MPI Tags issue in IPPL

S. Mayani (PSI)

Sonali Mayani
Paul Scherrer Institut (PSI)

September 10, 2024

PAUL SCHERRER INSTITUT

S

MPI Tags

September 10, 2024

1

/8



Issue (on IPPL Github)

Issue: https://github.com/IPPL-framework/ippl/issues/282

The tags found in u h for MPI communication start overlapping after a certain run size (i.e. number of
MPI processes used), which causes correctness issues in code which relies on communication and uses these tags. For
example, this issue became visible when running the t on more than 512 nodes on Perimutter,
each having 4 GPUs.

This is now temporarily fixed by increasing the absolute distance between the tags which may be used at the same time, by
commit b27fa15

However, this is still an issue that we will run into for bigger runs which may reach this overlap limit, therefore, a permanent
solution for it should be found.

S. Mayani (PSI) MPI Tags



https://github.com/IPPL-framework/ippl/issues/282

Extent of the issue

® The issue was first found on Perlmutter GPUs when using more
than 512 nodes (=~ 2000 GPUs).

— Fixed by increasing interval between SOLVER_SEND and
SOLVER_RECV (before: 1000, now: 5000).

— Branch: scaling study_vico_paper.

® Happened again on Eiger, when using more than 64 nodes
(64*128 ~ 8000 MPI ranks).

— Fixed by increasing interval between SOLVER_SEND and
SOLVER_RECV (before: 5000, now: 16000).

— Branch: mpitags_fix_solverscaling.

® Checked CPU scalings on Perlmutter again.
— Same issue as Eiger.

S. Mayani (PSI) MPI Tags September 10, 2024 3/8



MPI Tags in Solver: Communication

// send
std::vector<MPI_Request> requests(0);

for (int 1 = 0; i < ranks; ++i) {
if (1Domains2[il.touches(ldom1)) {
auto intersection = 1Domains2[i].intersect(ldoml);

solver_send(mpi::tag::SOLVER_SEND, mpi::tag::0PEN_SOLVER, @, i, intersection,
ldoml, nghostl, viewl, fd_m, requests);

¥

// receive
const auto& Domainsl = layout_mp->getHostLocalDomains();
int myRank = Comm—>rank();

for (int i = 0; i < ranks; ++i) {
if (1Domains1[il.touches(ldom2)) {
auto intersection = 1Domains1[il.intersect(ldom2);

mpi::Communicator::size_type nrecvs;
nrecvs = intersection.size();

buffer_type buf =
Comm—>getBuffer<memory_space, Trhs>(mpi::tag::SOLVER_RECV + myRank, nrecvs);

Comm->recv(i, mpi::tag::OPEN_SOLVER, fd_m, sxbuf, nrecvs x sizeof(Trhs), nrecvs);
buf->resetReadPos();

unpack(intersection, view2, fd_m, nghost2, ldom2);

September 10, 2024



MPI Tags in Solver: solver _send

// Buffer message indicates the domain intersection (x, y, z, Xy, yz, Xz, Xxyz).
ippl::mpi::Communicator::buffer_type<memory_space> buf =
ippl::Comm—>getBuffer<memory_space, Tf>(BUF_MSG + id * 8 + i, nsends);

int tag = TAG + id;

ippl::Comm—>isend(i, tag, fd, *buf, requests.back(), nsends);
buf->resetWritePos();

® BUF_MSG = mpi::tag::SOLVER_SEND
® id =0

®ji=71

® TAG = mpi::tag::0PEN_SOLVER

— buffer_ID = mpi::tag::SOLVER_SEND + i
— tag = mpi::tag::0PEN_SOLVER

S. Mayani (PSI) MPI Tags September 10, 2024 5/8



MPI Tags in Solver: Receive

// receive
const auto& 1Domainsl
int myRank

= layout_mp—>getHostLocalDomains();
= Comm—>rank();
for (int i = @; i < ranks; ++i) {
if (Domains1[i].touches(ldom2)) {
auto intersection = 1Domainsl[i].intersect(ldom2);

mpi::Communicator::size_type nrecvs;
nrecvs = intersection.size();

buffer_type buf =
Comm—>getBuffer<memory_space, Trhs>(mpi::tag::SOLVER_RECV + myRank, nrecvs);

Comm—>recv(i, mpi::tag::0PEN_SOLVER, fd_m, xbuf, nrecvs * sizeof(Trhs), nrecvs);
buf->resetReadPos () ;

unpack(intersection, view2, fd_m, nghost2, ldom2);

— buffer_ID = mpi::tag::SOLVER_RECV + myRank
—> tag = mpi::tag::0PEN_SOLVER

September 10, 2024



MPI Tags in Solver: Summary

® |t seems like the problem is actually not the tag itself but the fact
that it is used to get the buffer ID.

® The tag of the messages is always the same
(mpi::tag::0PEN_SOLVER).

® From src/Communciate/Buffers.hpp: “If a buffer is requested
with the same ID as a buffer that has been previously allocated,
the same buffer will be used.”

® So probably the issue is that once the buffer ID of the send
overlaps with the receive (i.e. when i > interval size between
mpi::tag::SOLVER_SEND and mpi: :tag: : SOLVER RECV), then
the sending rank writes over a buffer that is actually being used
to receive by another rank. This messes up the communication.

S. Mayani (PSI) MPI Tags September 10, 2024 7/8



Testing whether this is the issue

Change the following in solver_send:

// Buffer message indicates the domain intersection (x, y, z, xy, yz, xz, xyz).
ippl::mpi::Communicator::buffer_type<memory_ space> buf =

ippl::Comm->getBuffer<memory_space, Tf>(BUF_MSG + id * 8 + i, nsends);
ippl::Comm->getBuffer<memory_space, Tf>(i, nsends);

This means that if
i < mpi::tag:SOLVER_RECV,

then there is no problem (and mpi::tag:SOLVER_RECV = 25000 so
that is okay for 128*128 ranks ~ 16'000).

— This works. Ran 10 jobs with this, all of them ran correctly,
whereas with the original code, 2 out of 5 runs were incorrect.

= This is indeed the issue.

S. Mayani (PSI) MPI Tags September 10, 2024 8/8



