
[FSCIEeTEC, IeCc

PIB File Specification

K. R. Jones

April 1997

Scientech Inc.
11140 Rockville Pike - Suite 500

Rockville, MD 20852
Phone 301/468-6425 • Fax 301/468-0883

OOUllIIBI.llf

PIB File Specification

K. R. Jones

April 1997

Scientech Inc.
11140 Rockville Pike· Suite 500

Rockville, MD 20852
Phone 301/468-6425 • Fax 301/468-0883

PIS FILE SPECIFICATION

Table of Contents

1. OVERVIEW

2. FILE STRUCTURE

A. FILE HEADER BLOCK
B. CHANNEL HEADER BLOCK

C. CHANNEL DATA BLOCK

3. ENGINEERING UNIT CODES

1'

3

4
6
7

10

184. COMPRESSION

PIB FILE SPECIFICATION

Table of Contents

1. OVERVIEW l'

2. FILE STRUCTURE 3

A. FILE HEADER BLOCK 4
B. CHANNEL HEADER BLOCK 6
C. CHANNEL DATA BLOCK 7

3. ENGINEERING UNIT CODES 10

4. COMPRESSION 18

PIB FILE SPECIFICATION

1. Overview
The Platform-Independent Binary or PIB file format was developed to provide a lightweight, machine-
independent format for the plotting and analysis of data from the NRC Reactor Safety Data Dank. The NRC
Data Bank was originally developed at the Idaho National Engineering Laboratory, to collect, store, and make
available, data from many domestic and foreign light water reactor safety research programs. The NRC Data
Bank is currently being modified and relocated to the NRC offices in Rockville, MD. The XMGR5 plotting and
data analysis software is used to read this experimental data as well as calculated data generated from several
reactor safety analysis programs including RELAP, MELCOR and FRAPCON.

The data files maintained by the NRC Data Bank consist of large time-dependent data files containing the results
of experimental calculations. A single experiment can generate several hundred megabytes of data. ASCII files
provide a portable data format for exchange of data between different machines, however, it is generally very
inefficient and time consuming to store and extract data from large ASCII files. Native binary files can be used to
store and retrieve data in a very efficient manner using direct access pointers, however, they cannot be read
directly by other machine types. The PIB format uses the External Data Representation (XDR) protocol to
provide a portable, machine-independent format that can be accessed with an efficiency approaching that of the
native binary format.

Two utility programs, Convert and Merge were developed to provide a means of generating data files from the
NRC Data Bank for XMGR5. Figure 1 illustrates the usage these programs as well as the role of the NRC Data
Bank in the creation of PIB data files. Data is obtained from experimental facilities on magnetic tape. Each
facility sends data in its own format, and a single experiment may encompass several tapes. These tapes are
processed by the NRC Data bank and stored in a common binary format. Data stored in the NRC Data Bank
can be dumped into an ASCII file using a standard format known as TWX. The Convert utility reads a single
TWX file and converts it to a binary file that can be read by XMGR5. This BIN format was initially used to
provide experimental data to XMGR5. Although it is possible for XMGR5 to read from several files
simultaneously, it became dear that it would be desirable to merge all the data files from a single experiment into
a single file that could then be read by XMGR5. Due to the wide range of Unix platforms used to analyze the
data, there is also a benefit to switching to an efficient platform independent format. The Merge program can

PIli FILE SPECIFICATION

1. Overview
The Platform-Independent Binary or. pm file format was developed to provide a lightweight, machine
independent format for the plotting and analysis of data from the NRC Reactor Safety Data Dank. The NRC
Data Bank was originally developed at the Idaho National Engineering Laboratory, to collect, store, and make
available, data from many domestic and foreign light water reactor safety research programs. The NRC Data
Bank is currently being modified and relocated to the NRC offices in Rockville, MD. The XMGRS plotting and
data analysis software is used to read this experimental data as well as calculated data generated from several
reactor safety analysis programs including RELAP, MELCOR and FRAPCON.

The data files maintained by the NRC Data Bank consist of large time-dependent data files containing the results
of experimental calculations. A single experiment can generate several hundred megabytes of data. ASCII files
provide a ponable data format for exchange of data between differeIlt machines, however, it is generally very
inefficient and time conswning to store and extract data from large ASCII files. Native binary files can be used to
store and retrieve data in a very efficient manner using direct access pointers, however, they cannot be read
directly by other machine types. The pm format uses the External Data Representation (XDR) protocol to
provide a ponable, machine-independent format that can be accessed with an efficiency approaching that of the
native binary format.

Two utility programs, Convert and Merge were developed to provide a means of generating data files from the
NRC Data Bank for XMGRS. Figure 1 illustrates the usage these programs as well as the role of the NRC Data
Bank in the creation of pm data files. Data is obtained from experimental facilities on magnetic tape. Each
facility sends data in its own format, and a. single experiment may encompass several tapes. These tapes are
processed by the NRC Databank and stored in a common binary format. Data stored in the NRC Data Bank
can be dumped into an ASCII file using a standard format known as TWX .. The Convert utility reads a single
TWX file and converts it to a binary fIle that can be read by XMGRS. This BIN format was initially used to
provide experimental data to XMGRS. Although it is possible for XMGRS to read from several files
simultaneously, it became clear that it would be desirable to merge all the data files from a single experiment into
a single file that could then be read by XMGRS. Due to the wide range of Unix platforms used to analyze the
data, there is also a benefIt to switching to an efficient platform independent format. The Merge program can

Figure 1. Convert and Merge Utilities

Experimental Data from Facility

~
~CDataBank

~rc:hive

.

r l ~onvert r I Merge

r lJ r lJ pm

I TWX j ~IN U -
- I

~Cll 1

P18 FILE SPECIFICATION

read multiple BIN or PIB files and merge them into a single PIB file. In addition, the Merge program is used to
verify data integrity, perform statistical analyses, apply digital filters, compress the channel data, and perform basic
data management functions. Much of the example code shown in this report was derived from the Merge
program.

This document is meant to serve as a guide for creating PIB files. Several C-language code segments are provided
to illustrate programming approaches. As such, a general knowledge of C-language programming is assumed.

2

Pia FILE SPECIFICATION

read multiple BIN or PIB files and merge them into a single PIB file. In addition, the Merge program is used to
verify data integrity, perform statistical analyses, apply digital filters, compress the channel data, and perform basic
data management functions. Much of the example code shown in this report was derived from the Merge
program.

This document is meant to serve as a guide for creating PIB files. SeveralClanguage code segments are provided
to illustrate programming approaches. As such, a general knowledge of Clanguage programming is assumed.

2

PIB FILE SPECIFICATION

1. File Structure
The PIB file structure is composed of three distinct sections, a file header block, a channel header block, and the
channel data block. The file header block is used to identify the file type and it contains the information
necessary to read the channel header block. The channel header block contains one channel header record for
each channel in the file. The channel header records contain the information required to read the channel data
block. A data channel can represent either a set of time values or a set of dependent data values. Each dependent
data channel includes a reference to a time data channel that provides the independent data values. Many
dependent data channels generally reference the same time channel.

In order to achieve platform independence, all data written to or retrieved from the PIB file is accessed by means
of the External Data Representation (XDR) routines. In the UNIX operating system, the interface for the XDR
primitives are defined in the include file < rpc/xdr.h >, which is automatically included by < rpc/rpc.h >. Refer
to a programmers guide to remote procedure calls (RPC) for a description of the XDR protocol. One such
reference is Power Programming with RPC by John Bloomer, O'Reilly & Associates, 1992.

Figure 2. PIB File Creation Process

1. Create and fill a channel header Write the File Header Block

3. Allocate an array of channel 1
header structures. Fill the array Write the Channel Header

with available channel WthC h
information

F or Each Channel
•Prepare channel data, .Save the current file pointer, .Update the Channel
compress data write the Data Block Header Record

8. Determine the pointers to the
independent data, Update the
channel header records

T 110. Rewrite the Channel
SRewind to beginning of]Header Block, reposition

Channel Header Block to EOF and dose file.

The process of creating a PIB file is illustrated in Figure 2. As will be discussed further in subsequent sections, the
PIB file is written in two passes. During the first pass, the file header block, the channel header block, and the
channel data block are written to the file. However, the file pointer information required for the channel header

3

PIli PILE SPECIFICATION

1. File Structure
The pm file structure is composed of three distinct sections, a file header block, a channel header block, and the
channel data block. The file header block is used to identify the file type and it contains the information
necessary to read the channel header block. The channel header block contains one channel header record for
each channel in the file. The channel header records contain the information required to read the channel data
block. A data channel can represent either a set of time values or a set of dependent data values. Each dependent
data channel includes a reference to a time data channel that provides the independent data values. Many
dependent data channels generally reference the same time channel.

In order to achieve platform independence, all data written to or retrieved from the pm file is accessed by means
of the External Data Representation (XDR) routines. In the UNIX operating system, the interface for the XDR
primitives are defined in the include file <rpc/xdr.h> , which is automatically included by < rpc/rpc.h > . Refer
to a programmers guide to remote procedure calls (RPC) for a description of the XDR protocol. One such
reference is Power ProgrammingwithRPC by John Bloomer, O'Reilly & Associates, 1992.

Figure 2. pm File Creation Process

1. Create and fill a channel header p. Write the File Header Block
structure

I
~. Allocate an array of channel

header structures. Fill the array . Write the Channel Header

with available channel Block

information

For Each Channel

:So Prepare channel data, ~. Save the current file pointer, 17. Update the Channel
compress data write the Data Block Header Record

8. Determine the pointers to the
independent data, Update the
channel header records

10. Rewrite the Channel
9. Rewind to beginning of Header Block, reposition

Channel Header Block to EOF and dose rue.

The process of creating a pm file is illustrated in Figure 2. As will be discussed further in subsequent sections, the
pm file is written in two passes. During the first pass, the file header block, the channel header block, and the
channel data block are written to the file. However, the file pointer information required for the channel header

3

PIS FILE SPECIFICATION

block is not determined until the channel data block is written to file. For this reason, a second pass is required to
update the channel header block.

The first two process steps involve creating the file header block structure and writing it to an XDR stream.
These steps are discussed in Section 2.A, File Header Block. Steps 3, 4, 9 and 10, which involve writing the
channel header block, are covered in Section 2.B. Steps 5, 6 and 7 involve writing the channel data block and
updating the channel header records. These steps are discussed in Section 2.C.

A. File Header Block

The PIB file begins with a header block that is used to identify the file type and to provide the information
necessary to read the subsequent channel header records. It may also include an optional list of filenames that
were used to create the PIB file along with an integer value indicating their file type. Currently, integer values of
1000 and 2000 are reserved to identify binary and PIB file types respectively. This file list can prove useful in
tracking down data sources, especially if several files are combined using the merge utility. Table 1 illustrates the
layout of the file header block.

Table 1. File Header Block Layout

XDR
Primitive

xdr string
xdr int
xdr-int
xdr int
xdr string
xdrstring

xdr string
xdr int
xdr-int

xdr int
xdr string

Description

File type string
Header size (currently not used)
Number of data channels
Number of filenames (0 to 80)
Name of 1st file. (optional)
Name of 2nd file. (optional)

Field Contents

"NRCDB V2.0, K. R. Jones"
0
numOfChnls
numOfFiles
fromfile [0]
fromfile [1]

fromfile[numOfFiles]
fromfileType [0]
fromfileType [1]

fromfileType[numOfFiles]
filename

Name
Type
Type

of
of
of

last file.
1st file.
2nd file.

(optional)
(optional)
(optional)

Type of last file. (optional)
Name of file being created

The following xdrfileHead routine can be used to read or write the file header block to an existing XDR stream.
The header data is retrieved from or placed into a pibHeader structure as defined below:

Source Listing 1. File Header XDR Access Routine

struct pibHeader {
char fileTyp[80];
int size;
int numOfChnls;
int numOfFiles;
char fromfile[80] [256]
int fromfiletype[80];
char tofile[256];

1*
1*
1*
1*

1*
1*

string indicating file type */
not used enter 0 */
the number of data channels contained in this file */
the number of data files in the file list */
a list of up to 80 filenames */
corresponding file types */
the name of the file being created */

4

Pia FILl! SPI!CIFICATION

block is not detennmed until the channel data block is written to file. For this reason, a second pass is required to
update the channel header block. . .

The first two process steps involve creating the file header block structure and writing it to an XDR stream.
These steps are discussed in Section 2.A, File Header Block. Steps 3, 4, 9 and 10, which involve writing the
channel header block, are covered in Section 2.B. Steps 5, 6 and 7 involve writing the channel data block and
updating the channel header records. These steps are discussed in Section 2.C.

A. File Header Block

The pm file begins with a header block that is used to identify the file type and to provide the information
necessary to read the subsequent channel header records. It may also include an optional list of filenames that
were used to create the pm file along with an integer value indicating their file type. Currently, integer values of
1000 and 2000 are reserved to identify binary and pm file types respectively. This file list can prove useful in
tracking down data sources, especially if several files are combined using the merge utility. Table 1 illustrates the
layout of the file header block.

Table 1. File Header Block Layout

XDR
Primitive

xdr string
xdr-int
xdr-int
xdr-int
xdr-string
xdr::::string

xdr string
xdr-int
xdr-int

xdr int
xdr-string

Description

File type string
Header size (currently not used)
Number of data channels
Number of filenames (0 to 80)
Name of 1st file. (optional)
Name of 2nd file. (optional)
...
Name of last file. (optional)
Type of 1st file. (optional)
Type of 2nd file. (optional)
...
Type of last file. (optional)
Name of file being created

Field.Contents

"NRCDB V2.0, K. R. Jones"
o
numOfChnls
numOfFiles
fromfile [0]
fromfile[l]

fromfile[numOfFiles]
fromfileType [0]
fromfileType [1]

fromfileType[numOfFiles]
filename

The following xdr _fileHead routine can be used to read or write the file header block to an existing XDR stream.
The header data is retrieved from or placed into a pibHeader structure as defined below:

Source Listing 1. File Header XDR Access Routine

struct pibHeader {
char fileTyp[80]i /* string indicating file type */
int sizei /* not used enter.O */
int numOfChnlsi /* the number of data channels contained in this file */
int numOfFilesi /* the number of data files in the file list */
char fromfile[80] [256]i/* a list of up to 80 filenames */
int fromfiletype[80]i /* corresponding file types */
char tofile[256]i /* the name of the file being created */

} i

4

PIS FILE SPECIFICATION

bool t xdr fileHead(XDR *xdrs, struct pibHeader *hdr)

int i;
bool t rc;
u int slen;
char *cptr;

cptr = hdr->fileTyp;
slen = 80;
if(! (rc = xdr string(xdrs, &cptr, slen))) return rc;
if(! (rc = xdrint(xdrs, &hdr->size))) return rc;
if(! (rc = xdr int(xdrs, &hdr->numOfChnls))) return rc;
if(! (rc = xdr int(xdrs, &hdr->numOfFiles))) return rc;
for(i=0; i<hdr->numOfFiles; i++)

cptr = &hdr->fromfile(i] [0];
slen = 256;
if(! (rc = xdrstring(xdrs, &cptr, slen))) return rc;

for(i=0; i<hdr->numOfFiles; i++)
if(!(rc = xdr int(xdrs, &hdr->fromfiletype[i]))) return rc;

cptr = &hdr->tofile(0];
slen = 256;
if(! (rc = xdrstring(xdrs, &cptr, slen))) return rc;*
return rc;

The following code segment demonstrates how to create the XDR stream and write the header using the
xdr•fileHead routine. It assumes that the filename and numChan variables, corresponding to the name of the file
to be created, and the number of data channels, respectively, have been previously defined.

Source Listing 2. Example of xdr fileHead Usage
/* declarations */
XDR xdrs;
FILE fileHndl;
struct pibHeader hdr;
int rc;

/* copy data to the header structure */
strcpy(hdr->filetype, "NRCDB V2.0, K. R. Jones");
hdr->size = 0;
hdr->numOfChnls = numChan;
hdr->numOfFiles = 0;
strcpy(hdr->toFile, filename);

/* open the output file */
fileHndl=fopen(filename,"w");
if (fileHndl == NULL) I

fprintf(stderr, "Unable to open file %s", filename);
return;

/* create the XDR object */
xdrstdiocreate(&xdrs, fileHndl, XDRENCODE);

/* write the header structure to the XDR stream */
rc = xdr fileHead(&xdrs, &hdr);
if(!rc) T

fprintf(stderr,"Error writting PIB file...");
return;

5

PIli FILE SPECIFICATION

bool t xdr_fileHead(XDR *xdrs, struct pibHeader *hdr)
{ -

int i;
boo 1 t rc;
u int slen;
char *cptr;

cptr = hdr->fileTyp;
slen = 80;
if(! (rc xdr string(xdrs, &cptr, slen») return rc;
if(! (rc = xdr-int(xdrs, &hdr->size») return rc;
if(! (rc = xdr-int(xdrs, &hdr->numOfChnls») return rc;
if(! (rc = xdr-int(xdrs, &hdr->numOfFiles») return rc;
for(i=O; i<hdr->numOfFiles; i++) {

cptr = &hdr->fromfile[i] [0];
slen = 256;
if(! (rc = xdr_string(xdrs, &cptr, slen») return rc;

}
for(i=O; i<hdr->numOfFiles; i++) {

if(! (rc = xdr_int(xdrs, &hdr->fromfiletype[i]») return rc;
}

cptr = &hdr->tofile[O];
slen = 256;
if(! (rc = xdr_string(xdrs, &cptr, slen») return rc;
return rc;

The following code segment demonstrates how to create the XDR stream and write the header using the
xdr.JileHead routine. It assumes that the filename and numChan variables, corresponding to the name of the file
to be created, and the number of data channels, respectively, have been previously defined.

Source Listing 2. Example of xdr _fileHead Usage

/* declarations */
XDR xdrs;
FILE fileHndl;
struct pibHeader hdr;
int rc;

/* copy data to the header structure */
strcpy(hdr->filetype, "NRCDB V2.0, K. R. Jones");
hdr->size = 0;
hdr->numOfChnls = numChan;
hdr->numOfFiles = 0;
strcpy(hdr->toFile, filename);

/* open the output file */
fileHndl=fopen(filename,"w");
if (fileHndl == NULL) {

fprintf(stderr, "Unable to open file %s", filename);
return;

} ;

/* create the XDR object */
xdrstdio_create(&xdrs, fileHndl, XDR_ENCODE);

/* write the header structure to the XDR stream */
rc = xdr fileHead(&xdrs, &hdr);
if (!rc) T

fprintf (stderr, "Error writting PIB file ... ");
return;

5

PI8 FILE SPECIFICATION

B. Channel Header Block

The channel header block immediately follows the file header block. The channel header block contains one
channel header record for each data channel. The layout of the channel header record is illustrated in Table 2
along with a description of each field. The channel name is stored in ASCII characters and must be padded to
with NULL characters to a length of 24 bytes. This ensures a fixed size for the channel header record, allowing
the channel header block to be read very efficiently. Each channel is assigned a unique zero based index to
identify that is used to identify the channel.

Table 2. Channel Header Record Layout

XDR
Primitive

xdrbytes
xdr int
xdr-int
xdr-int
xdr-int

xdr int
xdr int
xdr-int

xdr int

xdr-int

xdrint

xdr int
xdr-int
xdr-int
xdr int
xdr-int
xdr-int

Field
Contents

name[24]
Index
size
totalSize
timeIndex

ptrToData
ptrToTime
eucode

recNo

orgIndex

orgFile

status
cmpMode
cmpSize
sparel
spare2
spare3

Description

The channel name. Must be NULL padded to 24 bytes.
A zero based index used to identify the channel.
Number of data points for the channel.
The length of the data in bytes. (8 * size)
The Index value for the channel containing the time
values.
Note: This value should be zero for time channels.
A pointer to the dependent data.
A pointer to the independent (time channel) data.
An integer value indicating the engineering unit code
for this channel. See Section 2, Engineering Unit
Codes.
Reserved, enter 0.
The original sequence number used in the source file.
(optional)

A zero based index indicating the source file from the
file list of the file header block. (optional)
Reserved, enter 0.
Compression mode. See Section 3, Compression.
Size of compressed data array.
Reserved, enter 0.
Reserved, enter 0.
Reserved, enter 0.

The most difficult fields to populate are the pointers to the data and time data, ptrToData and ptrToTime,
respectively. These pointers are most easily determined using the xdrgetpos function prior to writing the
channel data. Unfortunately, these values are not known at the time the channel header block is written. For
this reason, the channel header block is written in two passes. During the first pass, write the file header block,
the channel header block and then the data block. As the data block is written, use the xdrgetpos function to
determine the file pointer prior to writing each data channel. After the data block has been written, rewind the
file to the start of the channel header block and rewrite the channel header block.

The following xdrchanHead routine can be used to read or write a single channel header record to an existing
XDR stream. The channel data is retrieved from or placed into a pibChnlRec structure as defined below:

6

PIli FILE SPECIFICATION

B. Channel Header Block

The channel header block immediately follows the file header block. The channel header block contains one
channel header record for each data channel. The layout of the channel header record is illustrated in Table 2
along with a description of each field. The channel name is stored in Ascn characters and must be padded to
with NULL characters to a length of 24 bytes. This ensures a fixed size for the channel header record, allowing
the channel header block to be read very efficiently .. Each channel is assigned a unique zero based index to
identify that ~ used to identify the channel.

XDR Field
Primitive Contents

xdr bytes name[24]
xdr -int Index -xdr int size -
xdr int totalSize
xdr int timeIndex -

xdr int ptrToData -xdr - int ptrToTime
xdr int eucode -

xdr int recNo -
xdr - int orgIndex

xdr - int orgFile

xdr int status -
xdr int cmpMode -
xdr - int cmpSize
xdr - int sparel
xdr - int spare2
xdr int spare3

Table 2. Channel Header Record Layout

Description

The channel name. Must be NULL padded to 24 bytes.
A zero based index used to identify the channel.
Number of data points for the channel.
The length of the data in bytes. (8 * size)
The Index value for the channel containing the time
values. .
Note: This value should be zero for time channels.
A pointer to the dependent data.
A pointer to the independent (time channel) data.
An integer value indicating the engineering unit code
for this channel. See Section 2, Engineering Unit
Codes.
Reserved, enter O.
The original sequence number used in the source file.
(optional)

A zero based index indicating the source file from the
file list of the file header block. (optional)
Reserved, enter o.
Compression mode. See Section 3, Compression.
Size of compressed data array.
Reserved, enter O.
Reserved, enter O.
Reserved, enter O.

The most difficult fields to populate are the pointers to the data and time data, ptrToData and ptrToTime,
respectively. These pointers are most easily determined using the xdr Jetpos function prior to writing the
channel data. Unfortunately, these values are not known at the time the channel header block is written. For
this reason, the channel header block is written in two passes. During the first pass, write the file header block,
the channel header block and then the data block. As the data block is written, use the xdr Jetpos function to
determine the file pointer prior to writing each data channel. After the data block has been written, rewind the
file to the start of the channel header block and rewrite the channel header block.

The following xdr _ chanHead routine can be used to read or write a single channel header record to an existing
XDR stream. The channel data is retrieved from or placed into a pibChnlRec structure as defined below:

6

PIS FILE SPECIFICATION

Source Listing 3. Channel Header XDR Access Routine

struct pibChnlRec
char name[24];
int Index;
int size;
int totalSize;
int timeIndex;
int ptrToData;
int ptrToTime;
int eucode;
int recNo;
int orgIndex;
int orgFile;
int status;
int cmpMode;
int cmpSize;
int sparel;
int spare2;
int spare3;

boolt xdrchanHead(XDR *xdrs, struct pibChnlRec *Chan)

bool t rc;
u int slen = 24;
char *cptr;

cptr = Chan->name;
rc = (xdr bytes(xdrs, &cptr, &slen, slen)

&& xdrint(xdrs, &Chan->Index)
&& xdrint(xdrs, &Chan->size)
&& xdrint(xdrs, &Chan->totalSize)
&& xdrint(xdrs, &Chan->timeIndex)
&& xdrint(xdrs, &Chan->ptrToData)
&& xdrint(xdrs, &Chan->ptr.ToTime)
&& xdrint(xdrs, &Chan->eucode)
&& xdr int(xdrs, &Chan->recNo)
&& xdr int(xdrs, &Chan->orgIndex)
&& xdr int(xdrs, &Chan->orgFile)
&& xdr int(xdrs, &Chan->status)
&& xdr int(xdrs, &Chan->cmpMode)
&& xdr int(xdrs, &Chan->cmpSize)
&& xdr int(xdrs, &Chan->sparel)
&& xdr int(xdrs, &Chan->spare2)
&& xdrint(xdrs, &Chan->spare3));

return rc;

Typically, an array of pibChnlRec structures will be allocated and filled with the channel information, then the
xdrchanHead routine will be called once.for each element of the array.

C. Channel Data Block

The channel data block follows immediately after the channel header block. It consists entirely of arrays of
double precision floating point data output with the xdr routines. The channel data is written using the xdrkarray
primitive with a double precision element type. The following code segment illustrates writing the channel data
block to an open XDR stream:

7

Pia FILl! SPI!CIFICATION

Source Listing 3. Channel Header XDR Access Routine
struct pibChnlRec

char name[24];
int Index;
int size;
int totalSize;
int time Index;
int ptrToData;
int ptrToTime;
int eucode;
int recNo;
int orgIndex;
int orgFile;
int status;
int cmpMode;
int cmpSize;
int sparel;
int spare2;
int spare3;

bool t xdr_chanHead(XDR *xdrs, struct pibChnlRec *Chan)
{ -

bool t rc;
u int slen' = 24;
char *cptr;

cptr = Chan->name;
rc = (xdr bytes (xdrs, &cptr, &slen, slen)

&& xdr int(xdrs, &Chan->Index)
&& xdr-int(xdrs, &Chan->size)
&& xdr-int(xdrs, &Chan->totalSize)
&& xdr-int(xdrs, &Chan->timeIndex)
&& xdr-int(xdrs, &Chan->ptrToData)
&& xdr-int(xdrs, &Chan->ptrToTime)
&& xdr-int(xdrs, &Chan->eucode)
&& xdr-int(xdrs, &Chan->recNo)
&& xdr-int(xdrs, &Chan->orgIndex)
&& xdr-int(xdrs, &Chan->orgFile)
&& xdr-int(xdrs, &Chan->status)
&& xdr-int(xdrs, &Chan->cmpMode)
&& xdr-int(xdrs, &Chan->cmpSize)
&& xdr-int(xdrs, &Chan->sparel)
&& xdr-int(xdrs, &Chan->spare2)
&& xdr=int(xdrs, &Chan->spare3»;

return rc;

Typically, an array of pibChnlRec structures will be allocated and filled with·the channel infonnation, then the
xdr _ chanHead routine will be called once.for each element of the array.

C. Channel Data Block

The channel data block follows immediately after the channel header block. It consists entirely of arrays of
double precision floating point data output with the xdr routines. The channel data is written using the xdr _array
primitive with a double precision element type. The following code segment illustrates writing the channel data
block to an open XDR stream:

7

PIS FILE SPECIFICATION

Source Listing 4. Channel Data Block Write

/* declarations */
u int filePtr;
bool t rc;
double *dptr;
u int csize;
int i;
int totalNumChan = [number of channels];

for(i=O; i<totalNumChan; i++) {
/* get the current file position

note: save this to the channel header record array so you can write the
file pointers in the second pass*/

filePtr = xdrgetpos(&xdrs);

/* set up dptr and csize variables */
dptr = [pointer to data];
csize = [length of data array];

/* compress the data */
cmpMode =cmpres(dptr, &csize);

/* output channel data */
rc = xdr-array(&xdrs, /* XDR stream */

(char **)&dptr, /* pointer to the data to be written */
(u int *)&csize,/* number of elements */
csize, /* maximum number of elements */

,sizeof(double), /* element size */
xdrdouble); /* primative used to encode element */

if(!rc) I
fprintf(stderr,"Error writting output file. exiting");
exit(-1);

/* now save the compression mode and data pointer to the
channel header record array */

chanHeader[i].ptrToData = filePtr;
chanHeader[i].cmpMode = cmpMode;

After the data block has been written, and all of the channel data pointers determined, the pointers to the time
data can be determined. This is accomplished by setting the time data pointer value, ptrTotime equal to the data
pointer value, ptrToData for the corresponding time channel. For time channels, ptrToTime should be set equal
to its own data pointer. This process is illustrated in the following code segment:

a

PI .. FIL~ SPECIFICATION

Source Listing 4. Channel Data Block Write
/* declarations */
u int filePtri
bool t rCi
double *dptri
u int csizei
int ii
int totalNumChan = [number of channels]i

for(i=Oi i<totalNumChani i++)
/* get the current file position

note: save this to the channel header record array so you can write the
file pointers in the second pass

*/
filePtr xdr_getpos(&xdrs);

/* set up dptr and csize variables */
dptr = [pointer to data];
csize = [length of data array];

/* compress the data */
crnpMode =cmpres(dptr, &csize);

/* output channel data */
rc xdr array(&xdrs, /* XDR stream */

- (char **)&dptr, /* pointer to the data to be written */
(u int *)&csize,/* number of elements */
csIze, /* maximum number of elements */

.sizeof(double) , /* element size */
xdr_double); /* primative used to encode element */

if (! rc) (
fprintf(stder~,"Error writting output file. exiting");
exit (-1) ;

/* now save the compression mode and data pointer to the
channel header record array */

chanHeader[ij .ptrToData = filePtr;
chanHeader[ij .cmpMode = cmpMode;

After the data block has been written, and all of the channel data pointers detennined, the pointers to the time
data can be detennined. This is accomplished by setting the time data pointer value, ptrTotime equal to the data
pointer value, ptrT oData for the corresponding time channel. For time channels, ptrT 0 Time should be set . equal
to its own data pointer. This process is illustrated in the following code segment:

8

PIB FILE SPECIFICATION

Source Listing 5. Setting Time Pointers
/* set pointers to time values */
for(i-0; i<totalNumChan; i++)

chariHeader[i].ptrToTime = -1;
if(chanHeader[i].timeIndex == 0) 1

chanHeader[i].ptrToTime = chanHeader[i].ptrToData;
lelsef

chanHeader[i].ptrToTime = chanHeader(chanHeader[i].timeIndex].ptrToData;

if(chanHeader[i].ptrToTime < 0)
fprintf(stderr, "No time data found for channel:%s\n",

chanHeader[i].name);
exit(-1);

After the data block has been written, and the channel header record structures have been updated to include the
compression and file pointer information, the file is rewound to the start of the channel header block, and the
channel header block is overwritten.

9

PIli FILl! SPECIFICATION

Source Listing 5. Setting Time Pointers
/* set pointers to time values */
for(i~O; i<totalNumChan; i++) {

chanHeader[il .ptrToTime = -1;
if (chanHeader[il . time Index == 0) {

chanHeader[il.ptrToTime chanHeader[il.ptrToData;
}else{

chanHeader[il.ptrToTime = chanHeader[chanHeader[il.timeIndexl .ptrToData;
}
if(chanHeader[il.ptrToTime < 0)

fprintf(stderr, "No time data found for channel:%s\n",
chanHeader[il.name);

exit (-1);

After the data block has been written, and the channel header record structures have been updated to include the
compression and file pointer information, the file is rewound to the start of the channel. header block, and the
channel header block is overwritten.

9

PIB FILE SPECIFICATION

1. Engineering Unit Codes
Each data channel must have an engineering unit code (eucode) defined in its channel header record
corresponding to the physical units in which the data channel was calibrated. Table 3 contains a list of all
available engineering unit codes. The description and units columns shown in Table 3 are used to provide axis
labels in the plotting software. These codes were originally developed for the NRC Data Bank to provide a
common set of units to handle data from a wide range of domestic and foreign research programs.

In the event that none of the available unit codes are suitable for a given channel and an engineering unit code
must be added, contact the NRC Project Manager for the NRC Data Bank to reserve a unit code. This will
prevent conflicting use of a code value and ensure that the appropriate modifications are made to the plotting and
analysis software.

Table 3. Engineering Unit Codes

Eng. Unit
Code

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

De•cr:ption

Core Heater Temperature
Fluid Temperature
Pressure
Strain
Volumetric Flow
Fluid Velocity
Force
Length
Voltage
Material Temperature
Current
Specific Volume
Decibels
Pressure
Pressure
Differential Pressure
Density
Power
Heat Flux
H. T. Coeff.
Surface Temperature
Saturation Temperature
Enthalpy
Mass Flux
Mass Flow
Integrated Mass Flow
Momentum Flux
Fluid Velocity
Pump Speed
Elevation
Quality
Normalized Power
Mass Flux
Temperature
Time After Rupture
Time
Total Energy
Reactivity
Stored Energy
Energy
Mass Balance
Power

Units

F
F
psig

gpm
ft/s
lb
in

F
Amp
ft^3/lbm
dB
psi
psia
psid
lbm/ft"3
kW
Btu/s*ft^2
Btu/s*ft^2*F
F
F
Btu/lbm
lbm/s*ft^2
lbm/s
lbm
lbm/ft*s^2
ft/s
rpm
ft

l0e6
F
5

Btu

Btu

lbm
MW

lbm/hr*ft^2

10

Pia FILE SPECIFICATION

1. Engineering Unit Codes
Each data channel must have an engineering unit code (eucode) defined in its channel header record
corresponding to the physical. units in which the data channel was calibrated. Table 3 contains a list of all
available engineering unit codes. The description and units columns shown in Table 3 are used to provide axis
labels in the plotting software. These codes were originally developed for the NRC Data Bank to provide a
common set of units to handle data from a wide range of domestic and foreign research programs.

In the event that none of the available unit codes are suitable for a given channel and an engineering unit code
must be added, contact the NRC Project Manager for the NRC Data Bank to reserve a unit code. This will
prevent conflicting use of a code value and ensure that the appropriate modifications are made to the plotting and
analysis software.

Table 3. Engineering Unit Codes

tEn~c~:e:·it;: : 0'%";'; ·~~~?~t~¥;~;2~f~.~~~n\t·,f:
1 Core Heater Temperature
2 Fluid Temperature
3 Pressure
4 Strain
5 Volumetric Flow
6 Fluid Velocity
7 Force
8 Length
9 Voltage

10 Material Temperature
11 Current
12 Specific Volume
13 Decibels
14 Pressure
15 Pressure
16 Differential Pressure
17 Density
18 Power
19 Heat Flux
20 H. T. Coeff.
21 Surface Temperature
22 Saturation Temperature
23 Enthalpy
24 Mass Flux
25 Mass Flow
26 Integrated Mass Flow
27 Momentum Flux
28 Fluid Velocity
29 Pump Speed
30 Elevation
31 Quality
32 Normalized Power
33 Mass Flux
34 Temperature
35 Time After Rupture
36 Time
37 Total Energy
38 Reactivity
39 Stored Energy
40 Energy
41 Mass Balance
42 Power

10

F
psig

gpm
ft/s
lb
in

F
Amp
ft"3/lbm
dB
psi
psia
psid
lbm/ft"3
kW
Btu/s*ft"2
Btu/s*ft"2*F
F
F
Btu/lbm
lbm/s*ft"2
lbm/s
lbm
lbm/ft*s"2
ftls
rpm
ft

10e6 lbm/hr*ft"2
F
s
s
Btu
$
Btu
Btu
lbm
MW

PIS FILE SPECIFICATION

Eng. Unit
~Code

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107

Description'

Total Heat Removed
Period
Heat Transfer Rate
Mass
Saturation Pressure
Normalized Pump Torque
Volumetric Flow
Choking Index
Heat Transfer Mode
Time After Reflood
Thermal Conductivity
Internal Rod Temperature
Liquid Level
Percent
Frequency
Total Volume
Acceleration
Core Heater Temperature
Fluid Temperature
Pressure
Strain
Volumetric Flow
Fluid Velocity
Force
Length
Material Temperature
Specific Volume
Differential Pressure
Density
Heat Flux
H. T. Coeff.
Surface Temperature
Saturation Temperature
Enthalpy
Mass Flux
Mass Flow
Integrated Mass Flow
Momentum Flux
Fluid Velocity
Elevation
Temperature
Time After Rupture
Time
Pressure
Time After Reflood
Angular Velocity
Pump Torque
Liquid Level
Thermal Conductivity
Internal Rod Temperature
Volumetric Flow
Void Fraction
Temperature Difference
Photo Tube Temperature
Average Velocity
Liquid Phase Velocity
Vapor Phase Velocity
Horsepower
Mass Flow / Vol
Slip Ratio
Flow Quality
Thermodynamic Quality
Steam Quality
Neutron Detectors

U<Tnits~

Btu/s
s
Btu/s
lbm
psia
N*m
ft^3/s

s
Btu/s*ft*F
F
in

Hz
ft^3
ft/s^2
K
K
kPa
mm/m
1/s
m/s
N
cm
K
m^3/kg
kPa
kg/m^3
W/m^2
W/m^2*K
K
K
J/kg
kg/s*m^2
kg/s
kg
kg/m*s^2
cm/s
m
K
s
s
MPa
s
rad/s
N*m
cm
kW/m*K
K
ml/s

K
K
ft/s
ft/s
ft/s
kW
lbm/ft^3*s

11

Pia FILl! SPECIFICATION

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107

Heat Transfer Rate
Mass
Saturation Pressure
Normalized Pump Torque
Volumetric Flow
Choking Index
Heat Transfer Mode
Time After Reflood
Thermal Conductivity
Internal Rod Temperature
Liquid Level
Percent
Frequency
Total Volume
Acceleration
Core Heater Temperature
Fluid Temperature
Pressure
Strain
Volumetric Flow
Fluid Velocity
Force
Length
Material Temperature
Specific Volume
Differential Pressure
Density
Heat Flux
H. T. Coeff.
Surface Temperature
Saturation Temperature
Enthalpy
Mass Flux
Mass Flow
Integrated Mass Flow
Momentum Flux
Fluid Velocity
Elevation
Temperature
Time After Rupture
Time
Pressure
Time After Reflood
Angular Velocity
Pump Torque
Liquid Level
Thermal Conductivity
Internal Rod Temperature
Volumetric Flow
Void Fraction
Temperature Difference
Photo Tube Temperature
Average Velocity
Liquid Phase Velocity
Vapor Phase Velocity
Horsepower
Mass Flow / Vol
Slip Ratio
Flow Quality
Thermodynamic Quality
Steam Quality
Neutron Detectors

11

s
Btu/s·
Ibm
psia
N*m
ft"3/s

s
Btu/s*ft*F
F
in

Hz
ft"3
ft/s"2
K
K
kPa
mm/m
lis
m/s
N
cm
K
m"3/kg
kPa
kg/m"3
W/m"2
W/m"2*K
K
K
J/kg
kg/s*m"2
kg/s
kg
kg/m*s"2
cm/s
m
K
s
s
MPa
s
rad/s
N*m
cm
kW/m*K
K
ml/s

K
K
ft/s
ft/s
ft/s
kW
Ibm/ft"3*s

PIS FILE SPECIFICATION

Eng. Unit
Cod6

108
109
110
ill
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

DescriVvtoosi

Valve Position
Valve Position
Guide-Tube Temperature
Fuel Rod Temperature
Reactor Power
Fuel Rod Peak Power
Fuel Rod Ave Power
S-P Neutron Detector Curr
Neutron Flux
Fuel Off-Center Temperature
Fuel Centerline Temperature
Outlet Temperature
Inlet Temperature
Cladding Elongation
Cladding Elongation
Rod Internal Pressure
Peak Flux
Cladding Surface Temperature
Momentum Flux
Total Density
Liquid Density
Vapor Density
Specific Int Energy
Specific Liq Int Energy
Specific Vap Int Energy
Liquid Void Fraction
Vapor Void Fraction
Volume Liquid Velocity
Volume Vapor Velocity
Volume Pressure
Volume Static Quality
Volume Equilibrium Quality
Volume Heat Source
Volume Liquid Temperature
Volume Vapor Temperature
Volume Equil Temperature
Volume Sonic Velocity
Junction Liq Velocity
Junction Vap Velocity
Interface Velocity
Junction Liq Density
Junction Vap Density
Junction L/I Energy
Junction V/I Energy
Power Input
Heat Transfer Rate
Critical Heat Flux
Heat Transfer Coef
Mesh Point Temperature
Mass Flow Rate
Viscosity
Viscosity
Liquid Viscosity
Liquid Viscosity
Vapor Viscosity
Vapor Viscosity
Surface Tension
Surface Tension
Specific Heat
Specific Heat
Liquid Specific Heat
Liquid Specific Heat
Vapor Specific Heat
Vapor Specific Heat

Units

F
F
MW
kW/m
kW/m
na
n/cm^2*s
K
K
K
K
'm

MPa
n/cm^2*s
K
10e3 lbm/ft*s^2
kg/m^3
kg/m^3
kg/m^3
J/kg
J/kg
J/kg

m/s
m/s
Pa

W
K
K
K
m/s
m/s
in/s.

m/s
kg/m^3
kg/m^3
J/kg
J/kg
W
W
W/m^2
W/m^2*K
K
kg/s
lbm/ft*hr
cp
lbm/ft*hr
cp
lbm/ft*hr
cp
lbf/ft
N/m
btu/lbm*F
J/kg*K
btu/lbm*F
J/kg*K
.btu/lbm*F
J/kg*K

12
12

PIS FILE SPECIFICATION

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

positi~n
Valve Position
Guide Tube Temperature
Fuel Rod Temperature
Reactor Power
Fuel Rod Peak Power
Fuel Rod Ave Power
S-P Neutron Detector Curr
Neutron Flux
Fuel Off-Center Temperature
Fuel Centerline Temperature
Outlet Temperature
Inlet Temperature
Cladding Elongation
Cladding Elongation
Rod Internal Pressure
Peak Flux
Cladding Surface Temperature
Momentum Flux
Total Density
Liquid Density
Vapor Density
Specific Int Energy
Specific Liq Int Energy
Specific Vap Int Energy
Liquid Void Fraction
Vapor Void Fraction
Volume Liquid Velocity
Volume Vapor Velocity
Volume Pressure
Volume Static Quality
Volume Equilibrium Quality
Volume Heat Source
Volume Liquid Temperature
Volume Vapor Temperature
Volume Equil Temperature
Volume Sonic Velocity
Junction Liq Velocity
Junction Vap Velocity
Interface Velocity
Junction Liq Density
Junction Vap Density
Junction L/I Energy
Junction V/I Energy
Power Input
Heat Transfer Rate
Critical Heat Flux
Heat Transfer Coef
Mesh Point Temperature
Mass Flow Rate
Viscosity
Viscosity
Liquid Viscosity
Liquid Viscosity
Vapor Viscosity
Vapor Viscosity
Surface Tension
Surface Tension
Specific Heat
Specific Heat
Liquid Specific Heat
Liquid Specific Heat
Vapor Specific Heat
V cific Heat

12

F
F
MW
kW/m
kW/m
na
n/cm"2*s
K
K
K
K
rom

MPa
n/cm"2*s
K
10e3 lbm/ft*s"2
kg/m"3
kg/m"3
kg/m"3
J/kg
J/kg
J/kg

m/s
m/s
Pa

W
K
K
K
m/s
m/s
m/s
m/s
kg/m"3
kg/m"3
J/kg
J/kg
W
W
W/m"2
W/m"2*K
K
kg/s
lbm/ft*hr
cp
lbm/ft*hr
cp
lbm/ft*hr
cp
lbf/ft
N/m
btu/lbm*F
J/kg*K
btu/lbm*F
J/kg*K
btu/lbm*F

*K

PIB FILE SPECIFICATION

Eng. - Unit'.

1-72

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

*.Description%

Heat of Vaporization
Heat of Vaporization
Thermal Diffusivity
Thermal Diffusivity
Time
Time After Rupture
Time To CHF
Crit. Heat Flux
Crit.. Heat Flux
Power
Vapor Velocity
Vapor Velocity
Flooding Rate
Flooding Rate
LEIDENFROST Temperature
LEIDENFROST Temperature
T[wall] - T[sat]
T[wall] - T[sat]
Distance
Distance
Area
Area
Area
Area
Diameter
Diameter
Diameter
Diameter
Radius
Radius
Radius
Radius
Volume
Volume
Discharge Coefficient
Flow Regime
Friction Factor
REYNOLDS NUMBER
WEBER NUMBER
LEWIS NUMBER
FROUDE NUMBER
KNUDSEN NUMBER
STABILITY NUMBER
NUSSELT NUMBER
PRANDTL NUMBER
MARTINELLI NUMBER
BOILING NUMBER
MACH NUMBER
GRASHOF NUMBER
RALEIGH NUMBER
STANTON NUMBER
ECKERT NUMBER
EULER NUMBER
STROUHAL NUMBER
Liquid Density
Vapor Density
Power
Mass
Current
Counts
Density
Momentum Flux
Voltage
Velocity

Units

Btu/lbm
kJ/kg
ft^2/s
m^2/s

btu/hr*ft^2
kW/m^2
btu/hr
ft/s
m/s
ft/s
m/s
F
K
F
K
ft
m
ft^2
m^2
in^2
cm^ 2
ft
m
in
cm
ft
m
in
cm
ft^3
m^3

lbm/f t^3
lbm/ft^3
kW/m
kg
amp
log[c/s]
mg/m^3
mg/m*s^2
V
m/s

13

Pia FILE SPECIFICATION

of zat
173 Heat of Vaporization
174 Thermal Diffusivity
175 Thermal Diffusivity
176 Time
177 Time After Rupture
178 Time To CHF
179 Crit. Heat Flux btu/hr*ft"2
180 Crit. Heat Flux kW/m"2
181 Power btu/hr
182 Vapor Velocity ft/s
183 Vapor Velocity m/s
184 Flooding Rate ft/s
185 Flooding Rate m/s
186 LEIDENFROST Temperature F
187 LEIDENFROST Temperature K
188 T[wall] - T[sat] F
189 T[wall] - T[sat] K
190 Distance ft
191 Distance m
192 Area ft"2
193 Area m"2
194 Area in"2
195 Area cm"2
196 Diameter ft
197 Diameter m
198 Diameter in
199 Diameter em
200 Radius ft
201 Radius m
202 Radius in
203 Radius cm
204 Volume ft"3
205 Volume m"3
206 Discharge Coefficient
207 Flow Regime
208 Friction Factor
209 REYNOLDS NUMBER
210 WEBER NUMBER
211 LEWIS NUMBER
212 FROUDE NUMBER
213 KNUDSEN NUMBER
214 STABILITY NUMBER
215 NUSSELT NUMBER
216 PRANDTL NUMBER
217 MARTINELLI NUMBER
218 BOILING NUMBER
219 MACH NUMBER
220 GRASHOF NUMBER
221 RALEIGH fJUMBER
222 STANTON NUMBER
223 ECKERT NUMBER
224 EULER NUMBER
225 STROUHAL NUMBER
226 Liquid Density Ibm/ft"3
227 Vapor Density Ibm/ft"3
228 Power kW/m
229 Mass kg
230 Current amp
231 Counts log[c/s]
232 Density mg/m"3
233 Momentum Flux mg/m*s"2
234 Voltage V
235 Ve m/s

13

PIB FILE SPECIFICATION

SEng.o 7 Unit

236
237
238
239
240
241
242
.243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

Desriptiono

Specific Entropy
Specific Entropy
Delta-Theta
Pump Head
Pump Momentum Source
Volumetric Flow Rate
Temperature
Enthalpy
Enthalpy Flow
Mass
Mass
Depressurization Rate
Saturation Temperature
Liquid Level
CP SECONDS SMALL JOB CLASS
CP SECONDS MEDIUM JOB CLASS
CP SECONDS LARGE JOB CLASS
CP SECONDS ELEPHANT JOB CLASS
I/O SECONDS SMALL JOB CLASS
I/O SECONDS MEDIUM JOB CLASS
I/O SECONDS LARGE JOB CLASS
I/O SECONDS ELEPHANT JOB CLASS
TOTAL CP TIME
TOTAL I/O TIME
JULIAN DAY
INTERCON CP TIME
INTERCOM I/O TIME
SYSTEM SECONDS
Accumualted CP Seconds
Accumualted I/O Seconds
Drag Disk
Valve Position
Level
RHOF
RHOG
RHOL
Current
Differential Pressure
Cladding Temperature
Metal Temperature
Local Heat Generation
Fluid Density
Coolant Temperature
Guide Tube Temperature
Displacement
Pump Power
Power
Fluid Subcooling
Differential Pressure
Rod Position
Saturation Pressure
Saturation Pressure
Saturation Pressure
Average Density
Average Pressure
Average Pressure
Average Temperature
Average Velocity
Ave Momentum Flux
Power
Pump Torque
Pump Torque
Mass Flow
Current

Units

btu/ibm*R
kJ/kg*K
rad
m^2/s^2
m/s^2
m^3/s
C
GJ
MW
mg
kg
kPa/s
C
m
s

s
s
s
s
s
s
s
s

s
s
ss
s
s
mv
mv
mv
ibm/ft^3
ibm/ft^3
ibm/f t^3
ka
MPa
K
K
kW/m
mg/m^3
K
K
MM
kW

K
Pa
m
Pa
kPa
MPa
mg/m^3
MPa
kPa
K
m/s
mg/m*s^2
np
Ibf*ft

ibm/hr
ImA

14

P I B FILE SPECIFICATION

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

"-"?

C Entropy
Specific Entropy
Delta-Theta
Pump Head
Pump Momentum Source
Volumetric Flow Rate
Temperature
Enthalpy
Enthalpy Flow
Mass
Mass
Depressurization Rate
Saturation Temperature
Liquid Level
CP SECONDS SMALL JOB CLASS
CP SECONDS MEDIUM JOB CLASS
CP SECONDS LARGE JOB CLASS
CP SECONDS ELEPHANT JOB CLASS
I/O SECONDS SMALL JOB CLASS
I/O SECONDS MEDIUM JOB CLASS
I/O SECONDS LARGE JOB CLASS
I/O SECONDS ELEPHANT JOB CLASS
TOTAL CP TIME
TOTAL I/O TIME
JULIAN DAY
INTERCON CP TIME
INTERCOM I/O TIME
SYSTEM SECONDS
Accumualted CP Seconds
Accumualted I/O Seconds
Drag Disk
Valve Position
Level
RHOF
RHOG
RHOL
Current
Differential Pressure
Cladding Temperature(
Metal Temperature
Local Heat Generation
Fluid Density
Coolant Temperature
Guide Tube Temperature
Displacement
Pump Power
Power
Fluid Subcooling
Differential Pressure
Rod Position
Saturation Pressure
Saturation Pressure
Saturation Pressure
Average Density
Average Pressure
Average Pressure
Average Temperature
Average Velocity
Ave Momentum Flux
Power
Pump Torque
Pump Torque
Mass Flow
Current

14

btu
kJ/kg*K
rad
m"2/s"2
m/s"2
m"3/s
C
GJ
MW
mg
kg
kPa/s
C
m
s
s
s
s
s
s
s
s
s
s

s
s
ss
s
s
mv
mv
mv
lbm/ft"3
lbm/ft"3
lbm/ft"3
ka
MPa
K
K
kW/m
mg/m"3
K
K
mm
kW
%
K
Pa
m
Pa
kPa
MPa
mg/m"3
MPa
kPa
K
m/s
mg/m*s"2
np
lbf*ft
%
lbm/hr
rnA

PIS FILE SPECIFICATION

-,:Eng,,,,.Uni t

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

'Description>

Voltage
Fuel Rod Average Power
Distance
Volume
Volume
Energy
Mass Flux
Distance
Gas Flow Rate
Total Energy
Strain
Displacement
Current
Potential
Displacement
Reactor Power
Displacement
Time (s from year 1900)
Displacement
ROUHANI Liquid Velocity
ROUHANI Vapor Velocity
AYA Liquid Velocity
AYA Vapor Velocity
Volumetric Liquid Velocity
Volumetric Vapor Velocity
Local Heat Generation
Temperature Difference
Temperature Difference
Mass Flow Rate
Coolant Temperature
Cladding Temperature
Fluid Subcooling
Differential Pressure
Volumetric Flow Rate
Power
Energy
Neutron Detectors
Fission Product Detectors
Heat Flux
H. T. Coeff.
Metal Temperature
Average Density
Fluid Density
Mass Velocity
Inlet Subcooling
Length
Valve Position
Pressure
Differential Pressure
Volumetric Flow
Boron Concentration
Reactor Power
Rotations
G's/Radian
Radians
G's
Moments
Moments
Absolute Pressure
Differential Pressure
Rotation Speed
Event
Pressure
Differential Pressure

mV
kW/ft
nunmm^3

in^3
J/kg
lb/hr*ft^2
mil
gm*moles/s
J
microm/m
in
log [A]
V
m
GW
cm
s
in
m/s
m/s
m/s
m/s
m/s
m/s
kW/ ft
K
C
lbm/s
F
F
F
in
1/s
kW/m
MW*hr
nano amps
counts

btu/s*ft^2
btu/s*ft^2*F
F
mg/m^3
mg/m^3
lbm/hr*ft^2
btu/lbm
ft
V
Pa
mmwg
m^3/hr
ppm
W
rad

lbf*in
N*m
kg/m*s^2
kg/m*s^2
m/s

bar
bar

15

PIB FIL~ SPECIFICATION

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

Voltage
Fuel Rod Average Power
Distance
Volume
Volume
Energy
Mass Flux
Distance
Gas Flow Rate
Total Energy
Strain
Displacement
Current
Potential
Displacement
Reactor Power
Displacement
Time (s from year 1900)
Displacement
ROUHANI Liquid Velocity
ROUHANI Vapor Velocity
AYA Liquid Velocity
AYA Vapor Velocity
Volumetric Liquid Velocity.
Volumetric Vapor Velocity
Lbcal Heat Generation
Temperature Difference
Temperature Difference
Mass Flow Rate
Coolant Temperature
Cladding Temperature
Fluid Subcooling
Differential Pressure
Volumetric Flow Rate
Power
Energy
Neutron Detectors
Fissio~ Product Detectors
Heat Flux
H. T. Coeff.
Metal Temperature
Average Density
Fluid Density
Mass Velocity
Inlet Subcooling
Length
Valve Position
Pressure
Differential Pressure
Volumetric Flow
Boron Concentration
Reactor Power
Rotations
G's/Radian
Radians
G's
Moments
Moments
Absolute Pressure
Differential Pressure
Rotation Speed
Event
Pressure
Differential Pressure

15

mm
mm"3
in"3
J/kg
Ib/hr*ft"2
mil
gm*moles/s
J
microm/m
in
log[Al
V
m
GW
cm
s
in
m/s
m/s
m/s
m/s
m/s
m/s
kW/ft
K
C
Ibm/s
F
F
F
in
lis
kW/m
MW*hr
nano amps

counts
btu/s*ft"2
btu/s*ft"2*F
F
mg/m"3
mg/m"3
Ibm/hr*ft"2
btu/lbm
ft
V
Pa
mmwg
m"3/hr
ppm
W
rad

Ibf*in
N*m
kg/m*s"2
kg/m*s"2
m/s

bar
bar

PIS FILE SPECIFICATION

.Eng. Unit,'
Code;:

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

409
410
411
412
413
414
415
416
417
420
421
422
423
424
425
426
427
428
429

Time
Mass Flow
Differential Pressure
EDQ
IQF
Fuel Plenum Temperature
Fuel Temperature
Power
Neutron Flux
Power
Tank Level
Neutron Detector
Fuel Axial Strain
Cladding Axial Strain
Rod Internal Pressure
Fuel Centerline Temperature
Cladding Circ Strain
Gap Conductance
Cladding Surface Temp
Mass Flow Rate
Vol Nuc Heat Power
Differential Pressure
Pressure
Flow Rate
Heat Flux
Concentration
Concentration
Conductivity
Oxidation-Reduction-Pot
Alkalinity (as CaCO3)
Calculated Diff Pressure
Volumetric Flow Rate
Outlet Temperature
Mass Flow
Pressure
Pressure
Frequency
Percent
Distance
Heat
Enthalpy Flow
Distance
Pressure
Pressure
Mass Flow
Density
Outlet. Temperature
Mass Flux
Distance
Mass
Outlet Temperature
Pressure
Voltage
Intercom I/O Time
Void Fraction - Cond. Probe
Average Density
Beam Density
Densitometer Output
Mass Flow Rate into Tank
Average Mass Flow Rate
Diff. Pressure-Liquid Level
Heat Transfer Rate
Fluid Mass in Component
Drag Disk Output

min
lbm/hr
mb

K
K
GW
10X13 n/cm^2*s
kW/ft
1

W/cm

psia
C

Btu/hr*ft^2*F
C
mlbm/hr
W/m^3
m-h2o
kg/cm^2
kg/hr
W/m^2
mg/kg
ppm
mu*mno/cm
mV
mg/kg
in h2o
gpm
K
kg/s
MPa
MPa
Hz

um
Nm
kW
m
KPa
KPa
kg/s
kg/m^3
channel
kg/s*m^2
mm

kg
uV
Pa
kg/cm^2
sec

kg/m^3
kg/m^3
V
kg/s
kg/s
KPa
MW
kg
V

16

PIli FIL~ SPECIFICATION

~ .. Er;~'o4e:f~;;~;
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
420
421
422
423
424
425
426
427
428
429

Time
Mass Flow
Differential Pressure
EDQ
IQF
Fuel Plenum Temperature
Fuel Temperature
Power
Neutron Flux
Power
Tank Level
Neutron Detector \
Fuel Axial Strain
Cladding AXial Strain
Rod Internal Pressure
Fuel Centerline Temperature
Cladding Circ Strain
Gap Conductance
Cladding Surface Temp
Mass Flow Rate
Vol Nuc Heat Power
Differential Pressure
Pressure
Flow Rate
Heat Flux
Concentration
Concentration
Conductivity
Oxidation-Reduct ion-Pot
Alkalinity (as CaC03)
Calculated Diff Pressure
Volumetric Flow Rate
Outlet Temperature
Mass Flow
Pressure
Pressure
Frequency
Percent
Distance
Heat
Enthalpy Flow
Distance
Pressure
Pressure
Mass Flow
Density
Outlet. Temperature
Mass Flux
Distance
Mass
Outlet Temperature
Pressure
Voltage
Intercom I/O Time
Void Fraction - Cond.Probe
Average Density
Beam Density
Densitometer Output
Mass Flow Rate into Tank
Average Mass Flow Rate
Diff. Pressure-Liquid Level
Heat Transfer Rate
Fluid Mass in Component
Drag Disk Output

16

min
lbm/hr
rnb

K
K
GW
10X13 n/crn"2*s
kW/ft
1
W/cm
%
%
psia
C
%
Btu/hr*ft"2*F
C
mlbm/hr
W/m"3
m-h20
kg/cm"2
kg/hr
W/m"2
mg/kg
ppm
mu*rnno/cm
mV
mg/kg
in h20
gpm
K
kg/s
MPa
MPa
Hz
%
um
Nm
kW
m
KPa
KPa
kg/s
kg/m"3
channel
kg/s*m"2
rom
kg
uV
Pa
kg/cm"2
sec
%
kg/m"3
kg/m"3
V
kg/s
kg/s
KPa
MW
kg
V

PIB FILE SPECIFICATION

Eng. -Unit Description Units
Code I

430 Pump Speed Hz
431 Vibration Amplitude (rms) micro m
432 Pitot Tube Output V
433 Valve Pos. Control Signal %
434 Pitot Tube Location mm
435 Heated Thermocouple Output K
436 HTC Probe Output uV
437 Wall Temperature Output V
438 Pitot Tube DP kg/m*s^2
439 Pitot Tube Location mm
440 Int. Catch Tank Disc. Flow kg
441 Volumetric Flow Rate scfm
442 Limit Switch Position
443 Unknown
444 Volumetric Flow (ACFM) ft^3/min
445 Unknown
446 Unknown
447 Unknown
448 Unknown
449 Unknown
450 Unknown

17

PIIS FILE SPECIFICATION

<~~(c'~~e};r";1;'i:?:';:',';:;i!:\~{lJi:~::, ::;~~:;~~;~f~~i:').'
430 Pump Speed
431 Vibration Amplitude (rms)
432 Pitot Tube Output
433 Valve Pos. Control Signal
434 Pitot Tube Location
435 Heated Thermocouple Output
436 HTC Probe Output
437 Wall Temperature Output
438 Pitot Tube DP
439 Pitot Tube Location
440 Int. Catch Tank Disc. Flow
441 Volumetric Flow Rate
442 Limit Switch Position
443 Unknown
444 Volumetric Flow (ACFM)
445 Unknown
446 Unknown
447 Unknown
448 Unknown
449 Unknown
450 Unknown

17

micro m
V
%
rom
K
uV
V
kg/m*s"2
rom
kg
scfm

ft"3/min

PIB FILE SPECIFICATION

1. Compression
The PIB data is compressed on an individual channel basis, as opposed to full file compression. This approach
provides an efficient method of data retrieval, permitting direct access to the channel data and eliminating the
need to uncompress the entire file prior to extracting the data for an individual channel. The compression
method used is defined by the compression mode or cmpMode entry of the channel header record. Currently,
three compression modes are available as indicated in Table 4.

Table 4. Channel Compression Modes

Compression Description.
Mode

0 No compression used.

1 Flat data channel. Single value written to file.

2 Double precision run length encoded compression.

Typically, compression is turned off for a channel (cmpMode = 0) if the achievable compression falls below 5%.
This arbitrary threshold balances the potential savings in storage requirements against the overhead associated
with uncompressing the data.

If the data channel does not vary over the entire range of time, a compression mode of cmpMode= 1 is used. A
single value is then stored in the channel data block to represent the entire range of data.

The double precision run length encoding compression method is typically used if the achievable compression
exceeds 5%. Although it is a very simple algorithm, significant compression is achievable with very little impact
on performance. In this method, each set of identical, consecutive values is replaced by two values; the first value
being the number of values replaced and the second being the actual value. Regions that are not compressed are
preceded by a negative value that indicates the length of the uncompressed region.

Table 5 illustrates application of the algorithm to a set of raw values. The initial two values 518.3 and 518.4 are
replaced by the set of values -2.0, 518.4 and 518.4. The -2.0 value indicates that the next two values are not
compressed. This is followed by the value 518.5 repeated twelve times which is replaced by the pair 12.0, 518.5.
Similarly, the next four values have no repeats and are preceded by a value of -4.0, while the last eight values
repeat and are replaced by the pair 8.0, 518.9.

16

Pia 'ILB SPECIFICATION

1. Compression
The PIB data is compressed on an individual channel basis, as opposed to full file compression. This approach
provides an efficient method of data retrieval, permitting direct access to the channel data and eliminating the
need to uncomptess the entire file prior to extracting the data for an individual channel. The compression
method used is defined by the compression mode or cmpMode entry of the channel header record. Currently,
three compression modes are available as indicated in Table 4.

Table 4. Channel Compression Modes

Compression Description .
Mode

° No compression used.

1 Flat data channel. Single value written to file.

2 Double precision run length encoded compression.

Typically, compression is turned off for a channel (cmpMode = 0) if the achievable compression falls below 5%.
This arbitrary threshold balances the potential savings in storage requirements against the overhead associated
with uncompressing the data.

H the data channel does not vary over the entire range of time, a compression mode of cmpMode = 1 is used. A
single value is then stored in the channel data block to represent the entire range of data.

The double precision run length encoding compression method is typically used if the achiev~ble compression
exceeds 5%. Although it is a very simple algorithm, significant compression is achievable with very little impact
on performance. In this method, each set of identical, consecutive values is replaced by two values; the first value
being the number of values replaced and the second being the actual value. Regions that are not compressed are
preceded by a negative value that indicates the length of the uncompressed region.

Table 5 illustrates application of the algorithm to a set of raw values. The initial two values 518.3 and 518.4 are
replaced by the set of values -2.0, 518.4 and 518.4. The -2.0 value indicates that the next two values are not
compressed. This is followed by the value 518.5 repeated twelve times which is replaced by the pair 12.0, 518.5.
Similarly, the next four values have no repeats and are preceded by a value of -4.0, while the last eight values
repeat and are replaced by the pair 8.0, 518.9.

18

PIB FILE SPECIFICATION

Table 5. Example of Run Length Compression

Raw Data

518.3
518.4
518.5
518.5
518.5
518.5
518.5
518.5
518.5
518.5
518.5
518.5
518 5
518.5
518.6
518.9
518.6
518.8
518. 9
518.9
518.9
518.9
518. 9
518. 9
518. 9
518. 9

Compressed.SData

-2.0
518.3
518.4

12.0
518.5

-4.0
518.6
518.9
518.6
518.8

8.0
518.9

The following two routines can be used to compress and uncompress the data, respectively.

Source Listing 6. Compression Routines

/* define a temporary storage array used for compression */
#define DBUFSIZE 60000
static double flbuf[DBUFSIZE];

I *
*

*

*

*

*

*

*

*

*

*

*

Function: cmpres
Purpose: compress an array of double precision numbers

Arguments:
data on entry contains raw channel data

on exit contains compressed channel data
size on entry contains length of raw channel data

on exit contains length of compressed channel data

/

Returns:
compression mode

0 = no compression
1 = flat channel
2 = run length compression

int cmpres(double **data, int *size)f
int i,j;
int cm;
int reps,difs,dpos;

if(*size > DBUFSIZE)
fprintf(stderr,"Channel length, %d, exceeds DBUFSIZE",*size);

19

PIIS FILE SPECIFICATION

Table 5. Example of Run Length Compression

Raw Data Compressed ..
.. Data •

518.3 -2.0
518.4 518.3
518.5 518.4
518.5 12.0
518.5 518.5
518.5 -4.0
518.5 518.6
518.5 518.9
518.5 518.6
518.5 518.8
518.5 8.0
518.5 518.9
518.5
518.5
518.6
518.9
518.6
518.8
518.9
518.9
518.9
518.9
518.9
518.9
518.9
518.9

The following two routines can be used to compress and uncompress the data, respectively.

Source Listing 6. Compression Routines

/* define a temporary storage array used for compression */
#define DBUFSIZE 60000
static double flbuf[DBUFSIZE];

/* Function: cmpres
* Purpose: compress an array of double precision numbers
* Arguments:
* data on entry contains raw channel data
* on exit contains compressed channel data
* size on entry contains length of raw channel data
* on exit contains length of compressed channel data
* Returns:
* compression mode
* 0 no compression
* 1 flat channel
* 2 run length compression
*/

int cmpres(double **data, int *size)
{

int i,j;
int cm;
int reps,difs,dpos;

if(*size > DBUFSIZE)
fprintf(stderr,"Channel length, %d, exceeds DBUFSIZE",*size);

19

PIB FILE SPECIFICATION

exit (-1);

cm = 0;
j = 0;

dpos = -1;
reps = 0;
difs = 0;
for(i=l; i<*size; i++)

if(data[0O [i] == data[0] [i-l])
if(difs) f

flbuf[dpos] = (double) (-l*difs);
difs = 0;
dpos -1;

reps++;
else I
if(reps)

reps++;
flbuf[j++] = (do'
flbuf[j++] = dat
reps = 0;
else
if(dpos == -1)

dpos = j;
j++;

uble) reps;
a[0) [i-l];

a[0 [i-l];
I
flbuf[j++] =

difs++;
dat

if (reps)
reps++;
flbuf[j++] = (double)reps;
flbuf[j++] = data[O] [i-l];

} else if(difs) I
flbuf[j++] = data[O] [i-l];
difs++;
flbuf[dpos] = (double) (-l*difs);
else f
flbuf[j++] = 1.0;
flbuf[j++] = data[O] [i-l];

if(j >= 0.95* (*size))
cm = 0;
else if (reps == *size)
*size = 1;
cm = i;
else
cm = 2;
*size = j;
for(i=O; i<*size; i++)

data[O][i] = flbuf[i];

return cm;
I

20

PI. FILE SPECIFICATION

exit (-1);

em = 0;
j = 0;

dpos = -1;
reps = 0;
difs = 0;
for(i=l; i<*size; i++) {

if(data[O] [i] == data[O] [i-1])
if (difs) {

f1buf[dpos] = (double) (-l*difs);
difs 0;
dpos F -1;

reps++;
else {
if (reps)

reps++;
flbuf [j++]
flbuf [j++]
reps = 0;
else {

(double) reps;
data[O] [i-1];

if (dpos == -1)
dpos = j;
j++;

}
flbuf [j++]
difs++;

data [0] [i-1] ;

}
if(reps)

reps++;

}

flbuf[j++] = (double) reps;
flbuf[j++] = data[O] [i-1];
else if (difs) {
flbuf[j++] = data[O] [i-1];
difs++;
flbuf[dpos] = (double) (-l*difs);
else {
flbuf[j++] = 1.0;
flbuf[j++] = data[O] [i-I];·

if(j >= 0.95* (*size)) {
em = 0;
else if (reps == *size)
*size = 1;
em = 1;
else {
em = 2;
*size = j;
for(i=O; i<*size; i++) {

data[O] [i] = flbuf[i];

return em;

20

PIB FILE SPECIFICATION

/* Function: uncmpres
* Purpose: uncompress an array of double precision numbers
* Arguments:
* data on entry contains compressed channel data
* on exit contains raw channel data
* dblbuf pointer to temporary array space
* csize on entry contains length of compressed channel data
* fsize on entry contains length of raw channel data
* cm on entry contains compression mode
* 0 = no compression
* 1 = flat channel
* 2 = run length compression
* Returns:
* 0
*/

int uncmpres(double *data, double *dblbuf, int* csize, int fsize, int cm)
f

int i,j,k;
int difs, reps;

switch (cm)
case 0:

break; /* no compression */
case 1:

for(i = 0; i<fsize; i++)
data[i] = data[0];

break; /* flat */
case 2:

k = i = 0;
while(i<*csize)

if(data[i] < 0.0)
difs = (int)(-l'data[i] + 0.1);

i++;

for(j = 0; j<difs; j++)
dblbuf[k++] = data[i++];

else if(data[i] > 0.0)
reps = (int) (data[i] + 0.1
for(j = 0; j<reps; j++) I

dblbuf[k++] = data[i+l];

) ;

i+=2;
else
return 1; /* Error uncompressing data cm=2 */

if(k != fsize) f
return 2; /* Error uncompressing data cm=2 */

for(i = 0; i<fsize; i++)
data[i] = dblbuf[i];

break; /* run length compression */

return 0;
}

21

PIli FILl! SPECIFICATION

/* Function: uncmpres
* Purpose: uncompress an array of double precision numbers
* Arguments:
* data on entry contains compressed channel data
* on exit contains raw channel data
* dblbuf pointer to temporary array space
* csize on entry contains length of .compressed channel data
* fsize on entry contains length of raw channel data
* cm on entry contains compression mode
* 0 no compression
* 1 flat channel
* 2 run length compression
* Returns:
* 0
*/

int uncmpres(double *data, double *dblbuf, int* csize, int fsize, int cm)
{

}

int i,j,k;
int difs, reps;

switch (cm)
case 0:

break;
case 1:

forti = 0;
data[i)

}

/* no compression */

i<fsize; i++) {
data[O);

break; /* flat */
case 2:

k = i = 0;
while (i<*csize) (

if(data[ij < 0.0) {
difs = (int) (-l*data[ij + 0.1);

i++;
for (j = 0; j<difs; j++) {

dblbuf[k++j = data[i++j;
}

else if(data[ij > 0.0) {
reps = (int) (data[ij + 0.1);
for (j = 0; j<reps; j++) {

dblbuf[k++) = data[i+1j;

i+=2;
else {
return 1; /* Error uncompressing data cm=2 */

}
if (k != fsize) {

return 2; /* Error uncompressing data cm=2 */

forti = 0; i<fsize; i++)
data[ij = dblbuf[ij;

}
break; /* run length compression */

return 0;

21

