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Abstract
In this note we introduce some new subroutines of real skew-symmetric ma-

trix. These subroutines include BLAS2/3 operations, linear solver and eigen-
solver in LAPACK. All these subroutines are named and implemented as their
corresponding real symmetric subroutines.

1 Introduction
A real square matrix A is skew-symmetric (also called anti-symmetric), if AT =

−A, where AT is the transpose of A. Real skew-symmetric matrix is regular and
so unitary diagonalizable. All its eigenvalues are conjugate pure imaginary value
pairs, or zeros.
Real skew-symmetric matrices are widely used in physics [1, 2], engineering

[9], and computer vision [8]. A survey of LAPACK [5] showed the demands of
subroutines calculating such kind of matrix.
Now there are two methods to calculate real skew-symmetric matrix. They are
(1) Using general real matrix subroutines, which can’t benefit from the skew-

symmetric structure to reduce the computational complexity.
(2) Multiplying the matrix by i and then using Hermitian matrix subroutines,

which will extend the computational complexity and storage spaces twice or more
by introducing complex operation.
Since the structure of real skew-symmetric matrix is similar to real symmetric

matrix, it is expected that some subroutines of real skew-symmetric matrix can be
implemented, just by refering the algorithm of corresponding symmetric subrou-
tines. What’s more, their performance should be comparable with the correspond-
ing symmetric subroutines.
In this note we introduce some subroutines of real skew-symmetric matrix.

These subroutines include BLAS2/3 operations, linear solver, eigensolver and corre-
sponding computational/auxiliary subroutines of real skew-symmetric matrix. In
the following sections, we will describe their interfaces, data layouts, and algo-
rithms in order. For brevity we omit the numerical type prefix S/D and use *
instead.
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2 Design principles of subroutines
The real skew-symmetric subroutines are designed to be corresponding to real

symmetric subroutines. So there are following principles.
(1) Keep the function of each subroutine being the reflection of corresponding

real symmetric subroutine.
(2) Keep the names resembling real symmetric subroutines. The key letter S

meaning symmetric is replaced by key letter K meaning skew-symmetric. So the
SY/ST in the name are replaced by KY/KT. The only exception is subroutine *LA-
TRDK, which comes from *LATRD in real symmetric subroutines.
(3) Keep the interfaces resembling real symmetric subroutines. The order,

data type, and input data layout of parameters have only few changes compared
with real symmetric subroutines. But the output data layout of some real skew-
symmetric subroutines are changed due to the difference of algorithms.
(4) Keep the change of algorithms being the least compared with the corre-

sponding real symmetric subroutines. For most of real skew-symmetric subrou-
tines, the only changes are sign of some inner operations. However, some different
algorithms still can’t be bypassed due to the different structure of matrices and we
will describe them in details later. Generally, the storage spaces and performances
of real symmetric and skew-symmetric subroutines are in similar level.

3 BLAS2/3 operations
3.1 List of subroutines

Subroutine name Describe Corresponding
symmetric subroutine Belonging

KYMV real skew-symmetric
matrix-vector multiply SYMV BLAS2

KYR2 real skew-symmetric
rank-2 update SYR2 BLAS2

KYMM real skew-symmetric
matrix-matrix multiply SYMM BLAS3

KYR2K real skew-symmetric
rank-2k update SYR2K BLAS3

3.2 Subroutine prototypes, functions, features and algotithms
subroutine *KYMV(uplo, n, alpha, A, lda, x, incx, beta, y, incy)

Function
The BLAS2 subroutine does real skew-symmetric matrix-vector multiplying y =

αAx+ βy.

Differences from symmetric case
The diagonal elements of A are implied to be 0 and not accessed.

Algorithm
Be the same as symmetric case, except for the sign of some inner operations.
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subroutine *KYR2(uplo, n, alpha, x, incx, y, incy, A, lda)

Function
The BLAS2 subroutine does real skew-symmetric rank-2 update A = −αxyT +

αyxT +A.

Differences from symmetric case
The diagonal elements of A are implied to be 0 and not accessed.

Algorithm
Be the same as symmetric case, except for the sign of some inner operations.

subroutine *KYMM(side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc)

Function
The BLAS3 subroutine does real skew-symmetric matrix-matrix multiplyingC =

αAB + βC or C = αBA+ βC.

Differences from symmetric case
The diagonal elements of A are implied to be 0 and not accessed.

Algorithm
Be the same as symmetric case, except for the sign of some inner operations.

subroutine *KYR2K(uplo, trans, n, k, alpha, A, lda, B, ldb, beta, C, ldc)

Function
The BLAS3 subroutine does real skew-symmetric rank-2k update C = −αABT+

αBAT + βC.

Differences from symmetric case
The diagonal elements of C are implied to be 0 and not accessed.

Algorithm
Be the same as symmetric case, except for the sign of some inner operations.
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4 linear solver subroutines in LAPACK
4.1 List of subroutines

Subroutine name Describe Corresponding
symmetric subroutine

KYSV solving real skew-symmetric
linear system SYSV

KYTRF real skew-symmetric factorization
into LDLT /UDUT form SYTRF

LAKYF real skew-symmetric factorization
into LDLT /UDUT form, blocked LASYF

KYTF2 real skew-symmetric factorization
into LDLT /UDUT form, unblocked SYTF2

KYTRS2 solving factorized real skew-symmetric
linear system, blocked SYTRS2

KYTRS solving factorized real skew-symmetric
linear system, unblocked SYTRS

KYTRI2 inverting factorized real
skew-symmetric matrix SYTRI2

KYTRI2X inverting factorized real
skew-symmetric matrix, blocked SYTRI2X

KYTRI inverting factorized real
skew-symmetric matrix, unblocked SYTRI

KYCONV permutating the interchanges of
factorized real skew-symmetric matrix SYCONV

4.2 Subroutine prototypes, functions, features and algotithms
subroutine *KYSV(uplo, n, nrhs, A, lda, ipiv, B, ldb, work, lwork, info)

Function
The subroutine computes the solution of a real linear system AX = B, where

A is a real skew-symmetric matrix.

Differences from symmetric case
(1) The diagonal elements of A are implied to be 0 and not accessed.
(2) The interchanges of pivoting stored in ipiv have a different layout. Refer to

the *KYTRF.

Algorithm
The subroutine calls *KYTRF to do real skew-symmetric LDLT /UDUT factor-

ization and then solves the factorized triangular linear system by calling *KYTRS2
and *KYTRS.

subroutine *KYTRF(uplo, n, A, lda, ipiv, work, lwork, info)

Function
The subroutine computes the factorization of a real skew-symmetric matrix A

using the Bunch partial pivoting method [3]. The form of the factorization is
LDLT /UDUT . It is a shell and calls *LAKYF for the main body of matrix, then
calls *KYTF2 for the tail of matrix.
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Differences from symmetric case
(1) The diagonal elements of A are implied to be 0 and not accessed.
(2) The interchanges of pivoting stored in ipiv have a different layout.
In this subroutine, due to the adoption of Bunch partial pivoting method, the

step of factorization is always 2 (until the program end or stop with singularity),
instead of 1 or 2 in symmetric case. So in ipiv, the interchanges are recorded at
every other elements and the rest of elements are not referenced. That means the el-
ements of ipiv are always organized in pair. In case of uplo = ’L’, The interchanges
is applied from column 1 to N, and the former element in a pair is effective. In
case of uplo = ’U’, The interchanges is applied from column N to 1, and the latter
element in a pair is effective.
The sign of recording of interchange decides which kind of interchange is done.

Positive integer P at the K-th element means the interchange is between row and
column P and K+1 (if uplo = ’L’), or K-1 (if uplo = ’U’). Negative integer P at the
K-th element means the interchange is between row and column K and K+1, then
-P and K+1 (if uplo = ’L’), or K and K-1, then -P and K-1 (if uplo = ’U’). Zero
element means no interchange.
For example, for a 6-by-6 dimension matrix, if:
a. uplo = ’L’, and ipiv = (3, *, -6, *, 0, *), then the interchanges are applied

by the following 3 steps.
Step 1, paraphrase (3, *), interchange row and column 2 and 3.
Step 2, paraphrase (-6, *), interchange row and column 3 and 4, then 4 and 6.
Step 3, paraphrase (0, *), no interchange.
b. uplo = ’U’, and ipiv = (*, 0, *, -1, *, 3), then the interchanges are applied

by the following 3 steps.
Step 1, paraphrase (*, 3), interchange row and column 5 and 3.
Step 2, paraphrase (*, -1), interchange row and column 4 and 3, then 3 and 1.
Step 3, paraphrase (*, 0), no interchange.
* means unreferenced elements here. If n is odd, then the last (if uplo = ’L’) or

first (if uplo = ’U’) element in ipiv is unreferenced.

Algorithm
(1) For the case of uplo = ’L’, we partition the n-by-n real skew-symmetric

matrix A into the following pattern

A =

[
S −CT

C B

]
where S is a 2-by-2 real skew-symmetric matrix, B is a n-2-by-n-2 real skew-
symmetric matrix and C is a n-2-by-2 real matrix.
For the factorization, we should make the following pivoting
a. Find the absolute maximum element of C and assume its row index is k.
b. If the maximum is less than or equal to |S21|, no pivoting is needed.
c. If the maximum is in the first column of C, and is greater than |S21|, inter-

change the row and column 2 and k. This can permute the maximum to S21. k is
recorded in the former element of ipiv.
d. If the maximum is in the second column of C, and is greater than |S21|,

interchange the row and column 1 and 2, then row and column 2 and k. This can
permute the maximum to S21. -k is recorded in the former element of ipiv.

5



e. If both the maximum and S21 are 0, the matrix is singular and the process
should be terminated.
Then factorize the matrix into the following pattern[

S −CT

C B

]
=

[
I 0

CS−1 I

] [
S 0
0 B + CS−1CT

] [
I −S−1CT

0 I

]
We store S21 and CS−1 in A below the diagonal. There is no need to refer to

the leading upper triangular part of A.
Since B+CS−1CT is also a real skew-symmetric matrix, we continue to do the

factorization for it until we get to the tail, or no pivoting can be done.
(2) For the case of uplo = ’U’, we partition the n-by-n real skew-symmetric

matrix A into the following pattern

A =

[
B C

−CT S

]
where S is a 2-by-2 real skew-symmetric matrix, B is a n-2-by-n-2 real skew-
symmetric matrix and C is a n-2-by-2 real matrix.
For the factorization, we should make the following pivoting
a. Find the absolute maximum element of C and assume its row index is k.
b. If the maximum is less than or equal to |S12|, no pivoting is needed.
c. If the maximum is in the second column of C, and is greater than |S12|,

interchange the row and column n-1 and k. This can permute the maximum to S12.
k is recorded in the latter element of ipiv.
d. If the maximum is in the first column of C, and is greater than |S12|, inter-

change the row and column n and n-1, then row and column n-1 and k. This can
permute the maximum to S12. -k is recorded in the latter element of ipiv.
e. If both the maximum and S12 are 0, the matrix is singular and the process

should be terminated.
Then factorize the matrix into the following pattern[

B C
−CT S

]
=

[
I CS−1

0 I

] [
B + CS−1CT 0

0 S

] [
I 0

−S−1CT I

]
We store the S12 and CS−1 in A above the diagonal. There is no need to refer

to the leading lower triangular part of A.
Since B+CS−1CT is also a real skew-symmetric matrix, we continue to do the

factorization for it until we get to the head, or no pivoting can be done.

subroutine *LAKYF(uplo, n, nb, kb, A, lda, ipiv, w, ldw, info)

Function
The subroutine computes factorization of a real skew-symmetric matrix A using

the Bunch partial pivoting method. It is blocked version called by *KYTRF.

Differences from symmetric case
(1) The diagonal elements of A are implied to be 0 and not accessed.
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(2) The interchanges of pivoting stored in ipiv have a different layout. Refer to
the *KYTRF.

Algorithm
Refer to the *KYTRF.

subroutine *KYTF2(uplo, n, A, lda, ipiv, info)

Function
The subroutine computes factorization of a real skew-symmetric matrix A using

the Bunch partial pivoting method. It is unblocked version called by *KYTRF.

Differences from symmetric case
(1) The diagonal elements of A are implied to be 0 and not accessed.
(2) The interchanges of pivoting stored in ipiv have a different layout. Refer to

the *KYTRF.

Algorithm
Refer to the *KYTRF.

subroutine *KYTRS2(uplo, n, nrhs, A, lda, ipiv, B, ldb, work, info)

Function
The subroutine solves triangular real skew-symmetric linear system factorized

by *KYTRF. It is blocked version and called by *KYSV if the size of work is equal
to or greater than N.

Differences from symmetric case
(1) The diagonal elements of A are implied to be 0 and not accessed.
(2) The interchanges of pivoting stored in ipiv have a different layout. Refer to

the *KYTRF.

Algorithm
Be the same as 2-by-2 blocked case of symmetric subroutine except that the

interchanges stored in ipiv are in skew-symmetric layout.

subroutine *KYTRS(uplo, n, nrhs, A, lda, ipiv, B, ldb, info)

Function
The subroutine solves triangular real skew-symmetric linear system factorized

by *KYTRF. It is unblocked version and called by *KYSV if the size of work is less
than N.

Differences from symmetric case
(1) The diagonal elements of A are implied to be 0 and not accessed.
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(2) The interchanges of pivoting stored in ipiv have a different layout. Refer to
the *KYTRF.

Algorithm
Be the same as 2-by-2 blocked case of symmetric subroutine except that the

interchanges stored in ipiv are in skew-symmetric layout.

subroutine *KYTRI2(uplo, n, A, lda, ipiv, work, lwork, info)

Function
The subroutine inverts triangular real skew-symmetric matrix factorized by

*KYTRF. It is a shell and calls *KYTRI2X or *KYTRI depending on the block size. If
the block size is less than N, *KYTRI2X is called, or *KYTRI is called.

Differences from symmetric case
(1) The diagonal elements of A are implied to be 0 and not accessed.
(2) The interchanges of pivoting stored in ipiv have a different layout. Refer to

the *KYTRF.

Algorithm
Be the same as 2-by-2 blocked case of symmetric subroutine except that the

interchanges stored in ipiv are in skew-symmetric layout.

subroutine *KYTRI2X(uplo, n, A, lda, ipiv, work, nb, info)

Function
The subroutine inverts triangular real skew-symmetric matrix factorized by

*KYTRF. It is blocked version.

Differences from symmetric case
(1) The diagonal elements of A are implied to be 0 and not accessed.
(2) The interchanges of pivoting stored in ipiv have a different layout. Refer to

the *KYTRF.

Algorithm
Be the same as 2-by-2 blocked case of symmetric subroutine except that the

interchanges stored in ipiv are in skew-symmetric layout.

subroutine *KYTRI(uplo, n, A, lda, ipiv, work, info)

Function
The subroutine inverts triangular real skew-symmetric matrix factorized by

*KYTRF. It is unblocked version.

Differences from symmetric case
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(1) The diagonal elements of A are implied to be 0 and not accessed.
(2) The interchanges of pivoting stored in ipiv have a different layout. Refer to

the *KYTRF.

Algorithm
Be the same as 2-by-2 blocked case of symmetric subroutine except that the

interchanges stored in ipiv are in skew-symmetric layout.

subroutine *KYCONV(uplo, way, n, A, lda, ipiv, e, info)

Function
The subroutine permutes interchanges of real skew-symmetric matrix factorized

by *KYTRF.

Differences from symmetric case
(1) The diagonal elements of A are implied to be 0 and not accessed.
(2) The interchanges of pivoting stored in ipiv have a different layout. Refer to

the *KYTRF.

Algorithm
Be the same as 2-by-2 blocked case of symmetric subroutine except that the

interchanges stored in ipiv are in skew-symmetric layout.

5 eigensolver subroutines in LAPACK
5.1 List of subroutines
Subroutine name Describe Corresponding

symmetric subroutine

KYEV solving eigenproblem of
real skew-symmetric matrix SYEV

KYTRD orthogonally reducing real skew-symmetric
matrix to tridiagonal form SYTRD

LATRDK orthogonally reducing real skew-symmetric
matrix to tridiagonal form, blocked LATRD

KYTD2 orthogonally reducing real skew-symmetric
matrix to tridiagonal form, unblocked SYTD2

KTEV solving eigenproblem of real
skew-symmetric tridiagonal matrix STEV

KTEQR solving eigenproblem of real
skew-symmetric tridiagonal matrix, core QR method STEQR

KYGV solving generalized eigenproblem
of real skew-symmetric matrix SYGV

KYGST reducing real skew-symmetric generalized
eigenproblem to standard form, blocked SYGST

KYGS2 reducing real skew-symmetric generalized
eigenproblem to standard form, unblocked SYGS2

KYSWAPR applying elementary permutation
on real skew-symmetric matrix SYSWAPR
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5.2 Subroutine prototypes, functions, features and algotithms
subroutine *KYEV(jobz, uplo, n, A, lda, w, work, lwork, info)

Function
The subroutine solves eigenproblem of real skew-symmetric matrix matrix A.

Differences from symmetric case
(1) The diagonal elements of A are implied to be 0 and not accessed.
(2) w has a different layout compared with *SYEV.
It should be avoided to calculate and store complex values in real subroutines.

So the layout of eigenvalues in w is different with subroutine *SYEV in symmetric
case, where all the eigenvalues are stored in w. In this subroutine, the original
matrix is reduced to real skew-symmetric diagonal block form. The size of blocks
are 1 (indicate eigenvalue 0) or 2 (indicate a pair of conjugate pure imaginary
eigenvalues). The subdiagonal elements of the reduced diagonal block matrix is
stored at the front of w. The last element in w is always 0. Non-zero elements in
w are always positive and sorted in decending order.
For example, A real skew-symmetric matrix will be reduced to the following

diagonal block form 
0 −5
5 0

0 −2
2 0

0


and elements in w is (5, 0, 2, 0, 0). This shows the eigenvalues of original matrix
is 5i, −5i, 2i, −2i, 0.
If jobz = ’V’, A is overwritten by the orthogonal transformation matrix which

transforms the original matrix to diagonal block form.

Algorithm
Be the same as symmetric case, except for calling *KYTRD instead of *SYTRD

and *KTEQR instead of *STEQR. Whether the orthogonal transformation matrix
is needed or not, we call *KTEQR. *STERF has no corresponding skew-symmetric
subroutine because of the difference of QR algorithm.

subroutine *KYTRD(uplo, n, A, lda, e, tau, work, lwork, info)

Function
The subroutine reduces matrix A to real skew-symmetric tridiagonal matrix by

orthogonal transformation. It is a shell and calls *LATRDK and *KYR2K for the
main body of matrix, then calls *KYTD2 for the tail of matrix.

Differences from symmetric case
(1) The diagonal elements of A are implied to be 0 and not accessed.
(2) The diagonal elements array d as output is deleted, for its implicit values 0.
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Algorithm
The algorithm is similar as symmetric case, but it has some simplifications due

to the property of skew-symmetric structure. Both unblocked and blocked case are
described here.
In general, by applying a series of Householder transformation Hi = I − τiviv

T
i ,

we reduce a skew-symmetric matrix A to skew-symmetric tridiagonal form T.
T = Hn . . . H1AH1 . . .Hn

For the initial transformation, we have

A1 = H1AH1

= (I − τ1v1v
T
1 )A(I − τ1v1v

T
1 )

= A− τ1v1v
T
1 A− τ1Av1v

T
1 + τ21 v1v

T
1 Av1v

T
1

The term τ21 v1v
T
1 Av1v

T
1 = 0 for the property of skew-symmetric structure. By

denoting xi = τiAvi, we have A1 = A+ v1x
T
1 − x1v

T
1 , which is a *KYR2 operation.

In the unblock subroutine *KYTD2, we apply this formula.
For the blocked subroutine, we represent the formula into block form. To do

this, we exert induction.
In the case i = 1, let V1 = (v1) and X1 = (x1), we have A1 = A+ V XT −XV T .
Suppose that when i = k, Ak can be represented as Ak = Hk . . . H1AH1 . . .Hk =

A+ VkX
T
k −XkV

T
k , where Vk = (v1, . . . , vk) and Xk = (x1, . . . , xk).

To proof the case i = k+1, we need to find vk+1 and xk+1, and show Ak+1 still
has the form Ak+1 = Hk+1 . . .H1AH1 . . . Hk+1 = A+Vk+1X

T
k+1−Xk+1V

T
k+1. There

are 3 steps.
(1) vk+1 can be evaluated by calling *DLARFG with the input uk+1, where

uk+1 = A(:, k + 1) + VkX
T
k (:, k + 1)−XkV

T
k (:, k + 1)

and A(:, k + 1) is the column k+1 of A.
(2) xk+1 can be evaluated by

xk+1 = τk+1Akvk+1

= τk+1(A+ VkX
T
k −XkV

T
k )vk+1

= τk+1(Avk+1 + VkX
T
k vk+1 −XkV

T
k vk+1)

(3) Apply the Householder transformation to Ak, we have
Ak+1 = Hk+1AkHk+1

= (I − τk+1vk+1v
T
k+1)Ak(I − τk+1vk+1v

T
k+1)

= Ak − τk+1vk+1v
T
k+1Ak − τk+1Akvk+1v

T
k+1

= A+ VkX
T
k −XkV

T
k + vk+1x

T
k+1 − xk+1v

T
k+1

= A+ Vk+1X
T
k+1 −Xk+1V

T
k+1

In blocked case, we construct V and X in the leading block with *LATRDK, and
update the rest of matrix by *KYR2K.
Refer [6] for more details.
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subroutine *LATRDK(uplo, n, nb, A, lda, e, tau, w, ldw)

Function
The subroutine reduces leading block of matrix A to real skew-symmetric tridi-

agonal form by orthogonal transformation. Then its caller *KYTRD can update the
rest of matrix by calling BLAS3 subroutines *KYR2K.

Differences from symmetric case
(1) The diagonal elements of A are implied to be 0 and not accessed.
(2) The diagonal elements array d as output is deleted, for its implicit values 0.

Algorithm
Refer to the *KYTRD.

subroutine *KYTD2(uplo, n, A, lda, e, tau, info)

Function
The subroutine reduces matrix A to real skew-symmetric tridiagonal form by

orthogonal transformation. It is unblocked version called by *KYTRD.

Differences from symmetric case
(1) The diagonal elements of A are implied to be 0 and not accessed.
(2) The diagonal elements array d as output is deleted, for its implicit values 0.

Algorithm
Refer to the *KYTRD.

subroutine *KTEV(jobz, n, d, e, z, ldz, work, info)

Function
The subroutine solves eigenproblem of real skew-symmetric tridiagonal matrix.

Differences from symmetric case
The subdiagonal elements of original matrix as input is stored in e and the

subdiagonal elements of reduced diagonal block matrix as output is stored in d
with the same layout as *KYEV. d is not referenced as input, for its implicit values
0.
If jobz = ’V’, ldz stores the orthogonal transformation matrix which transforms

the original tridiagonal matrix to diagonal block form.

Algorithm
Be the same as symmetric case, except for calling *KTEQR instead of *STEQR.
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subroutine *KTEQR(compz, n, e, z, ldz, work, info)

The subroutine solves eigenproblem of real skew-symmetric tridiagonal matrix.
It’s the core double shift QR/QL subroutine, called by *KYEV and *KTEV.

Differences from symmetric case
The diagonal elements array d is deleted, for its implicit values 0. The subdi-

agonal elements of original matrix is stored in e and the subdiagonal elements of
reduced diagonal block matrix will overwrite e with the same layout as *KYEV,
except for the last element, for the dimension of e being N-1.

Algorithm
We adopt standard Francis double shift QR/QL iteration to reduce the real skew-

symmetric tridiagonal matrix to 2-by-2 diagonal block form. What’s more, for the
property of skew-symmetric structure, the Householder reflection can be simpli-
fied. Denote the real skew-symmetric tridiagonal matrix T, and suppose none of its
subdiagonal elements is zero (or we can split it into submatrices). We make a shift
at the initial step, and then chase and annihilate the nonzero bulgy elements under
the subdiagonal.
The iteration can be done by QR and QL method, corresponding to the value of

first and last elements of subdiagonal. For brevity, we show the QR iteration only.
One loop of iteration has 2 steps.
(1) Adopt the shift and do the initial step. Apply the following transformation

to T.
T1 =

[
A0 0
0 I

]
T

[
A0 0
0 I

]
where A0 is a 3-by-3 symmetric matrix representing the Householder reflection

A0 =

−p0
s0

0 − r0
s0

0 1 0
− r0

s0
0 p0

s0


Here β is the shift, p0 = −t21 + β, r0 = t1t2, s0 = sign(p0)

√
p20 + r20 and tk is

the k-th element of subdiagonal. Due to the skew-symmetric structure, different
from a full 3-by-3 Householder reflection matrix, A0 has 4 zeros, which make it
degenerating to a combination of a plane rotation and an axis reflection.
Usually the Francis shift β = t2n−1 perform well in convergence. But there

are some matrices with special structure that may lead to invariant iteration. For
example, the following two matrices will fail to converge under single precision
subroutine

T =

0 −1 0
1 0 −1
0 1 0

 or

0 −1 0 0
1 0 −10−4 0
0 10−4 0 −1
0 0 1 0


This is because in both cases the orthogonal matrix in QR decomposition of

Ts = T 2 + t2n−1I is close to identity matrix under limited precision and make the
iteration invariant.
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To resolve this problem, we adopt an exceptional shift every 10 steps of iter-
ation. Different with the exceptional shift in [7], we use a more straightforward
shift to force the mass scattering in Ts under certain precision.
Suppose that

T =

0 −a 0
a 0 −b
0 b 0

 or

0 −a 0 0
a 0 −b 0
0 b 0 −c
0 0 c 0


and accordingly

Ts =

−a2 + b2 0 ab
0 −a2 0
ab 0 0

 or

−a2 + c2 0 ab 0

0 −a2 − b2 + c2 0 bc
ab 0 −b2 0
0 bc 0 0


In former case, when |a| is close to |b|, Ts is close to a permuted identity matrix.

The same problem occur for the latter case when |a| is close to |c|, and |b| is much
smaller than them.
To keep Ts being far away from such invariant case, we try to adjust the strength

of shift to avoid the first column of Ts being close to axis. Denoting Ts,adj = T 2 +
(1 − k)t2n−1I where k is a coefficient between 0 and 1, the first column of it is
[−a2+(1−k)b2, 0, ab]T or [−a2+(1−k)c2, 0, ab, 0]T . In these two cases, balance the
vector by−a2+(1−k)b2 = ±ab or−a2+(1−k)c2 = ±ab, we get k = (−a2+b2∓ab)/b2

or k = (−a2+c2∓ab)/c2 accordingly. This means that in above two invarient cases,
k = |b/a| will perform well under the asumption that |a| ≈ |b| or |a| ≈ |c|, |b| ≪ |a|.
So the shift is adjusted every 10 steps of iteration by multiplying 1 − k, where

k = |tn−2/tn−1| in QR method. To avoid the case of |tn−2| ≫ |tn−1|, we limit k ≤ 1.
(2) After the step 1, the real skew-symmetric matrix has a bulge. The leading

4-by-4 blocks has the following structure

T1 =


0
p1 0
0 ∗ 0
r1 0 ∗ 0


Although * may represent some non-zero values, we only use p1 and r1 to form the
next transformation, which is a Householder reflection to annihilate the bulge r1.
The transformation has the very similar structure.

T2 =

1 A1

I

T1

1 A1

I


where A1 is a 3-by-3 symmetric matrix

A1 =

−p1
s1

0 − r1
s1

0 1 0
− r1

s1
0 p1

s1


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Here s1 = sign(p1)
√

p21 + r21 and the matrix also has 4 zeros. After transforma-
tion, T2 also has a bulge with the same structure at next lower-right position. We
use p2 and r2 in T2 to form next Householder reflection.
Continue to chase and annihilate the bulge and get to the end of T, we complete

a loop of iteration. Near the end, the rest of elements of T may not be enough to
form matrix larger than 3-by-3, so the transformation matrix should correspond-
ingly degenerate.
The iteration is terminated if no adjacent elements at subdiagonal are both

nonzero, which means T has been decomposed into 2-by-2 skew-symmetric blocks,
and zeros. To define the zero velue tk numerically, we set the following criterion

tk < ϵ(tk−1tk+1)
1
2

where ϵ is a small enough value defined in LAPACK.
Refer section 4.4.8 of [4] or [7] for more details.

subroutine *KYGV(itype, jobz, uplo, n, A, lda, B, ldb, w, work, lwork, info)

Function
The subroutine solves generalized eigenproblem of matrix A and B, where A is

real skew-symmetric matrix and B is positive definite matrix.

Differences from symmetric case
(1) The diagonal elements of A are implied to be 0 and not accessed.
(2) The subdiagonal elements of reduced diagonal block matrix is stored in W

with the same layout as *KYEV.

Algorithm
Be the same as symmetric case, except for calling *KYEV instead of *SYEV and

*KYGST instead of *SYGST.

subroutine *KYGST(itype, uplo, n, A, lda, B, ldb, info)

Function
The subroutine reduces real skew-symmetric-definite generalized eigenproblem

to standard form. This subroutine is called by *KYGV.

Differences from symmetric case
The diagonal elements of A are implied to be 0 and not accessed.

Algorithm
Be the same as symmetric case, except for the sign of some inner operations.

subroutine *KYGS2(itype, uplo, n, A, lda, B, ldb, info)

Function
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The subroutine reduces real skew-symmetric-definite generalized eigenproblem
to standard form. This subroutine is called by *KYGST to process the tail part using
unblock code.

Differences from symmetric case
The diagonal elements of A are implied to be 0 and not accessed.

Algorithm
Be the same as symmetric case, except for the sign of some inner operations.

subroutine *KYSWAPR(uplo, n, A, lda, i1, i2)

Function
The subroutine applies elementary permutation on the rows and columns of a

real skew-symmetric matrix.

Differences from symmetric case
The diagonal elements of A are implied to be 0 and not accessed.

Algorithm
Be the same as symmetric case.

6 Matrix norm subroutines in LAPACK
6.1 List of subroutines

Subroutine name Describe Corresponding
symmetric subroutine

LANKY norm of real
skew-symmetric matrix LANSY

LANKT norm of real skew-symmetric
tridiagonal matrix LANST

6.2 Subroutine prototypes, functions, features and algotithms
subroutine *LANKY(norm, uplo, n, A, lda, work)

Function
The subroutine computes the norm of a real skew-symmetric matrix.

Differences from symmetric case
The diagonal elements of A are implied to be 0 and not accessed.

Algorithm
Be the same as symmetric case.
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subroutine *LANKT(norm, n, e)

Function
The subroutine computes the norm of a real skew-symmetric tridiagonal matrix.

Differences from symmetric case
The diagonal elements array d as input is deleted, for its implicit values 0.

Algorithm
Be the same as symmetric case.

7 Performance
We test the performance of two subroutines *KYTRF and *KTEQR, which have

major algorithm modifications between symmetric and skew-symmetric cases. The
dimention of matrix in testcases are 1000, 2000 and 4000. The performance is
evaluated with the average elapsed time (in millisecond) of running 5 times. We
use gcc and gfortran with CFLAGS = -O3 and FFLAGS = -O2 -frecursive. The test
run with single thread on Intel Xeon E5-1660 v3 at 3.0 GHz.

Dimention SKYTRF SSYTRF SKTEQR SSTEQR
1000 106.4 99.8 484.4 928.2
2000 794.0 793.6 2606.6 6462.6
4000 6247.0 6075.0 18031.4 47478.0
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