Bt

S

PIB File Specification

K. R. Jones

April 1997

Scientech Inc.
11140 Rockville Pike « Suite 500
. Rockville, MD 20852
Phone 301/468-6425 » Fax 301/468-0883

PiIB FILE SPECIFICATION

Table of Contents

1. OVERVIEW

2. FILE STRUCTURE

A. FILE HEADER BLOCK
B. CHANNEL HEADER BLOCK
C. CHANNEL DATA BLOCK

3. ENGINEERING UNIT CODES

4. COMPRESSION

NN W

10

18

PIB FILE SPECIFICATION

1. Overview

The Platform-Independent Binary or PIB file format was developed to provide a lightweight, machine-
" independent format for the plotting and analysis of data from the NRC Reactor Safety Data Dank. The NRC
Data Bank was originally developed at the Idaho National Engineering Laboratory, to collect, store, and make
available, data from many domestic and foreign light water reactor safety research programs. The NRC Data
Bank is currently being modified and relocated to the NRC offices in Rockville, MD. The XMGRS plotting and
data analysis software is used to read this experimental data as well as calculated data generated from several
reactor safety analysis programs including RELAP, MELCOR and FRAPCON.

The data files maintained by the NRC Data Bank consist of large time-dependent data files containing the results
of experimental calculations. A single experiment can generate several hundred megabytes of data. ASCII files
provide a portable data format for exchange of data between different machines, however, it is generally very
inefficient and time consuming to store and extract data from large ASCII files. Native binary files can be used to
store and retrieve data in a very efficient manner using direct access pointers, however, they cannot be read
directly by other machine types. The PIB format uses the External Data Representation (XDR) protocol to
provide a portable, machine-independent format that can be accessed with an efficiency approaching that of the
native binary format.

Two utility programs, Convert and Merge were developed to provide a means of generating data files from the
NRC Data Bank for XMGR5. Figure 1 illustrates the usage these programs as well as the role of the NRC Data
Bank in the creation of PIB data files. Data is obtained from experimental facilities on magnetic tape. Each
facility sends data in its own format, and a single experiment may encompass several tapes. These tapes are
processed by the NRC Data bank and stored in a common binary format. Data stored in the NRC Data Bank
can be dumped into an ASCII file using a standard format known as TWX. The Convert utility reads a single
TWX file and converts it to a binary file that can be read by XMGR5. This BIN format was initially used to
provide experimental data to XMGR5. Although it is possible for XMGR5 to read from several files
simultaneously, it became clear that it would be desirable to merge all the data files from a single experiment into
a single file that could then be read by XMGR5. Due to the wide range of Unix platforms used to analyze the
data, there is also a benefit to switching to an efficient platform independent format. The Merge program can
, .

Figure 1. Convert and Merge Utilities

Experimental Data from Facility

&

INRC Data Bank
rArchive

‘ IConvert ﬁerge
PIB

[TWX BIN

ASCI p

PIB FILE SPECIFICATION

read multiple BIN or PIB files and merge them into a single PIB file. In addition, the Merge program is used to
verify data integrity, perform statistical analyses, apply digital filters, compress the channel data, and perform basic
data management functions. Much of the example code shown in this report was derived from the Merge

program.

This document is meant to serve as a guide for creating PIB files. Several C—language code segments are provided
to illustrate programming approaches. As such, a general knowledge of C-language programming is assumed.

PIB FILE SPECIFICATION

1. File Structure

The PIB file structure is composed of three distinct sections, a file header block, a channel header block, and the
channel data block. The file header block is used to identify the file type and it contains the information
necessary to read the channel header block. The channel header block contains one channel header record for
each channel in the file. The channel header records contain the information required to read the channel data
block. A data channel can represent either a set of time values or a set of dependent data values. Each dependent

data channel includes a reference to a time data channel that provides the independent data values. Many
dependent data channels generally reference the same time channel.

In order to achieve platform independence, all data written to or retrieved from the PIB file is accessed by means
of the External Data Representation (XDR) routines. In the UNIX operating system, the interface for the XDR
* primitives are defined in the include file <rpc/xdr.h>, which is automatically included by <rpc/rpc.h>. Refer
to a programmers guide to remote procedure calls (RPC) for a description of the XDR protocol. One such
reference is Power Programming with RPC by John Bloomer, O' Redly & Associates, 1992.

Figure 2. PIB File Creation Process

1. Create and fill a channel header 2, Writ.e the File Header Block
structure

3. Allocate an array of channel -
header structures. Fill the array 4. Write the Channel Header
with available channel Block
information
For Each Channel
5. Prepare channel data, 6. Save the current file pointer, 7. Update the Channel
compress data write the Data Block Header Record

8. Determine the pointers to the
independent data, Update the
channel header records

10. Rewrite the Channel

9. Rewind to beginning of Header Block, reposition
Channel Header Block to EOF and close file.

The process of creating a PIB file is illustrated in Figure 2. As will be discussed further in subsequent sections, the
PIB file is written in two passes. During the first pass, the file header block, the channel header block, and the
channel data block are written to the file. However, the file pointer information required for the channel header

PIB FILE SPECIFICATION

block is not determined until the channel data block is written to file. For this reason, a second pass is required to

update the channel header block.

The first two process steps involve creating the file header block structure and writing it to an XDR stream.
These steps are discussed in Section 2.A, File Header Block. = Steps 3, 4, 9 and 10, which involve writing the
channel header block, are covered in Section 2.B. Steps 5, 6 and 7 involve writing the channel data block and
updating the channel header records. These steps are discussed in Section 2.C.

A. File Header Block

The PIB file begins with a header block that is used to identify the file type and to provxde the information
necessary to read the subsequent channel header records. It may also include an optional list of filenames that
were used to create the PIB file along with an integer value indicating their file type. Currently, integer values of
1000 and 2000 are reserved to identify binary and PIB file types respecuvely This file list can prove useful in
tracking down data sources, especially if several files are combined using the merge utility. Table 1 illustrates the
layout of the file header block.

Table 1. File Header Block Layout

XDR Description - _ . Fleld Contents
Primitive | ' ‘ ST
xdr_string | File type string “NRCDB V2. 0, K R Jones”
xdr_int Header size (currently not used) |0
xdr_int ‘Number of data channels numO£fChnls
xdr_int Number of filenames (0 to 80) numOfFiles
'xdr_string Name of 1lst file. (optional) fromfile[0]
xdr_string Name of 2nd file. (optional) fromfile[l]
xdr string Name of last file. (optional) fromfile[numOfFiles)
xdr_int Type of 1lst file. (optional) fromfileType[0]
xdr int Type of 2nd file. (optional) fromfileType[l]
xdr_int Type of last file. (optional) fromfileType [numOfFiles]
xdr string | Name of file being created filename

The follovﬁng xdr_fileHead routine can be used to read or write the file header block to an existing XDR stream.
The header data is retrieved from or placed into a pibHeader structure as defined below:

Source Listing 1. File Header XDR Access Routine
struct pibHeader ({

char fileTypl[80]; /* string indicating file type */

int size; /* not used enter .0 */

int numOfChnls; /* the number of data channels contained in this file */
int numOfFiles; /* the number of data files in the file list */

char fromfile{80)([256];/* a list of up to 80 filenames */

int fromfiletype({80]; /* corresponding file types */

char tofile[256]; /* the name of the file being created */
}:

PIB FILE SPECIFICATION

bool_t xdr_fileHead(XDR *xdrs, struct pibHeader *hdr)
{

int i;

bool_t rc;

u_int slen;

char *cptr;

cptr = hdr->fileTyp:

slen = 80;

if (! (rc = xdr_string(xdrs, &cptr, slen))) return rc;
if (! (rc = xdr_int(xdrs, &hdr->size))) return rc;
if (! (rc = xdr_int(xdrs, &hdr->numOfChnls))) return rc;
if (! (rc = xdr_int (xdrs, &hdr->numOfFiles))) return rc;

for(i=0; i<hdr->numOfFiles; i++) {
cptr s§hdr->fromfile{i] [0];
slen 256;
if(!(rc = xdr_string(xdrs, &cptr, slen))) return rc;

}
for (i=0; i<hdr->numOfFiles; i++) ({
if (! (rc = xdr_int(xdrs, &hdr->fromfiletype[i]))) return rc;
}
cptr = &hdr->tofile(0];
slen = 256; _
if(!(rc = xdr_string(xdrs, &cptr, slen))) return rc;
return rc; :

}

The following code segment demonstrates how to create the XDR stream and write the header using the
xdr fileHead routine. It assumes that the filename and numChan variables, corresponding to the name of the file

to be created, and the number of data channels, respectively, have been previously defined.

Source Listing 2. Example of xdr_fileHead Usage

/* declarations */
XDR xdrs;

FILE fileHndl;

struct pibHeader hdr:;
int rc;

/* copy data to the header structure */

strcpy (hdr->filetype, "NRCDB V2.0, K. R. Jones");
hdr->size = 0;

hdr->numOfChnls = numChan;

hdr->numOfFiles = 0;

strcpy (hdr->toFile, filename);

/* open the output file */

fileHndl=fopen (filename, "w");

if (fileHndl == NULL) {
fprintf (stderr, "Unable to open file %s", filename);
return;

}:

/* create the XDR object */
xdrstdio_create(&xdrs, fileHndl, XDR_ENCODE) ;

/* write the header structure to the XDR stream */
rc = xdr_ fileHead(&xdrs, &hdr);
if('rc) |
fprintf (stderr,"Error writting PIB file.."):
return;

PIB FILE SPECIFICATION

B. Channel Header Block

The channel header block immediately follows the file header block. The channel header block contains one
channel header record for each data channel: The layout of the channel header record is illustrated in Table 2
along with a description of each field. The channel name is stored in ASCII characters and must be padded to
with NULL characters to a length of 24 bytes. This ensures a fixed size for the channel header record, allowing

the channel header block to be read very efficiently. Each channel is ass1gned a unique zero based index to
identify that is used to 1denr.|fy the channel.

Table 2. Channel Header Record Layout

XDR . Field - |- . - =~ .$.; Descrlptlon

Primitive Contents - T P o

xdr bytes name {24] The channel name. Must be NULL padded to 24 bytes

xdr_int Index A zero based index used to identify the channel.

xdr_int size Number of data points for the channel.

xdr_int totalSize | The length of the data in bytes. (8 * size)

xdr_int timeIndex | The Index value for the channel containing the time
values. '
Note: This value should be zero for time channels.

xdr int ptrToData | A pointer to the dependent data. '

xdr_int ptrToTime | A pointer to the independent (time channel) data.

xdr_int eucode An integer value indicating the engineering unit code
for this channel. See Section 2, Engineering Unit
Codes.

xdr_int recNo Reserved, enter 0.

xdr_int orgIndex The original sequence number used in the source file.

) (optional)

xdr_int orgFile A zero based index indicating the source file from the
file list of the file header block. (optional)

xdr _int status Reserved, enter 0.

xdr_int - | cmpMode Compression mode. See Section 3, Compre551on

xdr_int | cmpSize Size of compressed data array

xdr_int sparel Reserved, enter 0.

xdr_int spare2 Reserved, enter 0.

xdr int spare3 Reserved, enter 0.

The most difficult fields to populate are the pointers to the data and time data, ptrToData and ptrToTime,
respectively. These pointers are most easily determined using the xdr_getpos function prior to writing the
channel data. Unfortunately, these values are not known at the time the channel header block is written. For
this reason, the channel header block is written in two passes. During the first pass, write the file header block,
the channel header block and then the data block. As the data block is written, use the xdr _getpos function to
determine the file pointer prior to writing each data channel. After the data block has been written, rewind the
file to the start of the channel header block and rewrite the channel header block.

The following xdr_chanHead routine can 1 be used to read or write a single channel header record to an existing
XDR stream. The channel data is retrieved from or placed into a pibChnlRec structure as defined below:

PIB FILE SPECIFICATION

Source Listing 3. Channel Header XDR Access Routine

struct pibChnlRec ({
char name(24];
int Index;
int size;
int totalSize;
int timeIndex;
int ptrToData;
int ptrToTime;
int eucode;
int recNo;
int orgIndex;
int orgFile;
int status;
int cmpMode;
int cmpSize;
int sparel;
int spare2;
int spare3;

} :

bool_t xdr_chanHead (XDR *xdrs, struct pibChnlRec *Chan)
{
bool_t rc;
u_int slen = 24;
char *cptr;

cptr = Chan->name;

rc = (xdr_bytes(xdrs, &cptr, &slen, slen)
&& xdr_int(xdrs, &Chan->Index)
&& xdr_int (xdrs, &Chan->size)
&& xdr_int(xdrs, &Chan->totalSize)
&& xdr_int(xdrs, &Chan->timelIndex)
&& xdr_int(xdrs, &Chan->ptrToData)
&& xdr_int(xdrs, &Chan->ptrToTime)
&& xdr_int (xdrs, &Chan->eucode)
&& xdr_int (xdrs, &Chan->recNo)
&& xdr_int (xdrs, &Chan->orgIndex)
&& xdr_int (xdrs, &Chan->orgFile)
&& xdr_int(xdrs, &Chan->status)
&& xdr_int (xdrs, &Chan->cmpMode)
&& xdr_int (xdrs, &Chan->cmpSize)
&& xdr_int(xdrs, &Chan->sparel)
&& xdr_int(xdrs, &Chan->spare2)
&& xdr_int(xdrs, &Chan->spare3));

return rc;

Typically, an array of pibChnlRec structures will be allocated and filled with the channel information, then the
xdr_chanHead routine will be called once for each element of the array.

C. Channel Data Block

The channel data block follows immediately after the channel header block. It consists entirely of arrays of
double precision floating point data output with the xdr routines. The channel data is written using the xdr_array
primitive with a double precision element type. The following code segment illustrates writing the channel data
block to an open XDR stream: '

PIB FILE SPECIFICATION

Source Listing 4. Channel Data Block Write

/* declarations */

u_int filePtr;

bool_t rc;

double *dptr;

u_int csize;

int i; .

int totalNumChan = [number of channels]:;

for(i=0; i<totalNumChan; i++) {
/* get the current file position
note: save this to the channel header record array so you can write the
file pointers in the second pass
* / .
filePtr = xdr_getpos (&xdrs);

/* set up dptr and csize variables */
dptr = [pointer to datal;
csize = [length of data array]:

/* compress the data */
cmpMode =cmpres (dptr, &csize):;

/* output channel data */

rc = xdr_array(&xdrs, /* XDR stream */
(char **)s&dptr, /* pointer to the data to be written */
(u_int *)&csize,/* number of elements */

csize, /* maximum number of elements */
.sizeof (double), /* element size */
xdr_double) ; /* primative used to encode element */

if('re) {
fprintf (stderr, "Error writting output file. exiting");
exit(-1);

}

/* now save the compression mode and data pointer to the
channel header record array */

chanHeader[i].ptrToData = filePtr;

chanHeader[i] .cmpMode = cmpMode;

After the data block has been written, and all of the channel data pointers determined, the pointers to the time
data can be determined. This is accomplished by setting the time data pointer value, ptrTotime equal to the data
pointer value, ptrToData for the corresponding time channel. For time channels, ptrToTime should be set equal
- to its own data pointer. This process is illustrated in the following code segment:

PIB FILE SPECIFICATION

Source Listing 5. Setting Time Pointers

/* set pointers to time values */
for(i=0; i<totalNumChan; i++) {

chanHeader[i].ptrToTime = -1;
if (chanHeader([i].timeIndex == 0) {

chanHeader[i) .ptrToTime = chanHeader([i].ptrToData;
lelse{

chanHeader[i]).ptrToTime = chanHeader[chanHeader[i].timeIndex].ptrToData;
} .
if (chanHeader([i].ptrToTime < 0) {
fprintf(stderr, "No time data found for channel:%s\n",
- chanHeader{i] .name) ;
exit(-1);
}
}

After the data block has been written, and the channel header record structures have been updated to include the
compression and file pointer information, the file is rewound to the start of the channel header block, and the
channel header block is overwritten.

PIB FILE SPECIFICATION

1. Engineering Unit Codes

Each data channel must have an engineering unit code (eucode) defined in its channel header record

correspondmg to the phy51cal units in which the data channel was calibrated. Table 3 contains a list of all

available engineering unit codes. The description and units columns shown in Table 3 are used to provide axis

labels in the plottmg software. These codes were originally developed for the NRC Data Bank to provide a
- common set of units to handle data from a wide range of domestic and foreign research programs.

In the event that none of the available unit codes are suitable for a given channel and an engineering unit code
must be added, contact the NRC Project Manager for the NRC Data Bank to reserve a unit code. This will
prevent conflicting use of a code value and ensure that the appropriate modifications are made to the plotting and
analysis software.

Table 3. Engineering Unit Codes

1 | Core Heater Temperature F
2 Fluid Temperature F
3 Pressure psig
4 Strain
5 Volumetric Flow gpm
6 Fluid Velocity ft/s
7 Force 1b
8 Length in
9 Voltage) '
10 Material Temperature . F
11 Current Amp
12 Specific Volume ft~3/1bm
13 Decibels dB
14 Pressure psi
15 Pressure psia
16 | Differential Pressure psid
17 Density lbm/ft~3
18 Power . kW
19 Heat Flux Btu/s*ft~2
20 H. T. Coeff. Btu/s*ft~2*F
21 Surface Temperature . F
22 Saturation Temperature F
23 Enthalpy , Btu/lbm
24 Mass Flux lbom/s*ft~2
25 Mass Flow lbm/s
26 Integrated Mass Flow lbm
27 Momentum Flux 1bm/ft*s”2
28 Fluid Velocity : ft/s
29 Pump Speed rpm
30 Elevation : ft
31 Quality
32 Normalized Power
33 Mass Flux 10e6 lbm/hr*ft~2
34 Temperature F
35| Time After Rupture) s
36 Time s
37 Total Energy 3 Btu
38 Reactivity $
39 Stored Energy Btu
40 Energy Btu
41 Mass Balance 1lbm
42 Power . . MW

10

PIB FILE SPECIFICATION

ta
Period

Heat Transfer Rate
Mass

Saturation Pressure
Normalized Pump Torque
Volumetric Flow
Choking Index

Heat Transfer Mode
Time After Reflood
Thermal Conductivity
Internal Rod Temperature
Liquid Level

Percent

Frequency

Total Volume
Acceleration

Core Heater Temperature
Fluid Temperature
Pressure

Strain

Volumetric Flow

Fluid Velocity

Force

Length

Material Temperature
Specific Volume
Differential Pressure
Density

Heat Flux

H. T. Coeff.

Surface Temperature
Saturation Temperature
Enthalpy

Mass Flux

Mass Flow

Integrated Mass Flow
Momentum Flux

Fluid Velocity
Elevation

Temperature

Time After Rupture
Time

Pressure

Time After Reflood
Angular Velocity

Pump Torque

Liquid Level

Thermal Conductivity
Internal Rod Temperature
Volumetric Flow

Void Fraction
Temperature Difference
Photo Tube Temperature
Average Velocity
Liquid Phase Velocity
Vapor Phase Velocity
Horsepower

Mass Flow / Vol

Slip Ratio

Flow Quality

_Thermodynamic Quality

Steam Quality
Neutron Detectors

cm
kW/m*K
K

ml/s

K

K

ft/s

ft/s

ft/s

kW
lbm/ft~3*s

11

PIB FILE SPECIFICATION

Valve Position

Guide Tube Temperature F

Fuel Rod Temperature F

Reactor Power MW

Fuel Rod Peak Power kW/m

Fuel Rod Ave Power kW/m

S-P Neutron Detector Curr na

Neutron Flux n/cm"2*s

Fuel Off-Center Temperature K

Fuel Centerline Temperature K

Outlet Temperature K

Inlet Temperature K

Cladding Elongation mm

Cladding Elongation]

Rod Internal Pressure MPa

Peak Flux n/cmh2*s

Cladding Surface Temperature K

Momentum Flux 10e3 lbm/ft*s~2

Total Density kg/m”3

Liquid Density kg/m"3

Vapor Density kg/m”3

Specific Int Energy J/kg

Specific Lig Int Energy J/kg

Specific Vap Int Energy J/kg

Liquid Void Fraction

Vapor Void Fraction

Volume Liquid Velocity m/s

Volume Vapor Velocity m/s

Volume Pressure Pa

Volume Static Quality

Volume Equilibrium Quality

Volume Heat Source W

Volume Liquid Temperature K

Volume Vapor Temperature K

Volume Equil Temperature K

Volume Sonic Velocity m/s

Junction Liq Velocity m/s

Junction Vap Velocity m/s .

Interface Velocity m/s

Junction Liq Density kg/m~3

Junction Vap Density kg/m”3

Junction L/I Energy J/kg

Junction V/I Energy J/kg

Power Input W

Heat Transfer Rate W

Critical Heat Flux W/m"2

Heat Transfer Coef W/m*2*K

Mesh Point Temperature K

Mass Flow Rate kg/s

Viscosity lbm/ft*hr

Viscosity cp

Liquid Viscosity lbm/ft*hr

Ligquid Viscosity cp

Vapor Viscosity lbm/ft*hr

Vapor Viscosity cp

Surface Tension 1bf/ft

Surface Tension N/m

Specific Heat btu/lbm*F

Specific Heat J/kg*K

Liquid Specific Heat btu/lbm*F
- Liquid Specific Heat J/kg*K

Vapor Specific Heat ‘btu/lbm*F

Vapor Specific Heat J/kg*K

(

12

PIB FILE SPECIFICATION

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
2217
228

230
231
232
233
234
235

Heat of Vaporization
Thermal Diffusivity
Thermal Diffusivity
Time

Time After Rupture
Time To CHF

Crit. Heat Flux
Crit. Heat Flux
Power

Vapor Velocity
Vapor Velocity
Flooding Rate
Flooding Rate
LEIDENFROST Temperature
LEIDENFROST Temperature
T([wall]l - T[sat]
T[wall] - T[sat]
Distance

Distance

Area

Area

Area

Area

Diameter

Diameter

Diameter

Diameter

Radius

Radius

Radius

Radius

Volume

Volume

Discharge Coefficient
Flow Regime
Friction Factor
REYNOLDS NUMBER
WEBER NUMBER

LEWIS NUMBER
FROUDE NUMBER
KNUDSEN NUMBER
STABILITY NUMBER
NUSSELT NUMBER
PRANDTL NUMBER
MARTINELLI NUMBER
BOILING NUMBER
MACH NUMBER
GRASHOF NUMBER
RALEIGH NUMBER
STANTON NUMBER
ECKERT NUMBER
EULER NUMBER
STROUHAL NUMBER
Liguid Density
Vapor Density
Power

Mass

Current

Counts

Density

Momentum Flux
Voltage

Velocity

btu/hr*ft~2
kW/m”~2
btu/hr

ft/s

m/s

ft/s

m/s

ft~3
m"3

lbm/ft"3
lbm/ft"3
kW/m

kg

amp
loglc/s]
mg/m"3

mg/m*s"2

\Y
m/s

13

PIB FILE SPECIFICATION

Specific Entropy

Specific Entropy
Delta~Theta

Pump Head

Pump Momentum Source
Volumetric Flow Rate
Temperature

Enthalpy

Enthalpy Flow

Mass

Mass

Depressurization Rate
Saturation Temperature
Liquid Level

CP SECONDS SMALL JOB CLASS
CP SECONDS MEDIUM JOB CLASS
CP SECONDS LARGE JOB CLASS
CP SECONDS ELEPHANT JOB CLASS
I/0 SECONDS SMALL JOB CLASS
I/0 SECONDS MEDIUM JOB CLASS
I/0 SECONDS LARGE JOB CLASS
I/0 SECONDS ELEPHANT JOB CLASS
TOTAL CP TIME)
TOTAL I/0 TIME

JULIAN DAY

INTERCON CP TIME

INTERCOM I1I/0 TIME

SYSTEM SECONDS

Accumualted CP Seconds .
Accumualted I/0 Seconds
Drag Disk

Valve Position

Level

RHOF

RHOG

RHOL

Current

Differential Pressure
Cladding Temperature

Metal Temperature

Local Heat Generation
Fluid Density

Coolant Temperature

Guide Tube Temperature
Displacement

Pump Power

Power

Fluid Subcooling
Differential Pressure

Rod Position

Saturation Pressure
Saturation Pressure
Saturation Pressure
Average Density

Average Pressure

Average Pressure

Average Temperature
Average Velocity

Ave Momentum Flux

Power

Pump Torque

Pump Torque

Mass Flow

Current

btu/lbm*R
kJ/kg*K
rad
m~2/s"2
m/s~2
m~3/s

C

GJ

MW

mg

kg
kPa/s

TR R E-Ke

nwunouon
7]

s

mv

mv

mv
lbm/ft"3
lbm/£ft"3
lbm/£ft”3
ka

MPa

K

K

kW/m
mg/m”~3

K

K

mm

kW

%

K

Pa

m

Pa

kPa

MPa
ng/m”3
MPa

kPa

m/s
mg/m*s~2

np
1bf*ft

lbm/hr

14

PIB FILE SPECIFICATION

Vo
Fuel Rod Average Power
Distance

Volume

Volume

Energy’

Mass Flux

Distance

Gas Flow Rate

Total Energy

Strain

Displacement

Current

Potential

Displacement

Reactor Power
Displacement

Time (s from year 1900)
Displacement

ROUHANI Liquid Velocity
ROUHANI Vapor Velocity
AYA Liquid Velocity
AYA Vapor Velocity
Volumetric Liquid Velocity
Volumetric Vapor Velocity
Local Heat Generation
Temperature Difference
Temperature Difference
Mass Flow Rate

Coolant Temperature
Cladding Temperature
Fluid Subcooling
Differential Pressure
Volumetric Flow Rate
Power

Energy

Neutron Detectors
Fission Product Detectors
Heat Flux

H. T. Coeff.

Metal Temperature
Average Density

Fluid Density

Mass Velocity

Inlet Subcooling
Length

Valve Position
Pressure

Differential Pressure
‘Volumetric Flow

Boron Concentration
Reactor Power
Rotations

G's/Radian

Radians

G's

Moments

Moments

Absolute Pressure
Differential Pressure
Rotation Speed

Event '
Pressure

Differential Pressure

J/kg
lb/hr*ft~2
mil
gm*moles/s
J
microm/m
in

log[A]

v

m
GW
cm

s

in
m/s
m/s
m/s
m/s
m/s
m/s
kW/ft
K

C
lbm/s
F
F

'F

in

1l/s

kW/m

MW*hr

nano amps
counts

btu/s*ft~2

btu/s*ft "2*F
F

mg/m”*3

mg/m”~3
lbm/hr*ft~2

btu/lbm

ft

\'

Pa

mmwg

m*3/hr

ppm

1

rad

lbf*in

N*m

kg/m*s”2
kg/m*s"2
m/s

bar
bar

15

PIB FILE SPECIFICATION

"Eng. Uni
~-..5Code

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

384
385
386
387
388
389

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
420
421
422
423
424
425
426
427
428
429

390

Time

Mass Flow

Differential Pressure
EDQ

IQF

Fuel Plenum Temperature
Fuel Temperature

Power .)

Neutron Flux

Power

Tank Level

Neutron Detector

Fuel Axial Strain
Cladding Axial Strain
Rod Internal Pressure
Fuel Centerline Temperature
Cladding Circ Strain
Gap Conductance
Cladding Surface Temp
Mass Flow Rate

Vol Nuc Heat Power
Differential Pressure
Pressure

Flow Rate

Heat Flux

Concentration
Concentration
Conductivity
Oxidation~Reduction-Pot
Alkalinity (as CaCO03)
Calculated Diff Pressure
Volumetric Flow Rate
Outlet Temperature

Mass Flow

Pressure

Pressure

Frequency

Percent

Distance

Heat

Enthalpy Flow

Distance

Pressure

Pressure

Mass Flow

Density

Outlet Temperature

Mass Flux

Distance

Mass

Outlet Temperature
Pressure

Voltage

Intercom I/0 Time
Void Fraction - Cond.Probe
Average Density

Beam Density
Densitometer Output
Mass Flow Rate into Tank
Average Mass Flow Rate
Diff. Pressure-Liquid Level
Heat Transfer Rate
Fluid Mass in Component
Drag Disk Output

GW

10X13 n/cm”~2*s
kw/ft

1 .
W/cm

%

%

psia

(o4

%
Btu/hr*ft~2*F
C

mlbm/hr
W/m~3
m-h2o
kg/cm”2
kg/hr
W/m~2
mg/kg

ppm
mu*mno/cm
mv

ng/kg

in h2o
gpm

K

kg/s
MPa
MPa

Hz

$

um

Nm

kW

m

KPa
KPa
kg/s
kg/m*3
channel
kg/s*m"2
mm

kg

uv

Pa
kg/cm”2
sec

%
kg/m*3
kg/m”3
v

kg/s
kg/s
KPa
MW

kg

v

16

PIB FILE SPECIFICATION

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

ump Spee

Vibration Amplitude (rms)
Pitot Tube Output

Valve Pos. Control Signal
Pitot Tube Location

Heated Thermocouple Output
HTC Probe Output

Wall Temperature Output
Pitot Tube DP

Pitot Tube Location

Int. Catch Tank Disc. Flow
Volumetric Flow Rate

Limit Switch Position
Unknown

Volumetric Flow (ACFM)
Unknown

~ Unknown

Unknown
Unknown
Unknown
Unknown

z
micro m
v

%

mm

K

uv

v
kg/m*s~2
mm

kg

scfm

ft~3/min

17

PIB FILE SPECIFICATION

1. (brhprossion

The PIB data is compressed on an individual channel basis, as opposed to full file compression. This approach
provides an efficient method of data retrieval, permitting direct access to the channel data and eliminating the
need to uncompress the entire file prior to extracting the data for an individual channel. The compression
method used is defined by the compression mode or cmpMode entry of the channel header record. Currently,
three compression modes are available as indicated in Table 4.

Table 4. Channel Compression Modes

“Conipre&sion_‘ COT D€3$Cf‘1Ptlon
o O o No compr‘es>S1.obn‘used
1 Flat data channel. Single value written to file.
2 Double precision run length encoded compression.

Typically, compression is turned off for a channel (cmpMode 0) if the achievable compressmn fa]ls below 5%.
This arbitrary threshold balances the potential savings in storage requirements against the overhead associated
with uncompressing the data.

If the data channel does not vary over the entire range of time, a compression mode of cmpMode=1 is used. A
single va]ue is then stored in the channel data block to represent the entire range of data.

The double precision run length encoding compression ‘method is typ1cally used if the achievable compression
éxceeds 5%. Although it is a very simple algorithm, s1gmﬁcant compression is achievable with very little impact
on performance. In this method, each set of identical, consecutive values is replaced by two values; the first value
being the number of values replaced and the second being the actual value. Regions that are not compressed are
preceded by a negative value that indicates the length of the uncompressed region.

Table 5 illustrates application of the algorithm to a set of raw values. The initial two values 518.3 and 518.4 are
replaced by the set of values -2.0, 518.4 and 518.4. The -2.0 value indicates that the next two values are not
compressed. This is followed by the value 518.5 repeated twelve times which is replaced by the pair 12.0, 518.5.
Similarly, the next four values have no repeats and are preceded by a value of 4.0, while the last eight values
repeat and are replaced by the pair 8.0, 518.9.

18

PIB FILE SPECIFICATION

Table 5. Example of Run Length Compression

" Raw Data | Compressed
518.3 -2.0
518.4 518.3
518.5 518.4
518.5 12.0
518.5 518.5
518.5 -4.0
518.5 518.6
518.5 518.9
518.5 518.6
518.5 518.8:
518.5 8.0
518.5 518.9
518.5
518.5
518.6
518.9
518.6
518.8
518.9
518.9
518.9
518.9
518.9
518.9
518.9
518.9

,

The following two routines can be used to compress and uncompress the data, respectively.

Source Listing 6. Compression Routines

/* define a temporary storage array used for compression */
#define DBUFSIZE 60000
static double flbuf[DBUFSIZE];

/* Function: cmpres

* Purpose: compress an array of double precision numbers
* Arguments:

* data on entry contains raw channel data

* on exit contains compressed channel data

* size on entry contains length of raw channel data
* on exit contains length of compressed channel data
* Returns:)

* compression mode

* 0 = no compression

* 1 = flat channel

* 2 = run length compression

*/
int cmpres(double **data, int *size)
{

int i,3;

int ¢m;

int reps,difs,dpos:;

if(*size > DBUFSIZE) {
fprintf (stderr, "Channel leng§h, %d, exceeds DBUFSIZE", *size);

19

PIB FILE SPECIFICATION

exit (-1);

}

cm

j=

dpos
reps
difs

0;

for(i=1; i<*size; i++) {
if(data[0] [i] == datal0][i-1])
if(difs) {

flbuf[dpos] = (double) (-1*difs):

}

}

difs = 0;
dpos = -1;

reps++;
} else {
if(reps) {

}

reps++;
flbuf [j++]
flbuf [j++)
reps = 0;
else {
if (dpos == -1) {

dpos = j;

j++;
}
flbuf [j++] = data[0][i-1];
difs++;

(double) reps;
dataf0)[i-1];

[]

}
if (reps) {

reps++;
flbuf (j++] = (double)reps;
fibuf[j++] = data[0][i-1]:;

else if(difs) {
flbuf[j++] = data[0][i-1];
difs++;

flbuf [dpos] = (double) (-1*difs);

else {

flbuf [j++]
flbuf [j++]

1.0;
data[0][i-1];

}

if(j >= 0.95* (*size)) {
cm
else if (reps == *size) {
*size = 1;

cm
else ({
cm
*size = j;

for(i=0; i<*size; i++) {
data[0] (i] = flbuf(i]:

}

}

}

= 0;

= 1;

=2;

return cm;

20

PIB FILE SPECIFICATION

Function: uncmpres
Purpose: uncompress an array of double precision numbers
Arguments:
data on entry contains compressed channel data
on exit contains raw channel data
dblbuf pointer to temporary array space
csize on entry contains length of compressed channel data
fsize on entry contains length of raw channel data
cm on entry contains compression mode
0 no compression
1 flat channel
2 run length compression

* % %k % o % ok F ok * * * *

Returns:
0

*

*/
int uncmpres (double *data, double *dblbuf, int* csize, int fsize, int cm)
{

-int i,3,k; v

int difs, reps:

switch {(cm) {
case 0:
break; /* no compression */
case 1l:
for{(i = 0; i<fsize; i++) {
data[i] = datal[0];
}
break; /* flat */
case 2:
k=41i=0;
while (i<*csize) {
if(datal[i] < 0.0) {
difs = (int) (-l*data[i] + 0.1);
i++; .
for(j = 0; j<difs; j++) {
dblbuf [k++] = datal[i++];
}
} else if(dataf{i] > 0.0) {
reps = (int) (dataf{i] + 0.1);
for(j = 0; j<reps; Jj++) {
dblbuf [k++] = datali+l];
p oo
i+=2;
} else {
return 1; /* Error uncompressing data cm=2 */
}
}
if(k !t= fsize) {
return 2; /* Error uncompressing data cm=2 */
} .
for(i = 0; i<fsize; i++) {
data([i] = dblbuf[i];
} C
break; /* run length compression */
}

return 0;

.21

