
Description of the SDF File Format for
Version 1.1

Keith Bennett
September 4, 2024

1 The SDF File Format

The CFSA group at the University of Warwick actively maintains several complex codebases and has plans
to expand the variety of codes in the future. To ease maintenance and facilitate sharing of data between
codes it is beneficial for all of these codes to output results to the same file format. Such a format needs
to be “self-describing”, which means that each variable dumped to the file is accompanied by a description
of the variable and enough information for a visualisation tool to know how to display its contents in a
meaningful way.

There already exists a wide variety of output formats but all have been found to have some shortcomings.
In particular, none of the popular file formats benchmarked were found to be as fast for reading and writing
to disk as a native MPI-IO implementation. For this reason, we have chosen to design our own format
which is as simple as possible whilst providing the basic features we require. An additional benefit to this
approach is that it reduces the number of dependencies required to make use of the format.

We have chosen to call this format “SDF” which stands for “Self Describing Format”. Files written to
this format will have the suffix “.sdf”.

This document should fully describe the contents of an SDF version 1.1 file. From this it should be
possible to write a compliant library for reading and writing SDF files.

2 File Structure

The layout of an SDF file is as follows:

File header
Block header #1

Block metadata #1
Block data #1

Block header #2
Block metadata #2

Block data #2
...

Block header #1
Block metadata #1

Block header #2
Block metadata #2

...

The file header contains basic information about the simulation, number of blocks contained in the file
and the location of the first block header. Each block header knows the location of the following block
header.

In the outline shown above it can be seen that the block headers and metadata are repeated at the end
of the file. An older version of the format just wrote the header and metadata for each block followed by

1



the data for that block and then moved on to the next block. This mode of operation is still supported but
it has its shortcomings. It is often the case that the only data required from a file is a list of its contents. A
good example of this is a visualisation tool such as VisIt. The first thing that it does is to scan the contents
of a file so that it can build a list of menu entries. For this purpose it is much better to have all of the
header and metadata in a contiguous block without having to skip the data block each time. This can be
achieved by placing an extra copy of the metadata at the end of the file.

3 File Header

Every SDF file starts with a header containing basic global information about the file and its contents. The
data written to the file header in version 1.1 of the format is as follows:

Offset Datatype Variable Description
(bytes) & size name

0 char 4 sdf Always “SDF1” in a valid file

4 int 4 endianness An integer used to indicate the endianness of
the file. This is a fixed constant which should
never need to be changed. It should writ-
ten as 0x0f0e0201 (16911887) on little-endian ma-
chines and 0x01020e0f on big-endian machines.
An opposite-endian machine will read it as being
252576257.

8 int 4 sdf version Version number. If this is higher than the version
of the reader then the reader MUST fail as the file
will almost certainly not be readable. If the version
of the file is higher than version 1 then the items
listed beyond “sdf revision” may not correspond to
the contents of the file header at all.

12 int 4 sdf revision Revision number. If this is higher than the version
of the reader then it should try to continue. Revision
changes only add data to structures, never remove
or move data. If the revision of the file is higher
than revision 1 then there may be more items than
are listed here but these should not affect the ability
to properly read the file.

16 char 32 code name The name of the program which generated the file.
eg. “Epoch2d”

48 int 8 first block location The location of the first block header relative to the
start of the file. If a reader wishes to read the file
by reading metadata followed by data on a block by
block basis, then it should seek to this position to
locate the first block header.

2



Offset Datatype Variable Description
(bytes) & size name

56 int 8 summary location The location of the first block header in the sum-
mary section relative to the start of the file. If a
reader wishes to scan the contents of a file before
reading any data then it should seek to this posi-
tion to locate the first block header.

64 int 4 summary size The total size of all the metadata written to the
summary.

68 int 4 nblocks The number of blocks in the file. When writing this
should be zero until the file is written and closed.

72 int 4 block header length The length in bytes of the block headers. This is a
fixed length which excludes the individual block’s
metadata.

76 int 4 step The simulation step number.

80 real 8 time The simulation time.

88 int 4 jobid1 This integer and the one which follows uniquely
identify the simulation which wrote the data. All
output files created by a simulation will have the
same jobid flags. If a job is restarted then the jobid
will be retained. Currently the time in seconds and
milliseconds is used but this may change.

92 int 4 jobid2 See above

96 int 4 string length All long strings in the file are of this length. Allo-
cate this much space for all future string variables.
See below for further details.

100 int 4 code io version A revision number for the program’s output. The
code I/O version is written in case the semantics of
the output change in such a way that the code can-
not interpret the data based on the self-describing
semantics alone. It should rarely be required.

104 char 1 restart flag A single byte that is equal to one if this file can be
used as a restart dump and zero otherwise.

105 char 1 subdomain file A single byte that is equal to one if this file rep-
resents a single subdomain and zero if it contains
data for the entire simulation domain. Although
not currently supported, a future version of the
I/O library will be able to write one output file
per process. This flag will then be used to dermine
if the file was generated in such a manner.

106

There may be padding at the end of the file header.
There are two fixed character lengths used in the dump. They are fixed to ease support for FORTRAN

3



which has fairly weak string handling support. Short strings are written using CHARACTER*32, chosen
because 31 is the maximum identifier length in standard FORTRAN. The second length is “String length”,
which can be chosen at run time but remains fixed within a single dump file. It defaults to 64. For the sake
of brevity, this length will be referred to as “s” throughout the remainder of this document.

4 Block Headers

All block headers are exactly the same size and contain the same information. They contain information
which is required by all blocks to identify their contents, such as an identifier, data location, etc. They
also contain a blocktype which is used to determine the size and contents of the metadata section since it
is different for each block type. If there are any entries of variable size in the metadata section then the
information required to allocate memory must be contained in the block header.

Offset Datatype Variable Description
(bytes) & size name

0 int 8 next block location The location of the next block header relative to
the start of the file.

8 int 8 data location The location of the data for the current block. Note
that the data can be placed anywhere in the file and
is not at a fixed location relative to the metadata.

16 char 32 block id The block identifier. This is a short string which
uniquely identifies the block within the file.

48 int 8 data length The size of the data section in the current block.
This can be used together with “datatype” to de-
termine the total number of elements if the variable
is an array.

56 int 4 blocktype The type of the block. This determines the contents
of the metadata section. If a reader does not have
support for a given blocktype then it can just skip
to the next block using next block location.

60 int 4 datatype The basic datatype of the variable. This is specified
using a named constant, described later.

64 int 4 ndims The number of dimensions of the variable if it is an
array. If the variable is not an array then this is
equal to 1.

68 char s block name The display name used for the variable. This is the
name presented to a user in a visualisation tool so
it must be human readable and descriptive of the
variable.

68+s int 4 block info length The length of the block-specific header information.
Introduced in version 1.1.

72+s

Here, “s” is the size of “string length” as specified in the file header. For the sake of brevity, the value
of “ndims” will be referred to as “n” throughout the remainder of this document.

4



The block-id uniquely identifies a block with a machine readable identifier. Typically, this is just the
variable name (in lower case). When data is presented using VisIt and other tools, the “name” field is
used. This allows the presentation of data names to change without breaking code which relies on a fixed
name. Previous versions of the format also used a separate “class” name. Such groupings can easily be
accomplished by separating components using a “/” symbol. Since this convention allows greater flexibility,
the class name has been dropped.

For multi-dimensional arrays, the value of “ndims” will be greater than one and the size of the array in
each dimension will be determined by a “dims” array in the block’s metadata section. It should be noted
that ALL multi-dimensional arrays are written using column-major order. This is the ordering used by
Fortran, Matlab and VisIt. The C programming language uses row-major order but since it doesn’t really
have proper support for multi-dimensional arrays it doesn’t get a vote.

The possible values for “blocktype” are itemised below. They are defined as constants in the SDF
Fortran module, as indicated by the “c ” prefix.

5



Constant name Value Description

c blocktype scrubbed -1 Deleted block. Code should ignore.

c blocktype null 0 Unknown block type. This is an error.

c blocktype plain mesh 1 Block describing a plain mesh or grid.

c blocktype point mesh 2 Block describing a point mesh or grid.

c blocktype plain variable 3 Block describing a variable on a plain mesh.

c blocktype point variable 4 Block describing a variable on a point mesh.

c blocktype constant 5 A simple constant not associated with a grid.

c blocktype array 6 A simple array not associated with a grid.

c blocktype run info 7 Information about the simulation.

c blocktype source 8 Embedded source code block.

c blocktype stitched tensor 9 List of blocks to combine as a tensor or vector.

c blocktype stitched material 10 List of blocks to combine as a multi-material mesh.

c blocktype stitched matvar 11 List of blocks to combine as a multi-material variable.

c blocktype stitched species 12 List of blocks to combine as a species mesh. This is
similar to a multi-material mesh except there is no
interface in a mixed cell.

c blocktype species 13 Information about a particle species.

c blocktype plain derived 14 This blocktype is never actually written to an SDF file.
It is used within the C-library and VisIt to represent a
plain variable whose content is generated dynamically
based on other data in the file.

c blocktype point derived 15 As above, this blocktype is never actually written
to an SDF file. It serves the same purpose as
c blocktype plain derived, except the variable is de-
fined on a point mesh.

c blocktype multi tensor 16 This is the same as c blocktype stitched tensor, except
that all the data for the stitched variables is contained
in the data section of this block rather than the blocks
which are referenced.

c blocktype multi material 17 Same as above, for c blocktype stitched material

c blocktype multi matvar 18 Same as above, for c blocktype stitched matvar

c blocktype multi species 19 Same as above, for c blocktype stitched species

The possible values for “datatype” are itemised below.

6



Constant name Value Description

c datatype null 0 No datatype specified. This is an error.

c datatype integer4 1 4-byte integers.

c datatype integer8 2 8-byte integers.

c datatype real4 3 4-byte floating point (ie. single precision).

c datatype real8 4 8-byte floating point (ie. double precision).

c datatype real16 5 16-byte floating point (ie. quad precision).

c datatype character 6 1-byte characters.

c datatype logical 7 Logical variables. (Represented as 1-byte characters).

c datatype other 8 Unspecified datatype. The type of data in the block must be
inferred from the block type.

5 Block Types

In this section we describe the metadata and data contents for each of the possible block types. Note
that as the format evolves more block types may be added, but that should not affect the ability of old
readers to read only the block types which they know about. Since the metadata follows on from the block
header, the offset given starts “m” bytes on from the start of the block. The value of “m” is that given
by “block header length” in the file header. Note that the metadata may not necessarily continue directly
after the last entry read from the block header, since the block header size may change in future revisions.
For this reason you should always seek to a position “m” bytes after the start of the block before reading
the block metadata.

5.1 c blocktype plain mesh and c blocktype point mesh

Since grid based meshes and point meshes are quite similar, we will describe them both here. A mesh
defines the locations at which variables are defined. Since the geometry of a problem is fixed and most
variables will be defined at positions relative to a fixed grid, it makes sense to write this position data once
in its own block. Each variable will then refer to one of these mesh blocks to provide their location data.

Both grid based meshes and point meshes write the same basic information at the start of the header
and this common metadata is given below.

7



Offset Datatype Variable Description
(bytes) & size name

m real 8 * n mults The normalisation factor applied to the grid data
in each direction.

m+8n char 32 * n labels The axis labels for this grid in each direction.

m+40n char 32 * n units The units for this grid in each direction after the
normalisation factors have been applied.

m+72n int 4 geometry type The geometry of the block.

m+72n+4 real 8 * n minval The minimum coordinate values in each direction.

m+80n+4 real 8 * n maxval The maximum coordinate values in each direction.

m+88n+4

Here, “m” is the size of “block header length” as specified in the file header and “n” is the number of
dimensions as specified in the block header.

The “geometry type” specifies the geometry of the current block and it can take one of the following
values:

Constant name Value Description

c geometry null 0 Unspecified geometry. This is an error.

c geometry cartesian 1 Cartesian geometry.

c geometry cylindrical 2 Cylindrical geometry.

c geometry spherical 3 Spherical geometry.

At the end of the metadata, grid based meshes and point meshes contain differing information. For a
grid based mesh (“c blocktype plain mesh”) the last items in the header are as follows:

Offset Datatype Variable Description
(bytes) & size name

m+88n+4 int 4n dims The number of grid points in each dimension.

m+92n+4

Here, “m” is the size of “block header length” as specified in the file header and “n” is the number of
dimensions as specified in the block header.

The data is then written at the location specified by “data location” in the block header. Note that
this will not always be in the position immediately following the block header so a reader must always seek
to this location explicitly.

For a grid based mesh, the data written is the locations of node points for the mesh in each of the
simulation dimensions. Therefore for a 3d simulation of resolution (nx, ny, nz), the data will consist of a
1d array of X positions with (nx+1) elements followed by a 1d array of Y positions with (ny+1) elements
and finally a 1d array of Z positions with (nz + 1) elements. Here the resolution specifies the number of
simulation cells and therefore the nodal values have one extra element. In a 1d or 2d simulation, you would
write only the X or X and Y arrays respectively.

For a point mesh (“c blocktype point mesh”) the last items in the header are as follows:

8



Offset Datatype Variable Description
(bytes) & size name

m+88n+4 int 8 np Number of points

m+88n+12

Here, “m” is the size of “block header length” as specified in the file header and “n” is the number of
dimensions as specified in the block header.

The data written is the locations of each point in the first direction followed by the locations in the
second direction and so on. Thus, for a 3d simulation, if we define the first point as having coordinates
(x1, y1, x1) and the second point as (x2, y2, z2), etc. then the data written to file is a 1d array with elements
(x1, x2, ..., xnp), followed by the array (y1, y2, ..., ynp) and finally the array (z1, z2, ..., znp) where “np” corre-
sponds to the number of points in the mesh. For a 1d simulation, only the x array is written and for a 2d
simulation only the x and y arrays are written.

The alternative method (which is NOT used) is to write the location data one point at a time so that
you have a single array in the form (x1, y1, z1, x2, y2, z2, ..., xnp, ynp, znp). For the time being it is thought
that the first method will be the most convenient. At a later time, we may switch to using the second
method if it proves more useful. This can easily be done by defining a new blocktype and incrementing the
revision number.

5.2 c blocktype plain variable and c blocktype point variable

As with the mesh data described previously, the grid based variables and point variables are quite similar
so we will describe them both here. Both blocktypes describe a variable which is located relative to the
points given in a mesh block.

Both grid based variables and point variables write the same basic information at the start of the header
and this common metadata is given below.

Offset Datatype Variable Description
(bytes) & size name

m real 8 mult The normalisation factor applied to the variable data.

8+m char 32 units The units for this variable after the normalisation factor has
been applied.

40+m char 32 mesh id The “id” of the mesh relative to which this block’s data is
defined.

72+m

Here, “m” is the size of “block header length” specified in the file header.
At the end of the metadata, grid based variables and point variables contain differing information. For

a grid based variable (“c blocktype plain variable”) the last items in the header are as follows:

Offset Datatype Variable Description
(bytes) & size name

72+m int 4n dims The number of grid points in each dimension.

72+m+4n int 4 stagger The location of the variable relative to its associated mesh.

76+m+4n

9



Here, “m” is the size of “block header length” specified in the file header and “n” is the number of
dimensions as specified in the block header.

The mesh associated with a variable is always node-centred, ie. the values written as mesh data specify
the nodal values of a grid. Variables may be defined at points which are offset from this grid due to grid
staggering in the code. The “stagger” entry specifies where the variable is defined relative to the mesh.
Since we have already defined the number of points that the associated mesh contains, this determines how
many points are required to display the variable. The entry is represented by a bit-mask where each bit
corresponds to a shift in coordinates by half a grid cell in the direction given by the bit position. Therefore
the value “1” (or “0001” in binary) is a shift by dx/2 in the x direction, “2” (or “0010” in binary) is a shift
by dy/2 in the y direction and “4” (or “0100” in binary) is a shift by dz/2 in the z direction. These can be
combined to give shifts in more than one direction. The system can also be extended to account for more
than three directions (eg. “8” for direction 4).

For convenience, a list of pre-defined constants are defined for the typical cases.
The “stagger” entry can take one of the following values:

Constant name Value Description

c stagger cell centre 0 Cell centred. At the midpoint between nodes. Implies an
(nx, ny, nz) grid.

c stagger face x 1 Face centred in X. Located at the midpoint between nodes on
the Y-Z plane. Implies an (nx+ 1, ny, nz) grid.

c stagger face y 2 Face centred in Y. Located at the midpoint between nodes on
the X-Z plane. Implies an (nx, ny + 1, nz) grid.

c stagger face z 4 Face centred in Z. Located at the midpoint between nodes on
the X-Y plane. Implies an (nx, ny, nz + 1) grid.

c stagger edge x 6 Edge centred along X. Located at the midpoint between nodes
along the X-axis. Implies an (nx, ny + 1, nz + 1) grid.

c stagger edge y 5 Edge centred along Y. Located at the midpoint between nodes
along the Y-axis. Implies an (nx+ 1, ny, nz + 1) grid.

c stagger edge z 3 Edge centred along Z. Located at the midpoint between nodes
along the Z-axis. Implies an (nx+ 1, ny + 1, nz) grid.

c stagger vertex 7 Node centred. At the same place as the mesh. Implies an (nx+
1, ny + 1, nz + 1) grid.

The data is then written at the location specified by “data location” in the block header. Note that
this will not always be in the position immediately following the block header so a reader must always seek
to this location explicitly.

For a grid based variable, the data written contains the values of the given variable at each point on
the mesh. This is in the form of a 1d, 2d or 3d array depending on the dimensions of the simulation. The
size of the array depends on the size of the associated mesh and the grid staggering as indicated above. It
corresponds to the values written into the “dims” array written for this block.

For a point variable (“c blocktype point variable”) the last items in the header are as follows:

10



Offset Datatype Variable Description
(bytes) & size name

72+m int 8 np Number of points

80+m

Here, “m” is the size of “block header length” specified in the file header.
Similarly to the grid based variable, the data written contains the values of the given variable at each

point on the mesh. Since each the location of each point in space is known fully, there is no need for a
stagger variable. The data is in the form of a 1d array with “np” elements.

5.3 c blocktype constant

This block is used for writing a simple constant to the file. Since the data written is small, there is no need
for a separate data block and the value is just written into the metadata section.

Offset Datatype Variable Description
(bytes) & size name

m type t data The actual constant to be written.

m+t

Here, “m” is the size of “block header length” as specified in the file header and “t” is the size of the
datatype specified in the block header.

5.4 c blocktype array

This block is used for writing a simple array to the file. This array is not associated with any mesh and
therefore cannot be plotted on a spatial grid.

Offset Datatype Variable Description
(bytes) & size name

m int 4n dims The dimensions of the array to be written.

m+4n type t*e data The actual array data.

m+4n+t*e

Here, “m” is the size of “block header length” as specified in the file header. “n” is the number of
dimensions, “t” is the size of the datatype and “e” is the number of elements all specified in the block
header.

5.5 c blocktype run info

This block contains information about the code which was used to generate the SDF file and further details
relating to the simulation, such as hardware on which it was run, etc.

11



Offset Datatype Variable Description
(bytes) & size name

m int 4 code version The version of the code.

4+m int 4 code revision The revision of the code.

8+m char s commit id The revision control commit ID for the code.

8+m+s char s sha1sum The SHA-1 checksum of the source code.

8+m+2s char s compile machine The machine name on which the code was compiled.

8+m+3s char s compile flags The compilation flags used when compiling the
code.

8+m+4s int 8 defines A bitmask of the pre-processor define flags used.
This is a 64-bit integer, so only 63 flags can be
used in total.

16+m+4s int 4 compile date The time at which the code was compiled, written
as seconds since the UNIX epoch.

20+m+4s int 4 run date The time at which the simulation first began run-
ning, written as seconds since the UNIX epoch.

24+m+4s int 4 io date The time at which this output file began writing,
written as seconds since the UNIX epoch.

28+m+4s

Here, “m” is the size of “block header length” and“s” is the size of “string length” both specified in the
file header.

5.6 c blocktype source

This block contains the source code which was used to generate the binary which generated this SDF file. It
is written as one long stream of bytes. In the current implementation, the byte stream consists of a gzipped
tar file which is uuencoded to form one long character string. No further metadata is required to describe
this output so the contents begin at “data location”. This data is a 1d character array of size given by
“data size” in the block header.

5.7 c blocktype stitched tensor, material, matvar and species

Variables in SDF files are written so that they correspond to spatial meshes wherever possible. This means
that variables which have multiple components, such as tensors, are written with a separate block for each
component. This data is then “stitched” back together and a separate block is used to instruct a reader as
to which blocks need to be combined and how to combine them. This improves flexibility since a block can
be used in multiple different ways. For example, you can have multi-material vectors and so on.

The “stitched” blocks just contain a list of all the blocks which need to be combined and the number of
dimensions in the resulting variable. All of this data is small, so it is written as metadata and there is no
data block for any of the “stitched” blocks.

A “c blocktype stitched tensor” block defines a vector or tensor field. The blocks which are itemised to
be combined into a tensor may be either point data or regular grid based data but the type used must be con-
sistent with the mesh on which the resulting tensor is to be defined. For a

12



“c blocktype stitched tensor” block, the metadata to be written is as follows:

Offset Datatype Variable Description
(bytes) & size name

m int 4 stagger The location of the tensor variable relative to its asso-
ciated mesh.

4+m char 32 mesh id The “id” of the mesh on which the resulting tensor is
defined.

36+m char 32n variable ids The “id” of each component in the tensor.

36+m+32n

For this and the blocks which follow, “m” is the size of “block header length” specified in the file header
and “n” is the number of dimensions as specified in the block header.

Note that there is no “ vector” blocktype since a vector is just a tensor with two or three components.
“c blocktype stitched material” defines a material mesh. This is a set of volume fraction arrays, one

for each material, which are combined to reconstruct the interfaces between materials for a multi-material
simulation. The number of materials to combine is determined by the “ndims” entry in the block header.
The metadata for this blocktype are as follows.

Offset Datatype Variable Description
(bytes) & size name

m int 4 stagger The location of the material relative to its as-
sociated mesh.

4+m char 32 mesh id The “id” of the mesh on which the resulting
material mesh is defined.

36+m s * n material names The name of each material component.

36+s n+m char 32n vfm ids The “id” of each volume fraction component.

36+(32+s)n+m

“c blocktype stitched matvar” defines a set of material variables to combine into a single variable. This
aggregate total is calculated by summing the values of each material variable multiplied by its associated
volume fraction block. The variables to combine may be listed in any order. They are matched with
their associated volume fraction by comparing the component of the “name” field following the final ”/”
character. A variable which is only defined on a subset of materials need only specify the materials for
which it is defined.

The number of materials to combine is determined by the “ndims” entry in the block header. The
metadata for this blocktype are as follows.

13



Offset Datatype Variable Description
(bytes) & size name

m int 4 stagger The location of the material variable relative to its as-
sociated mesh.

4+m char 32 mesh id The “id” of the mesh on which the resulting material
variable is defined.

36+m char 32 material id The “id” of the stitched material block for this material
variable.

68+m char 32n variable ids The “id” of each material component.

68+32n+m

A species mesh is similar to a material mesh except that the volume fraction arrays are used to deter-
mine the percentage of a particular species contained within a cell rather than define an interface. A species
mesh is associated with a specific material from a multi-material mesh.

Offset Datatype Variable Description
(bytes) & size name

m int 4 stagger The location of the species variable relative
to its associated mesh.

4+m char 32 mesh id The “id” of the mesh on which the resulting
species variable is defined.

36+m char 32 material id The “id” of the stitched material block for
this species variable.

68+m s material name The name of the material component on
which this species is defined.

68+s+m s * n species names The names of each species component.

68+(n+1)s+m char 32n variable ids The “id” of each species component.

68+32n+(n+1)s+m

5.8 c blocktype particle species

This blocktype has not yet been finalised.

6 Ideal sequence for reading SDF files

This section details the sequence that an ideal SDF reader should follow to parse a SDF file.

• Open the file.

• Read the “SDF1” string to confirm that this is a SDF file.

• If the “SDF1” string isn’t found then exit.

• Read the rest of the header info.

14



• Check that the endianness flag has the value c endianness (16911887). If not, then this file was written
on a different machine architecture. Either convert all the values read in from this point on or exit
with an error message.

• Check that the version is less than or equal to the version of the standard that the reader is written
to.

• If not then exit with an error message about getting a new reader.

• Check that the revision is less than or equal to the revision of the standard that the reader is written
to.

• If not then print a warning message, but continue.

• If the “nblocks” field is zero then exit since the file hasn’t been finished yet.

• If you wish to read the metadata followed by data for each block in turn, set the file pointer to
“first block location”. If instead you want to scan the contents of the file before reading any data, set
the file pointer to “summary info location”.

• Loop over “nblocks”

• Skip this step for the first block. For all subsequent blocks, set the file pointer to
“next block location” given in the block header for the previous block.

• Store the current file pointer value as “block start”.

• Read the block header

• Determine whether the reader can deal with the type of block which is described by the header. Also
check for user request for this variable etc.

• If not then the filepointer should be set to the value of “next block location” given in the block header
and then cycle back to the start of the loop.

• If you only require block information stored in the block header then it is valid to skip the remaining
steps and return to the start of the loop.

• Otherwise set the filepointer to be at “block start + block header size”.

• Read the block metadata for the correct type of block.

• If you only require block metadata then it is valid to skip the remaining steps and return to the start
of the loop VisIt plugin works in this way when populating the VisIt metadata server).

• Move the filepointer to “data location”.

• Read the block data and return to the start of the loop.

• After “nblocks” have been iterated, close the file.

Since there is no requirement on the order in which blocks are written into the file, it is not possible to
do sanity checks until the file has been parsed once, so a good reader should then do the following checks

• Check that all the meshes which are requested by mesh variables exist. If one of the meshes doesn’t
exist print a warning message and if the code cannot cope without a mesh then drop the variable.
The code should NOT fail at this point if it is possible to continue.

• Check that the sizes of variables match the sizes of the associated meshes. If not then print a warning
message and drop the variable. The code should NOT fail at this point if it’s possible to continue.

15


