
milvus-backup tool practice​

Preparation​

Download the latest binary from milvus-backup repo: https://github.com/zilliztech/milvus-

backup/releases​

• For Mac, download milvus-backup_Darwin_arm64.tar.gz or milvus-
backup_Darwin_x86_64.tar.gz​

• For Linux, download milvus-backup_Linux_arm64.tar.gz or milvus-
backup_Linux_x86_64.tar.gz​

Download the configuration file: ​

wget https://github.com/zilliztech/milvus-backup/blob/main/configs/backup.yaml1

Extract the tar file to a directory. Put backup.yaml to configs/backup.yaml under this directory.

The file structure looks like this:​

├── configs​
│ └── backup.yaml​
├── milvus-backup​
└── README.md​

1
2
3
4

Command Usage​

In the terminal, type command milvus-backup help to show the command line usage:​

milvus-backup is a backup&restore tool for milvus.

Usage:
 milvus-backup [flags]

1
2
3
4

https://github.com/zilliztech/milvus-backup/releases

 milvus-backup [command]

Available Commands:
 check check if the connects is right.
 create create subcommand create a backup.
 delete delete subcommand delete backup by name.
 get get subcommand get backup by name.
 help Help about any command
 list list subcommand shows all backup in the cluster.
 restore restore subcommand restore a backup.
 server server subcommand start milvus-backup RESTAPI server.

Flags:
 --config string config YAML file of milvus (default "backup.yaml")
 -h, --help help for milvus-backup

Use "milvus-backup [command] --help" for more information about a command.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Type command milvus-backup create --help to show the usage of "create a backup":​

Usage:
 milvus-backup create [flags]

Flags:
 -n, --name string backup name, if unset will generate a
name automatically
 -c, --colls string collectionNames to backup, use ',' to
connect multiple collections
 -d, --databases string databases to backup
 -a, --database_collections string databases and collections to backup,
json format: {"db1":["c1", "c2"],"db2":[]}
 -f, --force force backup, will skip flush, should
make sure data has been stored into disk when using it
 --meta_only only backup collection meta instead of
data
 -h, --help help for create

1
2
3
4
5

6

7
8

9

10

11
12

Type command milvus-backup restore --help to show the usage of "restore a backup":​

Usage:
 milvus-backup restore [flags]

1
2
3

Flags:
 -n, --name string backup name to restore
 -c, --collections string collectionNames to restore
 -s, --suffix string add a suffix to collection name to
restore
 -r, --rename string rename collections to new names, format:
db1.collection1:db2.collection1_new,db1.collection2:db2.collection2_new
 -d, --databases string databases to restore, if not set,
restore all databases
 -a, --database_collections string databases and collections to restore,
json format: {"db1":["c1", "c2"],"db2":[]}
 --meta_only if true, restore meta only
 --restore_index if true, restore index
 --use_auto_index if true, replace vector index with
autoindex
 --drop_exist_collection if true, drop existing target collection
before create
 --drop_exist_index if true, drop existing index of target
collection before create
 --skip_create_collection if true, will skip collection, use when
collection exist, restore index or data
 -h, --help help for restore

4
5
6
7

8

9

10

11
12
13

14

15

16

17
18

From the usage we know:​

• "-c" is to specify a collection's name to backup.​

• "-n" defines a name for the backup operation, the backup data files will be copied to a
directory that has this name.​

• "-s" defines a suffix, the restored collection's name is combined with the origin collection's
name and this suffix.​

Configurations​

In the configs/backup.yaml file we can see the following sections:​

1. "log" section, config the log behavior of milvus-backup tool​

Configures the system log output.
log:
 level: info # Only supports debug, info, warn, error, panic, or fatal.
Default 'info'.
 console: true # whether print log to console

1
2
3

4

 file:
 rootPath: "logs/backup.log"

5
6

2. "milvus" section, config the address and connection method of Milvus​

milvus proxy address, compatible to milvus.yaml
milvus:
 address: localhost
 port: 19530
 authorizationEnabled: false
 # tls mode values [0, 1, 2]
 # 0 is close, 1 is one-way authentication, 2 is two-way authentication.
 tlsMode: 0
 user: "root"
 password: "Milvus"

1
2
3
4
5
6
7
8
9
10

3. "minio" section, config the address and connection method of MinIO. And the

backup/restore target path.​

• minio.backetName is the bucket name which the Milvus is using as storage.​

• minio.rootPath is the root path under the minio.backetName which the Milvus is using to
store data files. Milvus-backup tool copies data files from this path.​

• minio.backupBacketName is the target bucket in which the milvus-backup stores the
backup files.​

• minio.backupRootPath is the root path under the minio.backupBacketName in which the
milvus-backup stores the backup files.

Related configuration of minio, which is responsible for data persistence
for Milvus.
minio:
 # cloudProvider: "minio" # deprecated use storageType instead
 storageType: "minio" # support storage type: local, minio, s3, aws, gcp,
ali(aliyun), azure, tc(tencent)

 address: localhost # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string
 useSSL: false # Access to MinIO/S3 with SSL
 useIAM: false
 iamEndpoint: ""

1

2
3
4

5
6
7
8
9
10
11
12

 bucketName: "a-bucket" # Milvus Bucket name in MinIO/S3, make it the same as
your milvus instance
 rootPath: "files" # Milvus storage root path in MinIO/S3, make it the same
as your milvus instance

 # only for azure
 backupAccessKeyID: minioadmin # accessKeyID of MinIO/S3
 backupSecretAccessKey: minioadmin # MinIO/S3 encryption string

 backupBucketName: "a-bucket" # Bucket name to store backup data. Backup data
will store to backupBucketName/backupRootPath
 backupRootPath: "backup" # Rootpath to store backup data. Backup data will
store to backupBucketName/backupRootPath

13
14

15

16
17
18
19
20
21

22

For example, assuming there is a collection named "A" in the Milvus. Milvus stores its data files

under this path: ​

[minio.bucketName]/[minio.rootPath]/insert_log/[ID of collection A]

When you create a backup for this collection, the milvus-backup copies data files from the

above path to the below path: ​

[minio.backupBucketName]/[minio.backupRootPath]/[backup name]

When you restore this backup to a new collection, the milvus-backup calls Milvus bulkinsert

interface to import these files. The milvus-backup only sends a S3 related path to the Milvus.

In this case, the path is :​

/[minio.rootPath]/insert_log/[ID of collection A] . ​

Milvus tries to read files from this path, it requires the minio.backupBucketName must be
the bucket that the target Milvus is using, because Milvus can only access one S3 bucket at

runtime.​

After restore, a new collection's data files are stored in this path:​

[minio.bucketName]/[minio.rootPath]/insert_log/[ID of new collection]

Backup/Restore​

Generally, there are 4 types of backup/restore use cases:​

1. Copy a collection within a Milvus instance.​

2. Copy a collection between two Milvus in one S3, one bucket, and different root paths.​

3. Copy a collection between two Milvus in one S3 with different buckets.​

4. Copy a collection between two Milvus in different S3.​

One Milvus​

Purpose​

Backup/restore a collection to a new collection in the same Milvus service. Assuming there is a

collection named "coll" in the Milvus, we backup/restore it to a new collection named

"coll_bak". The Milvus uses the S3 bucket "bucket_A" as storage.​

Milvus Configuration​

The Milvus is deployed with this configuration in the milvus.yaml:​

• minio.address is "localhost"​

• minio.bucketName is "bucket_A"​

• minio.rootPath is "files"​

minio:
 address: localhost # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string
 useSSL: false # Access to MinIO/S3 with SSL
 ssl:
 tlsCACert: /path/to/public.crt # path to your CACert file, ignore when it
is empty
 bucketName: bucket_A # Bucket name in MinIO/S3
 rootPath: files # The root path where the message is stored in MinIO/S3

1
2
3
4
5
6
7
8

9
10

Workflow​

Note that Milvus organizes data path by collection's ID, not collection's name. In this picture,

we write the path as collection's name just for easy understanding.​

http://localhost/

1. In the configs/backup.yaml​

• Set milvus.address to be "localhost".​

• Set minio.bucketName and minio.backupBucketName to be "bucket_A". ​

• Set minio.rootPath to be "files".​

• Set minio.backupRootPath to a path that is different from the minio.rootPath (to avoid
contamination of Milvus storage), here we set it to be "backup".​

Related configuration of minio, which is responsible for data persistence
for Milvus.
minio:
 # cloudProvider: "minio" # deprecated use storageType instead
 storageType: "minio" # support storage type: local, minio, s3, aws, gcp,
ali(aliyun), azure, tc(tencent)

 address: localhost # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string
 useSSL: false # Access to MinIO/S3 with SSL
 useIAM: false
 iamEndpoint: ""

1

2
3
4

5
6
7
8
9
10
11
12
13

http://localhost/

 bucketName: "bucket_A" # Milvus Bucket name in MinIO/S3, make it the same as
your milvus instance
 rootPath: "files" # Milvus storage root path in MinIO/S3, make it the same
as your milvus instance

 # only for azure
 backupAccessKeyID: minioadmin # accessKeyID of MinIO/S3
 backupSecretAccessKey: minioadmin # MinIO/S3 encryption string

 backupBucketName: "bucket_A" # Bucket name to store backup data. Backup data
will store to backupBucketName/backupRootPath
 backupRootPath: "backup" # Rootpath to store backup data. Backup data will
store to backupBucketName/backupRootPath

14

15

16
17
18
19
20
21

22

2. Use /create command to create a backup. The name is "my_backup". After the command

succeeds, you will see the path bucket_A/backup/my_backup is created in the S3.​

./milvus-backup create -c coll -n my_backup1

3. Use /restore command to restore the backup to a new collection. After the command

succeeds, you will see a new collection named "coll_bak" is created in the Milvus. The new

collection's data files are stored in bucket_A/files/insert_log/[ID of new
collection]

./milvus-backup restore -c coll -n my_backup -s _bak1

Note: if you want to restore the index, you can append --restore_index to the command.​

Two Milvus share one bucket with different root paths​

Purpose​

Backup a collection from a Milvus and restore it to another Milvus that shares the same bucket

but a different root path. Assuming there is a collection named "coll" in the milvus_A, we

backup/restore it to a new collection named "coll_bak" to milvus_B. The two Milvus share the

same bucket "bucket_A" as storage, but they have different root paths.​

Milvus Configuration​

The milvus.yaml of milvus_A:​

• minio.address is "localhost"​

• minio.bucketName is "bucket_A"​

• minio.rootPath is "files_A"​

minio:
 address: localhost # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string
 useSSL: false # Access to MinIO/S3 with SSL
 ssl:
 tlsCACert: /path/to/public.crt # path to your CACert file, ignore when it
is empty
 bucketName: bucket_A # Bucket name in MinIO/S3
 rootPath: files_A # The root path where the message is stored in MinIO/S3

1
2
3
4
5
6
7
8

9
10

The milvus.yaml of milvus_B:​

• minio.address is "localhost"​

• minio.bucketName is "bucket_A"​

• minio.rootPath is "files_B"​

minio:
 address: localhost # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string
 useSSL: false # Access to MinIO/S3 with SSL
 ssl:
 tlsCACert: /path/to/public.crt # path to your CACert file, ignore when it
is empty
 bucketName: bucket_A # Bucket name in MinIO/S3
 rootPath: files_B # The root path where the message is stored in MinIO/S3

1
2
3
4
5
6
7
8

9
10

http://localhost/
http://localhost/

Workflow​

Note that Milvus organizes data path by collection's ID, not collection's name. In this picture,

we write the path as collection's name just for easy understanding the internal workflow.​

1. In the configs/backup.yaml​

• Set milvus.address to be the address of milvus_A.​

• Set minio.bucketName and minio.backupBucketName to be "bucket_A". ​

• Set minio.rootPath to be "files_A".​

• Set minio.backupRootPath to a path that is different from the minio.rootPath (to avoid
contamination of Milvus storage), here we set it to be "backup".​

milvus proxy address, compatible to milvus.yaml
milvus:
 address: milvus_A
 port: 19530
 authorizationEnabled: false
 # tls mode values [0, 1, 2]
 # 0 is close, 1 is one-way authentication, 2 is two-way authentication.
 tlsMode: 0
 user: "root"

1
2
3
4
5
6
7
8
9

 password: "Milvus"

Related configuration of minio, which is responsible for data persistence
for Milvus.
minio:
 # cloudProvider: "minio" # deprecated use storageType instead
 storageType: "minio" # support storage type: local, minio, s3, aws, gcp,
ali(aliyun), azure, tc(tencent)

 address: milvus_A # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string
 useSSL: false # Access to MinIO/S3 with SSL
 useIAM: false
 iamEndpoint: ""

 bucketName: "bucket_A" # Milvus Bucket name in MinIO/S3, make it the same as
your milvus instance
 rootPath: "files_A" # Milvus storage root path in MinIO/S3, make it the same
as your milvus instance

 # only for azure
 backupAccessKeyID: minioadmin # accessKeyID of MinIO/S3
 backupSecretAccessKey: minioadmin # MinIO/S3 encryption string

 backupBucketName: "bucket_A" # Bucket name to store backup data. Backup data
will store to backupBucketName/backupRootPath
 backupRootPath: "backup" # Rootpath to store backup data. Backup data will
store to backupBucketName/backupRootPath

10
11
12

13
14
15

16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31
32

33

2. Use /create command to create a backup. The name is "my_backup". After the command

succeeds, you will see the path backup_A/backup/my_backup is created in the S3.​

./milvus-backup create -c coll -n my_backup1

3. Modify the configs/backup.yaml​

• Set milvus.address to be the address of milvus_B, so that the restore command can restore
the collection to milvus_B.​

• Set milvus.port to the port of milvus_B.​

• Set minio.rootPath to be "files_B". ​

milvus proxy address, compatible to milvus.yaml
milvus:
 address: milvus_B
 port: 19530
 authorizationEnabled: false
 # tls mode values [0, 1, 2]
 # 0 is close, 1 is one-way authentication, 2 is two-way authentication.
 tlsMode: 0
 user: "root"
 password: "Milvus"

Related configuration of minio, which is responsible for data persistence
for Milvus.
minio:
 # cloudProvider: "minio" # deprecated use storageType instead
 storageType: "minio" # support storage type: local, minio, s3, aws, gcp,
ali(aliyun), azure, tc(tencent)

 address: milvus_B # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string
 useSSL: false # Access to MinIO/S3 with SSL
 useIAM: false
 iamEndpoint: ""

 bucketName: "bucket_A" # Milvus Bucket name in MinIO/S3, make it the same as
your milvus instance
 rootPath: "files_B" # Milvus storage root path in MinIO/S3, make it the same
as your milvus instance

 # only for azure
 backupAccessKeyID: minioadmin # accessKeyID of MinIO/S3
 backupSecretAccessKey: minioadmin # MinIO/S3 encryption string

 backupBucketName: "bucket_A" # Bucket name to store backup data. Backup data
will store to backupBucketName/backupRootPath
 backupRootPath: "backup" # Rootpath to store backup data. Backup data will
store to backupBucketName/backupRootPath

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15

16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31
32

33

4. Use /restore command to restore the backup to a new collection. After the command

succeeds, you will see a new collection named "coll_bak" is created in the milvus_B. The new

collection's data files are stored in bucket_A/files_B/insert_log/[ID of new
collection]

./milvus-backup restore -c coll -n my_backup -s _bak1

Two Milvus in one S3, different buckets​

Purpose​

Backup a collection from a Milvus and restore it to another Milvus in different buckets, but the

two Milvus are in the same S3. Assuming there is a collection named "coll" in the milvus_A, we

backup/restore it to a new collection named "coll_bak" to milvus_B. The milvus_A is using

bucket "bucket_A" as storage, the milvus_B is using bucket "bucket_B" as storage.​

Milvus Configuration​

The milvus.yaml of milvus_A:​

• minio.address is "localhost"​

• minio.bucketName is "bucket_A"​

• minio.rootPath is "files"​

minio:
 address: localhost # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string
 useSSL: false # Access to MinIO/S3 with SSL
 ssl:
 tlsCACert: /path/to/public.crt # path to your CACert file, ignore when it
is empty
 bucketName: bucket_A # Bucket name in MinIO/S3
 rootPath: files # The root path where the message is stored in MinIO/S3

1
2
3
4
5
6
7
8

9
10

The milvus.yaml of milvus_B:​

http://localhost/

• minio.address is "localhost"​

• minio.bucketName is "bucket_B"​

• minio.rootPath is "files"​

minio:
 address: localhost # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string
 useSSL: false # Access to MinIO/S3 with SSL
 ssl:
 tlsCACert: /path/to/public.crt # path to your CACert file, ignore when it
is empty
 bucketName: bucket_B # Bucket name in MinIO/S3
 rootPath: files # The root path where the message is stored in MinIO/S3

1
2
3
4
5
6
7
8

9
10

Workflow​

Note that Milvus organizes data path by collection's ID, not collection's name. In this picture,

we write the path as collection's name just for easy understanding the internal workflow.​

http://localhost/

1. In the configs/backup.yaml​

• Set milvus.address to be the address of milvus_A.​

• Set minio.bucketName to be "bucket_A". ​

• Set minio.rootPath to be "files".​

• Set minio.backupBucketName to be "bucket_B"​

• Set minio.backupRootPath to a path that is different from the minio.rootPath (to avoid
contamination of Milvus storage), here we set it to be "backup".​

milvus proxy address, compatible to milvus.yaml
milvus:
 address: milvus_A
 port: 19530
 authorizationEnabled: false
 # tls mode values [0, 1, 2]
 # 0 is close, 1 is one-way authentication, 2 is two-way authentication.
 tlsMode: 0
 user: "root"
 password: "Milvus"

Related configuration of minio, which is responsible for data persistence
for Milvus.
minio:
 # cloudProvider: "minio" # deprecated use storageType instead
 storageType: "minio" # support storage type: local, minio, s3, aws, gcp,
ali(aliyun), azure, tc(tencent)

 address: localhost # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string
 useSSL: false # Access to MinIO/S3 with SSL
 useIAM: false
 iamEndpoint: ""

 bucketName: "bucket_A" # Milvus Bucket name in MinIO/S3, make it the same as
your milvus instance
 rootPath: "files" # Milvus storage root path in MinIO/S3, make it the same
as your milvus instance

 # only for azure
 backupAccessKeyID: minioadmin # accessKeyID of MinIO/S3
 backupSecretAccessKey: minioadmin # MinIO/S3 encryption string

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15

16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31

 backupBucketName: "bucket_B" # Bucket name to store backup data. Backup data
will store to backupBucketName/backupRootPath
 backupRootPath: "backup" # Rootpath to store backup data. Backup data will
store to backupBucketName/backupRootPath

32

33

2. Use /create command to create a backup. The name is "my_backup". After the command

succeeds, you will see the path bucket_B/backup/my_backup is created in the S3.​

./milvus-backup create -c coll -n my_backup1

3. Modify the configs/backup.yaml​

• Set milvus.address to be the address of milvus_B, so that the restore command can restore
the collection to milvus_B.​

• Set milvus.port to the port of milvus_B.​

• Set minio.bucketName to be "bucket_B"

• Set minio.rootPath to be "files". ​

milvus proxy address, compatible to milvus.yaml
milvus:
 address: milvus_B
 port: 19530
 authorizationEnabled: false
 # tls mode values [0, 1, 2]
 # 0 is close, 1 is one-way authentication, 2 is two-way authentication.
 tlsMode: 0
 user: "root"
 password: "Milvus"

Related configuration of minio, which is responsible for data persistence
for Milvus.
minio:
 # cloudProvider: "minio" # deprecated use storageType instead
 storageType: "minio" # support storage type: local, minio, s3, aws, gcp,
ali(aliyun), azure, tc(tencent)

 address: localhost # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15

16
17
18
19
20

 useSSL: false # Access to MinIO/S3 with SSL
 useIAM: false
 iamEndpoint: ""

 bucketName: "bucket_B" # Milvus Bucket name in MinIO/S3, make it the same as
your milvus instance
 rootPath: "files" # Milvus storage root path in MinIO/S3, make it the same
as your milvus instance

 # only for azure
 backupAccessKeyID: minioadmin # accessKeyID of MinIO/S3
 backupSecretAccessKey: minioadmin # MinIO/S3 encryption string

 backupBucketName: "bucket_B" # Bucket name to store backup data. Backup data
will store to backupBucketName/backupRootPath
 backupRootPath: "backup" # Rootpath to store backup data. Backup data will
store to backupBucketName/backupRootPath

21
22
23
24
25

26

27
28
29
30
31
32

33

4. Use /restore command to restore the backup to a new collection. After the command

succeeds, you will see a new collection named "coll_bak" is created in the milvus_B. The new

collection's data files are stored in bucket_B/files/insert_log/[ID of new
collection]

./milvus-backup restore -c coll -n my_backup -s _bak1

Two Milvus in two S3​

Purpose​

Backup a collection from a Milvus and restore it to another Milvus in different S3. Assuming

there is a collection named "coll" in the milvus_A, we backup/restore it to a new collection

named "coll_bak" to milvus_B. The milvus_A is using bucket "bucket_A" as storage, the

milvus_B is using bucket "bucket_B" as storage, they are using different S3/MinIO addresses.​

Milvus Configuration​

The milvus.yaml of milvus_A:​

• minio.address is address of minio_A

• minio.bucketName is "bucket_A"​

• minio.rootPath is "files"​

minio:
 address: minio_A # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string
 useSSL: false # Access to MinIO/S3 with SSL
 ssl:
 tlsCACert: /path/to/public.crt # path to your CACert file, ignore when it
is empty
 bucketName: bucket_A # Bucket name in MinIO/S3
 rootPath: files # The root path where the message is stored in MinIO/S3

1
2
3
4
5
6
7
8

9
10

The milvus.yaml of milvus_B:​

• minio.address is address of minio_B​

• minio.bucketName is "bucket_B"​

• minio.rootPath is "files"​

minio:
 address: minio_B # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string
 useSSL: false # Access to MinIO/S3 with SSL
 ssl:
 tlsCACert: /path/to/public.crt # path to your CACert file, ignore when it
is empty
 bucketName: bucket_B # Bucket name in MinIO/S3
 rootPath: files # The root path where the message is stored in MinIO/S3

1
2
3
4
5
6
7
8

9
10

Workflow​

Note that Milvus organizes data path by collection's ID, not collection's name. In this picture,

we write the path as collection's name just for easy understanding the internal workflow.​

1. In the configs/backup.yaml​

• Set milvus.address to be the address of milvus_A.​

• Set minio.address to be the address of minio_A.​

• Set minio.bucketName to be "bucket_A". ​

• Set minio.rootPath to be "files".​

• Set minio.backupBucketName to be "bucket_A"​

• Set minio.backupRootPath to a path that is different from the minio.rootPath (to avoid
contamination of Milvus storage), here we set it to be "backup".​

milvus proxy address, compatible to milvus.yaml
milvus:
 address: milvus_A
 port: 19530
 authorizationEnabled: false
 # tls mode values [0, 1, 2]
 # 0 is close, 1 is one-way authentication, 2 is two-way authentication.
 tlsMode: 0
 user: "root"
 password: "Milvus"

Related configuration of minio, which is responsible for data persistence
for Milvus.
minio:
 # cloudProvider: "minio" # deprecated use storageType instead

1
2
3
4
5
6
7
8
9
10
11
12

13
14

 storageType: "minio" # support storage type: local, minio, s3, aws, gcp,
ali(aliyun), azure, tc(tencent)

 address: minio_A # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string
 useSSL: false # Access to MinIO/S3 with SSL
 useIAM: false
 iamEndpoint: ""

 bucketName: "bucket_A" # Milvus Bucket name in MinIO/S3, make it the same as
your milvus instance
 rootPath: "files" # Milvus storage root path in MinIO/S3, make it the same
as your milvus instance

 # only for azure
 backupAccessKeyID: minioadmin # accessKeyID of MinIO/S3
 backupSecretAccessKey: minioadmin # MinIO/S3 encryption string

 backupBucketName: "bucket_A" # Bucket name to store backup data. Backup data
will store to backupBucketName/backupRootPath
 backupRootPath: "backup" # Rootpath to store backup data. Backup data will
store to backupBucketName/backupRootPath

15

16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31
32

33

2. Use /create command to create a backup. The name is "my_backup". After the command

succeeds, you will see the path bucket_A/backup/my_backup is created in the minio_A.​

./milvus-backup create -c coll -n my_backup1

3. Manually copy the bucket_A/backup/my_backup from minio_A to

bucket_B/backup/my_backup of minio_B. You can use a S3 compatible SDK or Client to do

the work.​

4. Modify the configs/backup.yaml​

• Set milvus.address to be the address of milvus_B, so that the restore command can restore
the collection to milvus_B.​

• Set milvus.port to the port of milvus_B.​

• Set minio.address to be the address of minio_B.​

• Set minio.bucketName to be "bucket_B"

• Set minio.rootPath to be "files". ​

• Set minio.backupBucketName to be "bucket_B" and minio.backupRootPath to be
"backup" since we have copied the backup files to this place.​

milvus proxy address, compatible to milvus.yaml
milvus:
 address: milvus_B
 port: 19530
 authorizationEnabled: false
 # tls mode values [0, 1, 2]
 # 0 is close, 1 is one-way authentication, 2 is two-way authentication.
 tlsMode: 0
 user: "root"
 password: "Milvus"

Related configuration of minio, which is responsible for data persistence
for Milvus.
minio:
 # cloudProvider: "minio" # deprecated use storageType instead
 storageType: "minio" # support storage type: local, minio, s3, aws, gcp,
ali(aliyun), azure, tc(tencent)

 address: minio_B # Address of MinIO/S3
 port: 9000 # Port of MinIO/S3
 accessKeyID: minioadmin # accessKeyID of MinIO/S3
 secretAccessKey: minioadmin # MinIO/S3 encryption string
 useSSL: false # Access to MinIO/S3 with SSL
 useIAM: false
 iamEndpoint: ""

 bucketName: "bucket_B" # Milvus Bucket name in MinIO/S3, make it the same as
your milvus instance
 rootPath: "files" # Milvus storage root path in MinIO/S3, make it the same
as your milvus instance

 # only for azure
 backupAccessKeyID: minioadmin # accessKeyID of MinIO/S3
 backupSecretAccessKey: minioadmin # MinIO/S3 encryption string

 backupBucketName: "bucket_B" # Bucket name to store backup data. Backup data
will store to backupBucketName/backupRootPath

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15

16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31
32

 backupRootPath: "backup" # Rootpath to store backup data. Backup data will
store to backupBucketName/backupRootPath

33

5. Use /restore command to restore the backup to a new collection. After the command

succeeds, you will see a new collection named "coll_bak" is created in the milvus_B. The new

collection's data files are stored in bucket_B/files/insert_log/[ID of new
collection] of minio_B.​

./milvus-backup restore -c coll -n my_backup -s _bak1

