.891 0.763 0.915 0.739±0.017 0.926 0.765
Zaleplon MPO 0.669 0.754 0.770 0.791 0.746 0.793 0.748
Valsartan SMARTS 0.978 0.990 0.994 0.998 0.988 0.998 0.991
Deco Hop 0.996 1.000 1.000 1.000 0.991 1.000 1.000
Scaffold Hop 0.998 1.000 1.000 1.000 0.984±0.016 1.000 1.000
total 17.341 17.983 17.919 18.061 17.330 18.211 17.693
total MPO 5.637 6.202 6.214 6.339 5.980 6.341 6.080

specialized state-of-the-art algorithms. Given GOLEM’s applicabil-
ity in various graph optimization tasks, these results are indeed
promising, underlining its potential in the domain of molecular
generation.

5.4 Design of robotic arms
In this case, GOLEM is used to explore the design search space
and find the near-optimal terminal graph that describes the linkage

mechanism of a robotic arm in rostok4 library. The graph represen-
tation is used to construct a simulation model of grasping, followed
by the modeling of the object grasping process under the influence
of external disturbances. In order to simulate the rigid body dynam-
ics, the PyChrono [41] physics engine is utilized. The disturbances
consist of a smoothly increasing force directed at a 45-degree an-
gle relative to the palm normal. Based on the simulation data, the
reward is calculated to evaluate the performance of the grasping

4https://github.com/aimclub/rostok
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process. The quality assessment is performed using classical grasp-
ing metrics, including the fraction of phalanxes contacting with
objects, the distance between the object center and the geomet-
ric center of contact points, and the ability to withstand external
force, which are combined as a weighted sum. A reward value of
approximately 9 indicates a successful grasping and holding of the
object.

The genetic algorithm itself does not take constraints based on
grammar rules into account. Therefore, it could produce graphs
that represent non-viable mechanisms. In order to resolve this issue
and improve the efficiency of the algorithm, we introduced two
modifications: (1) the reward of the non-viable mechanism is set
to zero; (2) the initial population is generated using viable designs
obtained with graph grammar (GG). The initial population is a for-
mation based on the assumption of diversity. It includes candidates
with 1, 2, 3, and 4 fingers in equal quantity; (3) Edge filtering rule
for crossover that restricts edges that are not directing to the "body"
nodes. The best designs and reward chart are presented in Figure 3.
The values of reward function is estimated using simulator.

Furthermore, we employed Monte Carlo Tree Search (MCTS)
and graph grammar rules to tackle the same task. The comparison
of reward score is shown in the Table 4. The involvement of GOLEM
improved the results for 3 of 4 tasks against the MCTS.

Table 4: Comparison of achieved rewards GOLEM evolution-
ary algorithm and MCTS-based graph grammar rules.

Task Box Sphere Cylinder Ellipsoid
MCTS + GG 9.082 9.145 7.0 10.019
GOLEM 11.259 10.331 10.116 8.919

So, the implemented approach can be considered a hybrid be-
tween graph grammar and evolutionary optimization. Also, we
extended the abstract implementation of the genetic algorithm
obtained from GOLEM with several task-specific evolutionary op-
erators (mutations and crossover) that are specifically engineered
to minimize the amount of non-viable mechanisms.

6 CONCLUSION
In the paper, we proposed a flexible and adaptive approach named
GOLEM for the automation of design tasks in various scientific
fields. It provides the modular interface that takes into account
domain-specific objective functions, search space and constraints
while using the unified evolutionary core. The experimental vali-
dation of the GOLEM is provided for synthetic benchmarks and a
set of real-world cases (design of probabilistic models, drug design,
design of robotic grippers). GOLEM is available as an open-source
tool that can be extended to various applications.

ACKNOWLEDGMENT
This research is financially supported by the Foundation for Na-
tional Technology Initiative’s Projects Support as a part of the
roadmap implementation for the development of the high-tech
field of Artificial Intelligence for the period up to 2030 (agreement
70-2021-00187)

REFERENCES
[1] Laith Mohammad Abualigah, Mohamed E. Abd Elaziz, Ahmad M. Khasawneh,

Mohammad Alshinwan, Rehab Ali Ibrahim, Mohammed Abdulaziz Aide Al-
qaness, Seyedali Mirjalili, Putra Sumari, and Amir Hossein Gandomi. 2022. Meta-
heuristic optimization algorithms for solving real-world mechanical engineering
design problems: a comprehensive survey, applications, comparative analysis,
and results. Neural Computing and Applications 34 (2022), 4081 – 4110. https:
//api.semanticscholar.org/CorpusID:247412220

[2] Julian Blank and Kalyanmoy Deb. 2020. Pymoo: Multi-Objective Optimization
in Python. IEEE Access 8 (2020), 89497–89509. https://api.semanticscholar.org/
CorpusID:211076047

[3] Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. 2019.
GuacaMol: benchmarking models for de novo molecular design. Journal of
chemical information and modeling 59, 3 (2019), 1096–1108.

[4] Nathan Brown, Marco Fiscato, Marwin H. S. Segler, and Alain C. Vaucher.
2018. GuacaMol: Benchmarking Models for De Novo Molecular Design. Jour-
nal of chemical information and modeling 59 3 (2018), 1096–1108. https:
//api.semanticscholar.org/CorpusID:53787096

[5] Irene Córdoba, Eduardo C Garrido-Merchán, Daniel Hernández-Lobato, Concha
Bielza, and Pedro Larranaga. 2018. Bayesian optimization of the PC algorithm
for learning Gaussian Bayesian networks. In Advances in Artificial Intelligence:
18th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2018,
Granada, Spain, October 23–26, 2018, Proceedings 18. Springer, 44–54.

[6] Derek G Corneil and Richard M Krueger. 2008. A unified view of graph searching.
SIAM Journal on Discrete Mathematics 22, 4 (2008), 1259–1276.

[7] Irina Deeva, Anna Bubnova, and Anna V Kalyuzhnaya. 2023. Advanced Approach
for Distributions Parameters Learning in Bayesian Networks with Gaussian
Mixture Models and Discriminative Models. Mathematics 11, 2 (2023), 343.

[8] Qiqi Duan, Guochen Zhou, Chang Shao, Zhuowei Wang, Mingyang Feng, Yi-
jun Yang, Qi Zhao, and Yuhui Shi. 2022. PyPop7: A Pure-Python Library
for Population-Based Black-Box Optimization. ArXiv abs/2212.05652 (2022).
https://api.semanticscholar.org/CorpusID:254564248

[9] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture
search: A survey. The Journal of Machine Learning Research 20, 1 (2019), 1997–
2017.

[10] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[11] Jonathan Godwin*, Thomas Keck*, Peter Battaglia, Victor Bapst, Thomas Kipf,
Yujia Li, Kimberly Stachenfeld, Petar Veličković, and Alvaro Sanchez-Gonzalez.
2020. Jraph: A library for graph neural networks in jax. http://github.com/
deepmind/jraph

[12] Nikhil Goyal, Harsh Vardhan Jain, and Sayan Ranu. 2020. Graphgen: A scalable
approach to domain-agnostic labeled graph generation. In Proceedings of The
Web Conference 2020. 1253–1263.

[13] Giorgio Grisetti, Rainer Kümmerle, Hauke Strasdat, and Kurt Konolige. 2011. g2o:
A general framework for (hyper) graph optimization. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). 9–13.

[14] D Hanzelka. 2008. The use of hybrid genetic algorithms in Bayesian network
structure learning from data. Journal of Applied Mathematics 1, 2 (2008), 387–396.

[15] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the state-
of-the-art. Knowledge-Based Systems 212 (2021), 106622.

[16] Yuval Heffetz, Roman Vainshtein, Gilad Katz, and Lior Rokach. 2020. Deepline:
Automl tool for pipelines generation using deep reinforcement learning and
hierarchical actions filtering. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining. 2103–2113.

[17] E. Hénault, Maria Harris Rasmussen, and Jan H. Jensen. 2020. Chemical space
exploration: how genetic algorithms find the needle in the haystack. PeerJ
Physical Chemistry (2020). https://api.semanticscholar.org/CorpusID:225459180

[18] Emilie S Henault, Maria H Rasmussen, and Jan H Jensen. 2020. Chemical space
exploration: how genetic algorithms find the needle in the haystack. PeerJ
Physical Chemistry 2 (2020), e11.

[19] Mcdonald Jh. 2014. Handbook of biological statistics.
[20] Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, B. Liao, Zhe

Wang, Chao Shen, Dongsheng Cao, Jian Wu, and Tingjun Hou. 2020. Could
graph neural networks learn better molecular representation for drug discovery?
A comparison study of descriptor-based and graph-based models. Journal of
Cheminformatics 13 (2020). https://api.semanticscholar.org/CorpusID:231940292

[21] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, et al. 2021. Highly accurate protein structure prediction with Al-
phaFold. Nature 596, 7873 (2021), 583–589.

[22] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017. Learn-
ing combinatorial optimization algorithms over graphs. Advances in neural
information processing systems 30 (2017).

[23] Amit Dilip Kini, Swaraj Sambhaji Yadav, Aditya Shankar Thakur, Akshar Bajrang
Awari, Zimeng Lyu, and Travis Desell. 2023. Co-evolving Recurrent Neural

1674

https://api.semanticscholar.org/CorpusID:247412220
https://api.semanticscholar.org/CorpusID:247412220
https://api.semanticscholar.org/CorpusID:211076047
https://api.semanticscholar.org/CorpusID:211076047
https://api.semanticscholar.org/CorpusID:53787096
https://api.semanticscholar.org/CorpusID:53787096
https://api.semanticscholar.org/CorpusID:254564248
http://github.com/deepmind/jraph
http://github.com/deepmind/jraph
https://api.semanticscholar.org/CorpusID:225459180
https://api.semanticscholar.org/CorpusID:231940292


GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Pinchuk et al.

Figure 3: Left. Grippers generated with GOLEM framework: different devices to grasp objects like (a) box, (b) sphere, (c) ellipsoid,
(d) cylinder. Right. Mean fitness of 3 best individuals in population show optimization convergence for each task.
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