
An Empirical Study based on OpenRank
Contribution Evaluation Method in Open Source

Course
Zhiwei Zhu

School of Data Science & Engineering
East China Normal University

Shanghai, China
51255903077@stu.ecnu.edu.cn

Jie Wang
School of Data Science & Engineering

East China Normal University
Shanghai, China

51255903013@stu.ecnu.edu.cn

Wenrui Huang
School of Data Science & Engineering

East China Normal University
Shanghai, China

51255903058@stu.ecnu.edu.cn

Shengyu Zhao
School of Electronic & Information

Engineering, Tongji University
Shanghai, China

frank zsy@tongji.edu.cn

Xiaoya Xia
Open Source Program Office

Ant Group
Hangzhou, China

xiaoya@stu.ecnu.edu.cn

Fanyu Han
School of Data Science & Engineering

East China Normal University
Shanghai, China

52275903008@stu.ecnu.edu.cn

Wei Wang
School of Data Science & Engineering

East China Normal University
Shanghai, China

wwang@dase.ecnu.edu.cn

Yanbin Zhang
School of Data Science & Engineering

East China Normal University
Shanghai, China

ybzhang@dase.ecnu.edu.cn

Abstract—This paper introduces an OpenRank-based ap-
proach for evaluating open source contributions, aiming to over-
come the difficulty of quantifying student contributions in open
source projects. Taking the “Open Source Software Design and
Development” course as a case study, a method was developed to
assess student contributions in open source practices. The Open-
Rank algorithm, founded on developer collaboration networks,
assesses student contributions in discussions, problem-solving,
and coding. Experimental outcomes demonstrate that OpenRank
not only coincides with traditional grading approaches but also
offers a more comprehensive perspective on student contribu-
tions. Integrating OpenRank with traditional grading provides a
more scientific and exhaustive evaluation of student contributions
and skills in open source projects.

Index Terms—Design studies, Open Source Course, Evaluation

I. INTRODUCTION

With the rapid development of technology and the growing
demand for software talent, open source software development
has become a crucial aspect of software engineering education
[1]. Open source projects not only encourage developers to
collaborate and utilize resources and expertise in innovative
ways, but they have also been shown to sustain long-term
developer engagement.

Over the past two decades, colleges and universities have
extensively explored practical approaches to open source ed-
ucation, recognizing it as a crucial means for nurturing soft-
ware talent and promoting the software industry. Nevertheless,

difficulties persist in cultivating open source talent, primarily
due to the dearth of effective methods for evaluating students’
contributions to open source projects.

Our research centers on the effective evaluation of students’
contributions in open source software development within
practical open source education. Employing the “Open Source
Software Design and Development” course as a case study,
we delve into the application of practical teaching methods
in open source software education. This encompasses training
in open source project practice, team collaboration, problem-
solving, and communication skills. We innovatively introduce
an OpenRank-based approach for evaluating developers’ con-
tributions in open source repositories.

Our main contributions include the following aspects:

1) We innovatively integrate software engineering educa-
tion with open-source platforms by launching the “Open
Source Software Design and Development” course, em-
phasizing open learning and project practice. All aspects
of the course are conducted openly on open-source
platforms.

2) We propose an evaluation model that utilizes collabo-
rative networks to measure open-source contributions.
This model assesses students’ contributions in course
repositories. We validate the efficacy of this method
by comparing it with traditional evaluation approaches
employed in the course.



II. RELATED WORK

A. Open Source Software and Education

Open source software is considered ideal for education
because it promotes collaboration among developers, encour-
aging them to share resources and expertise to solve problems
in innovative ways [6]. Schools and universities have been
actively exploring the use of open source in education, as
it has become an important method for training software
professionals and advancing the software industry.

Open source software in education helps increase students’
interest in development and encourages their long-term in-
volvement [1]. However, inexperienced student developers can
sometimes introduce problems to projects, such as not follow-
ing established design principles or submitting disorganized
pull requests. Research has shown that these types of mistakes
are common among student contributions [8].

Despite these challenges, participating in large software
development projects provides students with valuable experi-
ence in software engineering, which enhances their skills and
professionalism [9]. Studies have also explored the motivations
behind student participation in open source projects and found
that such involvement is beneficial for their future careers [6].
Contributing to open source can help students develop both
their technical and social skills while increasing their project
experience.

B. Evaluation of Open Source Contributions

Researches on contribution to open source mainly focuse on
the study of project code workload [2], [3]. In the field of open
source projects, Gousios et al. proposed a linear model that
considers multiple action trajectories from development and
social activities to evaluate contributions [4]. Xia X studied
identifying key contributors by mining activities in repositories
and suggested that linear models are insufficient in reflecting
social factors within an open-source software community [5].
Tsay et al.’s research provides clear evidence that social factors
are highly correlated with maintainer contribution assessment
during pull request reviews [11]. Joblin et al. [12] and Cheng
et al. [13] respectively proposed methods based on network
and user activity research into developer contributions; these
studies focus on classifying developers rather than quantifying
their contributions. This study adopts a collaboration network-
based method to assess developer contributions and value.

PageRank [14] is a method used to calculate page impor-
tance by utilizing search engine link relevance; currently, many
scholars apply PageRank’s derivative algorithms in different
fields such as document relevance calculation, user value cal-
culation, movie recommendations etc. Li et al. [15] proposed
a ranking algorithm ArticleRank used for measuring journal
paper influence. This method takes into account the categories
of cited papers in order to differentiate ranking results among
papers with similar citation frequencies. Li et al. [16], based on
complex network theory, introduced a movie ranking algorithm
MovieRank which considers the impact of different identities
of movie participants on movie rankings.

III. COURSE DESIGN

A. Course Summary

Our research focuses on the course “Open Source Software
Design and Development.” The course aims to cultivate stu-
dents’ professional skills and knowledge contributions in the
field of software engineering through actual participation and
contribution to open source software projects. The curricu-
lum covers three major sections: understanding open source,
contributing to open source, and developing open source,
emphasizing the integration of theory and practice, as well
as an open learning process. The course content is illustrated
in Table 1.

The course emphasizes an open learning process, using e-
textbooks and diverse teaching methods to meet individual
learning needs. The course repository on GitHub provides all
learning materials as open-source, allowing students to freely
access, use, and share them. Course content, assignments,
and discussions are conducted in the repository to promote
collaboration and transparency.

B. Course Assignments

Students undertake practical assignments using open-source
projects, including project selection, task allocation, Issue
discussion, and code submission within the repository. Teach-
ers and assistants select suitable open-source projects for
students. During the project, students use GitHub Issues for
task allocation and technical discussions, write code locally,
and manage code versions with Git, including branch creation,
code submission, and merging.

These open-source project tasks, conducted transparently in
the course repository, aim to provide students with software
development experience and an understanding of open-source
community operations, collaboration culture, and project man-
agement. This approach fosters teamwork, problem-solving
skills, and communication abilities.

C. Course Evaluation

When designing the student evaluation system, we drew
inspiration from the Apache Way and considered the following
three principles:

1) Open Communication Principle: Communication not
recorded in the open-source community is regarded as
non-existent. All discussions and collaborations must
occur within the GitHub repository. This ensures that
all communications and collaborations are transparently
recorded and evaluated. Specifically, each discussion
thread and collaboration activity should be clearly doc-
umented and timestamped.

2) Contribution Measurement Principle: Contributions
are evaluated irrespective of personal background, focus-
ing on long-term, in-depth involvement in open source
projects, active participation in discussions, and code
contributions. The more substantial the contribution,
the higher the value of the Issues and pull requests
(PRs) they participate in. For instance, a significant code



TABLE I
OPEN SOURCE MODULES OVERVIEW

Module Content Overview
S1 Embracing Open Source This module covers the basics of open source, including the history of open source, introduction to open

source projects, exploring the open source world, multidisciplinary perspectives on exploring open source, the
relationship between software and the software industry, commercialization of open source software, global

open source software ecosystem development, and open source applications from the perspectives of software
engineering and data science.

S2 Contributing to Open Source This module focuses on how to contribute to open source projects, including the full process of open source
collaboration and engineering, personal development practice tools, features and design thinking of Git,
contribution and management of open source communities, team open source collaboration, and DevOps

open source practices.
S3 Developing Open Source This module focuses on open source governance and community operations, exploring the basics of

enterprise open source governance, open source intellectual property, secure and reliable open source systems,
digital analysis of open source communities, how to become an excellent committer, the open source path of

Apache, developer relations operations, and career development in open source.

improvement or a critical bug fix could be assigned
higher scores.

3) Community Priority Principle: A project with a ma-
ture and long-active community is always preferred
over a project that initially has good quality but lacks
long-term maintenance. In course practice, we measure
student contributions through social collaboration rela-
tionships among students rather than individual contri-
bution values. The evaluation of student contributions is
based on the degree of collaboration among students,
the quantity and quality of contributions, and their
interactions. For example, a group of students who
successfully complete a complex open-source project by
collaborating closely will receive higher evaluations.

IV. OPENRANK ALGORITHM

The OpenRank algorithm [17] is a variant and extension of
the PageRank algorithm, enabling the application of PageRank
to heterogeneous information networks and extending it to
high-dimensional nodes. The principle of OpenRank is similar
to that of PageRank and HITS, in that the centrality of a
node is determined by the centrality of other nodes pointing
to it; the higher the centrality of the nodes pointing to it,
the higher the centrality of the node itself. Unlike PageRank,
OpenRank considers not only the structure of the collaborative
network for each node’s centrality but also the intrinsic value
of the node. In the context of open-source collaboration, for
instance, the centrality of a developer node is determined by
the centrality of the PR/Issue nodes it participates in, with
a higher centrality of the PR/Issue nodes it participates in
leading to a higher centrality of the developer node.

A. Network Model

The OpenRank algorithm is specifically tailored for collab-
orative units in open-source projects, such as Issues and Pull
Requests. The basic collaborative network model, as shown
in Figure 2, depicts the scenario where developers collaborate
around Issue and PR nodes in a GitHub repository through
various collaborative behaviors.

Fig. 1. The Basic Collaborative Network Model

B. OpenRank Algorithm

In the OpenRank algorithm, the OpenRank value of each
node vi in each iteration is represented by the following
formula:

vi = (1− ai)

|V |∑
j=1

wji

doj
vj + aiv0

where v0 represents the initial value of the node, ai indicates
the node’s dependence on its initial value, doj is the weighted
out-degree of node j, and wji is the weight of the edge from
node j to node i. If we organize the normalized weights
wji/doj into a matrix S and ai as diagonal values into a matrix
A, according to the convergence proof, the OpenRank values
of all nodes will converge to a vector, as shown below:

v = lim
k→∞

v(k)

= lim
k→∞

[ASv(k−1) + (E −A)v(0)]

= lim
k→∞

[
(AS)kv(0) +

k−1∑
t=0

(AS)t(E −A)v(0)

]
= (E −AS)−1(E −A)v(0)

Developers and Issue/PR nodes are connected through
different types of collaborative behavior edges, including
opening, commenting, reviewing, and closing. Since these



behaviors represent different efforts from developers, they
should be weighted differently, i.e.:

wij =

n∑
k=0

wijkck

where ck represents the weight proportion of the k-th type
of edge.

C. Selection of Initial Node Values

In real-world graph networks, nodes generally have some
prior information or features that can be reflected as the node’s
initial value. The OpenRank algorithm considers the initial
values of each type of node when calculating centrality. Since
OpenRank is calculated based on monthly data, if a node
participated in the calculation last month and has already
obtained a centrality value, its initial value will be inherited
from last month. If a node does not have a centrality value,
its initial value will be set to 1. For Issue/PR nodes, the initial
value is increased based on developers’ likes. If a PR node
is merged within the month, its initial value is additionally
increased by 50

D. Dependence on Initial Values

When determining the centrality of different types of nodes
in the network, both the initial value of the node (the node’s
own features) and the value obtained from interactions with
other nodes (i.e., network value transfer) will be considered.
It is necessary to determine the degree of dependence of the
node

V. EXPERIMENT

The experimental process is divided into the following key
steps: Data collection, Model construction, Results.

A. Data collection

The data used in the experiment was sourced from the
”Open Source Design and Development” course during the
Spring 2023 semester. To get detailed and accurate student
activity data, we used the OpenDigger1 tool to collect GitHub
log data for 85 students from March to May, including Issue
Comment, Issue Open, Issue Close, PR Review, PR Open,
PR Close, and PR merge. We then constructed a collaboration
network based on this data.

B. Network construction

We extracted the node information for developers, Issues,
and PRs, as well as their collaborative relationships, from the
log data. The number of each type of node over the three-
month course period is shown in Table 2.

As the course progressed, the number of active developers
in the course repository gradually increased (exceeding the
number of course students due to the participation of teaching
assistants and external personnel). The commonly used col-
laboration units in the course repository shifted from Issues

1https://github.com/X-lab2017/open-digger

TABLE II
STATISTICS ON THE NUMBER OF NETWORK NODE TYPES

Month User Issue PR
2023-03 75 34 2
2023-04 94 58 42
2023-05 117 54 124

to PRs as the course content transitioned from theoretical to
practical.

We constructed a collaboration network based on four types
of nodes, including Repository nodes. Figure 3 illustrates the
collaboration network of the course repository in May 2023,
where blue nodes represent repositories, red nodes represent
developers, and green and yellow nodes represent Issues and
Pull Requests (PRs), respectively.

Fig. 2. Open Source Course Collaboration Network – May 2023

C. Results

We utilized OpenRank to evaluate student contributions
by computing their scores from March to May 2023. Pear-
son and Spearman correlation analyses were conducted to
compare these scores with traditional teacher assessments,
including regular scores, midterm and final assignment scores,
and overall grades, as detailed in Table 3. The correlation
coefficients ranged from 0.25 to 0.53 for Pearson and 0.28 to
0.60 for Spearman, indicating a moderate to strong relationship
between OpenRank scores and teacher-assigned grades. All
correlation tests yielded p-values less than 0.01, confirming
statistical significance.

OpenRank’s moderate correlation with traditional grading
methods suggests it complements these methods by evaluating
diverse contributions in open-source projects. For example,
Surefour, with an OpenRank score of 5.12, had the lowest
course grade but demonstrated significant engagement in the
course repository, contributing valuable code and discussions.
Conversely, RTEnzyme, with a lower OpenRank score of 2.99,



TABLE III
CORRELATION ANALYSIS RESULTS BETWEEN OPENRANK AND STUDENT SCORES

Student Scores Pearson Correlation Coefficient Pearson p-value Spearman Correlation Coefficient Spearman p-value
Regular Score 0.54 1.11× 10−7 0.60 1.07× 10−9

Mid-term Assignment 0.25 1.95× 10−2 0.28 9.79× 10−3

Final Assignment 0.31 4.19× 10−3 0.33 1.93× 10−3

Total Score 0.53 1.57× 10−7 0.58 8.19× 10−9

had a high overall grade but less activity in the repository.
These cases highlight OpenRank’s ability to assess collabora-
tive contributions and communication skills, which traditional
methods might overlook.

OpenRank’s comprehensive evaluation, which includes code
submissions, pull requests, Issue discussions, and documenta-
tion contributions, offers a more detailed reflection of students’
practical skills and contributions. By integrating OpenRank
with traditional grading, educators can provide more nuanced
feedback, guiding students towards continuous improvement
and holistic development. This approach allows for a fairer
and more comprehensive assessment of students’ abilities and
practical contributions.

VI. THREATS TO VALIDITY

Although this research has substantiated the efficacy of
the OpenRank metric in evaluating students’ contributions to
open-source projects, it is not without limitations. Initially,
the sample size is relatively small, and the diversity in student
backgrounds and course contents is limited. Furthermore, the
study primarily concentrates on students’ contributions and
performances during the course, without yet examining the
long-term impact of OpenRank on learning and career devel-
opment. Additionally, the qualitative analysis of the students’
actual learning processes, including collaboration details and
motivation analysis, lacks sufficient depth. Future research
should expand the study to include a broader range of courses
and participants to confirm the applicability of the findings.
Additionally, tracking students’ performance post-course could
help to explore the long-term effects of OpenRank on their
learning and career progression. By integrating in-depth inter-
views and behavioral observations, we can achieve a more
comprehensive understanding of the generation mechanism
and impacts of OpenRank scores.

VII. CONCLUSION

Our study designed and conducted the “Open Source Soft-
ware Design and Development” course with the theme of open
learning process and project practice. And we proposed an
OpenRank indicator based on collaborative network centrality
to evaluate students’ contributions to open source projects.
By constructing students’ active data collaboration network
in the course library, calculating students’ OpenRank scores,
and evaluating students’ contributions to open source projects.
The results show that the OpenRank scores of students’ open
source practices are consistent with the evaluation results
of teachers, and OpenRank can fully reflect students’ daily

learning behaviors and achievements. Compared with teach-
ers’ evaluation based only on homework grades, OpenRank
can more comprehensively reflect students’ contributions and
abilities in problem discussion, teamwork, task allocation, etc.
By combining OpenRank with traditional evaluation methods,
students’ comprehensive abilities and actual contributions can
be evaluated more comprehensively and fairly, thereby culti-
vating students’ teamwork and practical application abilities.

REFERENCES

[1] Ellis H J C, Hislop G W, Jackson S, et al. Team project experiences in
humanitarian free and open source software (HFOSS). ACM Transac-
tions on Computing Education (TOCE), 2015, 15(4): 1-23.

[2] Kan S H. Metrics and models in software quality engineering. Addison-
Wesley Professional, 2003.

[3] Walston C E, Felix C P. A method of programming measurement and
estimation. IBM systems Journal, 1977, 16(1): 54-73.

[4] Gousios G, Kalliamvakou E, Spinellis D. Measuring developer con-
tribution from software repository data. In Proceedings of the 2008
international working conference on Mining software repositories. 2008:
129-132.

[5] Xia X, Weng Z, Wang W, et al. Exploring activity and contributors
on GitHub: Who, what, when, and where. In 2022 29th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2022: 11-20.

[6] Pinto G, Ferreira C, Souza C, et al. Training software engineers using
open-source software: the students’ perspective. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineer-
ing Education and Training (ICSE-SEET). IEEE, 2019: 147-157.

[7] Silva J, Wiese I, German D M, et al. A theory of the engagement in open
source projects via summer of code programs. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2020: 421-431.

[8] Hu Z, Song Y, Gehringer E F. Open-source software in class: students’
common mistakes. In Proceedings of the 40th International Conference
on Software Engineering: Software Engineering Education and Training.
2018: 40-48.

[9] Holmes R, Allen M, Craig M. Dimensions of experientialism for
software engineering education. In Proceedings of the 40th International
Conference on Software Engineering: Software Engineering Education
and Training. 2018: 31-39.

[10] DeKoenigsberg G. How successful open source projects work, and how
and why to introduce students to the open source world. In 2008 21st
Conference on Software Engineering Education and Training. IEEE,
2008: 274-276.

[11] Tsay J, Dabbish L, Herbsleb J. Influence of social and technical factors
for evaluating contribution in GitHub. In Proceedings of the 36th
international conference on Software engineering. 2014: 356-366.

[12] JOBLIN, Mitchell, et al. Classifying developers into core and peripheral:
An empirical study on count and network metrics. In: 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE,
2017. p. 164-174.

[13] CHENG, Jinghui; GUO, Jin LC. Activity-based analysis of open source
software contributors: Roles and dynamics. In: 2019 IEEE/ACM 12th
International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE). IEEE, 2019. p. 11-18.

[14] Page L, Brin S, Motwani R, et al. The pagerank citation ranking: Bring
order to the web. In: Proc. of the 7th International World Wide Web
Conf. 1998.



[15] Li J, Willett P. ArticleRank: a PageRank-based alternative to numbers of
citations for analysing citation networks. In: Aslib Proceedings. Emerald
Group Publishing Limited, 2009, 61(6): 605-618.

[16] Li Y, Li C, Chen W. Research on influence ranking of chinese movie
heterogeneous network based on PageRank algorithm. In: Web Infor-
mation Systems and Applications: 15th International Conference, WISA
2018, Taiyuan, China, September 14–15, 2018, Proceedings 15. Springer
International Publishing, 2018: 344-356.

[17] Zhao S, Xia X, Fitzgerald B, et al. OpenRank Leaderboard: Motivating
Open Source Collaborations Through Social Network Evaluation in Al-
ibaba[C]//Proceedings of the 46th International Conference on Software
Engineering: Software Engineering in Practice. 2024: 346-357.


