
Data Engineering: A brief history

 Knowing a bit of the history of data engineering will help you understand how certain tools were
, . developed and give you more context when choosing between tools and frameworks There are

 .two readings we suggest

1) On the Evolution of Data Engineering: (~5) This short read minutes focuses on the recent
 . change from managing SQL databases to working with massive datasets in real time It was
 , .written by Julien Kervizic an experienced analytics expert from the Netherlands

2) Data Engineering Introduction and Epochs: (~20) This slightly longer read minutes goes further
 . " " , back in time to the birth of computers It walks through four epochs of data engineering and the
 70 . , major advances over the past years It was written by Panopoly a data engineering platform

.provider
!Enjoy

https://medium.com/analytics-and-data/on-the-evolution-of-data-engineering-c5e56d273e37
https://learn.panoply.io/hubfs/Data%20Engineering%20-%20Introduction%20and%20Epochs.pdf
https://classroom.udacity.com/nanodegrees/nd027/parts/1be1ed3e-c0c5-4b03-be23-7f4393a11fca/modules/20001b0c-9bbd-49c3-b0f2-5d1578fa6e22/lessons/d37f55b9-2519-4f65-8d99-92eb5a2c06d3/concepts/9384799d-e894-49f3-a306-2b6c4c7960ec

ON the evolution of Data Engineering

Julien Kervizic
Follow
Oct 8, 2018 · 5 min read

A few years ago being a data engineer meant managing data in and out of a
database, creating pipelines in SQL or Procedural SQL and doing some form
of ETL to load data in a data-warehouse, creating data-structures to unify,
standardize and (de)normalize datasets for analytical purpose in a non-
realtime manner. Some companies were adding to that a more front facing
business components that involved building analytic cubes and dashboard
for business users.

In 2018 and beyond the role and scope of the data engineers has changed
quite drastically. The emergence of data products has created a gap to fill
which required a mix of skills not traditionally embedded within typical
development teams, the more Software Development Oriented data
engineers and the more data oriented Backend Engineers were in a prime
role to fill this gap.

This evolution was facilitated by a growing number of technologies that
helped to bridge the gap both for those of Data Engineering and those of a
more Backend Engineering background.

https://medium.com/@julienkervizic?source=post_page-----c5e56d273e37----------------------
https://medium.com/analytics-and-data/on-the-evolution-of-data-engineering-c5e56d273e37?source=post_page-----c5e56d273e37----------------------
https://medium.com/@julienkervizic?source=post_page-----c5e56d273e37----------------------

Big Data: The emergence of Big Data and the associated technologies that
can with it drastically changed the data landscape with Hadoop open-
sourced in 2006, it became easier and cheaper to store large amount of
data, Hadoop unlike traditional RDBMS databases did not require a lot of
structuring in order to be able to process the data. The complexity to develop
on Hadoop was initially quite high, requiring the development of Map
Reduce jobs in Java. The challenges of processing big data forced the
emergence of Backend Engineers working on analytical data workflow. It
was not until Hive was open sourced in 2010 that the more traditional data
engineers could get an easy bridge to get on boarded in this era of Big data.

https://hadoop.apache.org/
https://hive.apache.org/
https://hadoop.apache.org/

“people watching orchestra” by Manuel Nägeli on Unsplash

Data Orchestration Engines: With the development of Big data, large
internet companies were faced with a challenge to operate complex data flow
without any tools such as SSIS used for more traditional RDBMS working in
this ecosystem. Spotify opened sourced Luigi in 2012 and
Airbnb Airflow (inspired by a similar system at facebook) in 2015. Coming
from a heavy engineering driven background, these orchestration engines
were essentially data-flows as code.

Python being the language most of these orchestration engine were built on
helped them gain ground benefiting based on the traction in
the PyData ecosystem and from the increase use of python among
Production engineers. Traditional Data Engineers coming into this
ecosystem needed to adapt and up-skill in software engineering.

https://unsplash.com/@gwundrig?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://pydata.org/
https://medium.com/analytics-and-data/airflow-the-easy-way-f1c26859ee21
https://github.com/spotify/luigi
https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-server-2017

“turned on gray laptop computer” by Luca Bravo on Unsplash

Machine Learning: The trove of data that was now possible to collect from
the internet, Machine learning quickly gained traction. Until the advent
of Hadoop, Machine Learning models were usually trained on a single
machine and usually applied on a very ad-hoc manner. For large internet
companies, in the early days of Hadoop leverage machine learning models
required some advanced software development knowledge in order to train
and apply models into production, with the use of frameworks such
as Mahout leveraging upon MapReduce.

Some Backend engineers started to specialize in this area to become Machine
Learning Engineers, very production focused Data Scientists. For a lot of
startup this kind of development was however overkill. Improvement
in SKLearn, a python project open started in 2007, and the popularization of
orchestration engine made it fairly easy to go from a proof of concept by a
Data Scientist to production ready workflows by Data Engineers for
moderately sized datasets.

https://unsplash.com/?utm_source=medium&utm_medium=referral
https://unsplash.com/@lucabravo?utm_source=medium&utm_medium=referral
http://scikit-learn.org/stable/
https://mahout.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/

“three flaming sparkler sticks” by David von Diemar on Unsplash

Spark & Real-time: It was the release of Spark’s MLlib for python in 2014,
that democratized machine learning computation on Big data. The API was
fairly similar to the one Data-scientists were used to from
the PyData ecosystem and further development of Spark further helped
bridged the gap. Spark further offered a way for data engineers to easily
process streaming data, offering a window towards real-time
processing. Spark enabled an increased contribution of data engineers
towards data products.

https://unsplash.com/?utm_source=medium&utm_medium=referral
https://unsplash.com/@emotionspicture?utm_source=medium&utm_medium=referral
https://spark.apache.org/
https://spark.apache.org/
https://pydata.org/
https://spark.apache.org/mllib/

“clouds” by MILKOVÍ on Unsplash

Cloud development & Serverless: AWS was officially launched in 2006,
its storage layer S3 had been built upon Hadoop the traditional big data
platform. Elastic Map Reduce was launched in 2009 making it easier to
dynamically spin up and scale Hadoop clusters for processing purpose.

The move to the cloud had multiple implication for data engineers. The
cloud abstracted physical limitations, for most users it meant that storage
and compute was essentially infinite provided one can pay for it.
Optimization previously done to keep business running waiting for new
servers to be installed or upgraded needed not to be done anymore. So was
the work previously done tasks scheduling to allocate the load across time
due to resource constraint. The cloud by allowing for scaling up and down
resources made it much easier to handle high peak batch jobs typical in data
engineering. This however came at the cost of having to manage
infrastructure and the scaling process through code.

The introduction of Lambda function on AWS in late 2014 kicked off the
serverless movement. From a data perspective data could be easily ingested
without managing infrastructure. The release Athena launching in late 2016

https://unsplash.com/?utm_source=medium&utm_medium=referral
https://unsplash.com/@milkovi?utm_source=medium&utm_medium=referral
https://aws.amazon.com/athena/
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://aws.amazon.com/emr/
https://aws.amazon.com/s3/
https://aws.amazon.com/

pushed things further allowing to query directly onto s3 without the need to
setup a cluster. This is freeing data engineers from managing infrastructure
scaling based on requests allowing them to spend more time on
development,

The role of the data engineer is no longer to just provide support for
analytics purpose but to be the owner of data-flows and to be able to serve
data both to production and for analytics purpose.

To that end Data Engineering has been looking more towards a software
engineering perspective. Maxime Beauchemin’s post on functional data
engineering advocates advocates for borrowing patterns of functional
programming and apply them to data engineering. The emerging data ops
movement and its manifesto in turn borrows from the DevOps movement in
software engineering.

http://dataopsmanifesto.org/
https://medium.com/@maximebeauchemin/functional-data-engineering-a-modern-paradigm-for-batch-data-processing-2327ec32c42a
https://medium.com/@maximebeauchemin/functional-data-engineering-a-modern-paradigm-for-batch-data-processing-2327ec32c42a
https://aws.amazon.com/s3/

	Data Engineering: A brief history
	ON the evolution of Data Engineering

