

Internal Only - General

CIS Google Kubernetes

Engine (GKE) Benchmark
v1.6.0 - 06-04-2024

Page 1

Internal Only - General

Terms of Use

Please see the below link for our current terms of use:

https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/

https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/

Page 2

Internal Only - General

Table of Contents

Terms of Use ... 1

Table of Contents ... 2

Overview .. 6

Intended Audience ... 6

Consensus Guidance ... 7

Typographical Conventions .. 8

Recommendation Definitions ... 9

Title ... 9

Assessment Status .. 9
Automated ... 9
Manual.. 9

Profile ... 9

Description .. 9

Rationale Statement ... 9

Impact Statement.. 10

Audit Procedure .. 10

Remediation Procedure ... 10

Default Value ... 10

References .. 10

CIS Critical Security Controls® (CIS Controls®) .. 10

Additional Information ... 10

Profile Definitions ... 11

Acknowledgements .. 12

Recommendations ... 14

1 Control Plane Components .. 14

2 Control Plane Configuration .. 14
2.1 Authentication and Authorization ... 15

2.1.1 Client certificate authentication should not be used for users (Automated) 16

3 Worker Nodes .. 17
3.1 Worker Node Configuration Files ... 18

3.1.1 Ensure that the proxy kubeconfig file permissions are set to 644 or more restrictive
(Automated) ... 19
3.1.2 Ensure that the proxy kubeconfig file ownership is set to root:root (Automated) 22
3.1.3 Ensure that the kubelet configuration file has permissions set to 600 (Automated) 25
3.1.4 Ensure that the kubelet configuration file ownership is set to root:root (Automated) 28

3.2 Kubelet ... 31

Page 3

Internal Only - General

3.2.1 Ensure that the Anonymous Auth is Not Enabled Draft (Automated) 32
3.2.2 Ensure that the --authorization-mode argument is not set to AlwaysAllow (Automated) 36
3.2.3 Ensure that a Client CA File is Configured (Automated).. 40
3.2.4 Ensure that the --read-only-port is disabled (Automated) .. 43
3.2.5 Ensure that the --streaming-connection-idle-timeout argument is not set to 0
(Automated) ... 45
3.2.6 Ensure that the --make-iptables-util-chains argument is set to true (Automated) 48
3.2.7 Ensure that the --eventRecordQPS argument is set to 0 or a level which ensures
appropriate event capture (Automated)... 51
3.2.8 Ensure that the --rotate-certificates argument is not present or is set to true (Automated)
 ... 53
3.2.9 Ensure that the RotateKubeletServerCertificate argument is set to true (Automated) 55

4 Policies ... 57
4.1 RBAC and Service Accounts... 58

4.1.1 Ensure that the cluster-admin role is only used where required (Automated) 59
4.1.2 Minimize access to secrets (Automated) ... 61
4.1.3 Minimize wildcard use in Roles and ClusterRoles (Automated) 63
4.1.4 Ensure that default service accounts are not actively used (Automated) 65
4.1.5 Ensure that Service Account Tokens are only mounted where necessary (Automated) 67
4.1.6 Avoid use of system:masters group (Automated) .. 69
4.1.7 Limit use of the Bind, Impersonate and Escalate permissions in the Kubernetes cluster
(Manual) ... 71
4.1.8 Avoid bindings to system:anonymous (Automated) ... 73
4.1.9 Avoid non-default bindings to system:unauthenticated (Automated)............................... 76
4.1.10 Avoid non-default bindings to system:authenticated (Automated) 79

4.2 Pod Security Standards ... 82
4.2.1 Ensure that the cluster enforces Pod Security Standard Baseline profile or stricter for all
namespaces. (Manual) .. 83

4.3 Network Policies and CNI .. 85
4.3.1 Ensure that the CNI in use supports Network Policies (Manual) 87
4.3.2 Ensure that all Namespaces have Network Policies defined (Automated) 89

4.4 Secrets Management .. 91
4.4.1 Prefer using secrets as files over secrets as environment variables (Automated) 92
4.4.2 Consider external secret storage (Manual) .. 94

4.5 Extensible Admission Control .. 96
4.5.1 Configure Image Provenance using ImagePolicyWebhook admission controller (Manual)
 ... 97

4.6 General Policies .. 99
4.6.1 Create administrative boundaries between resources using namespaces (Manual) 100
4.6.2 Ensure that the seccomp profile is set to RuntimeDefault in the pod definitions
(Automated) ... 102
4.6.3 Apply Security Context to Pods and Containers (Manual) ... 104
4.6.4 The default namespace should not be used (Automated) ... 106

5 Managed services ... 107
5.1 Image Registry and Image Scanning.. 108

5.1.1 Ensure Image Vulnerability Scanning is enabled (Automated) 109
5.1.2 Minimize user access to Container Image repositories (Manual) 112
5.1.3 Minimize cluster access to read-only for Container Image repositories (Manual) 117
5.1.4 Ensure only trusted container images are used (Manual) ... 121

5.2 Identity and Access Management (IAM)... 124
5.2.1 Ensure GKE clusters are not running using the Compute Engine default service account
(Automated) ... 125
5.2.2 Prefer using dedicated GCP Service Accounts and Workload Identity (Manual) 129

5.3 Cloud Key Management Service (Cloud KMS) .. 132

Page 4

Internal Only - General

5.3.1 Ensure Kubernetes Secrets are encrypted using keys managed in Cloud KMS
(Automated) ... 133

5.4 Node Metadata .. 137
5.4.1 Ensure the GKE Metadata Server is Enabled (Automated) ... 138

5.5 Node Configuration and Maintenance.. 141
5.5.1 Ensure Container-Optimized OS (cos_containerd) is used for GKE node images
(Automated) ... 142
5.5.2 Ensure Node Auto-Repair is enabled for GKE nodes (Automated) 145
5.5.3 Ensure Node Auto-Upgrade is enabled for GKE nodes (Automated) 147
5.5.4 When creating New Clusters - Automate GKE version management using Release
Channels (Automated) ... 150
5.5.5 Ensure Shielded GKE Nodes are Enabled (Automated) ... 153
5.5.6 Ensure Integrity Monitoring for Shielded GKE Nodes is Enabled (Automated) 156
5.5.7 Ensure Secure Boot for Shielded GKE Nodes is Enabled (Automated) 159

5.6 Cluster Networking ... 162
5.6.1 Enable VPC Flow Logs and Intranode Visibility (Automated) .. 163
5.6.2 Ensure use of VPC-native clusters (Automated).. 166
5.6.3 Ensure Control Plane Authorized Networks is Enabled (Automated) 169
5.6.4 Ensure clusters are created with Private Endpoint Enabled and Public Access Disabled
(Automated) ... 172
5.6.5 Ensure clusters are created with Private Nodes (Automated) 175
5.6.6 Consider firewalling GKE worker nodes (Manual) ... 177
5.6.7 Ensure use of Google-managed SSL Certificates (Automated) 181

5.7 Logging .. 183
5.7.1 Ensure Logging and Cloud Monitoring is Enabled (Automated) 184
5.7.2 Enable Linux auditd logging (Manual) .. 187

5.8 Authentication and Authorization ... 190
5.8.1 Ensure authentication using Client Certificates is Disabled (Automated) 191
5.8.2 Manage Kubernetes RBAC users with Google Groups for GKE (Manual) 194
5.8.3 Ensure Legacy Authorization (ABAC) is Disabled (Automated) 196

5.9 Storage .. 199
5.9.1 Enable Customer-Managed Encryption Keys (CMEK) for GKE Persistent Disks (PD)
(Manual) ... 200
5.9.2 Enable Customer-Managed Encryption Keys (CMEK) for Boot Disks (Automated)...... 202

5.10 Other Cluster Configurations .. 202
5.10.1 Ensure Kubernetes Web UI is Disabled (Automated) .. 206
5.10.2 Ensure that Alpha clusters are not used for production workloads (Automated)......... 208
5.10.3 Consider GKE Sandbox for running untrusted workloads (Automated) 210
5.10.4 Ensure use of Binary Authorization (Automated) ... 213
5.10.5 Enable Security Posture (Manual).. 216

Appendix: Summary Table .. 218

Appendix: CIS Controls v7 IG 1 Mapped Recommendations 224

Appendix: CIS Controls v7 IG 2 Mapped Recommendations 226

Appendix: CIS Controls v7 IG 3 Mapped Recommendations 229

Appendix: CIS Controls v7 Unmapped Recommendations 232

Appendix: CIS Controls v8 IG 1 Mapped Recommendations 233

Appendix: CIS Controls v8 IG 2 Mapped Recommendations 235

Appendix: CIS Controls v8 IG 3 Mapped Recommendations 239

Appendix: CIS Controls v8 Unmapped Recommendations 243

Page 5

Internal Only - General

Appendix: Change History .. 244

Page 6

Internal Only - General

Overview

All CIS Benchmarks™ focus on technical configuration settings used to maintain and/or
increase the security of the addressed technology, and they should be used in
conjunction with other essential cyber hygiene tasks like:

• Monitoring the base operating system for vulnerabilities and quickly updating with
the latest security patches.

• Monitoring applications and libraries for vulnerabilities and quickly updating with
the latest security patches.

In the end, the CIS Benchmarks are designed as a key component of a comprehensive
cybersecurity program.

This document provides prescriptive guidance for running Google Kubernetes Engine
(GKE) v1.29, 1.30 & 1.31 following recommended security controls. This benchmark
only includes controls which can be modified by an end user of GKE. For information on
GKE's performance against the Kubernetes CIS benchmarks, for items which cannot be
audited or modified, see the GKE documentation at
https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks.
For the latest GKE hardening guide, see g.co/gke/hardening.
To obtain the latest version of this guide, please visit www.cisecurity.org. If you have
questions, comments, or have identified ways to improve this guide, please write us at
support@cisecurity.org.

Intended Audience

This document is intended for cluster administrators, security specialists, auditors, and
any personnel who plan to develop, deploy, assess, or secure solutions that incorporate
Google Kubernetes Engine (GKE).

https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks
https://g.co/gke/hardening
http://www.cisecurity.org/
mailto:support@cisecurity.org

Page 7

Internal Only - General

Consensus Guidance

This CIS Benchmark™ was created using a consensus review process comprised of a
global community of subject matter experts. The process combines real world
experience with data-based information to create technology specific guidance to assist
users to secure their environments. Consensus participants provide perspective from a
diverse set of backgrounds including consulting, software development, audit and
compliance, security research, operations, government, and legal.

Each CIS Benchmark undergoes two phases of consensus review. The first phase
occurs during initial Benchmark development. During this phase, subject matter experts
convene to discuss, create, and test working drafts of the Benchmark. This discussion
occurs until consensus has been reached on Benchmark recommendations. The
second phase begins after the Benchmark has been published. During this phase, all
feedback provided by the Internet community is reviewed by the consensus team for
incorporation in the Benchmark. If you are interested in participating in the consensus
process, please visit https://workbench.cisecurity.org/.

https://workbench.cisecurity.org/

Page 8

Internal Only - General

Typographical Conventions

The following typographical conventions are used throughout this guide:

Convention Meaning

Stylized Monospace font

Used for blocks of code, command, and
script examples. Text should be interpreted
exactly as presented.

Monospace font
Used for inline code, commands, UI/Menu
selections or examples. Text should be
interpreted exactly as presented.

<Monospace font in brackets>
Text set in angle brackets denote a variable
requiring substitution for a real value.

Italic font

Used to reference other relevant settings,
CIS Benchmarks and/or Benchmark
Communities. Also, used to denote the title
of a book, article, or other publication.

Bold font

Additional information or caveats things like
Notes, Warnings, or Cautions (usually just
the word itself and the rest of the text
normal).

Page 9

Internal Only - General

Recommendation Definitions
The following defines the various components included in a CIS recommendation as
applicable. If any of the components are not applicable it will be noted or the
component will not be included in the recommendation.

Title

Concise description for the recommendation's intended configuration.

Assessment Status

An assessment status is included for every recommendation. The assessment status
indicates whether the given recommendation can be automated or requires manual
steps to implement. Both statuses are equally important and are determined and
supported as defined below:

Automated

Represents recommendations for which assessment of a technical control can be fully
automated and validated to a pass/fail state. Recommendations will include the
necessary information to implement automation.

Manual

Represents recommendations for which assessment of a technical control cannot be
fully automated and requires all or some manual steps to validate that the configured
state is set as expected. The expected state can vary depending on the environment.

Profile

A collection of recommendations for securing a technology or a supporting platform.
Most benchmarks include at least a Level 1 and Level 2 Profile. Level 2 extends Level 1
recommendations and is not a standalone profile. The Profile Definitions section in the
benchmark provides the definitions as they pertain to the recommendations included for
the technology.

Description

Detailed information pertaining to the setting with which the recommendation is
concerned. In some cases, the description will include the recommended value.

Rationale Statement

Detailed reasoning for the recommendation to provide the user a clear and concise
understanding on the importance of the recommendation.

Page 10

Internal Only - General

Impact Statement

Any security, functionality, or operational consequences that can result from following
the recommendation.

Audit Procedure

Systematic instructions for determining if the target system complies with the
recommendation.

Remediation Procedure

Systematic instructions for applying recommendations to the target system to bring it
into compliance according to the recommendation.

Default Value

Default value for the given setting in this recommendation, if known. If not known, either
not configured or not defined will be applied.

References

Additional documentation relative to the recommendation.

CIS Critical Security Controls® (CIS Controls®)

The mapping between a recommendation and the CIS Controls is organized by CIS
Controls version, Safeguard, and Implementation Group (IG). The Benchmark in its
entirety addresses the CIS Controls safeguards of (v7) “5.1 - Establish Secure
Configurations” and (v8) '4.1 - Establish and Maintain a Secure Configuration Process”
so individual recommendations will not be mapped to these safeguards.

Additional Information

Supplementary information that does not correspond to any other field but may be
useful to the user.

Page 11

Internal Only - General

Profile Definitions

The following configuration profiles are defined by this Benchmark:

• Level 1

Items in this profile intend to:

o be practical and prudent

o provide a clear security benefit

o Not inhibit the utility of the technology beyond acceptable means

• Level 2

Extends Level 1

Page 12

Internal Only - General

Acknowledgements

This Benchmark exemplifies the great things a community of users, vendors, and
subject matter experts can accomplish through consensus collaboration. The CIS
community thanks the entire consensus team with special recognition to the following
individuals who contributed greatly to the creation of this guide:

This benchmark was developed by Rowan Baker, Andrew Martin, and Kevin Ward, with
input from Randall Mowen, Greg Castle, Andrew Kiggins, Iulia Ion, Jordan Liggitt, Maya
Kaczorowski, Mark Wolters and members of the Google Compliance team.

With Special Thanks to the Google team of: Poonam Lamba, Michele Chubirka,
Shannon Kularathana, Vinayak Goyal, Andrew Peabody and Padma Padmalatha.

Author/s
Andrew Martin
Rowan Baker
Kevin Ward

Editor/s
Randall Mowen
Poonam Lamba
Michele Chubirka
Shannon Kularathana
Vinayak Goyal

Contributor/s
Rory Mccune
Jordan Liggitt
Liz Rice
Maya Kaczorowski
Mark Wolters
Iulia Ion
Andrew Kiggins
Greg Castle
Mark Larinde
Andrew Thompson
Gareth Boyes
Rachel Rice

Page 13

Internal Only - General

Page 14

Internal Only - General

Recommendations

1 Control Plane Components

Under the GCP Shared Responsibility Model, Google manages the GKE control plane
components for you. The control plane includes the Kubernetes API server, etcd, and a
number of controllers. Google is responsible for securing the control plane, though you
might be able to configure certain options based on your requirements. Section 3 of this
Benchmark addresses these configurations.

You as the end user are responsible for securing your nodes, containers, and Pods and
that is what this Benchmark specifically addresses.

This document describes how cluster control plane components are secured in Google
Kubernetes

2 Control Plane Configuration

This section contains recommendations for cluster-wide areas, such as authentication
and logging. These recommendations apply to all deployments.

https://cloud.google.com/files/PCI_DSS_Shared_Responsibility_GCP_v32.pdf
https://cloud.google.com/kubernetes-engine/docs/concepts/control-plane-security
https://cloud.google.com/kubernetes-engine/docs/concepts/control-plane-security

Page 15

Internal Only - General

2.1 Authentication and Authorization

Page 16

Internal Only - General

2.1.1 Client certificate authentication should not be used for users

(Automated)

Profile Applicability:

• Level 1

Description:

Kubernetes provides the option to use client certificates for user authentication.
However as there is no way to revoke these certificates when a user leaves an
organization or loses their credential, they are not suitable for this purpose.

It is not possible to fully disable client certificate use within a cluster as it is used for
component to component authentication.

Rationale:

With any authentication mechanism the ability to revoke credentials if they are
compromised or no longer required, is a key control. Kubernetes client certificate
authentication does not allow for this due to a lack of support for certificate revocation.

See also Recommendation 5.8.1 for GKE specifically.

Impact:

External mechanisms for authentication generally require additional software to be
deployed.

Audit:

Review user access to the cluster and ensure that users are not making use of
Kubernetes client certificate authentication.
You can verify the availability of client certificates in your GKE cluster.
Run the following command to verify the availability of client certificates in your GKE
cluster:

kubectl get secrets --namespace kube-system

This command lists all the secrets in the kube-system namespace, which includes the
client certificates used for authentication.
Look for secrets with names starting with gke-. These secrets contain the client
certificates. If the command returns secrets with such names, it indicates that client
certificates are available in your GKE cluster.

Remediation:

Alternative mechanisms provided by Kubernetes such as the use of OIDC should be
implemented in place of client certificates.
You can remediate the availability of client certificates in your GKE cluster. See
Recommendation 5.8.1.

Page 17

Internal Only - General

Default Value:

See the GKE documentation for the default value.

References:

1. https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks

Additional Information:

The lack of certificate revocation was flagged up as a high risk issue in the recent
Kubernetes security audit. Without this feature, client certificate authentication is not
suitable for end users.

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

6.2 Establish an Access Revoking Process
 Establish and follow a process, preferably automated, for revoking access to
enterprise assets, through disabling accounts immediately upon termination, rights

revocation, or role change of a user. Disabling accounts, instead of deleting
accounts, may be necessary to preserve audit trails.

● ● ●

v7

4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

3 Worker Nodes

This section consists of security recommendations for the components that run on GKE
worker nodes.

https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks

Page 18

Internal Only - General

3.1 Worker Node Configuration Files

This section covers recommendations for configuration files on the worker nodes.

Page 19

Internal Only - General

3.1.1 Ensure that the proxy kubeconfig file permissions are set to

644 or more restrictive (Automated)

Profile Applicability:

• Level 1

Description:

If kube-proxy is running, and if it is configured by a kubeconfig file, ensure that the

proxy kubeconfig file has permissions of 644 or more restrictive.

Rationale:

The kube-proxy kubeconfig file controls various parameters of the kube-proxy service

on the worker node. You should restrict its file permissions to maintain the integrity of
the file. The file should be writable only by the administrators on the system.

Impact:

Overly permissive file permissions increase security risk to the platform.

Audit:

Using Google Cloud Console

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. Click on the desired cluster to open the Details page, then click on the desired
Node pool to open the Node pool Details page

3. Note the name of the desired node
4. Go to VM Instances by visiting

https://console.cloud.google.com/compute/instances
5. Find the desired node and click on 'SSH' to open an SSH connection to the node.

Using Command Line
Method 1
SSH to the worker nodes
To check to see if the Kubelet Service is running:
sudo systemctl status kubelet

The output should return Active: active (running) since..

Run the following command on each node to find the appropriate kubeconfig file:

ps -ef | grep kubelet

The output of the above command should return something similar to --kubeconfig
/var/lib/kubelet/kubeconfig which is the location of the kubeconfig file.

Run this command to obtain the kubeconfig file permissions:

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/compute/instances

Page 20

Internal Only - General

stat -c %a /var/lib/kubelet/kubeconfig

The output of the above command gives you the kubeconfig file's permissions.
Verify that if a file is specified and it exists, the permissions are 644 or more restrictive.

Method 2
Create and Run a Privileged Pod.
You will need to run a pod that is privileged enough to access the host's file system.
This can be achieved by deploying a pod that uses the hostPath volume to mount the
node's file system into the pod.
Here's an example of a simple pod definition that mounts the root of the host to /host
within the pod:

apiVersion: v1

kind: Pod

metadata:

 name: file-check

spec:

 volumes:

 - name: host-root

 hostPath:

 path: /

 type: Directory

 containers:

 - name: nsenter

 image: busybox

 command: ["sleep", "3600"]

 volumeMounts:

 - name: host-root

 mountPath: /host

 securityContext:

 privileged: true

Save this to a file (e.g., file-check-pod.yaml) and create the pod:

kubectl apply -f file-check-pod.yaml

Once the pod is running, you can exec into it to check file permissions on the node:

kubectl exec -it file-check -- sh

Now you are in a shell inside the pod, but you can access the node's file system through
the /host directory and check the permission level of the file:

ls -l /host/var/lib/kubelet/kubeconfig

Verify that if a file is specified and it exists, the permissions are 644 or more restrictive.

Remediation:

Run the below command (based on the file location on your system) on the each worker
node. For example,

Page 21

Internal Only - General

chmod 644 <proxy kubeconfig file>

Default Value:

The default permissions of the proxy kubeconfig file are 644.

References:

1. https://kubernetes.io/docs/admin/kube-proxy/
2. https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://kubernetes.io/docs/admin/kube-proxy/
https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks

Page 22

Internal Only - General

3.1.2 Ensure that the proxy kubeconfig file ownership is set to

root:root (Automated)

Profile Applicability:

• Level 1

Description:

If kube-proxy is running, ensure that the file ownership of its kubeconfig file is set to

root:root.

Rationale:

The kubeconfig file for kube-proxy controls various parameters for the kube-proxy

service in the worker node. You should set its file ownership to maintain the integrity of
the file. The file should be owned by root:root.

Impact:

Overly permissive file access increases the security risk to the platform.

Audit:

Using Google Cloud Console

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. Click on the desired cluster to open the Details page, then click on the desired
Node pool to open the Node pool Details page

3. Note the name of the desired node
4. Go to VM Instances by visiting

https://console.cloud.google.com/compute/instances
5. Find the desired node and click on 'SSH' to open an SSH connection to the node.

Using Command Line
Method 1
SSH to the worker nodes
To check to see if the Kubelet Service is running:
sudo systemctl status kubelet

The output should return Active: active (running) since..

Run the following command on each node to find the appropriate kubeconfig file:

ps -ef | grep kubelet

The output of the above command should return something similar to --kubeconfig
/var/lib/kubelet/kubeconfig which is the location of the kubeconfig file.

Run this command to obtain the kubeconfig file ownership:

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/compute/instances

Page 23

Internal Only - General

stat -c %U:%G /var/lib/kubelet/kubeconfig

The output of the above command gives you the kubeconfig file's ownership. Verify that
the ownership is set to root:root.

Method 2
Create and Run a Privileged Pod.
You will need to run a pod that is privileged enough to access the host's file system.
This can be achieved by deploying a pod that uses the hostPath volume to mount the
node's file system into the pod.
Here's an example of a simple pod definition that mounts the root of the host to /host
within the pod:

apiVersion: v1

kind: Pod

metadata:

 name: file-check

spec:

 volumes:

 - name: host-root

 hostPath:

 path: /

 type: Directory

 containers:

 - name: nsenter

 image: busybox

 command: ["sleep", "3600"]

 volumeMounts:

 - name: host-root

 mountPath: /host

 securityContext:

 privileged: true

Save this to a file (e.g., file-check-pod.yaml) and create the pod:

kubectl apply -f file-check-pod.yaml

Once the pod is running, you can exec into it to check file ownership on the node:

kubectl exec -it file-check -- sh

Now you are in a shell inside the pod, but you can access the node's file system through
the /host directory and check the ownership of the file:

ls -l /host/var/lib/kubelet/kubeconfig

The output of the above command gives you the kubeconfig file's ownership. Verify that
the ownership is set to root:root.

Remediation:

Run the below command (based on the file location on your system) on each worker
node. For example,

Page 24

Internal Only - General

chown root:root <proxy kubeconfig file>

Default Value:

The default ownership of the proxy kubeconfig file is root:root.

References:

1. https://kubernetes.io/docs/admin/kube-proxy/
2. https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://kubernetes.io/docs/admin/kube-proxy/
https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks

Page 25

Internal Only - General

3.1.3 Ensure that the kubelet configuration file has permissions

set to 600 (Automated)

Profile Applicability:

• Level 1

Description:

Ensure that if the kubelet configuration file exists, it has permissions of 600.

Rationale:

The kubelet reads various parameters, including security settings, from a config file
specified by the --config argument. If this file exists, you should restrict its file

permissions to maintain the integrity of the file. The file should be writable by only the
administrators on the system.

Impact:

Overly permissive file access increases the security risk to the platform.

Audit:

Using Google Cloud Console

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. Click on the desired cluster to open the Details page, then click on the desired
Node pool to open the Node pool Details page

3. Note the name of the desired node
4. Go to VM Instances by visiting

https://console.cloud.google.com/compute/instances
5. Find the desired node and click on 'SSH' to open an SSH connection to the node.

Using Command Line
Method 1
First, SSH to the relevant worker node:
To check to see if the Kubelet Service is running:
sudo systemctl status kubelet

The output should return Active: active (running) since..

Run the following command on each node to find the appropriate Kubelet config file:

ps -ef | grep kubelet

The output of the above command should return something similar to --config
/etc/kubernetes/kubelet/kubelet-config.yaml which is the location of the

Kubelet config file.
Run the following command:

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/compute/instances

Page 26

Internal Only - General

stat -c %a /etc/kubernetes/kubelet/kubelet-config.yaml

The output of the above command is the Kubelet config file's permissions. Verify that
the permissions are 644 or more restrictive.

Method 2
Create and Run a Privileged Pod.
You will need to run a pod that is privileged enough to access the host's file system.
This can be achieved by deploying a pod that uses the hostPath volume to mount the
node's file system into the pod.
Here's an example of a simple pod definition that mounts the root of the host to /host
within the pod:

apiVersion: v1

kind: Pod

metadata:

 name: file-check

spec:

 volumes:

 - name: host-root

 hostPath:

 path: /

 type: Directory

 containers:

 - name: nsenter

 image: busybox

 command: ["sleep", "3600"]

 volumeMounts:

 - name: host-root

 mountPath: /host

 securityContext:

 privileged: true

Save this to a file (e.g., file-check-pod.yaml) and create the pod:

kubectl apply -f file-check-pod.yaml

Once the pod is running, you can exec into it to check file permissions on the node:

kubectl exec -it file-check -- sh

Now you are in a shell inside the pod, but you can access the node's file system through
the /host directory and check the permission level of the file:

ls -l /host/etc/kubernetes/kubelet/kubelet-config.yaml

Verify that if a file is specified and it exists, the permissions are 644 or more restrictive.

Remediation:

Run the following command (using the kubelet config file location):

chmod 600 <kubelet_config_file>

Default Value:

The default permissions for the kubelet configuration file are 600.

Page 27

Internal Only - General

References:

1. https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/
2. https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file

systems, databases, and applications.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/
https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks

Page 28

Internal Only - General

3.1.4 Ensure that the kubelet configuration file ownership is set to

root:root (Automated)

Profile Applicability:

• Level 1

Description:

Ensure that if the kubelet configuration file exists, it is owned by root:root.

Rationale:

The kubelet reads various parameters, including security settings, from a config file
specified by the --config argument. If this file is specified you should restrict its file

permissions to maintain the integrity of the file. The file should be owned by root:root.

Impact:

Overly permissive file access increases the security risk to the platform.

Audit:

Using Google Cloud Console

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. Click on the desired cluster to open the Details page, then click on the desired
Node pool to open the Node pool Details page

3. Note the name of the desired node
4. Go to VM Instances by visiting

https://console.cloud.google.com/compute/instances
5. Find the desired node and click on 'SSH' to open an SSH connection to the node.

Using Command Line
Method 1
First, SSH to the relevant worker node:
To check to see if the Kubelet Service is running:
sudo systemctl status kubelet

The output should return Active: active (running) since..

Run the following command on each node to find the appropriate Kubelet config file:

ps -ef | grep kubelet

The output of the above command should return something similar to --config
/etc/kubernetes/kubelet/kubelet-config.yaml which is the location of the

Kubelet config file.
Run the following command:

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/compute/instances

Page 29

Internal Only - General

stat -c %U:%G /etc/kubernetes/kubelet/kubelet-config.yaml

The output of the above command is the Kubelet config file's ownership. Verify that the
ownership is set to root:root

Method 2
Create and Run a Privileged Pod.
You will need to run a pod that is privileged enough to access the host's file system.
This can be achieved by deploying a pod that uses the hostPath volume to mount the
node's file system into the pod.
Here's an example of a simple pod definition that mounts the root of the host to /host
within the pod:

apiVersion: v1

kind: Pod

metadata:

 name: file-check

spec:

 volumes:

 - name: host-root

 hostPath:

 path: /

 type: Directory

 containers:

 - name: nsenter

 image: busybox

 command: ["sleep", "3600"]

 volumeMounts:

 - name: host-root

 mountPath: /host

 securityContext:

 privileged: true

Save this to a file (e.g., file-check-pod.yaml) and create the pod:

kubectl apply -f file-check-pod.yaml

Once the pod is running, you can exec into it to check file ownership on the node:

kubectl exec -it file-check -- sh

Now you are in a shell inside the pod, but you can access the node's file system through
the /host directory and check the ownership of the file:

ls -l /etc/kubernetes/kubelet/kubelet-config.yaml

The output of the above command gives you the azure.json file's ownership. Verify that
the ownership is set to root:root.

Remediation:

Run the following command (using the config file location identified in the Audit step):

Page 30

Internal Only - General

chown root:root <kubelet_config_file>

Default Value:

The default file ownership is root:root.

References:

1. https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/
2. https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/
https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks

Page 31

Internal Only - General

3.2 Kubelet

Kubelets can accept configuration via a configuration file and in some cases via
command line arguments. It is important to note that parameters provided as command
line arguments will override their counterpart parameters in the configuration file (see --
config details in the Kubelet CLI Reference for more info, where you can also find out

which configuration parameters can be supplied as a command line argument).

With this in mind, it is important to check for the existence of command line arguments
as well as configuration file entries when auditing Kubelet configuration.

Firstly, SSH to each node and execute the following command to find the Kubelet
process:

ps -ef | grep kubelet

The output of the above command provides details of the active Kubelet process, from
which we can see the command line arguments provided to the process. Also note the
location of the configuration file, provided with the --config argument, as this will be

needed to verify configuration. The file can be viewed with a command such as more or

less, like so:

sudo less /path/to/kubelet-config.json

This config file could be in JSON or YAML format depending on your distribution.

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

Page 32

Internal Only - General

3.2.1 Ensure that the Anonymous Auth is Not Enabled Draft

(Automated)

Profile Applicability:

• Level 1

Description:

Disable anonymous requests to the Kubelet server.

Rationale:

When enabled, requests that are not rejected by other configured authentication
methods are treated as anonymous requests. These requests are then served by the
Kubelet server. You should rely on authentication to authorize access and disallow
anonymous requests.

Impact:

Anonymous requests will be rejected.

Audit:

Audit Method 1:
Kubelets can accept configuration via a configuration file and in some cases via
command line arguments. It is important to note that parameters provided as command
line arguments will override their counterpart parameters in the configuration file (see --
config details in the Kubelet CLI Reference for more info, where you can also find out

which configuration parameters can be supplied as a command line argument).
With this in mind, it is important to check for the existence of command line arguments
as well as configuration file entries when auditing Kubelet configuration.
Firstly, SSH to each node and execute the following command to find the Kubelet
process:

ps -ef | grep kubelet

The output of the above command provides details of the active Kubelet process, from
which we can see the command line arguments provided to the process. Also note the
location of the configuration file, provided with the --config argument, as this will be

needed to verify configuration. The file can be viewed with a command such as more or

less, like so:

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

Page 33

Internal Only - General

sudo less /path/to/kubelet-config.json

Verify that Anonymous Authentication is not enabled. This may be configured as a
command line argument to the kubelet service with --anonymous-auth=false or in the

kubelet configuration file via "authentication": { "anonymous": { "enabled":
false }.

Audit Method 2:
It is also possible to review the running configuration of a Kubelet via the /configz
endpoint of the Kubernetes API. This can be achieved using kubectl to proxy your

requests to the API.
Discover all nodes in your cluster by running the following command:

kubectl get nodes

Next, initiate a proxy with kubectl on a local port of your choice. In this example we will

use 8080:

kubectl proxy --port=8080

With this running, in a separate terminal run the following command for each node:

export NODE_NAME=my-node-name

curl http://localhost:8080/api/v1/nodes/${NODE_NAME}/proxy/configz

The curl command will return the API response which will be a JSON formatted string
representing the Kubelet configuration.
Verify that Anonymous Authentication is not enabled checking that "authentication":
{ "anonymous": { "enabled": false } is in the API response.

Remediation:

Remediation Method 1:
If configuring via the Kubelet config file, you first need to locate the file.
To do this, SSH to each node and execute the following command to find the kubelet
process:

ps -ef | grep kubelet

The output of the above command provides details of the active kubelet process, from
which we can see the location of the configuration file provided to the kubelet service
with the --config argument. The file can be viewed with a command such as more or

less, like so:

sudo less /path/to/kubelet-config.json

Disable Anonymous Authentication by setting the following parameter:

Page 34

Internal Only - General

"authentication": { "anonymous": { "enabled": false } }

Remediation Method 2:
If using executable arguments, edit the kubelet service file on each worker node and
ensure the below parameters are part of the KUBELET_ARGS variable string.

For systems using systemd, such as the Amazon EKS Optimised Amazon Linux or

Bottlerocket AMIs, then this file can be found at
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf. Otherwise,

you may need to look up documentation for your chosen operating system to determine
which service manager is configured:

--anonymous-auth=false

For Both Remediation Steps:
Based on your system, restart the kubelet service and check the service status.

The following example is for operating systems using systemd, such as the Amazon

EKS Optimised Amazon Linux or Bottlerocket AMIs, and invokes the systemctl

command. If systemctl is not available then you will need to look up documentation for

your chosen operating system to determine which service manager is configured:

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the GKE documentation for the default value.

References:

1. https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
2. https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-

authz/#kubelet-authentication
3. https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
5.3 Disable Dormant Accounts
 Delete or disable any dormant accounts after a period of 45 days of inactivity,
where supported.

● ● ●

v7

14.6 Protect Information through Access Control Lists
 Protect all information stored on systems with file system, network share,
claims, application, or database specific access control lists. These controls will
enforce the principle that only authorized individuals should have access to the
information based on their need to access the information as a part of their
responsibilities.

● ● ●

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-authz/#kubelet-authentication
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-authz/#kubelet-authentication
https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

Page 35

Internal Only - General

Page 36

Internal Only - General

3.2.2 Ensure that the --authorization-mode argument is not set to

AlwaysAllow (Automated)

Profile Applicability:

• Level 1

Description:

Do not allow all requests. Enable explicit authorization.

Rationale:

Kubelets can be configured to allow all authenticated requests (even anonymous ones)
without needing explicit authorization checks from the apiserver. You should restrict this
behavior and only allow explicitly authorized requests.

Impact:

Unauthorized requests will be denied.

Audit:

Audit Method 1:
Kubelets can accept configuration via a configuration file and in some cases via
command line arguments. It is important to note that parameters provided as command
line arguments will override their counterpart parameters in the configuration file (see --
config details in the Kubelet CLI Reference for more info, where you can also find out

which configuration parameters can be supplied as a command line argument).
With this in mind, it is important to check for the existence of command line arguments
as well as configuration file entries when auditing Kubelet configuration.
Firstly, SSH to each node and execute the following command to find the Kubelet
process:

ps -ef | grep kubelet

The output of the above command provides details of the active Kubelet process, from
which we can see the command line arguments provided to the process. Also note the
location of the configuration file, provided with the --config argument, as this will be

needed to verify configuration. The file can be viewed with a command such as more or

less, like so:

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

Page 37

Internal Only - General

sudo less /path/to/kubelet-config.json

Verify that Webhook Authentication is enabled. This may be enabled as a command line
argument to the kubelet service with --authentication-token-webhook or in the

kubelet configuration file via "authentication": { "webhook": { "enabled":
true } }.

Verify that the Authorization Mode is set to WebHook. This may be set as a command

line argument to the kubelet service with --authorization-mode=Webhook or in the

configuration file via "authorization": { "mode": "Webhook }.

Audit Method 2:
It is also possible to review the running configuration of a Kubelet via the /configz
endpoint of the Kubernetes API. This can be achieved using kubectl to proxy your

requests to the API.
Discover all nodes in your cluster by running the following command:

kubectl get nodes

Next, initiate a proxy with kubectl on a local port of your choice. In this example we will
use 8080:

kubectl proxy --port=8080

With this running, in a separate terminal run the following command for each node:

export NODE_NAME=my-node-name

curl http://localhost:8080/api/v1/nodes/${NODE_NAME}/proxy/configz

The curl command will return the API response which will be a JSON formatted string
representing the Kubelet configuration.
Verify that Webhook Authentication is enabled with "authentication": {
"webhook": { "enabled": true } } in the API response.

Verify that the Authorization Mode is set to WebHook with "authorization": {
"mode": "Webhook } in the API response.

Remediation:

Remediation Method 1:
If configuring via the Kubelet config file, you first need to locate the file.
To do this, SSH to each node and execute the following command to find the kubelet
process:

ps -ef | grep kubelet

The output of the above command provides details of the active kubelet process, from
which we can see the location of the configuration file provided to the kubelet service
with the --config argument. The file can be viewed with a command such as more or

less, like so:

sudo less /path/to/kubelet-config.json

Enable Webhook Authentication by setting the following parameter:

Page 38

Internal Only - General

"authentication": { "webhook": { "enabled": true } }

Next, set the Authorization Mode to Webhook by setting the following parameter:

"authorization": { "mode": "Webhook }

Finer detail of the authentication and authorization fields can be found in the

Kubelet Configuration documentation.
Remediation Method 2:
If using executable arguments, edit the kubelet service file on each worker node and
ensure the below parameters are part of the KUBELET_ARGS variable string.

For systems using systemd, such as the Amazon EKS Optimised Amazon Linux or

Bottlerocket AMIs, then this file can be found at
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf. Otherwise,

you may need to look up documentation for your chosen operating system to determine
which service manager is configured:

--authentication-token-webhook

--authorization-mode=Webhook

For Both Remediation Steps:
Based on your system, restart the kubelet service and check the service status.

The following example is for operating systems using systemd, such as the Amazon

EKS Optimised Amazon Linux or Bottlerocket AMIs, and invokes the systemctl

command. If systemctl is not available then you will need to look up documentation for

your chosen operating system to determine which service manager is configured:

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the GKE documentation for the default value.

References:

1. https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
2. https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-

authz/#kubelet-authentication
3. https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-authz/#kubelet-authentication
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-authz/#kubelet-authentication
https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

Page 39

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
 Restrict administrator privileges to dedicated administrator accounts on
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.

● ● ●

v7
4.2 Change Default Passwords
 Before deploying any new asset, change all default passwords to have values
consistent with administrative level accounts.

● ● ●

Page 40

Internal Only - General

3.2.3 Ensure that a Client CA File is Configured (Automated)

Profile Applicability:

• Level 1

Description:

Enable Kubelet authentication using certificates.

Rationale:

The connections from the apiserver to the kubelet are used for fetching logs for pods,
attaching (through kubectl) to running pods, and using the kubelet’s port-forwarding
functionality. These connections terminate at the kubelet’s HTTPS endpoint. By default,
the apiserver does not verify the kubelet’s serving certificate, which makes the
connection subject to man-in-the-middle attacks, and unsafe to run over untrusted
and/or public networks. Enabling Kubelet certificate authentication ensures that the
apiserver could authenticate the Kubelet before submitting any requests.

Impact:

You require TLS to be configured on apiserver as well as kubelets.

Audit:

Audit Method 1:
Kubelets can accept configuration via a configuration file and in some cases via
command line arguments. It is important to note that parameters provided as command
line arguments will override their counterpart parameters in the configuration file (see --
config details in the Kubelet CLI Reference for more info, where you can also find out

which configuration parameters can be supplied as a command line argument).
With this in mind, it is important to check for the existence of command line arguments
as well as configuration file entries when auditing Kubelet configuration.
Firstly, SSH to each node and execute the following command to find the Kubelet
process:

ps -ef | grep kubelet

The output of the above command provides details of the active Kubelet process, from
which we can see the command line arguments provided to the process. Also note the
location of the configuration file, provided with the --config argument, as this will be

needed to verify configuration. The file can be viewed with a command such as more or

less, like so:

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

Page 41

Internal Only - General

sudo less /path/to/kubelet-config.json

Verify that a client certificate authority file is configured. This may be configured using a
command line argument to the kubelet service with --client-ca-file or in the kubelet

configuration file via "authentication": { "x509": {"clientCAFile":
<path/to/client-ca-file> } }".

Audit Method 2:
It is also possible to review the running configuration of a Kubelet via the /configz
endpoint of the Kubernetes API. This can be achieved using kubectl to proxy your

requests to the API.
Discover all nodes in your cluster by running the following command:

kubectl get nodes

Next, initiate a proxy with kubectl on a local port of your choice. In this example we will
use 8080:

kubectl proxy --port=8080

With this running, in a separate terminal run the following command for each node:

export NODE_NAME=my-node-name

curl http://localhost:8080/api/v1/nodes/${NODE_NAME}/proxy/configz

The curl command will return the API response which will be a JSON formatted string
representing the Kubelet configuration.
Verify that a client certificate authority file is configured with "authentication": {
"x509": {"clientCAFile": <path/to/client-ca-file> } }" in the API response.

Remediation:

Remediation Method 1:
If configuring via the Kubelet config file, you first need to locate the file.
To do this, SSH to each node and execute the following command to find the kubelet
process:

ps -ef | grep kubelet

The output of the above command provides details of the active kubelet process, from
which we can see the location of the configuration file provided to the kubelet service
with the --config argument. The file can be viewed with a command such as more or

less, like so:

sudo less /path/to/kubelet-config.json

Configure the client certificate authority file by setting the following parameter
appropriately:

Page 42

Internal Only - General

"authentication": { "x509": {"clientCAFile": <path/to/client-ca-file> } }"

Remediation Method 2:
If using executable arguments, edit the kubelet service file on each worker node and
ensure the below parameters are part of the KUBELET_ARGS variable string.

For systems using systemd, such as the Amazon EKS Optimised Amazon Linux or

Bottlerocket AMIs, then this file can be found at
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf. Otherwise,

you may need to look up documentation for your chosen operating system to determine
which service manager is configured:

--client-ca-file=<path/to/client-ca-file>

For Both Remediation Steps:
Based on your system, restart the kubelet service and check the service status.

The following example is for operating systems using systemd, such as the Amazon

EKS Optimised Amazon Linux or Bottlerocket AMIs, and invokes the systemctl

command. If systemctl is not available then you will need to look up documentation for

your chosen operating system to determine which service manager is configured:

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the GKE documentation for the default value.

References:

1. https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
2. https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-

authz/#kubelet-authentication
3. https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.10 Encrypt Sensitive Data in Transit
 Encrypt sensitive data in transit. Example implementations can include:
Transport Layer Security (TLS) and Open Secure Shell (OpenSSH).

 ● ●

v7 14.4 Encrypt All Sensitive Information in Transit
 Encrypt all sensitive information in transit.

 ● ●

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-authz/#kubelet-authentication
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-authz/#kubelet-authentication
https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

Page 43

Internal Only - General

3.2.4 Ensure that the --read-only-port is disabled (Automated)

Profile Applicability:

• Level 1

Description:

Disable the read-only port.

Rationale:

The Kubelet process provides a read-only API in addition to the main Kubelet API.
Unauthenticated access is provided to this read-only API which could possibly retrieve
potentially sensitive information about the cluster.

Impact:

Removal of the read-only port will require that any service which made use of it will
need to be re-configured to use the main Kubelet API.

Audit:

If using a Kubelet configuration file, check that there is an entry for authentication:
anonymous: enabled set to 0.

First, SSH to the relevant node:
Run the following command on each node to find the appropriate Kubelet config file:

ps -ef | grep kubelet

The output of the above command should return something similar to --config
/etc/kubernetes/kubelet/kubelet-config.json which is the location of the

Kubelet config file.
Open the Kubelet config file:

cat /etc/kubernetes/kubelet/kubelet-config.json

Verify that the --read-only-port argument exists and is set to 0.

If the --read-only-port argument is not present, check that there is a Kubelet config

file specified by --config. Check that if there is a readOnlyPort entry in the file, it is

set to 0.

Remediation:

If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to 0

Page 44

Internal Only - General

"readOnlyPort": 0

If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each

worker node and add the below parameter at the end of the KUBELET_ARGS variable

string.

--read-only-port=0

For each remediation:
Based on your system, restart the kubelet service and check status

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the GKE documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

12.6 Use of Secure Network Management and
Communication Protocols
 Use secure network management and communication protocols (e.g.,
802.1X, Wi-Fi Protected Access 2 (WPA2) Enterprise or greater).

 ● ●

v7

9.2 Ensure Only Approved Ports, Protocols and Services
Are Running
 Ensure that only network ports, protocols, and services listening on a system
with validated business needs, are running on each system.

 ● ●

https://kubernetes.io/docs/admin/kubelet/

Page 45

Internal Only - General

3.2.5 Ensure that the --streaming-connection-idle-timeout

argument is not set to 0 (Automated)

Profile Applicability:

• Level 1

Description:

Do not disable timeouts on streaming connections.

Rationale:

Setting idle timeouts ensures that you are protected against Denial-of-Service attacks,
inactive connections and running out of ephemeral ports.

Note: By default, --streaming-connection-idle-timeout is set to 4 hours which

might be too high for your environment. Setting this as appropriate would additionally
ensure that such streaming connections are timed out after serving legitimate use
cases.

Impact:

Long-lived connections could be interrupted.

Audit:

Audit Method 1:
First, SSH to the relevant node:
Run the following command on each node to find the running kubelet process:

ps -ef | grep kubelet

If the command line for the process includes the argument streaming-connection-
idle-timeout verify that it is not set to 0.

If the streaming-connection-idle-timeout argument is not present in the output of

the above command, refer instead to the config argument that specifies the location of

the Kubelet config file e.g. --config /etc/kubernetes/kubelet-config.yaml.

Open the Kubelet config file:

Page 46

Internal Only - General

cat /etc/kubernetes/kubelet-config.yaml

Verify that the streamingConnectionIdleTimeout argument is not set to 0.

Audit Method 2:
If using the api configz endpoint consider searching for the status of
"streamingConnectionIdleTimeout":"4h0m0s" by extracting the live configuration

from the nodes running kubelet.
Set the local proxy port and the following variables and provide proxy port number and
node name;
HOSTNAME_PORT="localhost-and-port-number"
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output
of "kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=gke-cluster-1-pool1-5e572947-r2hg (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet-config.yaml and set the below parameter to a non-zero

value in the format of #h#m#s

"streamingConnectionIdleTimeout": "4h0m0s"

You should ensure that the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf does not

specify a --streaming-connection-idle-timeout argument because it would

override the Kubelet config file.
Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each

worker node and add the below parameter at the end of the KUBELET_ARGS variable

string.

--streaming-connection-idle-timeout=4h0m0s

Remediation Method 3:
If using the api configz endpoint consider searching for the status of
"streamingConnectionIdleTimeout": by extracting the live configuration from the

nodes running kubelet.
**See detailed step-by-step configmap procedures in Reconfigure a Node's Kubelet in a
Live Cluster, and then rerun the curl statement from audit process to check for kubelet
configuration changes

https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 47

Internal Only - General

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=gke-cluster-1-pool1-5e572947-r2hg (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For all three remediations:
Based on your system, restart the kubelet service and check status

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the GKE documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/
2. https://github.com/kubernetes/kubernetes/pull/18552

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

12.6 Use of Secure Network Management and
Communication Protocols
 Use secure network management and communication protocols (e.g.,
802.1X, Wi-Fi Protected Access 2 (WPA2) Enterprise or greater).

 ● ●

v7

9.2 Ensure Only Approved Ports, Protocols and Services
Are Running
 Ensure that only network ports, protocols, and services listening on a system
with validated business needs, are running on each system.

 ● ●

https://kubernetes.io/docs/admin/kubelet/
https://github.com/kubernetes/kubernetes/pull/18552

Page 48

Internal Only - General

3.2.6 Ensure that the --make-iptables-util-chains argument is set

to true (Automated)

Profile Applicability:

• Level 1

Description:

Allow Kubelet to manage iptables.

Rationale:

Kubelets can automatically manage the required changes to iptables based on how you
choose your networking options for the pods. It is recommended to let kubelets manage
the changes to iptables. This ensures that the iptables configuration remains in sync
with pods networking configuration. Manually configuring iptables with dynamic pod
network configuration changes might hamper the communication between
pods/containers and to the outside world. You might have iptables rules too restrictive
or too open.

Impact:

Kubelet would manage the iptables on the system and keep it in sync. If you are using
any other iptables management solution, then there might be some conflicts.

Audit:

Audit Method 1:
First, SSH to each node:
Run the following command on each node to find the Kubelet process:

ps -ef | grep kubelet

If the output of the above command includes the argument --make-iptables-util-
chains then verify it is set to true.

If the --make-iptables-util-chains argument does not exist, and there is a Kubelet

config file specified by --config, verify that the file does not set

makeIPTablesUtilChains to false.

Audit Method 2:
If using the api configz endpoint consider searching for the status of
authentication... "makeIPTablesUtilChains.:true by extracting the live

configuration from the nodes running kubelet.
Set the local proxy port and the following variables and provide proxy port number and
node name;
HOSTNAME_PORT="localhost-and-port-number"
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output
of "kubectl get nodes"

Page 49

Internal Only - General

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=gke-cluster-1-pool1-5e572947-r2hg (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet/kubelet-config.json and set the below parameter to

true

"makeIPTablesUtilChains": true

Ensure that /etc/systemd/system/kubelet.service.d/10-kubelet-args.conf

does not set the --make-iptables-util-chains argument because that would

override your Kubelet config file.
Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each

worker node and add the below parameter at the end of the KUBELET_ARGS variable

string.

--make-iptables-util-chains:true

Remediation Method 3:
If using the api configz endpoint consider searching for the status of
"makeIPTablesUtilChains.: true by extracting the live configuration from the nodes

running kubelet.
**See detailed step-by-step configmap procedures in Reconfigure a Node's Kubelet in a
Live Cluster, and then rerun the curl statement from audit process to check for kubelet
configuration changes

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=gke-cluster-1-pool1-5e572947-r2hg (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For all three remediations:
Based on your system, restart the kubelet service and check status

https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 50

Internal Only - General

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the GKE documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/
2. https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

12.3 Securely Manage Network Infrastructure
 Securely manage network infrastructure. Example implementations include
version-controlled-infrastructure-as-code, and the use of secure network
protocols, such as SSH and HTTPS.

 ● ●

v7

11.1 Maintain Standard Security Configurations for
Network Devices
 Maintain standard, documented security configuration standards for all
authorized network devices.

 ● ●

https://kubernetes.io/docs/admin/kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 51

Internal Only - General

3.2.7 Ensure that the --eventRecordQPS argument is set to 0 or a

level which ensures appropriate event capture (Automated)

Profile Applicability:

• Level 1

Description:

Security relevant information should be captured. The eventRecordQPS on the Kubelet
configuration can be used to limit the rate at which events are gathered and sets the
maximum event creations per second. Setting this too low could result in relevant
events not being logged, however the unlimited setting of 0 could result in a denial of

service on the kubelet.

Rationale:

It is important to capture all events and not restrict event creation. Events are an
important source of security information and analytics that ensure that your environment
is consistently monitored using the event data.

Impact:

Setting this parameter to 0 could result in a denial of service condition due to excessive

events being created. The cluster's event processing and storage systems should be
scaled to handle expected event loads.

Audit:

Run the following command on each node:

sudo grep "eventRecordQPS" /etc/systemd/system/kubelet.service.d/10-

kubeadm.conf

Review the value set for the argument and determine whether this has been set to an
appropriate level for the cluster.
If the argument does not exist, check that there is a Kubelet config file specified by --
config and review the value in this location.

Remediation:

If using a Kubelet config file, edit the file to set eventRecordQPS: to an appropriate

level.
If using command line arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf on each worker node

and set the below parameter in KUBELET_SYSTEM_PODS_ARGS variable.

Based on your system, restart the kubelet service. For example:

Page 52

Internal Only - General

systemctl daemon-reload

systemctl restart kubelet.service

Default Value:

See the GKE documentation for the default value.

References:

1. https://kubernetes.io/docs/admin/kubelet/
2. https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/apis/kubeletco

nfig/v1beta1/types.go
3. https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
8.2 Collect Audit Logs
 Collect audit logs. Ensure that logging, per the enterprise’s audit log
management process, has been enabled across enterprise assets.

● ● ●

v8

8.5 Collect Detailed Audit Logs
 Configure detailed audit logging for enterprise assets containing sensitive data.
Include event source, date, username, timestamp, source addresses, destination
addresses, and other useful elements that could assist in a forensic investigation.

 ● ●

v7
6.2 Activate audit logging
 Ensure that local logging has been enabled on all systems and networking
devices.

● ● ●

v7

6.3 Enable Detailed Logging
 Enable system logging to include detailed information such as an event source,
date, user, timestamp, source addresses, destination addresses, and other useful
elements.

 ● ●

https://kubernetes.io/docs/admin/kubelet/
https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/apis/kubeletconfig/v1beta1/types.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/apis/kubeletconfig/v1beta1/types.go
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 53

Internal Only - General

3.2.8 Ensure that the --rotate-certificates argument is not present

or is set to true (Automated)

Profile Applicability:

• Level 1

Description:

Enable kubelet client certificate rotation.

Rationale:

The --rotate-certificates setting causes the kubelet to rotate its client certificates

by creating new CSRs as its existing credentials expire. This automated periodic
rotation ensures that the there is no downtime due to expired certificates and thus
addressing availability in the CIA (Confidentiality, Integrity, and Availability) security
triad.

Note: This recommendation only applies if you let kubelets get their certificates from the
API server. In case your kubelet certificates come from an outside authority/tool (e.g.
Vault) then you need to implement rotation yourself.

Note: This feature also requires the RotateKubeletClientCertificate feature gate

to be enabled.

Impact:

None

Audit:

Audit Method 1:
SSH to each node and run the following command to find the Kubelet process:

ps -ef | grep kubelet

If the output of the command above includes the --RotateCertificate executable

argument, verify that it is set to true.
If the output of the command above does not include the --RotateCertificate

executable argument then check the Kubelet config file. The output of the above
command should return something similar to --config
/etc/kubernetes/kubelet/kubelet-config.json which is the location of the

Kubelet config file.
Open the Kubelet config file:

cat /etc/kubernetes/kubelet-config.yaml

Verify that the RotateCertificate argument is not present, or is set to true.

Page 54

Internal Only - General

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.yaml file
/etc/kubernetes/kubelet/kubelet-config.yaml and set the below parameter to

true

"RotateCertificate":true

Additionally, ensure that the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf does not set the --
RotateCertificate executable argument to false because this would override the Kubelet
config file.
Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each

worker node and add the below parameter at the end of the KUBELET_ARGS variable

string.

--RotateCertificate=true

Default Value:

See the GKE documentation for the default value.

References:

1. https://github.com/kubernetes/kubernetes/pull/41912
2. https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-

bootstrapping/#kubelet-configuration
3. https://kubernetes.io/docs/imported/release/notes/
4. https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
5. https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.10 Encrypt Sensitive Data in Transit
 Encrypt sensitive data in transit. Example implementations can include:

Transport Layer Security (TLS) and Open Secure Shell (OpenSSH).
 ● ●

v7 14.4 Encrypt All Sensitive Information in Transit
 Encrypt all sensitive information in transit.

 ● ●

https://github.com/kubernetes/kubernetes/pull/41912
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/#kubelet-configuration
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/#kubelet-configuration
https://kubernetes.io/docs/imported/release/notes/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 55

Internal Only - General

3.2.9 Ensure that the RotateKubeletServerCertificate argument is

set to true (Automated)

Profile Applicability:

• Level 1

Description:

Enable kubelet server certificate rotation.

Rationale:

RotateKubeletServerCertificate causes the kubelet to both request a serving

certificate after bootstrapping its client credentials and rotate the certificate as its
existing credentials expire. This automated periodic rotation ensures that the there are
no downtimes due to expired certificates and thus addressing availability in the CIA
(Confidentiality, Integrity, and Availability) security triad.

Note: This recommendation only applies if you let kubelets get their certificates from the
API server. In case your kubelet certificates come from an outside authority/tool (e.g.
Vault) then you need to implement rotation yourself.

Impact:

None

Audit:

Audit Method 1:
First, SSH to each node:
Run the following command on each node to find the Kubelet process:

ps -ef | grep kubelet

If the output of the command above includes the --rotate-kubelet-server-
certificate executable argument verify that it is set to true.

If the process does not have the --rotate-kubelet-server-certificate executable

argument then check the Kubelet config file. The output of the above command should
return something similar to --config /etc/kubernetes/kubelet-config.yaml

which is the location of the Kubelet config file.
Open the Kubelet config file:

Page 56

Internal Only - General

cat /etc/kubernetes/kubelet-config.yaml

Verify that RotateKubeletServerCertificate argument exists in the featureGates

section and is set to true.

Audit Method 2:
If using the api configz endpoint consider searching for the status of
"RotateKubeletServerCertificate":true by extracting the live configuration from

the nodes running kubelet.
Set the local proxy port and the following variables and provide proxy port number and
node name;
HOSTNAME_PORT="localhost-and-port-number"

NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output
of "kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=gke-cluster-1-pool1-5e572947-r2hg (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation Method 1:
If modifying the Kubelet config file, edit the kubelet-config.json file
/etc/kubernetes/kubelet-config.yaml and set the below parameter to true

"featureGates": {

 "RotateKubeletServerCertificate":true

},

Additionally, ensure that the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf does not set

the --rotate-kubelet-server-certificate executable argument to false because

this would override the Kubelet config file.
Remediation Method 2:
If using executable arguments, edit the kubelet service file
/etc/systemd/system/kubelet.service.d/10-kubelet-args.conf on each

worker node and add the below parameter at the end of the KUBELET_ARGS variable

string.

--rotate-kubelet-server-certificate=true

Remediation Method 3:
If using the api configz endpoint consider searching for the status of
"RotateKubeletServerCertificate": by extracting the live configuration from the

nodes running kubelet.
**See detailed step-by-step configmap procedures in Reconfigure a Node's Kubelet in a
Live Cluster, and then rerun the curl statement from audit process to check for kubelet
configuration changes

https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/reconfigure-kubelet/

Page 57

Internal Only - General

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)

export NODE_NAME=gke-cluster-1-pool1-5e572947-r2hg (example node name from

"kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For all three remediation methods:
Restart the kubelet service and check status. The example below is for when using

systemctl to manage services:

systemctl daemon-reload

systemctl restart kubelet.service

systemctl status kubelet -l

Default Value:

See the GKE documentation for the default value.

References:

1. https://github.com/kubernetes/kubernetes/pull/45059
2. https://kubernetes.io/docs/admin/kubelet-tls-bootstrapping/#kubelet-configuration

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.10 Encrypt Sensitive Data in Transit
 Encrypt sensitive data in transit. Example implementations can include:
Transport Layer Security (TLS) and Open Secure Shell (OpenSSH).

 ● ●

v7 14.4 Encrypt All Sensitive Information in Transit
 Encrypt all sensitive information in transit.

 ● ●

4 Policies

This section contains recommendations for various Kubernetes policies which are
important to the security of the environment.

https://github.com/kubernetes/kubernetes/pull/45059
https://kubernetes.io/docs/admin/kubelet-tls-bootstrapping/#kubelet-configuration

Page 58

Internal Only - General

4.1 RBAC and Service Accounts

Page 59

Internal Only - General

4.1.1 Ensure that the cluster-admin role is only used where

required (Automated)

Profile Applicability:

• Level 1

Description:

The RBAC role cluster-admin provides wide-ranging powers over the environment

and should be used only where and when needed.

Rationale:

Kubernetes provides a set of default roles where RBAC is used. Some of these roles
such as cluster-admin provide wide-ranging privileges which should only be applied

where absolutely necessary. Roles such as cluster-admin allow super-user access to

perform any action on any resource. When used in a ClusterRoleBinding, it gives full

control over every resource in the cluster and in all namespaces. When used in a
RoleBinding, it gives full control over every resource in the rolebinding's namespace,

including the namespace itself.

Impact:

Care should be taken before removing any clusterrolebindings from the

environment to ensure they were not required for operation of the cluster. Specifically,
modifications should not be made to clusterrolebindings with the system: prefix as

they are required for the operation of system components.

Audit:

Obtain a list of the principals who have access to the cluster-admin role by reviewing

the clusterrolebinding output for each role binding that has access to the cluster-
admin role.

kubectl get clusterrolebindings -o=custom-

columns=NAME:.metadata.name,ROLE:.roleRef.name,SUBJECT:.subjects[*].name

Review each principal listed and ensure that cluster-admin privilege is required for it.

Remediation:

Identify all clusterrolebindings to the cluster-admin role. Check if they are used and if
they need this role or if they could use a role with fewer privileges.
Where possible, first bind users to a lower-privileged role and then remove the
clusterrolebinding to the cluster-admin role :

Page 60

Internal Only - General

kubectl delete clusterrolebinding [name]

Default Value:

By default a single clusterrolebinding called cluster-admin is provided with the

system:masters group as its principal.

References:

1. https://kubernetes.io/docs/concepts/cluster-administration/
2. https://kubernetes.io/docs/reference/access-authn-authz/rbac/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
 Restrict administrator privileges to dedicated administrator accounts on
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.

● ● ●

v7

4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for

administrative activities and not internet browsing, email, or similar activities.

● ● ●

https://kubernetes.io/docs/concepts/cluster-administration/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Page 61

Internal Only - General

4.1.2 Minimize access to secrets (Automated)

Profile Applicability:

• Level 1

Description:

The Kubernetes API stores secrets, which may be service account tokens for the
Kubernetes API or credentials used by workloads in the cluster. Access to these secrets
should be restricted to the smallest possible group of users to reduce the risk of
privilege escalation.

Rationale:

Inappropriate access to secrets stored within the Kubernetes cluster can allow for an
attacker to gain additional access to the Kubernetes cluster or external resources
whose credentials are stored as secrets.

Impact:

Care should be taken not to remove access to secrets to system components which
require this for their operation

Audit:

Review the users who have get, list or watch access to secrets objects in the

Kubernetes API.

Remediation:

Where possible, remove get, list and watch access to secret objects in the cluster.

Page 62

Internal Only - General

Default Value:

CLUSTERROLEBINDING SUBJECT

TYPE SA-NAMESPACE

cluster-admin system:masters

Group

system:controller:clusterrole-aggregation-controller clusterrole-

aggregation-controller ServiceAccount kube-system

system:controller:expand-controller expand-controller

ServiceAccount kube-system

system:controller:generic-garbage-collector generic-garbage-

collector ServiceAccount kube-system

system:controller:namespace-controller namespace-controller

ServiceAccount kube-system

system:controller:persistent-volume-binder persistent-volume-

binder ServiceAccount kube-system

system:kube-controller-manager system:kube-controller-

manager User

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.1 Establish and Maintain a Secure Configuration Process
 Establish and maintain a secure configuration process for enterprise assets
(end-user devices, including portable and mobile, non-computing/IoT devices, and
servers) and software (operating systems and applications). Review and update
documentation annually, or when significant enterprise changes occur that could
impact this Safeguard.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

Page 63

Internal Only - General

4.1.3 Minimize wildcard use in Roles and ClusterRoles

(Automated)

Profile Applicability:

• Level 1

Description:

Kubernetes Roles and ClusterRoles provide access to resources based on sets of
objects and actions that can be taken on those objects. It is possible to set either of
these to be the wildcard "*", which matches all items.

Use of wildcards is not optimal from a security perspective as it may allow for
inadvertent access to be granted when new resources are added to the Kubernetes API
either as CRDs or in later versions of the product.

Rationale:

The principle of least privilege recommends that users are provided only the access
required for their role and nothing more. The use of wildcard rights grants is likely to
provide excessive rights to the Kubernetes API.

Audit:

Retrieve the roles defined across each namespaces in the cluster and review for
wildcards

kubectl get roles --all-namespaces -o yaml

Retrieve the cluster roles defined in the cluster and review for wildcards

kubectl get clusterroles -o yaml

Remediation:

Where possible replace any use of wildcards in clusterroles and roles with specific
objects or actions.

References:

1. https://kubernetes.io/docs/reference/access-authn-authz/rbac/

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Page 64

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.2 Use Unique Passwords
 Use unique passwords for all enterprise assets. Best practice implementation
includes, at a minimum, an 8-character password for accounts using MFA and a
14-character password for accounts not using MFA.

● ● ●

v7

4.4 Use Unique Passwords
 Where multi-factor authentication is not supported (such as local administrator,
root, or service accounts), accounts will use passwords that are unique to that
system.

 ● ●

Page 65

Internal Only - General

4.1.4 Ensure that default service accounts are not actively used

(Automated)

Profile Applicability:

• Level 1

Description:

The default service account should not be used to ensure that rights granted to

applications can be more easily audited and reviewed.

Rationale:

Kubernetes provides a default service account which is used by cluster workloads

where no specific service account is assigned to the pod.

Where access to the Kubernetes API from a pod is required, a specific service account
should be created for that pod, and rights granted to that service account.

The default service account should be configured such that it does not provide a service
account token and does not have any explicit rights assignments.

Impact:

All workloads which require access to the Kubernetes API will require an explicit service
account to be created.

Audit:

For each namespace in the cluster, review the rights assigned to the default service
account and ensure that it has no roles or cluster roles bound to it apart from the
defaults.
Additionally ensure that the automountServiceAccountToken: false setting is in

place for each default service account.

Remediation:

Create explicit service accounts wherever a Kubernetes workload requires specific
access to the Kubernetes API server.
Modify the configuration of each default service account to include this value

automountServiceAccountToken: false

Default Value:

By default the default service account allows for its service account token to be

mounted in pods in its namespace.

Page 66

Internal Only - General

References:

1. https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-
account/

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
5.3 Disable Dormant Accounts
 Delete or disable any dormant accounts after a period of 45 days of inactivity,
where supported.

● ● ●

v7

4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of

those images or templates.

 ● ●

v7 16.9 Disable Dormant Accounts
 Automatically disable dormant accounts after a set period of inactivity. ● ● ●

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

Page 67

Internal Only - General

4.1.5 Ensure that Service Account Tokens are only mounted

where necessary (Automated)

Profile Applicability:

• Level 1

Description:

Service accounts tokens should not be mounted in pods except where the workload
running in the pod explicitly needs to communicate with the API server

Rationale:

Mounting service account tokens inside pods can provide an avenue for privilege
escalation attacks where an attacker is able to compromise a single pod in the cluster.

Avoiding mounting these tokens removes this attack avenue.

Impact:

Pods mounted without service account tokens will not be able to communicate with the
API server, except where the resource is available to unauthenticated principals.

Audit:

Review pod and service account objects in the cluster and ensure that the option below
is set, unless the resource explicitly requires this access.

automountServiceAccountToken: false

Remediation:

Modify the definition of pods and service accounts which do not need to mount service
account tokens to disable it.

Default Value:

By default, all pods get a service account token mounted in them.

References:

1. https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-
account/

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

Page 68

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.8 Uninstall or Disable Unnecessary Services on
Enterprise Assets and Software
 Uninstall or disable unnecessary services on enterprise assets and software,
such as an unused file sharing service, web application module, or service
function.

 ● ●

v7

14.7 Enforce Access Control to Data through Automated
Tools
 Use an automated tool, such as host-based Data Loss Prevention, to enforce
access controls to data even when data is copied off a system.

 ●

Page 69

Internal Only - General

4.1.6 Avoid use of system:masters group (Automated)

Profile Applicability:

• Level 1

Description:

The special group system:masters should not be used to grant permissions to any

user or service account, except where strictly necessary (e.g. bootstrapping access
prior to RBAC being fully available)

Rationale:

The system:masters group has unrestricted access to the Kubernetes API hard-coded

into the API server source code. An authenticated user who is a member of this group
cannot have their access reduced, even if all bindings and cluster role bindings which
mention it, are removed.

When combined with client certificate authentication, use of this group can allow for
irrevocable cluster-admin level credentials to exist for a cluster.

GKE includes the CertificateSubjectRestriction admission controller which

rejects requests for the system:masters group.

CertificateSubjectRestriction "This admission controller observes creation of

CertificateSigningRequest resources that have a spec.signerName of

kubernetes.io/kube-apiserver-client. It rejects any request that specifies a 'group' (or
'organization attribute') of system:masters." https://kubernetes.io/docs/reference/access-
authn-authz/admission-controllers/#certificatesubjectrestriction

Impact:

Once the RBAC system is operational in a cluster system:masters should not be

specifically required, as ordinary bindings from principals to the cluster-admin cluster

role can be made where unrestricted access is required.

Audit:

Review a list of all credentials which have access to the cluster and ensure that the
group system:masters is not used.

Remediation:

Remove the system:masters group from all users in the cluster.

Default Value:

By default some clusters will create a "break glass" client certificate which is a member
of this group. Access to this client certificate should be carefully controlled and it should
not be used for general cluster operations.

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#certificatesubjectrestriction
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#certificatesubjectrestriction

Page 70

Internal Only - General

References:

1. https://github.com/kubernetes/kubernetes/blob/master/pkg/registry/rbac/escalatio
n_check.go#L38

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
 Restrict administrator privileges to dedicated administrator accounts on
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.

● ● ●

v7 4 Controlled Use of Administrative Privileges
 Controlled Use of Administrative Privileges

https://github.com/kubernetes/kubernetes/blob/master/pkg/registry/rbac/escalation_check.go#L38
https://github.com/kubernetes/kubernetes/blob/master/pkg/registry/rbac/escalation_check.go#L38

Page 71

Internal Only - General

4.1.7 Limit use of the Bind, Impersonate and Escalate

permissions in the Kubernetes cluster (Manual)

Profile Applicability:

• Level 1

Description:

Cluster roles and roles with the impersonate, bind or escalate permissions should not
be granted unless strictly required. Each of these permissions allow a particular subject
to escalate their privileges beyond those explicitly granted by cluster administrators

Rationale:

The impersonate privilege allows a subject to impersonate other users gaining their
rights to the cluster. The bind privilege allows the subject to add a binding to a cluster
role or role which escalates their effective permissions in the cluster. The escalate
privilege allows a subject to modify cluster roles to which they are bound, increasing
their rights to that level.

Each of these permissions has the potential to allow for privilege escalation to cluster-
admin level.

Impact:

There are some cases where these permissions are required for cluster service
operation, and care should be taken before removing these permissions from system
service accounts.

Audit:

Review the users who have access to cluster roles or roles which provide the
impersonate, bind or escalate privileges.

Remediation:

Where possible, remove the impersonate, bind and escalate rights from subjects.

Default Value:

In a default kubeadm cluster, the system:masters group and clusterrole-aggregation-
controller service account have access to the escalate privilege. The system:masters
group also has access to bind and impersonate.

References:

1. https://www.impidio.com/blog/kubernetes-rbac-security-pitfalls
2. https://raesene.github.io/blog/2020/12/12/Escalating_Away/
3. https://raesene.github.io/blog/2021/01/16/Getting-Into-A-Bind-with-Kubernetes/

https://www.impidio.com/blog/kubernetes-rbac-security-pitfalls
https://raesene.github.io/blog/2020/12/12/Escalating_Away/
https://raesene.github.io/blog/2021/01/16/Getting-Into-A-Bind-with-Kubernetes/

Page 72

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.4 Restrict Administrator Privileges to Dedicated
Administrator Accounts
 Restrict administrator privileges to dedicated administrator accounts on
enterprise assets. Conduct general computing activities, such as internet
browsing, email, and productivity suite use, from the user’s primary, non-privileged
account.

● ● ●

v7 4 Controlled Use of Administrative Privileges
 Controlled Use of Administrative Privileges

Page 73

Internal Only - General

4.1.8 Avoid bindings to system:anonymous (Automated)

Profile Applicability:

• Level 2

Description:

Avoid ClusterRoleBindings nor RoleBindings with the user system:anonymous.

Rationale:

Kubernetes assigns user system:anonymous to API server requests that have no

authentication information provided. Binding a role to user system:anonymous gives

any unauthenticated user the permissions granted by that role and is strongly
discouraged.

Impact:

Unauthenticated users will have privileges and permissions associated with roles
associated with the configured bindings.

Care should be taken before removing any clusterrolebindings or rolebindings

from the environment to ensure they were not required for operation of the cluster. Use
a more specific and authenticated user for cluster operations.

Audit:

Both CusterRoleBindings and RoleBindings should be audited. Use the following
command to confirm there are no ClusterRoleBindings to system:anonymous:

$ kubectl get clusterrolebindings -o json | jq -r '["Name"], ["-----"],

(.items[] | select((.subjects | length) > 0) | select(any(.subjects[]; .name

== "system:anonymous")) | [.metadata.namespace, .metadata.name]) | @tsv'

There should be no ClusterRoleBindings listed. If any bindings exist, review their

permissions with the following command and reassess their privilege.

$ kubectl get clusterrolebinding [CLUSTER_ROLE_BINDING_NAME] -o json \

 | jq ' .roleRef.name +" " + .roleRef.kind' \

 | sed -e 's/"//g' \

 | xargs -l bash -c 'kubectl get $1 $0 -o yaml'

Confirm that there are no RoleBindings including the system:anonymous user:

Page 74

Internal Only - General

$ kubectl get rolebindings -A -o json \

 | jq -r '["Namespace", "Name"], ["---------", "-----"], (.items[] |

select((.subjects | length) > 0) | select(any(.subjects[]; .name ==

"system:anonymous")) | [.metadata.namespace, .metadata.name]) | @tsv'

There should be no RoleBindings listed.

If any bindings exist, review their permissions with the following command and reassess
their privilege.

$ kubectl get rolebinding [ROLE_BINDING_NAME] --namespace

[ROLE_BINDING_NAMESPACE] -o json \

 | jq ' .roleRef.name +" " + .roleRef.kind' \

 | sed -e 's/"//g' \

 | xargs -l bash -c 'kubectl get $1 $0 -o yaml --namespace

[ROLE_BINDING_NAMESPACE]'

Remediation:

Identify all clusterrolebindings and rolebindings to the user system:anonymous.

Check if they are used and review the permissions associated with the binding using the
commands in the Audit section above or refer to GKE documentation.
Strongly consider replacing unsafe bindings with an authenticated, user-defined group.
Where possible, bind to non-default, user-defined groups with least-privilege roles.
If there are any unsafe bindings to the user system:anonymous, proceed to delete them

after consideration for cluster operations with only necessary, safer bindings.

kubectl delete clusterrolebinding

[CLUSTER_ROLE_BINDING_NAME]

kubectl delete rolebinding

[ROLE_BINDING_NAME]

--namespace

[ROLE_BINDING_NAMESPACE]

Default Value:

No clusterrolebindings nor rolebindings with user system:anonymous.

References:

1. https://kubernetes.io/docs/reference/access-authn-authz/rbac/#discovery-roles

https://cloud.google.com/kubernetes-engine/docs/best-practices/rbac#detect-prevent-default
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#discovery-roles

Page 75

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.5 Establish and Maintain an Inventory of Service
Accounts
 Establish and maintain an inventory of service accounts. The inventory, at a
minimum, must contain department owner, review date, and purpose. Perform
service account reviews to validate that all active accounts are authorized, on a
recurring schedule at a minimum quarterly, or more frequently.

 ● ●

v7
16.8 Disable Any Unassociated Accounts
 Disable any account that cannot be associated with a business process or
business owner.

● ● ●

Page 76

Internal Only - General

4.1.9 Avoid non-default bindings to system:unauthenticated

(Automated)

Profile Applicability:

• Level 1

Description:

Avoid non-default ClusterRoleBindings and RoleBindings with the group

system:unauthenticated, except the ClusterRoleBinding system:public-info-
viewer.

Rationale:

Kubernetes assigns the group system:unauthenticated to API server requests that

have no authentication information provided. Binding a role to this group gives any
unauthenticated user the permissions granted by that role and is strongly discouraged.

Impact:

Unauthenticated users will have privileges and permissions associated with roles
associated with the configured bindings.

Care should be taken before removing any non-default clusterrolebindings or

rolebindings from the environment to ensure they were not required for operation of

the cluster. Leverage a more specific and authenticated user for cluster operations.

Audit:

Both CusterRoleBindings and RoleBindings should be audited. Use the following

command to confirm there are no non-default ClusterRoleBindings to group

system:unauthenticated:

$ kubectl get clusterrolebindings -o json | jq -r '["Name"], ["-----"],

(.items[] | select((.subjects | length) > 0) | select(any(.subjects[]; .name

== "system:unauthenticated")) | [.metadata.namespace, .metadata.name]) |

@tsv'

Only the following default ClusterRoleBinding should be displayed:

Name

 system:public-info-viewer

If any non-default bindings exist, review their permissions with the following command
and reassess their privilege.

Page 77

Internal Only - General

$ kubectl get clusterrolebinding [CLUSTER_ROLE_BINDING_NAME] -o json \

 | jq ' .roleRef.name +" " + .roleRef.kind' \

 | sed -e 's/"//g' \

 | xargs -l bash -c 'kubectl get $1 $0 -o yaml'

Confirm that there are no RoleBindings including the system:unauthenticated group:

$ kubectl get rolebindings -A -o json \

 | jq -r '["Namespace", "Name"], ["---------", "-----"], (.items[] |

select((.subjects | length) > 0) | select(any(.subjects[]; .name ==

"system:unauthenticated")) | [.metadata.namespace, .metadata.name]) | @tsv'

There should be no RoleBindings listed.

If any bindings exist, review their permissions with the following command and reassess
their privilege.

$ kubectl get rolebinding [ROLE_BINDING_NAME] --namespace

[ROLE_BINDING_NAMESPACE] -o json \

 | jq ' .roleRef.name +" " + .roleRef.kind' \

 | sed -e 's/"//g' \

 | xargs -l bash -c 'kubectl get $1 $0 -o yaml --namespace

[ROLE_BINDING_NAMESPACE]'

Remediation:

Identify all non-default clusterrolebindings and rolebindings to the group

system:unauthenticated. Check if they are used and review the permissions

associated with the binding using the commands in the Audit section above or refer to
GKE documentation.
Strongly consider replacing non-default, unsafe bindings with an authenticated, user-
defined group. Where possible, bind to non-default, user-defined groups with least-
privilege roles.
If there are any non-default, unsafe bindings to the group system:unauthenticated,

proceed to delete them after consideration for cluster operations with only necessary,
safer bindings.

kubectl delete clusterrolebinding

[CLUSTER_ROLE_BINDING_NAME]

kubectl delete rolebinding

[ROLE_BINDING_NAME]

--

namespace

[ROLE_BINDING_NAMESPACE]

Default Value:

ClusterRoleBindings with group system:unauthenticated:

• system:public-info-viewer

No RoleBindings with the group system:unauthenticated.

https://cloud.google.com/kubernetes-engine/docs/best-practices/rbac#detect-prevent-default

Page 78

Internal Only - General

References:

1. https://kubernetes.io/docs/reference/access-authn-authz/rbac/#discovery-roles

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.5 Establish and Maintain an Inventory of Service
Accounts
 Establish and maintain an inventory of service accounts. The inventory, at a
minimum, must contain department owner, review date, and purpose. Perform

service account reviews to validate that all active accounts are authorized, on a
recurring schedule at a minimum quarterly, or more frequently.

 ● ●

v7
16.8 Disable Any Unassociated Accounts
 Disable any account that cannot be associated with a business process or
business owner.

● ● ●

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#discovery-roles

Page 79

Internal Only - General

4.1.10 Avoid non-default bindings to system:authenticated

(Automated)

Profile Applicability:

• Level 1

Description:

Avoid non-default ClusterRoleBindings and RoleBindings with the group

system:authenticated, except the ClusterRoleBindings system:basic-user,

system:discovery, and system:public-info-viewer.

Google's approach to authentication is to make authenticating to Google Cloud and
GKE as simple and secure as possible without adding complex configuration steps. The
group system:authenticated includes all users with a Google account, which

includes all Gmail accounts. Consider your authorization controls with this extended
group scope when granting permissions. Thus, group system:authenticated is not

recommended for non-default use.

Rationale:

GKE assigns the group system:authenticated to API server requests made by any

user who is signed in with a Google Account, including all Gmail accounts. In practice,
this isn't meaningfully different from system:unauthenticated because anyone can

create a Google Account.

Binding a role to the group system:authenticated gives any user with a Google

Account, including all Gmail accounts, the permissions granted by that role and is
strongly discouraged.

Impact:

Authenticated users in group system:authenticated should be treated similarly to

users in system:unauthenticated, having privileges and permissions associated with

roles associated with the configured bindings.

Care should be taken before removing any non-default clusterrolebindings or

rolebindings from the environment to ensure they were not required for operation of

the cluster. Leverage a more specific and authenticated user for cluster operations.

Audit:

Use the following command to confirm there are no non-default ClusterRoleBindings

to system:authenticated:

Page 80

Internal Only - General

$ kubectl get clusterrolebindings -o json | jq -r '["Name"], ["-----"],

(.items[] | select((.subjects | length) > 0) | select(any(.subjects[]; .name

== "system:unauthenticated")) | [.metadata.namespace, .metadata.name]) |

@tsv'

Only the following default ClusterRoleBindings should be displayed:

Name

 system:basic-user

 system:discovery

 system:public-info-viewer

If any non-default bindings exist, review their permissions with the following command
and reassess their privilege.

$ kubectl get clusterrolebinding CLUSTER_ROLE_BINDING_NAME -o json \

 | jq ' .roleRef.name +" " + .roleRef.kind' \

 | sed -e 's/"//g' \

 | xargs -l bash -c 'kubectl get $1 $0 -o yaml'

Confirm that there are no RoleBindings including the system:authenticated group:

$ kubectl get rolebindings -A -o json \

 | jq -r '["Namespace", "Name"], ["---------", "-----"], (.items[] |

select((.subjects | length) > 0) | select(any(.subjects[]; .name ==

"system:unauthenticated")) | [.metadata.namespace, .metadata.name]) | @tsv'

There should be no RoleBindings listed.

If any bindings exist, review their permissions with the following command and reassess
their privilege.

$ kubectl get rolebinding [ROLE_BINDING_NAME] --namespace

[ROLE_BINDING_NAMESPACE] -o json \

 | jq ' .roleRef.name +" " + .roleRef.kind' \

 | sed -e 's/"//g' \

 | xargs -l bash -c 'kubectl get $1 $0 -o yaml --namespace

[ROLE_BINDING_NAMESPACE]'

Remediation:

Identify all non-default clusterrolebindings and rolebindings to the group

system:authenticated. Check if they are used and review the permissions associated

with the binding using the commands in the Audit section above or refer to GKE
documentation.
Strongly consider replacing non-default, unsafe bindings with an authenticated, user-
defined group. Where possible, bind to non-default, user-defined groups with least-
privilege roles.
If there are any non-default, unsafe bindings to the group system:authenticated,

proceed to delete them after consideration for cluster operations with only necessary,
safer bindings.

Page 81

Internal Only - General

kubectl delete clusterrolebinding

[CLUSTER_ROLE_BINDING_NAME]

kubectl delete rolebinding

[ROLE_BINDING_NAME]

--namespace

[ROLE_BINDING_NAMESPACE]

Default Value:

ClusterRoleBindings with group system:authenticated:

• system:basic-user

• system:discovery

No RoleBindings with the group system:authenticated.

References:

1. https://kubernetes.io/docs/reference/access-authn-authz/rbac/#discovery-roles

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

5.5 Establish and Maintain an Inventory of Service
Accounts
 Establish and maintain an inventory of service accounts. The inventory, at a
minimum, must contain department owner, review date, and purpose. Perform
service account reviews to validate that all active accounts are authorized, on a
recurring schedule at a minimum quarterly, or more frequently.

 ● ●

v7
16.8 Disable Any Unassociated Accounts
 Disable any account that cannot be associated with a business process or
business owner.

● ● ●

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#discovery-roles

Page 82

Internal Only - General

4.2 Pod Security Standards

Pod Security Standards (PSS) are recommendations for securing deployed workloads
to reduce the risks of container breakout. There are a number of ways if implementing
PSS, including the built-in Pod Security Admission controller, or external policy control
systems which integrate with Kubernetes via validating and mutating webhooks.

Page 83

Internal Only - General

4.2.1 Ensure that the cluster enforces Pod Security Standard

Baseline profile or stricter for all namespaces. (Manual)

Profile Applicability:

• Level 1

Description:

The Pod Security Standard Baseline profile defines a baseline for container security.
You can enforce this by using the built-in Pod Security Admission controller.

Rationale:

Without an active mechanism to enforce the Pod Security Standard Baseline profile, it is
not possible to limit the use of containers with access to underlying cluster nodes, via
mechanisms like privileged containers, or the use of hostPath volume mounts.

Impact:

Enforcing a baseline profile will limit the use of containers.

Audit:

diff

<(kubectl get namespace -l pod-security.kubernetes.io/enforce=baseline -o
jsonpath='{range .items[]}{.metadata.name}{"\n"}')

<(kubectl get namespace -o jsonpath='{range .items[]}{.metadata.name}{"\n"}')

Remediation:

Ensure that Pod Security Admission is in place for every namespace which contains
user workloads.
Run the following command to enforce the Baseline profile in a namespace:
kubectl label namespace pod-security.kubernetes.io/enforce=baseline

Default Value:

By default, Pod Security Admission is enabled but no policies are in place.

Page 84

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

16.7 Use Standard Hardening Configuration Templates for
Application Infrastructure
 Use standard, industry-recommended hardening configuration templates for
application infrastructure components. This includes underlying servers, databases,
and web servers, and applies to cloud containers, Platform as a Service (PaaS)
components, and SaaS components. Do not allow in-house developed software to
weaken configuration hardening.

 ● ●

v7
5.1 Establish Secure Configurations
 Maintain documented, standard security configuration standards for all
authorized operating systems and software.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

Page 85

Internal Only - General

4.3 Network Policies and CNI

Page 86

Internal Only - General

Page 87

Internal Only - General

4.3.1 Ensure that the CNI in use supports Network Policies

(Manual)

Profile Applicability:

• Level 1

Description:

There are a variety of CNI plugins available for Kubernetes. If the CNI in use does not
support Network Policies it may not be possible to effectively restrict traffic in the
cluster.

Rationale:

Kubernetes network policies are enforced by the CNI plugin in use. As such it is
important to ensure that the CNI plugin supports both Ingress and Egress network
policies.

See also recommendation 5.6.7.

Impact:

None

Audit:

Review the documentation of CNI plugin in use by the cluster, and confirm that it
supports Ingress and Egress network policies.

Remediation:

To use a CNI plugin with Network Policy, enable Network Policy in GKE, and the CNI
plugin will be updated. See recommendation 5.6.7.

Default Value:

This will depend on the CNI plugin in use.

References:

1. https://kubernetes.io/docs/concepts/services-networking/network-policies/
2. https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-

net/network-plugins/
3. https://cloud.google.com/kubernetes-engine/docs/concepts/network-overview

Additional Information:

One example here is Flannel (https://github.com/flannel-io/flannel) which does not
support Network policy unless Calico is also in use.

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://cloud.google.com/kubernetes-engine/docs/concepts/network-overview
https://github.com/flannel-io/flannel

Page 88

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

16.5 Use Up-to-Date and Trusted Third-Party Software
Components
 Use up-to-date and trusted third-party software components. When possible,
choose established and proven frameworks and libraries that provide adequate
security. Acquire these components from trusted sources or evaluate the software
for vulnerabilities before use.

 ● ●

v7

18.4 Only Use Up-to-date And Trusted Third-Party
Components
 Only use up-to-date and trusted third-party components for the software
developed by the organization.

 ● ●

Page 89

Internal Only - General

4.3.2 Ensure that all Namespaces have Network Policies defined

(Automated)

Profile Applicability:

• Level 2

Description:

Use network policies to isolate traffic in the cluster network.

Rationale:

Running different applications on the same Kubernetes cluster creates a risk of one
compromised application attacking a neighboring application. Network segmentation is
important to ensure that containers can communicate only with those they are supposed
to. A network policy is a specification of how selections of pods are allowed to
communicate with each other and other network endpoints.

Network Policies are namespace scoped. When a network policy is introduced to a
given namespace, all traffic not allowed by the policy is denied. However, if there are no
network policies in a namespace all traffic will be allowed into and out of the pods in that
namespace.

Impact:

Once network policies are in use within a given namespace, traffic not explicitly allowed
by a network policy will be denied. As such it is important to ensure that, when
introducing network policies, legitimate traffic is not blocked.

Audit:

Run the below command and review the NetworkPolicy objects created in the cluster.

kubectl get networkpolicy --all-namespaces

ensure that each namespace defined in the cluster has at least one Network

Policy.

Remediation:

Follow the documentation and create NetworkPolicy objects as needed.

See: https://cloud.google.com/kubernetes-engine/docs/how-to/network-
policy#creating_a_network_policy for more information.

Default Value:

By default, network policies are not created.

https://cloud.google.com/kubernetes-engine/docs/how-to/network-policy#creating_a_network_policy
https://cloud.google.com/kubernetes-engine/docs/how-to/network-policy#creating_a_network_policy

Page 90

Internal Only - General

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/network-
policy#creating_a_network_policy

2. https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
3. https://cloud.google.com/kubernetes-engine/docs/concepts/network-overview

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
13.4 Perform Traffic Filtering Between Network
Segments
 Perform traffic filtering between network segments, where appropriate.

 ● ●

v7

14.1 Segment the Network Based on Sensitivity
 Segment the network based on the label or classification level of the
information stored on the servers, locate all sensitive information on separated
Virtual Local Area Networks (VLANs).

 ● ●

v7

14.2 Enable Firewall Filtering Between VLANs
 Enable firewall filtering between VLANs to ensure that only authorized
systems are able to communicate with other systems necessary to fulfill their
specific responsibilities.

 ● ●

https://cloud.google.com/kubernetes-engine/docs/how-to/network-policy#creating_a_network_policy
https://cloud.google.com/kubernetes-engine/docs/how-to/network-policy#creating_a_network_policy
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://cloud.google.com/kubernetes-engine/docs/concepts/network-overview

Page 91

Internal Only - General

4.4 Secrets Management

Page 92

Internal Only - General

4.4.1 Prefer using secrets as files over secrets as environment

variables (Automated)

Profile Applicability:

• Level 2

Description:

Kubernetes supports mounting secrets as data volumes or as environment variables.
Minimize the use of environment variable secrets.

Rationale:

It is reasonably common for application code to log out its environment (particularly in
the event of an error). This will include any secret values passed in as environment
variables, so secrets can easily be exposed to any user or entity who has access to the
logs.

Impact:

Application code which expects to read secrets in the form of environment variables
would need modification

Audit:

Run the following command to find references to objects which use environment
variables defined from secrets.

kubectl get all -o jsonpath='{range .items[?(@..secretKeyRef)]} {.kind}

{.metadata.name} {"\n"}{end}' -A

Remediation:

If possible, rewrite application code to read secrets from mounted secret files, rather
than from environment variables.

Default Value:

By default, secrets are not defined

References:

1. https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets

Additional Information:

Mounting secrets as volumes has the additional benefit that secret values can be
updated without restarting the pod

https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets

Page 93

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3 Data Protection
 Develop processes and technical controls to identify, classify, securely
handle, retain, and dispose of data.

v7 13 Data Protection
 Data Protection

Page 94

Internal Only - General

4.4.2 Consider external secret storage (Manual)

Profile Applicability:

• Level 2

Description:

Consider the use of an external secrets storage and management system instead of
using Kubernetes Secrets directly, if more complex secret management is required.
Ensure the solution requires authentication to access secrets, has auditing of access to
and use of secrets, and encrypts secrets. Some solutions also make it easier to rotate
secrets.

Rationale:

Kubernetes supports secrets as first-class objects, but care needs to be taken to ensure
that access to secrets is carefully limited. Using an external secrets provider can ease
the management of access to secrets, especially where secrests are used across both
Kubernetes and non-Kubernetes environments.

Impact:

None

Audit:

Review your secrets management implementation.

Remediation:

Refer to the secrets management options offered by the cloud service provider or a
third-party secrets management solution.

Default Value:

By default, no external secret management is configured.

References:

1. https://kubernetes.io/docs/concepts/configuration/secret/
2. https://cloud.google.com/secret-manager/docs/overview

https://kubernetes.io/docs/concepts/configuration/secret/
https://cloud.google.com/secret-manager/docs/overview

Page 95

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3 Data Protection
 Develop processes and technical controls to identify, classify, securely
handle, retain, and dispose of data.

v7 13 Data Protection
 Data Protection

Page 96

Internal Only - General

4.5 Extensible Admission Control

Page 97

Internal Only - General

4.5.1 Configure Image Provenance using ImagePolicyWebhook

admission controller (Manual)

Profile Applicability:

• Level 2

Description:

Configure Image Provenance for the deployment.

Rationale:

Kubernetes supports plugging in provenance rules to accept or reject the images in
deployments. Rules can be configured to ensure that only approved images are
deployed in the cluster.

Also see recommendation 5.10.4.

Impact:

Regular maintenance for the provenance configuration should be carried out, based on
container image updates.

Audit:

Review the pod definitions in the cluster and verify that image provenance is configured
as appropriate.
Also see recommendation 5.10.4.

Remediation:

Follow the Kubernetes documentation and setup image provenance.
Also see recommendation 5.10.4.

Default Value:

By default, image provenance is not set.

References:

1. https://kubernetes.io/docs/concepts/containers/images/
2. https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

https://kubernetes.io/docs/concepts/containers/images/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

Page 98

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.6 Securely Manage Enterprise Assets and Software
 Securely manage enterprise assets and software. Example implementations
include managing configuration through version-controlled-infrastructure-as-code
and accessing administrative interfaces over secure network protocols, such as
Secure Shell (SSH) and Hypertext Transfer Protocol Secure (HTTPS). Do not use
insecure management protocols, such as Telnet (Teletype Network) and HTTP,
unless operationally essential.

● ● ●

v7 18 Application Software Security
 Application Software Security

Page 99

Internal Only - General

4.6 General Policies

These policies relate to general cluster management topics, like namespace best
practices and policies applied to pod objects in the cluster.

Page 100

Internal Only - General

4.6.1 Create administrative boundaries between resources using

namespaces (Manual)

Profile Applicability:

• Level 1

Description:

Use namespaces to isolate your Kubernetes objects.

Rationale:

Limiting the scope of user permissions can reduce the impact of mistakes or malicious
activities. A Kubernetes namespace allows you to partition created resources into
logically named groups. Resources created in one namespace can be hidden from
other namespaces. By default, each resource created by a user in Kubernetes cluster
runs in a default namespace, called default. You can create additional namespaces

and attach resources and users to them. You can use Kubernetes Authorization plugins
to create policies that segregate access to namespace resources between different
users.

Impact:

You need to switch between namespaces for administration.

Audit:

Run the below command and review the namespaces created in the cluster.

kubectl get namespaces

Ensure that these namespaces are the ones you need and are adequately administered
as per your requirements.

Remediation:

Follow the documentation and create namespaces for objects in your deployment as
you need them.

Default Value:

By default, Kubernetes starts with two initial namespaces:

1. default - The default namespace for objects with no other namespace

2. kube-system - The namespace for objects created by the Kubernetes system

3. kube-node-lease - Namespace used for node heartbeats

4. kube-public - Namespace used for public information in a cluster

Page 101

Internal Only - General

References:

1. https://kubernetes.io/docs/concepts/overview/working-with-
objects/namespaces/#viewing-namespaces

2. http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-
deployment.html

3. https://github.com/kubernetes/enhancements/tree/master/keps/sig-node/589-
efficient-node-heartbeats

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

13 Network Monitoring and Defense
 Operate processes and tooling to establish and maintain comprehensive
network monitoring and defense against security threats across the enterprise’s
network infrastructure and user base.

v7 12 Boundary Defense
 Boundary Defense

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#viewing-namespaces
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#viewing-namespaces
http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-deployment.html
http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-deployment.html
https://github.com/kubernetes/enhancements/tree/master/keps/sig-node/589-efficient-node-heartbeats
https://github.com/kubernetes/enhancements/tree/master/keps/sig-node/589-efficient-node-heartbeats

Page 102

Internal Only - General

4.6.2 Ensure that the seccomp profile is set to RuntimeDefault in

the pod definitions (Automated)

Profile Applicability:

• Level 2

Description:

Enable RuntimeDefault seccomp profile in the pod definitions.

Rationale:

Seccomp (secure computing mode) is used to restrict the set of system calls
applications can make, allowing cluster administrators greater control over the security
of workloads running in the cluster. Kubernetes disables seccomp profiles by default for
historical reasons. It should be enabled to ensure that the workloads have restricted
actions available within the container.

Impact:

If the RuntimeDefault seccomp profile is too restrictive for you, you would have to

create/manage your own Localhost seccomp profiles.

Audit:

Review the pod definitions output for all namespaces in the cluster with the command
below.

kubectl get pods --all-namespaces -o json | jq -r '.items[] |

select(.metadata.annotations."seccomp.security.alpha.kubernetes.io/pod" ==

"runtime/default" or .spec.securityContext.seccompProfile.type ==

"RuntimeDefault") | {namespace: .metadata.namespace, name: .metadata.name,

seccompProfile: .spec.securityContext.seccompProfile.type}'

Remediation:

Use security context to enable the RuntimeDefault seccomp profile in your pod

definitions. An example is as below:

{

 "namespace": "kube-system",

 "name": "metrics-server-v0.7.0-dbcc8ddf6-gz7d4",

 "seccompProfile": "RuntimeDefault"

}

Default Value:

By default, seccomp profile is set to unconfined which means that no seccomp profiles

are enabled.

Page 103

Internal Only - General

References:

1. https://kubernetes.io/docs/tutorials/security/seccomp/
2. https://cloud.google.com/kubernetes-engine/docs/concepts/seccomp-in-gke

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

16.7 Use Standard Hardening Configuration Templates for
Application Infrastructure
 Use standard, industry-recommended hardening configuration templates for
application infrastructure components. This includes underlying servers, databases,
and web servers, and applies to cloud containers, Platform as a Service (PaaS)
components, and SaaS components. Do not allow in-house developed software to
weaken configuration hardening.

 ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of

those images or templates.

 ● ●

https://kubernetes.io/docs/tutorials/security/seccomp/
https://cloud.google.com/kubernetes-engine/docs/concepts/seccomp-in-gke

Page 104

Internal Only - General

4.6.3 Apply Security Context to Pods and Containers (Manual)

Profile Applicability:

• Level 2

Description:

Apply Security Context to Pods and Containers

Rationale:

A security context defines the operating system security settings (uid, gid, capabilities,
SELinux role, etc..) applied to a container. When designing containers and pods, make
sure that the security context is configured for pods, containers, and volumes. A security
context is a property defined in the deployment yaml. It controls the security parameters
that will be assigned to the pod/container/volume. There are two levels of security
context: pod level security context, and container level security context.

Impact:

If you incorrectly apply security contexts, there may be issues running the pods.

Audit:

Review the pod definitions in the cluster and verify that the security contexts have been
defined as appropriate.

Remediation:

Follow the Kubernetes documentation and apply security contexts to your pods. For a
suggested list of security contexts, you may refer to the CIS Google Container-
Optimized OS Benchmark.

Default Value:

By default, no security contexts are automatically applied to pods.

References:

1. https://kubernetes.io/docs/concepts/workloads/pods/
2. https://kubernetes.io/docs/concepts/containers/
3. https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
4. https://learn.cisecurity.org/benchmarks

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://learn.cisecurity.org/benchmarks

Page 105

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4 Secure Configuration of Enterprise Assets and Software
 Establish and maintain the secure configuration of enterprise assets (end-user
devices, including portable and mobile; network devices; non-computing/IoT
devices; and servers) and software (operating systems and applications).

v7
5.1 Establish Secure Configurations
 Maintain documented, standard security configuration standards for all
authorized operating systems and software.

● ● ●

Page 106

Internal Only - General

4.6.4 The default namespace should not be used (Automated)

Profile Applicability:

• Level 2

Description:

Kubernetes provides a default namespace, where objects are placed if no namespace
is specified for them. Placing objects in this namespace makes application of RBAC and
other controls more difficult.

Rationale:

Resources in a Kubernetes cluster should be segregated by namespace, to allow for
security controls to be applied at that level and to make it easier to manage resources.

Impact:

None

Audit:

Run this command to list objects in default namespace

kubectl get $(kubectl api-resources --verbs=list --namespaced=true -o name |

paste -sd, -) --ignore-not-found -n default

The only entries there should be system managed resources such as the kubernetes

service
OR

kubectl get pods -n default

Returning No resources found in default namespace.

Remediation:

Ensure that namespaces are created to allow for appropriate segregation of Kubernetes
resources and that all new resources are created in a specific namespace.

Default Value:

Unless a namespace is specific on object creation, the default namespace will be

used

Page 107

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

12.2 Establish and Maintain a Secure Network
Architecture
 Establish and maintain a secure network architecture. A secure network
architecture must address segmentation, least privilege, and availability, at a
minimum.

 ● ●

v7

2.10 Physically or Logically Segregate High Risk
Applications
 Physically or logically segregated systems should be used to isolate and run
software that is required for business operations but incur higher risk for the
organization.

 ●

5 Managed services

This section consists of security recommendations for the direct configuration of
Kubernetes managed service components, namely, Google Kubernetes Engine (GKE).
These recommendations are directly applicable for features which exist only as part of a
managed service.

Page 108

Internal Only - General

5.1 Image Registry and Image Scanning

This section contains recommendations relating to container image registries and
securing images in those registries, such as Google Container Registry (GCR).

Page 109

Internal Only - General

5.1.1 Ensure Image Vulnerability Scanning is enabled

(Automated)

Profile Applicability:

• Level 2

Description:

Note: GCR is now deprecated, being superseded by Artifact Registry starting 15th May
2024. Runtime Vulnerability scanning is available via GKE Security Posture

Scan images stored in Google Container Registry (GCR) or Artifact Registry (AR) for
vulnerabilities.

Rationale:

Vulnerabilities in software packages can be exploited by malicious users to obtain
unauthorized access to local cloud resources. GCR Container Analysis API or Artifact
Registry Container Scanning API allow images stored in GCR or AR respectively to be
scanned for known vulnerabilities.

Impact:

None.

Audit:

For Images Hosted in GCR:

Using Google Cloud Console:

1. Go to GCR by visiting https://console.cloud.google.com/gcr
2. Select Settings and check if Vulnerability scanning is Enabled.

Using Command Line:

gcloud services list --enabled

Ensure that the Container Registry API and Container Analysis API are listed in

the output.

For Images Hosted in AR:

https://console.cloud.google.com/gcr

Page 110

Internal Only - General

Using Google Cloud Console:

1. Go to AR by visiting https://console.cloud.google.com/artifacts
2. Select Settings and check if Vulnerability scanning is Enabled.

Using Command Line:

gcloud services list --enabled

Ensure that Container Scanning API and Artifact Registry API are listed in the

output.

Remediation:

For Images Hosted in GCR:

Using Google Cloud Console

1. Go to GCR by visiting: https://console.cloud.google.com/gcr
2. Select Settings and, under the Vulnerability Scanning heading, click the TURN

ON button.

Using Command Line

gcloud services enable containeranalysis.googleapis.com

For Images Hosted in AR:

Using Google Cloud Console

1. Go to GCR by visiting: https://console.cloud.google.com/artifacts
2. Select Settings and, under the Vulnerability Scanning heading, click the ENABLE

button.

Using Command Line

https://console.cloud.google.com/artifacts
https://console.cloud.google.com/gcr
https://console.cloud.google.com/artifacts

Page 111

Internal Only - General

gcloud services enable containerscanning.googleapis.com

Default Value:

By default, GCR Container Analysis and AR Container Scanning are disabled.

References:

1. https://cloud.google.com/artifact-registry/docs/analysis
2. https://cloud.google.com/artifact-analysis/docs/os-overview
3. https://console.cloud.google.com/marketplace/product/google/containerregistry.g

oogleapis.com
4. https://cloud.google.com/kubernetes-engine/docs/concepts/about-configuration-

scanning
5. https://containersecurity.googleapis.com

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

7.6 Perform Automated Vulnerability Scans of Externally-
Exposed Enterprise Assets
 Perform automated vulnerability scans of externally-exposed enterprise assets
using a SCAP-compliant vulnerability scanning tool. Perform scans on a monthly,
or more frequent, basis.

 ● ●

v7 3 Continuous Vulnerability Management
 Continuous Vulnerability Management

v7

3.1 Run Automated Vulnerability Scanning Tools
 Utilize an up-to-date SCAP-compliant vulnerability scanning tool to
automatically scan all systems on the network on a weekly or more frequent basis
to identify all potential vulnerabilities on the organization's systems.

 ● ●

v7

3.2 Perform Authenticated Vulnerability Scanning
 Perform authenticated vulnerability scanning with agents running locally on
each system or with remote scanners that are configured with elevated rights on
the system being tested.

 ● ●

https://cloud.google.com/artifact-registry/docs/analysis
https://cloud.google.com/artifact-analysis/docs/os-overview
https://console.cloud.google.com/marketplace/product/google/containerregistry.googleapis.com
https://console.cloud.google.com/marketplace/product/google/containerregistry.googleapis.com
https://cloud.google.com/kubernetes-engine/docs/concepts/about-configuration-scanning
https://cloud.google.com/kubernetes-engine/docs/concepts/about-configuration-scanning
https://containersecurity.googleapis.com/

Page 112

Internal Only - General

5.1.2 Minimize user access to Container Image repositories

(Manual)

Profile Applicability:

• Level 2

Description:

Note: GCR is now deprecated, see the references for more details.

Restrict user access to GCR or AR, limiting interaction with build images to only
authorized personnel and service accounts.

Rationale:

Weak access control to GCR or AR may allow malicious users to replace built images
with vulnerable or back-doored containers.

Impact:

Care should be taken not to remove access to GCR or AR for accounts that require this
for their operation. Any account granted the Storage Object Viewer role at the project
level can view all objects stored in GCS for the project.

Audit:

For Images Hosted in AR:

1. Go to Artifacts Browser by visiting https://console.cloud.google.com/artifacts
2. From the list of artifacts select each repository with format Docker

3. Under the Permissions tab, review the roles for each member and ensure only
authorized users have the Artifact Registry Administrator, Artifact Registry
Reader, Artifact Registry Repository Administrator and Artifact Registry Writer
roles.

Users may have permissions to use Service Accounts and thus Users could inherit
privileges on the AR repositories. To check the accounts that could do this:

1. Go to IAM by visiting https://console.cloud.google.com/iam-admin/iam
2. Apply the filter Role: Service Account User.

Note that other privileged project level roles will have the ability to write and modify AR
repositories. Consult the GCP CIS benchmark and IAM documentation for further
reference.
Using Command Line:

https://console.cloud.google.com/artifacts
https://console.cloud.google.com/iam-admin/iam

Page 113

Internal Only - General

gcloud artifacts repositories get-iam-policy <repository-name> --location

<repository-location>

The output of the command will return roles associated with the AR repository and
which members have those roles.

For Images Hosted in GCR:

Using Google Cloud Console:
GCR bucket permissions

1. Go to Storage Browser by visiting
https://console.cloud.google.com/storage/browser

2. From the list of storage buckets, select
artifacts.<project_id>.appspot.com for the GCR bucket

3. Under the Permissions tab, review the roles for each member and ensure only
authorized users have the Storage Admin, Storage Object Admin, Storage Object
Creator, Storage Legacy Bucket Owner, Storage Legacy Bucket Writer and
Storage Legacy Object Owner roles.

Users may have permissions to use Service Accounts and thus Users could inherit
privileges on the GCR Bucket. To check the accounts that could do this:

1. Go to IAM by visiting https://console.cloud.google.com/iam-admin/iam
2. Apply the filter Role: Service Account User.

Note that other privileged project level roles will have the ability to write and modify
objects and the GCR bucket. Consult the GCP CIS benchmark and IAM documentation
for further reference.
Using Command Line:
To check GCR bucket specific permissions
gsutil iam get gs://artifacts.<project_id>.appspot.com

The output of the command will return roles associated with the GCR bucket and which
members have those roles.
Additionally, run the following to identify users and service accounts that hold privileged
roles at the project level, and thus inherit these privileges within the GCR bucket:

https://console.cloud.google.com/storage/browser
https://console.cloud.google.com/iam-admin/iam

Page 114

Internal Only - General

gcloud projects get-iam-policy <project_id> \

--flatten="bindings[].members" \

--format='table(bindings.members,bindings.role)' \

--filter="bindings.role:roles/storage.admin OR

bindings.role:roles/storage.objectAdmin OR

bindings.role:roles/storage.objectCreator OR

bindings.role:roles/storage.legacyBucketOwner OR

bindings.role:roles/storage.legacyBucketWriter OR

bindings.role:roles/storage.legacyObjectOwner"

The output from the command lists the service accounts that have create/modify
permissions.
Users may have permissions to use Service Accounts and thus Users could inherit
privileges on the GCR Bucket. To check the accounts that could do this:

gcloud projects get-iam-policy <project_id> \

--flatten="bindings[].members" \

--format='table(bindings.members)' \

--filter="bindings.role:roles/iam.serviceAccountUser"

Note that other privileged project level roles will have the ability to write and modify
objects and the GCR bucket. Consult the GCP CIS benchmark and IAM documentation
for further reference.

Remediation:

For Images Hosted in AR:

Using Google Cloud Console:

1. Go to Artifacts Browser by visiting https://console.cloud.google.com/artifacts
2. From the list of artifacts select each repository with format Docker

3. Under the Permissions tab, modify the roles for each member and ensure only
authorized users have the Artifact Registry Administrator, Artifact Registry
Reader, Artifact Registry Repository Administrator and Artifact Registry Writer
roles.

Using Command Line:
gcloud artifacts repositories set-iam-policy <repository-name> <path-to-

policy-file> --location <repository-location>

To learn how to configure policy files see: https://cloud.google.com/artifact-
registry/docs/access-control#grant

For Images Hosted in GCR:

Using Google Cloud Console:
To modify roles granted at the GCR bucket level:

https://console.cloud.google.com/artifacts
https://cloud.google.com/artifact-registry/docs/access-control#grant
https://cloud.google.com/artifact-registry/docs/access-control#grant

Page 115

Internal Only - General

1. Go to Storage Browser by visiting:
https://console.cloud.google.com/storage/browser.

2. From the list of storage buckets, select
artifacts.<project_id>.appspot.com for the GCR bucket

3. Under the Permissions tab, modify permissions of the identified member via the
drop-down role menu and change the Role to Storage Object Viewer for read-

only access.

For a User or Service account with Project level permissions inherited by the GCR
bucket, or the Service Account User Role:

1. Go to IAM by visiting: https://console.cloud.google.com/iam-admin/iam
2. Find the User or Service account to be modified and click on the corresponding

pencil icon.
3. Remove the create/modify role (Storage Admin / Storage Object Admin /

Storage Object Creator / Service Account User) on the user or service

account.
4. If required add the Storage Object Viewer role - note with caution that this

permits the account to view all objects stored in GCS for the project.

Using Command Line:
To change roles at the GCR bucket level:
Firstly, run the following if read permissions are required:
gsutil iam ch <type>:<email_address>:objectViewer

gs://artifacts.<project_id>.appspot.com

Then remove the excessively privileged role (Storage Admin / Storage Object
Admin / Storage Object Creator) using:

gsutil iam ch -d <type>:<email_address>:<role>

gs://artifacts.<project_id>.appspot.com

where:

•
<type> can be one of the following:

o
user, if the <email_address> is a Google account.

o
serviceAccount, if <email_address> specifies a Service account.

o
<email_address> can be one of the following:

▪ a Google account (for example, someone@example.com).

▪ a Cloud IAM service account.

To modify roles defined at the project level and subsequently inherited within the GCR
bucket, or the Service Account User role, extract the IAM policy file, modify it
accordingly and apply it using:

https://console.cloud.google.com/storage/browser
https://console.cloud.google.com/iam-admin/iam

Page 116

Internal Only - General

gcloud projects set-iam-policy <project_id> <policy_file>

Default Value:

By default, GCR is disabled and access controls are set during initialisation.

References:

1. https://cloud.google.com/container-registry/docs/
2. https://cloud.google.com/kubernetes-engine/docs/how-to/service-accounts
3. https://cloud.google.com/kubernetes-engine/docs/how-to/iam
4. https://cloud.google.com/artifact-registry/docs/access-control#grant

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data

access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

● ● ●

v7

14.6 Protect Information through Access Control Lists
 Protect all information stored on systems with file system, network share,
claims, application, or database specific access control lists. These controls will
enforce the principle that only authorized individuals should have access to the
information based on their need to access the information as a part of their
responsibilities.

● ● ●

https://cloud.google.com/container-registry/docs/
https://cloud.google.com/kubernetes-engine/docs/how-to/service-accounts
https://cloud.google.com/kubernetes-engine/docs/how-to/iam
https://cloud.google.com/artifact-registry/docs/access-control#grant

Page 117

Internal Only - General

5.1.3 Minimize cluster access to read-only for Container Image

repositories (Manual)

Profile Applicability:

• Level 2

Description:

Note: GCR is now deprecated, see the references for more details.

Configure the Cluster Service Account with Artifact Registry Viewer Role to only allow
read-only access to AR repositories. Configure the Cluster Service Account with
Storage Object Viewer Role to only allow read-only access to GCR.

Rationale:

The Cluster Service Account does not require administrative access to GCR or AR, only
requiring pull access to containers to deploy onto GKE. Restricting permissions follows
the principles of least privilege and prevents credentials from being abused beyond the
required role.

Impact:

A separate dedicated service account may be required for use by build servers and
other robot users pushing or managing container images.

Any account granted the Storage Object Viewer role at the project level can view all
objects stored in GCS for the project.

Audit:

For Images Hosted in AR:

Using Google Cloud Console

1. Go to Artifacts Browser by visiting https://console.cloud.google.com/artifacts
2. From the list of repositories, for each repository with Format Docker
3. Under the Permissions tab, review the role for GKE Service account and ensure

that only the Artifact Registry Viewer role is set.

Using Command Line:
gcloud artifacts repositories get-iam-policy <repository-name> --location

<repository-location>

The output of the command will return roles associated with the AR repository. If listed,
ensure the GKE Service account is set to "role":
"roles/artifactregistry.reader".

https://console.cloud.google.com/artifacts

Page 118

Internal Only - General

For Images Hosted in GCR:

Using Google Cloud Console

1. Go to Storage Browser by visiting
https://console.cloud.google.com/storage/browser

2. From the list of storage buckets, select
artifacts.<project_id>.appspot.com for the GCR bucket

3. Under the Permissions tab, review the role for GKE Service account and ensure
that only the Storage Object Viewer role is set.

Using Command Line
GCR bucket permissions
gsutil iam get gs://artifacts.<project_id>.appspot.com

The output of the command will return roles associated with the GCR bucket. If listed,
ensure the GKE Service account is set to "role": "roles/storage.objectViewer".

If the GKE Service Account has project level permissions that are inherited within the
bucket, ensure that these are not privileged:

gcloud projects get-iam-policy <project_id> \

--flatten="bindings[].members" \

--format='table(bindings.members,bindings.role)' \

--filter="bindings.role:roles/storage.admin OR

bindings.role:roles/storage.objectAdmin OR

bindings.role:roles/storage.objectCreator OR

bindings.role:roles/storage.legacyBucketOwner OR

bindings.role:roles/storage.legacyBucketWriter OR

bindings.role:roles/storage.legacyObjectOwner"

Your GKE Service Account should not be output when this command is run.

Remediation:

For Images Hosted in AR:

Using Google Cloud Console:

1. Go to Artifacts Browser by visiting https://console.cloud.google.com/artifacts
2. From the list of repositories, for each repository with Format Docker
3. Under the Permissions tab, modify the permissions for GKE Service account and

ensure that only the Artifact Registry Viewer role is set.

Using Command Line:
Add artifactregistry.reader role

https://console.cloud.google.com/storage/browser
https://console.cloud.google.com/artifacts

Page 119

Internal Only - General

gcloud artifacts repositories add-iam-policy-binding <repository> \

--location=<repository-location> \

--member='serviceAccount:<email-address>' \

--role='roles/artifactregistry.reader'

Remove any roles other than artifactregistry.reader

gcloud artifacts repositories remove-iam-policy-binding <repository> \

--location <repository-location> \

--member='serviceAccount:<email-address>' \

--role='<role-name>'

For Images Hosted in GCR:

Using Google Cloud Console:
For an account explicitly granted access to the bucket:

1. Go to Storage Browser by visiting:
https://console.cloud.google.com/storage/browser.

2. From the list of storage buckets, select
artifacts.<project_id>.appspot.com for the GCR bucket.

3. Under the Permissions tab, modify permissions of the identified GKE Service
Account via the drop-down role menu and change to the Role to Storage
Object Viewer for read-only access.

For an account that inherits access to the bucket through Project level permissions:

1. Go to IAM console by visiting: https://console.cloud.google.com/iam-admin.
2. From the list of accounts, identify the required service account and select the

corresponding pencil icon.
3. Remove the Storage Admin / Storage Object Admin / Storage Object

Creator roles.

4. Add the Storage Object Viewer role - note with caution that this permits the

account to view all objects stored in GCS for the project.
5. Click SAVE.

Using Command Line:
For an account explicitly granted to the bucket:
Firstly add read access to the Kubernetes Service Account:
gsutil iam ch <type>:<email_address>:objectViewer

gs://artifacts.<project_id>.appspot.com

where:

•
<type> can be one of the following:

o
user, if the <email_address> is a Google account.

https://console.cloud.google.com/storage/browser
https://console.cloud.google.com/iam-admin

Page 120

Internal Only - General

o
serviceAccount, if <email_address> specifies a Service account.

o
<email_address> can be one of the following:

▪ a Google account (for example, someone@example.com).

▪ a Cloud IAM service account.

Then remove the excessively privileged role (Storage Admin / Storage Object
Admin / Storage Object Creator) using:
gsutil iam ch -d <type>:<email_address>:<role>

gs://artifacts.<project_id>.appspot.com

For an account that inherits access to the GCR Bucket through Project level
permissions, modify the Projects IAM policy file accordingly, then upload it using:

gcloud projects set-iam-policy <project_id> <policy_file>

Default Value:

The default permissions for the cluster Service account is dependent on the initial
configuration and IAM policy.

References:

1. https://cloud.google.com/container-registry/docs/
2. https://cloud.google.com/kubernetes-engine/docs/how-to/service-accounts
3. https://cloud.google.com/kubernetes-engine/docs/how-to/iam

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply
data access control lists, also known as access permissions, to local and remote
file systems, databases, and applications.

● ● ●

v7

3.2 Perform Authenticated Vulnerability Scanning
 Perform authenticated vulnerability scanning with agents running locally on

each system or with remote scanners that are configured with elevated rights on
the system being tested.

 ● ●

https://cloud.google.com/container-registry/docs/
https://cloud.google.com/kubernetes-engine/docs/how-to/service-accounts
https://cloud.google.com/kubernetes-engine/docs/how-to/iam

Page 121

Internal Only - General

5.1.4 Ensure only trusted container images are used (Manual)

Profile Applicability:

• Level 2

Description:

Use Binary Authorization to allowlist (whitelist) only approved container registries.

Rationale:

Allowing unrestricted access to external container registries provides the opportunity for
malicious or unapproved containers to be deployed into the cluster. Ensuring only
trusted container images are used reduces this risk.

Also see recommendation 5.10.4.

Impact:

All container images to be deployed to the cluster must be hosted within an approved
container image registry. If public registries are not on the allowlist, a process for
bringing commonly used container images into an approved private registry and
keeping them up to date will be required.

Audit:

Using Google Cloud Console:
Check that Binary Authorization is enabled for the GKE cluster:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. Click on the cluster and on the Details pane, ensure that Binary Authorization is
set to 'Enabled'.

Then assess the contents of the policy:

1. Go to Binary Authorization by visiting:
https://console.cloud.google.com/security/binary-authorization

2. Ensure the project default rule is not set to 'Allow all images' under Policy
deployment rules.

3. Review the list of 'Images exempt from policy' for unauthorized container
registries.

Using Command Line:
Check that Binary Authorization is enabled for the GKE cluster:
gcloud container clusters describe <cluster_name> --zone <compute_zone> --

format json | jq .binaryAuthorization

This will return the following if Binary Authorization is enabled:

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/security/binary-authorization

Page 122

Internal Only - General

{

 "enabled": true

}

Then assess the contents of the policy:

gcloud container binauthz policy export > current-policy.yaml

Ensure that the current policy is not configured to allow all images (evaluationMode:
ALWAYS_ALLOW).

Review the list of admissionWhitelistPatterns for unauthorized container registries.

cat current-policy.yaml

admissionWhitelistPatterns:

...

defaultAdmissionRule:

 evaluationMode: ALWAYS_ALLOW

Remediation:

Using Google Cloud Console:

1. Go to Binary Authorization by visiting:
https://console.cloud.google.com/security/binary-authorization

2. Enable Binary Authorization API (if disabled).
3. Go to Kubernetes Engine by visiting:

https://console.cloud.google.com/kubernetes/list.
4. Select Kubernetes cluster for which Binary Authorization is disabled.
5. Within the Details pane, under the Security heading, click on the pencil icon

called Edit binary authorization.

6. Ensure that Enable Binary Authorization is checked.

7. Click SAVE CHANGES.

8. Return to the Binary Authorization by visiting:
https://console.cloud.google.com/security/binary-authorization.

9. Set an appropriate policy for the cluster and enter the approved container
registries under Image paths.

Using Command Line:
Update the cluster to enable Binary Authorization:
gcloud container cluster update <cluster_name> --enable-binauthz

Create a Binary Authorization Policy using the Binary Authorization Policy Reference:
https://cloud.google.com/binary-authorization/docs/policy-yaml-reference for guidance.
Import the policy file into Binary Authorization:

gcloud container binauthz policy import <yaml_policy>

Default Value:

By default, Binary Authorization is disabled along with container registry allowlisting.

https://console.cloud.google.com/security/binary-authorization
https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/security/binary-authorization
https://cloud.google.com/binary-authorization/docs/policy-yaml-reference

Page 123

Internal Only - General

References:

1. https://cloud.google.com/binary-authorization/docs/policy-yaml-reference
2. https://cloud.google.com/binary-authorization/docs/setting-up

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

2.5 Allowlist Authorized Software
 Use technical controls, such as application allowlisting, to ensure that only
authorized software can execute or be accessed. Reassess bi-annually, or more

frequently.

 ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

v7

5.3 Securely Store Master Images
 Store the master images and templates on securely configured servers,

validated with integrity monitoring tools, to ensure that only authorized changes to
the images are possible.

 ● ●

https://cloud.google.com/binary-authorization/docs/policy-yaml-reference
https://cloud.google.com/binary-authorization/docs/setting-up

Page 124

Internal Only - General

5.2 Identity and Access Management (IAM)

This section contains recommendations relating to using Cloud IAM with GKE.

Page 125

Internal Only - General

5.2.1 Ensure GKE clusters are not running using the Compute

Engine default service account (Automated)

Profile Applicability:

• Level 1

Description:

Create and use minimally privileged Service accounts to run GKE cluster nodes instead
of using the Compute Engine default Service account. Unnecessary permissions could
be abused in the case of a node compromise.

Rationale:

A GCP service account (as distinct from a Kubernetes ServiceAccount) is an identity
that an instance or an application can be used to run GCP API requests. This identity is
used to identify virtual machine instances to other Google Cloud Platform services. By
default, Kubernetes Engine nodes use the Compute Engine default service account.
This account has broad access by default, as defined by access scopes, making it
useful to a wide variety of applications on the VM, but it has more permissions than are
required to run your Kubernetes Engine cluster.

A minimally privileged service account should be created and used to run the
Kubernetes Engine cluster instead of using the Compute Engine default service
account, and create separate service accounts for each Kubernetes Workload (See
recommendation 5.2.2).

Kubernetes Engine requires, at a minimum, the node service account to have the
monitoring.viewer, monitoring.metricWriter, and logging.logWriter roles.

Additional roles may need to be added for the nodes to pull images from GCR.

Impact:

Instances are automatically granted the https://www.googleapis.com/auth/cloud-
platform scope to allow full access to all Google Cloud APIs. This is so that the IAM
permissions of the instance are completely determined by the IAM roles of the Service
account. Thus if Kubernetes workloads were using cluster access scopes to perform
actions using Google APIs, they may no longer be able to, if not permitted by the
permissions of the Service account. To remediate, follow recommendation 5.2.2.

The Service account roles listed here are the minimum required to run the cluster.
Additional roles may be required to pull from a private instance of Google Container
Registry (GCR).

Audit:

Using Google Cloud Console:

https://www.googleapis.com/auth/cloud-platform
https://www.googleapis.com/auth/cloud-platform

Page 126

Internal Only - General

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. Select the cluster under test and click on each Node pool to bring up the Node
pool details page. Ensure that for each Node pool the Service account is not set
to default under the Security heading.

To check the permissions allocated to the service account are the minimum required for
cluster operation:

1. Go to IAM by visiting https://console.cloud.google.com/iam-admin/iam
2. From the list of Service accounts, ensure each cluster Service account has only

the following roles:

• Logs Writer
• Monitoring Metric Writer
• Monitoring Viewer

Using Command line:
To check which Service account is set for an existing cluster, run the following
command:
gcloud container node-pools describe $NODE_POOL --cluster $CLUSTER_NAME --

zone $COMPUTE_ZONE --format json | jq '.config.serviceAccount'

The output of the above command will return default if default Service account is used
for Project access.
To check that the permissions allocated to the service account are the minimum
required for cluster operation:

gcloud projects get-iam-policy <project_id> \

 --flatten="bindings[].members" \

 --format='table(bindings.role)' \

 --filter="bindings.members:<service_account>"

Review the output to ensure that the service account only has the roles required to run
the cluster:

•
roles/logging.logWriter

•
roles/monitoring.metricWriter

•
roles/monitoring.viewer

Remediation:

Using Google Cloud Console:
To create a minimally privileged service account:

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/iam-admin/iam

Page 127

Internal Only - General

1. Go to Service Accounts by visiting: https://console.cloud.google.com/iam-
admin/serviceaccounts.

2. Click on CREATE SERVICE ACCOUNT.

3. Enter Service Account Details.
4. Click CREATE AND CONTINUE.

5. Within Service Account permissions add the following roles:
o

Logs Writer.

o
Monitoring Metric Writer.

o `Monitoring Viewer.
6. Click CONTINUE.

7. Grant users access to this service account and create keys as required.
8. Click DONE.

To create a Node pool to use the Service account:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Click on the cluster name within which the Node pool will be launched.
3. Click on ADD NODE POOL.

4. Within the Node Pool details, select the Security subheading, and under

`Identity defaults, select the minimally privileged service account from the Service
Account drop-down.

5. Click `CREATE to launch the Node pool.

Note: The workloads will need to be migrated to the new Node pool, and the old node
pools that use the default service account should be deleted to complete the
remediation.
Using Command Line:
To create a minimally privileged service account:
gcloud iam service-accounts create <node_sa_name> --display-name "GKE Node

Service Account"

export NODE_SA_EMAIL=gcloud iam service-accounts list --format='value(email)'

--filter='displayName:GKE Node Service Account'

Grant the following roles to the service account:

export PROJECT_ID=gcloud config get-value project

gcloud projects add-iam-policy-binding <project_id> --member

serviceAccount:<node_sa_email> --role roles/monitoring.metricWriter

gcloud projects add-iam-policy-binding <project_id> --member

serviceAccount:<node_sa_email> --role roles/monitoring.viewer

gcloud projects add-iam-policy-binding <project_id> --member

serviceAccount:<node_sa_email> --role roles/logging.logWriter

To create a new Node pool using the Service account, run the following command:

https://console.cloud.google.com/iam-admin/serviceaccounts
https://console.cloud.google.com/iam-admin/serviceaccounts
https://console.cloud.google.com/kubernetes/list

Page 128

Internal Only - General

gcloud container node-pools create <node_pool> --service-

account=<sa_name>@<project_id>.iam.gserviceaccount.com--

cluster=<cluster_name> --zone <compute_zone>

Note: The workloads will need to be migrated to the new Node pool, and the old node
pools that use the default service account should be deleted to complete the
remediation.

Default Value:

By default, nodes use the Compute Engine default service account when you create a
new cluster.

References:

1. https://cloud.google.com/compute/docs/access/service-
accounts#compute_engine_default_service_account

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.7 Manage Default Accounts on Enterprise Assets and
Software
 Manage default accounts on enterprise assets and software, such as root,
administrator, and other pre-configured vendor accounts. Example
implementations can include: disabling default accounts or making them unusable.

● ● ●

v7

4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

https://cloud.google.com/compute/docs/access/service-accounts#compute_engine_default_service_account
https://cloud.google.com/compute/docs/access/service-accounts#compute_engine_default_service_account

Page 129

Internal Only - General

5.2.2 Prefer using dedicated GCP Service Accounts and

Workload Identity (Manual)

Profile Applicability:

• Level 2

Description:

Kubernetes workloads should not use cluster node service accounts to authenticate to
Google Cloud APIs. Each Kubernetes Workload that needs to authenticate to other
Google services using Cloud IAM should be provisioned a dedicated Service account.
Enabling Workload Identity manages the distribution and rotation of Service account
keys for the workloads to use.

Rationale:

Manual approaches for authenticating Kubernetes workloads running on GKE against
Google Cloud APIs are: storing service account keys as a Kubernetes secret (which
introduces manual key rotation and potential for key compromise); or use of the
underlying nodes' IAM Service account, which violates the principle of least privilege on
a multitenanted node, when one pod needs to have access to a service, but every other
pod on the node that uses the Service account does not.

Once a relationship between a Kubernetes Service account and a GCP Service account
has been configured, any workload running as the Kubernetes Service account
automatically authenticates as the mapped GCP Service account when accessing
Google Cloud APIs on a cluster with Workload Identity enabled.

Impact:

Workload Identity replaces the need to use Metadata Concealment and as such, the
two approaches are incompatible. The sensitive metadata protected by Metadata
Concealment is also protected by Workload Identity.

When Workload Identity is enabled, the Compute Engine default Service account can
not be used. Correspondingly, Workload Identity can't be used with Pods running in the
host network. Workloads may also need to be modified in order for them to use
Workload Identity, as described within: https://cloud.google.com/kubernetes-
engine/docs/how-to/workload-identity

GKE infrastructure pods such as Stackdriver will continue to use the Node's Service
account.

Audit:

Using Google Cloud Console:

https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity

Page 130

Internal Only - General

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. From the list of clusters, click on each cluster to bring up the Details pane, make
sure for each cluster Workload Identity is set to 'Enabled' under the 'Cluster'
section and ensure that the Workload Identity Namespace is set to the
namespace of the GCP project containing the cluster, for example:
<project_id>.svc.id.goog

3. Additionally, click on each Node pool within each cluster to observe the Node
pool Details pane, and ensure that the GKE Metadata Server is 'Enabled'.

Using Command Line:
gcloud container clusters describe <cluster_name> --zone <cluster_zone>

If Workload Identity is enabled, the following fields should be present, and the
<project_id> should be set to the namespace of the GCP project containing the

cluster:

workloadIdentityConfig:

 identityNamespace:<project_id>.svc.id.goog

For each Node pool, ensure the following is set.

workloadMetadataConfig:

 nodeMetadata: GKE_METADATA_SERVER

Each Kubernetes workload requiring Google Cloud API access will need to be manually
audited to ensure that Workload Identity is being used and not some other method.

Remediation:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. From the list of clusters, select the cluster for which Workload Identity is disabled.
3. Within the Details pane, under the Security section, click on the pencil icon

named Edit workload identity.

4. Enable Workload Identity and set the workload pool to the namespace of the
Cloud project containing the cluster, for example: <project_id>.svc.id.goog.

5. Click SAVE CHANGES and wait for the cluster to update.

6. Once the cluster has updated, select each Node pool within the cluster Details
page.

7. For each Node pool, select EDIT within the Node pool Details page

8. Within the Edit node pool pane, check the 'Enable GKE Metadata Server'
checkbox and click SAVE.

Using Command Line:

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/kubernetes/list

Page 131

Internal Only - General

gcloud container clusters update <cluster_name> --zone <cluster_zone> --

workload-pool <project_id>.svc.id.goog

Note that existing Node pools are unaffected. New Node pools default to --workload-
metadata-from-node=GKE_METADATA_SERVER.

Then, modify existing Node pools to enable GKE_METADATA_SERVER:

gcloud container node-pools update <node_pool_name> --cluster <cluster_name>

--zone <cluster_zone> --workload-metadata=GKE_METADATA

Workloads may need to be modified in order for them to use Workload Identity as
described within: https://cloud.google.com/kubernetes-engine/docs/how-to/workload-
identity. Also consider the effects on the availability of hosted workloads as Node pools
are updated. It may be more appropriate to create new Node Pools.

Default Value:

By default, Workload Identity is disabled.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
2. https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture
3. https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.7 Manage Default Accounts on Enterprise Assets and
Software
 Manage default accounts on enterprise assets and software, such as root,
administrator, and other pre-configured vendor accounts. Example
implementations can include: disabling default accounts or making them unusable.

● ● ●

v7

4.3 Ensure the Use of Dedicated Administrative Accounts
 Ensure that all users with administrative account access use a dedicated or
secondary account for elevated activities. This account should only be used for
administrative activities and not internet browsing, email, or similar activities.

● ● ●

https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture
https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity

Page 132

Internal Only - General

5.3 Cloud Key Management Service (Cloud KMS)

This section contains recommendations relating to using Cloud KMS with GKE.

Page 133

Internal Only - General

5.3.1 Ensure Kubernetes Secrets are encrypted using keys

managed in Cloud KMS (Automated)

Profile Applicability:

• Level 2

Description:

Encrypt Kubernetes secrets, stored in etcd, at the application-layer using a customer-
managed key in Cloud KMS.

Rationale:

By default, GKE encrypts customer content stored at rest, including Secrets. GKE
handles and manages this default encryption for you without any additional action on
your part.

Application-layer Secrets Encryption provides an additional layer of security for sensitive
data, such as user defined Secrets and Secrets required for the operation of the cluster,
such as service account keys, which are all stored in etcd.

Using this functionality, you can use a key, that you manage in Cloud KMS, to encrypt
data at the application layer. This protects against attackers in the event that they
manage to gain access to etcd.

Impact:

To use the Cloud KMS CryptoKey to protect etcd in the cluster, the 'Kubernetes Engine
Service Agent' Service account must hold the 'Cloud KMS CryptoKey
Encrypter/Decrypter' role.

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. From the list of clusters, click on each cluster to bring up the Details pane, and
ensure Application-layer Secrets Encryption is set to 'Enabled'.

Using Command Line:
gcloud container clusters describe $CLUSTER_NAME --zone $COMPUTE_ZONE --

format json | jq '.databaseEncryption'

If configured correctly, the output from the command returns a response containing the
following detail:

https://console.cloud.google.com/kubernetes/list

Page 134

Internal Only - General

keyName=projects/<key_project_id>/locations/<location>/keyRings/<ring_name>/c

ryptoKeys/<key_name>]

state=ENCRYPTED

{

 "currentState": "CURRENT_STATE_ENCRYPTED",

 "keyName": "projects/<key_project_id>/locations/us-

central1/keyRings/<ring_name>/cryptoKeys/<key_name>",

 "state": "ENCRYPTED"

}

Remediation:

To enable Application-layer Secrets Encryption, several configuration items are
required. These include:

• A key ring
• A key
• A GKE service account with Cloud KMS CryptoKey Encrypter/Decrypter

role

Once these are created, Application-layer Secrets Encryption can be enabled on an
existing or new cluster.
Using Google Cloud Console:
To create a key

1. Go to Cloud KMS by visiting https://console.cloud.google.com/security/kms.
2. Select CREATE KEY RING.

3. Enter a Key ring name and the region where the keys will be stored.
4. Click CREATE.

5. Enter a Key name and appropriate rotation period within the Create key pane.
6. Click CREATE.

To enable on a new cluster

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Click CREATE CLUSTER, and choose the required cluster mode.

3. Within the Security heading, under CLUSTER, check Encrypt secrets at the
application layer checkbox.

4. Select the kms key as the customer-managed key and, if prompted, grant
permissions to the GKE Service account.

5. Click CREATE.

To enable on an existing cluster

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

https://console.cloud.google.com/security/kms
https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/kubernetes/list

Page 135

Internal Only - General

2. Select the cluster to be updated.
3. Under the Details pane, within the Security heading, click on the pencil named

Application-layer secrets encryption.
4. Enable Encrypt secrets at the application layer and choose a kms key.

5. Click SAVE CHANGES.

Using Command Line:
To create a key:
Create a key ring:
gcloud kms keyrings create <ring_name> --location <location> --project

<key_project_id>

Create a key:

gcloud kms keys create <key_name> --location <location> --keyring <ring_name>

--purpose encryption --project <key_project_id>

Grant the Kubernetes Engine Service Agent service account the Cloud KMS
CryptoKey Encrypter/Decrypter role:

gcloud kms keys add-iam-policy-binding <key_name> --location <location> --

keyring <ring_name> --member serviceAccount:<service_account_name> --role

roles/cloudkms.cryptoKeyEncrypterDecrypter --project <key_project_id>

To create a new cluster with Application-layer Secrets Encryption:

gcloud container clusters create <cluster_name> --cluster-version=latest --

zone <zone> --database-encryption-key

projects/<key_project_id>/locations/<location>/keyRings/<ring_name>/cryptoKey

s/<key_name> --project <cluster_project_id>

To enable on an existing cluster:

gcloud container clusters update <cluster_name> --zone <zone> --database-

encryption-key

projects/<key_project_id>/locations/<location>/keyRings/<ring_name>/cryptoKey

s/<key_name> --project <cluster_project_id>

Default Value:

By default, Application-layer Secrets Encryption is disabled.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/encrypting-secrets

https://cloud.google.com/kubernetes-engine/docs/how-to/encrypting-secrets

Page 136

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.11 Encrypt Sensitive Data at Rest
 Encrypt sensitive data at rest on servers, applications, and databases containing
sensitive data. Storage-layer encryption, also known as server-side encryption,
meets the minimum requirement of this Safeguard. Additional encryption methods
may include application-layer encryption, also known as client-side encryption,
where access to the data storage device(s) does not permit access to the plain-text
data.

 ● ●

v7

14.8 Encrypt Sensitive Information at Rest
 Encrypt all sensitive information at rest using a tool that requires a secondary
authentication mechanism not integrated into the operating system, in order to
access the information.

 ●

Page 137

Internal Only - General

5.4 Node Metadata

This section contains recommendations relating to node metadata in GKE.

Page 138

Internal Only - General

5.4.1 Ensure the GKE Metadata Server is Enabled (Automated)

Profile Applicability:

• Level 2

Description:

Running the GKE Metadata Server prevents workloads from accessing sensitive
instance metadata and facilitates Workload Identity.

Rationale:

Every node stores its metadata on a metadata server. Some of this metadata, such as
kubelet credentials and the VM instance identity token, is sensitive and should not be
exposed to a Kubernetes workload. Enabling the GKE Metadata server prevents pods
(that are not running on the host network) from accessing this metadata and facilitates
Workload Identity.

When unspecified, the default setting allows running pods to have full access to the
node's underlying metadata server.

Impact:

The GKE Metadata Server must be run when using Workload Identity. Because
Workload Identity replaces the need to use Metadata Concealment, the two approaches
are incompatible.

When the GKE Metadata Server and Workload Identity are enabled, unless the Pod is
running on the host network, Pods cannot use the the Compute Engine default service
account.

Workloads may need modification in order for them to use Workload Identity as
described within: https://cloud.google.com/kubernetes-engine/docs/how-to/workload-
identity.

Audit:

Using Google Cloud Console

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. From the list of clusters, click on the name of the cluster of interest and for each
Node pool within the cluster, open the Details pane, and ensure that the GKE

Metadata Server is set to Enabled.

Using Command Line
To check whether the GKE Metadata Server is enabled for each Node pool within a
cluster, run the following command:

https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
https://console.cloud.google.com/kubernetes/list

Page 139

Internal Only - General

gcloud container clusters describe <cluster_name> --zone <cluster_zone> --

format json | jq .nodePools[].config.workloadMetadataConfig

This should return the following for each Node pool:

{

 "mode": "GKE_METADATA"

}

Null ({ }) is returned if the GKE Metadata Server is not enabled.

Remediation:

The GKE Metadata Server requires Workload Identity to be enabled on a cluster. Modify
the cluster to enable Workload Identity and enable the GKE Metadata Server.
Using Google Cloud Console

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. From the list of clusters, select the cluster for which Workload Identity is disabled.
3. Under the DETAILS pane, navigate down to the Security subsection.

4. Click on the pencil icon named Edit Workload Identity, click on Enable
Workload Identity in the pop-up window, and select a workload pool from the

drop-down box. By default, it will be the namespace of the Cloud project
containing the cluster, for example: <project_id>.svc.id.goog.

5. Click SAVE CHANGES and wait for the cluster to update.

6. Once the cluster has updated, select each Node pool within the cluster Details
page.

7. For each Node pool, select EDIT within the Node pool details page.

8. Within the Edit node pool pane, check the Enable GKE Metadata Server

checkbox.
9. Click SAVE.

Using Command Line
gcloud container clusters update <cluster_name> --identity-

namespace=<project_id>.svc.id.goog

Note that existing Node pools are unaffected. New Node pools default to --workload-
metadata-from-node=GKE_METADATA_SERVER.

To modify an existing Node pool to enable GKE Metadata Server:

gcloud container node-pools update <node_pool_name> --cluster=<cluster_name>

--workload-metadata-from-node=GKE_METADATA_SERVER

Workloads may need modification in order for them to use Workload Identity as
described within: https://cloud.google.com/kubernetes-engine/docs/how-to/workload-
identity.

Default Value:

By default, running pods to have full access to the node's underlying metadata server.

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity

Page 140

Internal Only - General

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/protecting-cluster-
metadata#concealment

2. https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
3. https://cloud.google.com/kubernetes-engine/docs/concepts/workload-identity

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

16.7 Use Standard Hardening Configuration Templates for
Application Infrastructure
 Use standard, industry-recommended hardening configuration templates for
application infrastructure components. This includes underlying servers, databases,
and web servers, and applies to cloud containers, Platform as a Service (PaaS)
components, and SaaS components. Do not allow in-house developed software to
weaken configuration hardening.

 ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://cloud.google.com/kubernetes-engine/docs/how-to/protecting-cluster-metadata#concealment
https://cloud.google.com/kubernetes-engine/docs/how-to/protecting-cluster-metadata#concealment
https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
https://cloud.google.com/kubernetes-engine/docs/concepts/workload-identity

Page 141

Internal Only - General

5.5 Node Configuration and Maintenance

This section contains recommendations relating to node configurations in GKE.

Page 142

Internal Only - General

5.5.1 Ensure Container-Optimized OS (cos_containerd) is used

for GKE node images (Automated)

Profile Applicability:

• Level 1

Description:

Use Container-Optimized OS (cos_containerd) as a managed, optimized and hardened
base OS that limits the host's attack surface.

Rationale:

COS is an operating system image for Compute Engine VMs optimized for running
containers. With COS, the containers can be brought up on Google Cloud Platform
quickly, efficiently, and securely.

Using COS as the node image provides the following benefits:

• Run containers out of the box: COS instances come pre-installed with the
container runtime and cloud-init. With a COS instance, the container can be

brought up at the same time as the VM is created, with no on-host setup
required.

• Smaller attack surface: COS has a smaller footprint, reducing the instance's
potential attack surface.

• Locked-down by default: COS instances include a locked-down firewall and other
security settings by default.

Impact:

If modifying an existing cluster's Node pool to run COS, the upgrade operation used is
long-running and will block other operations on the cluster (including delete) until it has
run to completion.

COS nodes also provide an option with containerd as the main container runtime

directly integrated with Kubernetes instead of docker. Thus, on these nodes, Docker

cannot view or access containers or images managed by Kubernetes. Applications
should not interact with Docker directly. For general troubleshooting or debugging, use
crictl instead.

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. From the list of clusters, select the cluster under test.

https://console.cloud.google.com/kubernetes/list

Page 143

Internal Only - General

3. Under the 'Node pools' section, make sure that for each of the Node pools,
'Container-Optimized OS (cos_containerd)' is listed in the 'Image type' column.

Using Command line:
To check Node image type for an existing cluster's Node pool:
gcloud container node-pools describe <node_pool_name> --cluster

<cluster_name> --zone <compute_zone> --format json | jq '.config.imageType'

The output of the above command returns COS, if COS is used for Node images.

Remediation:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Select the Kubernetes cluster which does not use COS.
3. Under the Node pools heading, select the Node Pool that requires alteration.
4. Click EDIT.

5. Under the Image Type heading click CHANGE.

6. From the pop-up menu select Container-optimised OS with containerd
(cos_containerd) (default) and click CHANGE

7. Repeat for all non-compliant Node pools.

Using Command Line:
To set the node image to cos for an existing cluster's Node pool:
gcloud container clusters upgrade <cluster_name> --image-type cos_containerd

--zone <compute_zone> --node-pool <node_pool_name>

Default Value:

Container-optimised OS with containerd (cos_containerd) (default) is the default option
for a cluster node image.

References:

1. https://cloud.google.com/kubernetes-engine/docs/concepts/using-containerd
2. https://cloud.google.com/kubernetes-engine/docs/concepts/node-images

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

2.5 Allowlist Authorized Software
 Use technical controls, such as application allowlisting, to ensure that only
authorized software can execute or be accessed. Reassess bi-annually, or more
frequently.

 ● ●

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/concepts/using-containerd
https://cloud.google.com/kubernetes-engine/docs/concepts/node-images

Page 144

Internal Only - General

Controls
Version

Control IG 1 IG 2 IG 3

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

Page 145

Internal Only - General

5.5.2 Ensure Node Auto-Repair is enabled for GKE nodes

(Automated)

Profile Applicability:

• Level 2

Description:

Nodes in a degraded state are an unknown quantity and so may pose a security risk.

Rationale:

Kubernetes Engine's node auto-repair feature helps you keep the nodes in the cluster in
a healthy, running state. When enabled, Kubernetes Engine makes periodic checks on
the health state of each node in the cluster. If a node fails consecutive health checks
over an extended time period, Kubernetes Engine initiates a repair process for that
node.

Impact:

If multiple nodes require repair, Kubernetes Engine might repair them in parallel.
Kubernetes Engine limits number of repairs depending on the size of the cluster (bigger
clusters have a higher limit) and the number of broken nodes in the cluster (limit
decreases if many nodes are broken).

Node auto-repair is not available on Alpha Clusters.

Audit:

Using Google Cloud Console

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. From the list of clusters, select the desired cluster. For each Node pool, view the
Node pool Details pane and ensure that under the 'Management' heading, 'Auto-
repair' is set to 'Enabled'.

Using Command Line:
To check the existence of node auto-repair for an existing cluster's node pool, run:
gcloud container node-pools describe <node_pool_name> --cluster

<cluster_name> --zone <compute_zone> --format json | jq '.management'

Ensure the output of the above command has JSON key attribute autoRepair set to

true:

https://console.cloud.google.com/kubernetes/list

Page 146

Internal Only - General

{

 "autoRepair": true

}

Remediation:

Using Google Cloud Console

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. Select the Kubernetes cluster containing the node pool for which auto-repair is
disabled.

3. Select the Node pool by clicking on the name of the pool.
4. Navigate to the Node pool details pane and click EDIT.

5. Under the Management heading, check the Enable auto-repair box.

6. Click SAVE.

7. Repeat steps 2-6 for every cluster and node pool with auto-upgrade disabled.

Using Command Line
To enable node auto-repair for an existing cluster's Node pool:
gcloud container node-pools update <node_pool_name> --cluster <cluster_name>

--zone <compute_zone> --enable-autorepair

Default Value:

Node auto-repair is enabled by default.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/node-auto-repair

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

7.6 Perform Automated Vulnerability Scans of Externally-
Exposed Enterprise Assets
 Perform automated vulnerability scans of externally-exposed enterprise assets
using a SCAP-compliant vulnerability scanning tool. Perform scans on a monthly,

or more frequent, basis.

 ● ●

v7

3.1 Run Automated Vulnerability Scanning Tools
 Utilize an up-to-date SCAP-compliant vulnerability scanning tool to
automatically scan all systems on the network on a weekly or more frequent basis
to identify all potential vulnerabilities on the organization's systems.

 ● ●

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/how-to/node-auto-repair

Page 147

Internal Only - General

5.5.3 Ensure Node Auto-Upgrade is enabled for GKE nodes

(Automated)

Profile Applicability:

• Level 2

Description:

Node auto-upgrade keeps nodes at the current Kubernetes and OS security patch level
to mitigate known vulnerabilities.

Rationale:

Node auto-upgrade helps you keep the nodes in the cluster or node pool up to date with
the latest stable patch version of Kubernetes as well as the underlying node operating
system. Node auto-upgrade uses the same update mechanism as manual node
upgrades.

Node pools with node auto-upgrade enabled are automatically scheduled for upgrades
when a new stable Kubernetes version becomes available. When the upgrade is
performed, the Node pool is upgraded to match the current cluster master version. From
a security perspective, this has the benefit of applying security updates automatically to
the Kubernetes Engine when security fixes are released.

Impact:

Enabling node auto-upgrade does not cause the nodes to upgrade immediately.
Automatic upgrades occur at regular intervals at the discretion of the Kubernetes
Engine team.

To prevent upgrades occurring during a peak period for the cluster, a maintenance
window should be defined. A maintenance window is a four-hour timeframe that can be
chosen, during which automatic upgrades should occur. Upgrades can occur on any
day of the week, and at any time within the timeframe. To prevent upgrades from
occurring during certain dates, a maintenance exclusion should be defined. A
maintenance exclusion can span multiple days.

Audit:

Using Google Cloud Console

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. From the list of clusters, select the desired cluster. For each Node pool, view the
Node pool Details pane and ensure that under the 'Management' heading, 'Auto-
upgrade' is set to 'Enabled'.

https://console.cloud.google.com/kubernetes/list

Page 148

Internal Only - General

Using Command Line
To check the existence of node auto-upgrade for an existing cluster's Node pool, run:
gcloud container node-pools describe <node_pool_name> --cluster

<cluster_name> --zone <cluster_zone> --format json | jq '.management'

Ensure the output of the above command has JSON key attribute autoUpgrade set to

true:

{

 "autoUpgrade": true

}

If node auto-upgrade is disabled, the output of the above command output will not
contain the autoUpgrade entry.

Remediation:

Using Google Cloud Console

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Select the Kubernetes cluster containing the node pool for which auto-upgrade
disabled.

3. Select the Node pool by clicking on the name of the pool.
4. Navigate to the Node pool details pane and click EDIT.

5. Under the Management heading, check the Enable auto-repair box.

6. Click SAVE.

7. Repeat steps 2-6 for every cluster and node pool with auto-upgrade disabled.

Using Command Line
To enable node auto-upgrade for an existing cluster's Node pool, run the following
command:
gcloud container node-pools update <node_pool_name> --cluster <cluster_name>

--zone <cluster_zone> --enable-autoupgrade

Default Value:

Node auto-upgrade is enabled by default.

Even if a cluster has been created with node auto-repair enabled, this only applies to
the default Node pool. Subsequent node pools do not have node auto-upgrade enabled
by default.

References:

1. https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
2. https://cloud.google.com/kubernetes-engine/docs/how-to/maintenance-windows-

and-exclusions

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/concepts/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/how-to/maintenance-windows-and-exclusions
https://cloud.google.com/kubernetes-engine/docs/how-to/maintenance-windows-and-exclusions

Page 149

Internal Only - General

Additional Information:

Node auto-upgrades is not available for Alpha Clusters.

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

7.3 Perform Automated Operating System Patch
Management
 Perform operating system updates on enterprise assets through automated
patch management on a monthly, or more frequent, basis.

● ● ●

v7

2.2 Ensure Software is Supported by Vendor
 Ensure that only software applications or operating systems currently supported
by the software's vendor are added to the organization's authorized software
inventory. Unsupported software should be tagged as unsupported in the inventory
system.

● ● ●

v7

3.4 Deploy Automated Operating System Patch
Management Tools
 Deploy automated software update tools in order to ensure that the operating
systems are running the most recent security updates provided by the software
vendor.

● ● ●

v7

3.5 Deploy Automated Software Patch Management Tools
 Deploy automated software update tools in order to ensure that third-party
software on all systems is running the most recent security updates provided by
the software vendor.

● ● ●

Page 150

Internal Only - General

5.5.4 When creating New Clusters - Automate GKE version

management using Release Channels (Automated)

Profile Applicability:

• Level 1

Description:

Subscribe to the Regular or Stable Release Channel to automate version upgrades to
the GKE cluster and to reduce version management complexity to the number of
features and level of stability required.

Rationale:

Release Channels signal a graduating level of stability and production-readiness. These
are based on observed performance of GKE clusters running that version and represent
experience and confidence in the cluster version.

The Regular release channel upgrades every few weeks and is for production users
who need features not yet offered in the Stable channel. These versions have passed
internal validation, but don't have enough historical data to guarantee their stability.
Known issues generally have known workarounds.

The Stable release channel upgrades every few months and is for production users who
need stability above all else, and for whom frequent upgrades are too risky. These
versions have passed internal validation and have been shown to be stable and reliable
in production, based on the observed performance of those clusters.

Critical security patches are delivered to all release channels.

Impact:

Once release channels are enabled on a cluster, they cannot be disabled. To stop using
release channels, the cluster must be recreated without the --release-channel flag.

Node auto-upgrade is enabled (and cannot be disabled), so the cluster is updated
automatically from releases available in the chosen release channel.

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. From the list of clusters, select the desired cluster.
3. Within the Details pane, if using a release channel, the release channel should

be set to the Regular or Stable channel.

https://console.cloud.google.com/kubernetes/list

Page 151

Internal Only - General

Using Command Line:
Run the following command:
gcloud container clusters describe $CLUSTER_NAME --zone $COMPUTE_ZONE --

format json | jq .releaseChannel.channel

Returned Value:

"REGULAR"

The output of the above command will return regular or stable if these release

channels are being used to manage automatic upgrades for the cluster.

Remediation:

Currently, cluster Release Channels are only configurable at cluster provisioning time.
Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Click CREATE, and choose CONFIGURE for the required cluster mode.

3. Under the Control plane version heading, click the Release Channels button.

4. Select the Regular or Stable channels from the Release Channel drop-down

menu.
5. Configure the rest of the cluster settings as required.
6. Click CREATE.

Using Command Line:
Create a new cluster by running the following command:
gcloud container clusters create <cluster_name> --zone <cluster_zone> --

release-channel <release_channel>

where <release_channel> is stable or regular, according to requirements.

Default Value:

Currently, release channels are not enabled by default.

References:

1. https://cloud.google.com/kubernetes-engine/docs/concepts/release-channels
2. https://cloud.google.com/kubernetes-engine/docs/how-to/node-auto-upgrades
3. https://cloud.google.com/kubernetes-engine/docs/how-to/maintenance-windows-

and-exclusions

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/concepts/release-channels
https://cloud.google.com/kubernetes-engine/docs/how-to/node-auto-upgrades
https://cloud.google.com/kubernetes-engine/docs/how-to/maintenance-windows-and-exclusions
https://cloud.google.com/kubernetes-engine/docs/how-to/maintenance-windows-and-exclusions

Page 152

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
7.4 Perform Automated Application Patch Management
 Perform application updates on enterprise assets through automated patch
management on a monthly, or more frequent, basis.

● ● ●

v7

3.4 Deploy Automated Operating System Patch
Management Tools
 Deploy automated software update tools in order to ensure that the operating
systems are running the most recent security updates provided by the software

vendor.

● ● ●

v7

3.5 Deploy Automated Software Patch Management
Tools
 Deploy automated software update tools in order to ensure that third-party
software on all systems is running the most recent security updates provided by
the software vendor.

● ● ●

Page 153

Internal Only - General

5.5.5 Ensure Shielded GKE Nodes are Enabled (Automated)

Profile Applicability:

• Level 1

Description:

Shielded GKE Nodes provides verifiable integrity via secure boot, virtual trusted
platform module (vTPM)-enabled measured boot, and integrity monitoring.

Rationale:

Shielded GKE nodes protects clusters against boot- or kernel-level malware or rootkits
which persist beyond infected OS.

Shielded GKE nodes run firmware which is signed and verified using Google's
Certificate Authority, ensuring that the nodes' firmware is unmodified and establishing
the root of trust for Secure Boot. GKE node identity is strongly protected via virtual
Trusted Platform Module (vTPM) and verified remotely by the master node before the
node joins the cluster. Lastly, GKE node integrity (i.e., boot sequence and kernel) is
measured and can be monitored and verified remotely.

Impact:

After Shielded GKE Nodes is enabled in a cluster, any nodes created in a Node pool
without Shielded GKE Nodes enabled, or created outside of any Node pool, aren't able
to join the cluster.

Shielded GKE Nodes can only be used with Container-Optimized OS (COS), COS with
containerd, and Ubuntu node images.

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. Select the cluster under test from the list of clusters, and ensure that Shielded
GKE Nodes are 'Enabled' under the Details pane.

Using Command Line:
Run the following command:
gcloud container clusters describe <cluster_name> --format json | jq

'.shieldedNodes'

This will return the following if Shielded GKE Nodes are enabled:

https://console.cloud.google.com/kubernetes/list

Page 154

Internal Only - General

{

 "enabled": true

}

Remediation:

Note: From version 1.18, clusters will have Shielded GKE nodes enabled by default.
Using Google Cloud Console:
To update an existing cluster to use Shielded GKE nodes:

1. Navigate to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Select the cluster which for which Shielded GKE Nodes is to be enabled.

3. With in the Details pane, under the Security heading, click on the pencil icon

named Edit Shields GKE nodes.

4. Check the box named Enable Shield GKE nodes.

5. Click SAVE CHANGES.

Using Command Line:
To migrate an existing cluster, the flag --enable-shielded-nodes needs to be

specified in the cluster update command:
gcloud container clusters update <cluster_name> --zone <cluster_zone> --

enable-shielded-nodes

Default Value:

Clusters will have Shielded GKE nodes enabled by default, as of version v1.18

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/shielded-gke-nodes

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

16.7 Use Standard Hardening Configuration Templates for
Application Infrastructure
 Use standard, industry-recommended hardening configuration templates for
application infrastructure components. This includes underlying servers, databases,
and web servers, and applies to cloud containers, Platform as a Service (PaaS)
components, and SaaS components. Do not allow in-house developed software to

weaken configuration hardening.

 ● ●

v7

5.3 Securely Store Master Images
 Store the master images and templates on securely configured servers,
validated with integrity monitoring tools, to ensure that only authorized changes to
the images are possible.

 ● ●

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/how-to/shielded-gke-nodes

Page 155

Internal Only - General

Controls
Version

Control IG 1 IG 2 IG 3

v7

18.11 Use Standard Hardening Configuration Templates
for Databases
 For applications that rely on a database, use standard hardening configuration
templates. All systems that are part of critical business processes should also be
tested.

 ● ●

Page 156

Internal Only - General

5.5.6 Ensure Integrity Monitoring for Shielded GKE Nodes is

Enabled (Automated)

Profile Applicability:

• Level 1

Description:

Enable Integrity Monitoring for Shielded GKE Nodes to be notified of inconsistencies
during the node boot sequence.

Rationale:

Integrity Monitoring provides active alerting for Shielded GKE nodes which allows
administrators to respond to integrity failures and prevent compromised nodes from
being deployed into the cluster.

Impact:

None.

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. From the list of clusters, click on the name of the cluster under test.
3. Open the Details pane for each Node pool within the cluster, and ensure that

'Integrity monitoring' is set to 'Enabled' under the Security heading.

Using Command Line:
To check if Integrity Monitoring is enabled for the Node pools in the cluster, run the
following command for each Node pool:
gcloud container node-pools describe <node_pool_name> --cluster

<cluster_name> --zone <compute_zone> --format json | jq

.config.shieldedInstanceConfig

This will return the following, if Integrity Monitoring is enabled:

{

 "enableIntegrityMonitoring": true

}

Remediation:

Once a Node pool is provisioned, it cannot be updated to enable Integrity Monitoring.
New Node pools must be created within the cluster with Integrity Monitoring enabled.
Using Google Cloud Console

https://console.cloud.google.com/kubernetes/list

Page 157

Internal Only - General

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. From the list of clusters, click on the cluster requiring the update and click ADD
NODE POOL.

3. Ensure that the 'Integrity monitoring' checkbox is checked under the 'Shielded
options' Heading.

4. Click SAVE.

Workloads from existing non-conforming Node pools will need to be migrated to the
newly created Node pool, then delete non-conforming Node pools to complete the
remediation
Using Command Line
To create a Node pool within the cluster with Integrity Monitoring enabled, run the
following command:
gcloud container node-pools create <node_pool_name> --cluster <cluster_name>

--zone <compute_zone> --shielded-integrity-monitoring

Workloads from existing non-conforming Node pools will need to be migrated to the
newly created Node pool, then delete non-conforming Node pools to complete the
remediation

Default Value:

Integrity Monitoring is disabled by default on GKE clusters. Integrity Monitoring is
enabled by default for Shielded GKE Nodes; however, if Secure Boot is enabled at
creation time, Integrity Monitoring is disabled.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/shielded-gke-nodes
2. https://cloud.google.com/compute/shielded-vm/docs/integrity-monitoring

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

7.5 Perform Automated Vulnerability Scans of Internal
Enterprise Assets
 Perform automated vulnerability scans of internal enterprise assets on a
quarterly, or more frequent, basis. Conduct both authenticated and
unauthenticated scans, using a SCAP-compliant vulnerability scanning tool.

 ● ●

v8

7.6 Perform Automated Vulnerability Scans of Externally-
Exposed Enterprise Assets
 Perform automated vulnerability scans of externally-exposed enterprise assets
using a SCAP-compliant vulnerability scanning tool. Perform scans on a monthly,

or more frequent, basis.

 ● ●

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/how-to/shielded-gke-nodes
https://cloud.google.com/compute/shielded-vm/docs/integrity-monitoring

Page 158

Internal Only - General

Controls
Version

Control IG 1 IG 2 IG 3

v7

5.3 Securely Store Master Images
 Store the master images and templates on securely configured servers,
validated with integrity monitoring tools, to ensure that only authorized changes to
the images are possible.

 ● ●

Page 159

Internal Only - General

5.5.7 Ensure Secure Boot for Shielded GKE Nodes is Enabled

(Automated)

Profile Applicability:

• Level 2

Description:

Enable Secure Boot for Shielded GKE Nodes to verify the digital signature of node boot
components.

Rationale:

An attacker may seek to alter boot components to persist malware or root kits during
system initialisation. Secure Boot helps ensure that the system only runs authentic
software by verifying the digital signature of all boot components, and halting the boot
process if signature verification fails.

Impact:

Secure Boot will not permit the use of third-party unsigned kernel modules.

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. From the list of clusters, click on the name of the cluster under test.
3. Open the Details pane for each Node pool within the cluster, and ensure that

Secure boot is set to Enabled under the Security heading.

Using Command Line:
To check if Secure Boot is enabled for the Node pools in the cluster, run the following
command for each Node pool:
gcloud container node-pools describe <node_pool_name> --cluster

<cluster_name> --zone <compute_zone> --format json | jq

.config.shieldedInstanceConfig

This will return the value below, if Secure Boot is enabled:

https://console.cloud.google.com/kubernetes/list

Page 160

Internal Only - General

{

 "enableSecureBoot": true

}

Remediation:

Once a Node pool is provisioned, it cannot be updated to enable Secure Boot. New
Node pools must be created within the cluster with Secure Boot enabled.
Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. From the list of clusters, click on the cluster requiring the update and click ADD
NODE POOL.

3. Ensure that the Secure boot checkbox is checked under the Shielded
options Heading.

4. Click SAVE.

Workloads will need to be migrated from existing non-conforming Node pools to the
newly created Node pool, then delete the non-conforming pools.
Using Command Line:
To create a Node pool within the cluster with Secure Boot enabled, run the following
command:
gcloud container node-pools create <node_pool_name> --cluster <cluster_name>

--zone <compute_zone> --shielded-secure-boot

Workloads will need to be migrated from existing non-conforming Node pools to the
newly created Node pool, then delete the non-conforming pools.

Default Value:

By default, Secure Boot is disabled in GKE clusters. By default, Secure Boot is disabled
when Shielded GKE Nodes is enabled.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/shielded-gke-
nodes#secure_boot

2. https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/how-to/shielded-gke-nodes#secure_boot
https://cloud.google.com/kubernetes-engine/docs/how-to/shielded-gke-nodes#secure_boot
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster

Page 161

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

7.5 Perform Automated Vulnerability Scans of Internal
Enterprise Assets
 Perform automated vulnerability scans of internal enterprise assets on a
quarterly, or more frequent, basis. Conduct both authenticated and
unauthenticated scans, using a SCAP-compliant vulnerability scanning tool.

 ● ●

v8

7.6 Perform Automated Vulnerability Scans of Externally-
Exposed Enterprise Assets
 Perform automated vulnerability scans of externally-exposed enterprise assets
using a SCAP-compliant vulnerability scanning tool. Perform scans on a monthly,
or more frequent, basis.

 ● ●

v7

5.3 Securely Store Master Images
 Store the master images and templates on securely configured servers,
validated with integrity monitoring tools, to ensure that only authorized changes to
the images are possible.

 ● ●

Page 162

Internal Only - General

5.6 Cluster Networking

This section contains recommendations relating to network security configurations in
GKE.

Page 163

Internal Only - General

5.6.1 Enable VPC Flow Logs and Intranode Visibility (Automated)

Profile Applicability:

• Level 2

Description:

Enable VPC Flow Logs and Intranode Visibility to see pod-level traffic, even for traffic
within a worker node.

Rationale:

Enabling Intranode Visibility makes intranode pod to pod traffic visible to the networking
fabric. With this feature, VPC Flow Logs or other VPC features can be used for
intranode traffic.

Impact:

Enabling it on existing cluster causes the cluster master and the cluster nodes to restart,
which might cause disruption.

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. Select the desired cluster, and under the Cluster section, make sure that

Intranode visibility is set to Enabled.

Using Command Line:
Run this command:
gcloud container clusters describe <cluster_name> --zone <compute_zone> --

format json | jq '.networkConfig.enableIntraNodeVisibility'

The result should return true if Intranode Visibility is Enabled.

Remediation:

Enable Intranode Visibility:
Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Select Kubernetes clusters for which intranode visibility is disabled.
3. Within the Details pane, under the Network section, click on the pencil icon

named Edit intranode visibility.

4. Check the box next to Enable Intranode visibility.

5. Click SAVE CHANGES.

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/kubernetes/list

Page 164

Internal Only - General

Using Command Line:
To enable intranode visibility on an existing cluster, run the following command:
gcloud container clusters update <cluster_name> --enable-intra-node-

visibility

Enable VPC Flow Logs:
Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Select Kubernetes clusters for which VPC Flow Logs are disabled.
3. Select Nodes tab.

4. Select Node Pool without VPC Flow Logs enabled.
5. Select an Instance Group within the node pool.
6. Select an Instance Group Member.

7. Select the Subnetwork under Network Interfaces.

8. Click on EDIT.

9. Set Flow logs to On.

10. Click SAVE.

Using Command Line:

1. Find the subnetwork name associated with the cluster.

gcloud container clusters describe <cluster_name> --region <cluster_region> -

-format json | jq '.subnetwork'

2. Update the subnetwork to enable VPC Flow Logs.

gcloud compute networks subnets update <subnet_name> --enable-flow-logs

Default Value:

By default, Intranode Visibility is disabled.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/intranode-visibility
2. https://cloud.google.com/vpc/docs/using-flow-logs

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/how-to/intranode-visibility
https://cloud.google.com/vpc/docs/using-flow-logs

Page 165

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

8.5 Collect Detailed Audit Logs
 Configure detailed audit logging for enterprise assets containing sensitive data.
Include event source, date, username, timestamp, source addresses, destination
addresses, and other useful elements that could assist in a forensic investigation.

 ● ●

v7

6.3 Enable Detailed Logging
 Enable system logging to include detailed information such as an event source,
date, user, timestamp, source addresses, destination addresses, and other useful
elements.

 ● ●

Page 166

Internal Only - General

5.6.2 Ensure use of VPC-native clusters (Automated)

Profile Applicability:

• Level 1

Description:

Create Alias IPs for the node network CIDR range in order to subsequently configure
IP-based policies and firewalling for pods. A cluster that uses Alias IPs is called a VPC-
native cluster.

Rationale:

Using Alias IPs has several benefits:

• Pod IPs are reserved within the network ahead of time, which prevents conflict
with other compute resources.

• The networking layer can perform anti-spoofing checks to ensure that egress
traffic is not sent with arbitrary source IPs.

• Firewall controls for Pods can be applied separately from their nodes.
• Alias IPs allow Pods to directly access hosted services without using a NAT

gateway.

Impact:

You cannot currently migrate an existing cluster that uses routes for Pod routing to a
cluster that uses Alias IPs.

Cluster IPs for internal services remain only available from within the cluster. If you want
to access a Kubernetes Service from within the VPC, but from outside of the cluster,
use an internal load balancer.

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. From the list of clusters, click on the desired cluster to open the Details page.
Under the 'Networking' section, make sure 'VPC-native traffic routing' is set to
'Enabled'.

Using Command Line:
To check Alias IP is enabled for an existing cluster, run the following command:

https://console.cloud.google.com/kubernetes/list

Page 167

Internal Only - General

gcloud container clusters describe <cluster_name> --zone <compute_zone> --

format json | jq '.ipAllocationPolicy.useIpAliases'

The output of the above command should return true, if VPC-native (using alias IP) is

enabled. If VPC-native (using alias IP) is disabled, the above command will return null
({ }).

Remediation:

Alias IPs cannot be enabled on an existing cluster. To create a new cluster using Alias
IPs, follow the instructions below.
Using Google Cloud Console:
If using Standard configuration mode:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. Click CREATE CLUSTER, and select Standard configuration mode.

3. Configure your cluster as desired , then, click Networking under CLUSTER in the

navigation pane.
4. In the 'VPC-native' section, leave 'Enable VPC-native (using alias IP)' selected
5. Click CREATE.

If using Autopilot configuration mode:
Note that this is VPC-native only and cannot be disable:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Click CREATE CLUSTER, and select Autopilot configuration mode.
3. Configure your cluster as required
4. Click CREATE.

Using Command Line
To enable Alias IP on a new cluster, run the following command:
gcloud container clusters create <cluster_name> --zone <compute_zone> --

enable-ip-alias

If using Autopilot configuration mode:

gcloud container clusters create-auto <cluster_name> --zone <compute_zone>

Default Value:

By default, VPC-native (using alias IP) is enabled when you create a new cluster in the
Google Cloud Console, however this is disabled when creating a new cluster using the
gcloud CLI, unless the --enable-ip-alias argument is specified.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/alias-ips
2. https://cloud.google.com/kubernetes-engine/docs/concepts/alias-ips

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/how-to/alias-ips
https://cloud.google.com/kubernetes-engine/docs/concepts/alias-ips

Page 168

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8 13.4 Perform Traffic Filtering Between Network Segments
 Perform traffic filtering between network segments, where appropriate.

 ● ●

v7

11 Secure Configuration for Network Devices, such as
Firewalls, Routers and Switches
 Secure Configuration for Network Devices, such as Firewalls, Routers and
Switches

v7

14.1 Segment the Network Based on Sensitivity
 Segment the network based on the label or classification level of the
information stored on the servers, locate all sensitive information on separated
Virtual Local Area Networks (VLANs).

 ● ●

Page 169

Internal Only - General

5.6.3 Ensure Control Plane Authorized Networks is Enabled

(Automated)

Profile Applicability:

• Level 2

Description:

Enable Control Plane Authorized Networks to restrict access to the cluster's control
plane to only an allowlist of authorized IPs.

Rationale:

Authorized networks are a way of specifying a restricted range of IP addresses that are
permitted to access your cluster's control plane. Kubernetes Engine uses both
Transport Layer Security (TLS) and authentication to provide secure access to your
cluster's control plane from the public internet. This provides you the flexibility to
administer your cluster from anywhere; however, you might want to further restrict
access to a set of IP addresses that you control. You can set this restriction by
specifying an authorized network.

Control Plane Authorized Networks blocks untrusted IP addresses. Google Cloud
Platform IPs (such as traffic from Compute Engine VMs) can reach your master through
HTTPS provided that they have the necessary Kubernetes credentials.

Restricting access to an authorized network can provide additional security benefits for
your container cluster, including:

• Better protection from outsider attacks: Authorized networks provide an
additional layer of security by limiting external, non-GCP access to a specific set
of addresses you designate, such as those that originate from your premises.
This helps protect access to your cluster in the case of a vulnerability in the
cluster's authentication or authorization mechanism.

• Better protection from insider attacks: Authorized networks help protect your
cluster from accidental leaks of master certificates from your company's
premises. Leaked certificates used from outside GCP and outside the authorized
IP ranges (for example, from addresses outside your company) are still denied
access.

Impact:

When implementing Control Plane Authorized Networks, be careful to ensure all desired
networks are on the allowlist to prevent inadvertently blocking external access to your
cluster's control plane.

Audit:

Using Google Cloud Console:

Page 170

Internal Only - General

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. From the list of clusters, click on the cluster to open the Details page and make
sure 'Master authorized networks' is set to 'Enabled'.

Using Command Line:
To check Master Authorized Networks status for an existing cluster, run the following
command;
gcloud container clusters update $CLUSTER_NAME --zone $COMPUTE_ZONE --enable-

master-authorized-networks

The output should return

{

 "enabled": true

}

if Control Plane Authorized Networks is enabled. If Master Authorized Networks is
disabled, the above command will return null ({ }).

Remediation:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. Select Kubernetes clusters for which Control Plane Authorized Networks is
disabled

3. Within the Details pane, under the Networking heading, click on the pencil icon
named Edit control plane authorised networks.

4. Check the box next to Enable control plane authorised networks.
5. Click SAVE CHANGES.

Using Command Line:
To enable Control Plane Authorized Networks for an existing cluster, run the following
command:
gcloud container clusters update <cluster_name> --zone <compute_zone> --

enable-master-authorized-networks

Along with this, you can list authorized networks using the --master-authorized-
networks flag which contains a list of up to 20 external networks that are allowed to

connect to your cluster's control plane through HTTPS. You provide these networks as
a comma-separated list of addresses in CIDR notation (such as 90.90.100.0/24).

Default Value:

By default, Control Plane Authorized Networks is disabled.

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/kubernetes/list

Page 171

Internal Only - General

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/authorized-networks

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.3 Configure Data Access Control Lists
 Configure data access control lists based on a user’s need to know. Apply data
access control lists, also known as access permissions, to local and remote file
systems, databases, and applications.

● ● ●

v7

14.6 Protect Information through Access Control Lists
 Protect all information stored on systems with file system, network share,
claims, application, or database specific access control lists. These controls will
enforce the principle that only authorized individuals should have access to the
information based on their need to access the information as a part of their
responsibilities.

● ● ●

https://cloud.google.com/kubernetes-engine/docs/how-to/authorized-networks

Page 172

Internal Only - General

5.6.4 Ensure clusters are created with Private Endpoint Enabled

and Public Access Disabled (Automated)

Profile Applicability:

• Level 2

Description:

Disable access to the Kubernetes API from outside the node network if it is not required.

Rationale:

In a private cluster, the master node has two endpoints, a private and public endpoint.
The private endpoint is the internal IP address of the master, behind an internal load
balancer in the master's VPC network. Nodes communicate with the master using the
private endpoint. The public endpoint enables the Kubernetes API to be accessed from
outside the master's VPC network.

Although Kubernetes API requires an authorized token to perform sensitive actions, a
vulnerability could potentially expose the Kubernetes publically with unrestricted access.
Additionally, an attacker may be able to identify the current cluster and Kubernetes API
version and determine whether it is vulnerable to an attack. Unless required, disabling
public endpoint will help prevent such threats, and require the attacker to be on the
master's VPC network to perform any attack on the Kubernetes API.

Impact:

To enable a Private Endpoint, the cluster has to also be configured with private nodes, a
private master IP range and IP aliasing enabled.

If the Private Endpoint flag --enable-private-endpoint is passed to the gcloud CLI,

or the external IP address undefined in the Google Cloud Console during cluster
creation, then all access from a public IP address is prohibited.

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. Select the required cluster, and within the Details pane, make sure the 'Endpoint'
does not have a public IP address.

Using Command Line:
Run this command:

https://console.cloud.google.com/kubernetes/list

Page 173

Internal Only - General

gcloud container clusters describe <cluster_name> --format json | jq

'.privateClusterConfig.enablePrivateEndpoint'

The output of the above command returns true if a Private Endpoint is enabled with

Public Access disabled.
For an additional check, the endpoint parameter can be queried with the following
command:

gcloud container clusters describe <cluster_name> --format json | jq

'.endpoint'

The output of the above command returns a private IP address if Private Endpoint is
enabled with Public Access disabled.

Remediation:

Once a cluster is created without enabling Private Endpoint only, it cannot be
remediated. Rather, the cluster must be recreated.
Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. Click CREATE CLUSTER, and choose CONFIGURE for the Standard mode
cluster.

3. Configure the cluster as required then click Networking under CLUSTER in the
navigation pane.

4. Under IPv4 network access, click the Private cluster radio button.
5. Uncheck the Access control plane using its external IP address checkbox.
6. In the Control plane IP range textbox, provide an IP range for the control plane.
7. Configure the other settings as required, and click CREATE.

Using Command Line:
Create a cluster with a Private Endpoint enabled and Public Access disabled by
including the --enable-private-endpoint flag within the cluster create command:
gcloud container clusters create <cluster_name> --enable-private-endpoint

Setting this flag also requires the setting of --enable-private-nodes, --enable-ip-
alias and --master-ipv4-cidr=<master_cidr_range>.

Default Value:

By default, the Private Endpoint is disabled.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/private-clusters

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/how-to/private-clusters

Page 174

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.4 Implement and Manage a Firewall on Servers
 Implement and manage a firewall on servers, where supported. Example
implementations include a virtual firewall, operating system firewall, or a third-
party firewall agent.

● ● ●

v7 12 Boundary Defense
 Boundary Defense

Page 175

Internal Only - General

5.6.5 Ensure clusters are created with Private Nodes (Automated)

Profile Applicability:

• Level 1

Description:

Private Nodes are nodes with no public IP addresses. Disable public IP addresses for
cluster nodes, so that they only have private IP addresses.

Rationale:

Disabling public IP addresses on cluster nodes restricts access to only internal
networks, forcing attackers to obtain local network access before attempting to
compromise the underlying Kubernetes hosts.

Impact:

To enable Private Nodes, the cluster has to also be configured with a private master IP
range and IP Aliasing enabled.

Private Nodes do not have outbound access to the public internet. If you want to provide
outbound Internet access for your private nodes, you can use Cloud NAT or you can
manage your own NAT gateway.

To access Google Cloud APIs and services from private nodes, Private Google Access
needs to be set on Kubernetes Engine Cluster Subnets.

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Select the desired cluster, and within the Details pane, make sure Private
Clusters is set to Enabled.

Using Command Line:
Run this command:
gcloud container clusters describe <cluster_name> --format json | jq

'.privateClusterConfig.enablePrivateNodes'

The output of the above command returns true if Private Nodes is enabled.

Remediation:

Once a cluster is created without enabling Private Nodes, it cannot be remediated.
Rather the cluster must be recreated.
Using Google Cloud Console:

https://console.cloud.google.com/kubernetes/list

Page 176

Internal Only - General

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Click CREATE CLUSTER.
3. Configure the cluster as required then click Networking under CLUSTER in the

navigation pane.
4. Under IPv4 network access, click the Private cluster radio button.
5. Configure the other settings as required, and click CREATE.

Using Command Line:
To create a cluster with Private Nodes enabled, include the --enable-private-nodes

flag within the cluster create command:
gcloud container clusters create <cluster_name> --enable-private-nodes

Setting this flag also requires the setting of --enable-ip-alias and --master-ipv4-
cidr=<master_cidr_range>.

Default Value:

By default, Private Nodes are disabled.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/private-clusters

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.4 Implement and Manage a Firewall on Servers
 Implement and manage a firewall on servers, where supported. Example
implementations include a virtual firewall, operating system firewall, or a third-
party firewall agent.

● ● ●

v7 12 Boundary Defense
 Boundary Defense

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/how-to/private-clusters

Page 177

Internal Only - General

5.6.6 Consider firewalling GKE worker nodes (Manual)

Profile Applicability:

• Level 2

Description:

Reduce the network attack surface of GKE nodes by using Firewalls to restrict ingress
and egress traffic.

Rationale:

Utilizing stringent ingress and egress firewall rules minimizes the ports and services
exposed to an network-based attacker, whilst also restricting egress routes within or out
of the cluster in the event that a compromised component attempts to form an outbound
connection.

Impact:

All instances targeted by a firewall rule, either using a tag or a service account will be
affected. Ensure there are no adverse effects on other instances using the target tag or
service account before implementing the firewall rule.

Audit:

Using Google Cloud Console:

1. Go to Compute Engine by visiting:
https://console.cloud.google.com/compute/instances.

2. For each instance within your cluster, use the 'more actions' menu (3 vertical
dots) and select to 'View network details'.

3. If there are multiple network interfaces attached to the instance, select the
network interface to view in the 'Network interface' details section and see all the
rules that apply to the network interface, within the 'Firewall rules' tab. Make sure
the firewall rules are appropriate for your environment.

Using Command Line:
For the instance being evaluated, obtain its Service account and tags:
gcloud compute instances describe <instance_name> --zone <compute_zone> --

format json | jq '{tags: .tags.items[],

serviceaccount:.serviceAccounts[].email, network:

.networkInterfaces[].network}'

This will return:

https://console.cloud.google.com/compute/instances

Page 178

Internal Only - General

{

 "tags": "<tag>",

 "serviceaccount": "<service_account>"

 "network":

"https://www.googleapis.com/compute/v1/projects/<project_id>/global/networks/

<network>"

}

Then, observe the firewall rules applied to the instance by using the following command,
replacing <tag> and <service_account> as appropriate:

gcloud compute firewall-rules list \

 --format="table(

 name,

 network,

 direction,

 priority,

 sourceRanges.list():label=SRC_RANGES,

 destinationRanges.list():label=DEST_RANGES,

 allowed[].map().firewall_rule().list():label=ALLOW,

 denied[].map().firewall_rule().list():label=DENY,

 sourceTags.list():label=SRC_TAGS,

 sourceServiceAccounts.list():label=SRC_SVC_ACCT,

 targetTags.list():label=TARGET_TAGS,

 targetServiceAccounts.list():label=TARGET_SVC_ACCT,

 disabled

)" \

 --filter="targetTags.list():<tag> OR

targetServiceAccounts.list():<service_account>"

Firewall rules may also be applied to a network without specifically targeting Tags or
Service Accounts. These can be observed using the following, replacing <network> as

appropriate:

gcloud compute firewall-rules list \

 --format="table(

 name,

 network,

 direction,

 priority,

 sourceRanges.list():label=SRC_RANGES,

 destinationRanges.list():label=DEST_RANGES,

 allowed[].map().firewall_rule().list():label=ALLOW,

 denied[].map().firewall_rule().list():label=DENY,

 sourceTags.list():label=SRC_TAGS,

 sourceServiceAccounts.list():label=SRC_SVC_ACCT,

 targetTags.list():label=TARGET_TAGS,

 targetServiceAccounts.list():label=TARGET_SVC_ACCT,

 disabled

)" \

 --filter="network.list():<network> AND -targetTags.list():* AND -

targetServiceAccounts.list():*"

Remediation:

Using Google Cloud Console:

Page 179

Internal Only - General

1. Go to Firewall Rules by visiting:
https://console.cloud.google.com/networking/firewalls/list

2. Click CREATE FIREWALL RULE.
3. Configure the firewall rule as required. Ensure the firewall targets the nodes

correctly, either selecting the nodes using tags (under Targets, select Specified
target tags, and set Target tags to <tag>), or using the Service account

associated with node (under Targets, select Specified service account, set
Service account scope as appropriate, and Target service account to
<service_account>).

4. Click CREATE.

Using Command Line:
Use the following command to generate firewall rules, setting the variables as
appropriate:
gcloud compute firewall-rules create <firewall_rule_name> --network <network>

--priority <priority> --direction <direction> --action <action> --target-tags

<tag> --target-service-accounts <service_account> --source-ranges

<source_cidr_range> --source-tags <source_tags> --source-service-accounts

<source_service_account> --destination-ranges <destination_cidr_range> --

rules <rules>

Default Value:

Every VPC network has two implied firewall rules. These rules exist, but are not shown
in the Cloud Console:

• The implied allow egress rule: An egress rule whose action is allow, destination

is 0.0.0.0/0, and priority is the lowest possible (65535) lets any instance send

traffic to any destination, except for traffic blocked by GCP. Outbound access
may be restricted by a higher priority firewall rule. Internet access is allowed if no
other firewall rules deny outbound traffic and if the instance has an external IP
address or uses a NAT instance.

• The implied deny ingress rule: An ingress rule whose action is deny, source is

0.0.0.0/0, and priority is the lowest possible (65535) protects all instances by

blocking incoming traffic to them. Incoming access may be allowed by a higher
priority rule. Note that the default network includes some additional rules that
override this one, allowing certain types of incoming traffic.

The implied rules cannot be removed, but they have the lowest possible priorities.

References:

1. https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture
2. https://cloud.google.com/vpc/docs/using-firewalls

https://console.cloud.google.com/networking/firewalls/list
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture
https://cloud.google.com/vpc/docs/using-firewalls

Page 180

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.4 Implement and Manage a Firewall on Servers
 Implement and manage a firewall on servers, where supported. Example
implementations include a virtual firewall, operating system firewall, or a third-
party firewall agent.

● ● ●

v7

9.5 Implement Application Firewalls
 Place application firewalls in front of any critical servers to verify and validate
the traffic going to the server. Any unauthorized traffic should be blocked and
logged.

 ●

Page 181

Internal Only - General

5.6.7 Ensure use of Google-managed SSL Certificates

(Automated)

Profile Applicability:

• Level 2

Description:

Encrypt traffic to HTTPS load balancers using Google-managed SSL certificates.

Rationale:

Encrypting traffic between users and the Kubernetes workload is fundamental to
protecting data sent over the web.

Google-managed SSL Certificates are provisioned, renewed, and managed for domain
names. This is only available for HTTPS load balancers created using Ingress
Resources, and not TCP/UDP load balancers created using Service of
type:LoadBalancer.

Impact:

Google-managed SSL Certificates are less flexible than certificates that are self
obtained and managed. Managed certificates support a single, non-wildcard domain.
Self-managed certificates can support wildcards and multiple subject alternative names
(SANs).

Audit:

Using Command Line:
Identify if there are any workloads exposed publicly using Services of
type:LoadBalancer:

kubectl get svc -A -o json | jq '.items[] |

select(.spec.type=="LoadBalancer")'

Consider using ingresses instead of these services in order to use Google managed
SSL certificates.
For the ingresses within the cluster, run the following command:

kubectl get ingress -A -o json | jq .items[] | jq '{name: .metadata.name,

annotations: .metadata.annotations, namespace: .metadata.namespace, status:

.status}'

The above command should return the name of the ingress, namespace, annotations
and status. Check that the following annotation is present to ensure managed
certificates are referenced.

Page 182

Internal Only - General

"annotations": {

 ...

 "networking.gke.io/managed-certificates": "<example_certificate>"

 },

For completeness, run the following command to ensure that the managed certificate
resource exists:

kubectl get managedcertificates -A

The above command returns a list of managed certificates for which
<example_certificate> should exist within the same namespace as the ingress.

Remediation:

If services of type:LoadBalancer are discovered, consider replacing the Service with

an Ingress.
To configure the Ingress and use Google-managed SSL certificates, follow the
instructions as listed at: https://cloud.google.com/kubernetes-engine/docs/how-
to/managed-certs.

Default Value:

By default, Google-managed SSL Certificates are not created when an Ingress resource
is defined.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/managed-certs
2. https://cloud.google.com/kubernetes-engine/docs/concepts/ingress

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
3.10 Encrypt Sensitive Data in Transit
 Encrypt sensitive data in transit. Example implementations can include:
Transport Layer Security (TLS) and Open Secure Shell (OpenSSH).

 ● ●

v7 14.4 Encrypt All Sensitive Information in Transit
 Encrypt all sensitive information in transit.

 ● ●

https://cloud.google.com/kubernetes-engine/docs/how-to/managed-certs
https://cloud.google.com/kubernetes-engine/docs/how-to/managed-certs
https://cloud.google.com/kubernetes-engine/docs/how-to/managed-certs
https://cloud.google.com/kubernetes-engine/docs/concepts/ingress

Page 183

Internal Only - General

5.7 Logging

This section contains recommendations relating to security-related logging in GKE.

Page 184

Internal Only - General

5.7.1 Ensure Logging and Cloud Monitoring is Enabled

(Automated)

Profile Applicability:

• Level 1

Description:

Send logs and metrics to a remote aggregator to mitigate the risk of local tampering in
the event of a breach.

Rationale:

Exporting logs and metrics to a dedicated, persistent datastore such as Cloud
Operations for GKE ensures availability of audit data following a cluster security event,
and provides a central location for analysis of log and metric data collated from multiple
sources.

Audit:

Using Google Cloud Console:
LOGGING AND CLOUD MONITORING SUPPORT (PREFERRED):

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. From the list of clusters, click on the cluster of interest.
3. Under the details pane, within the Features section, ensure that Logging is

Enabled.

4. Also ensure that Cloud Monitoring is Enabled

LEGACY STACKDRIVER SUPPORT:
This option cannot be check in the GCP console.
Using Command Line:
LOGGING AND CLOUD MONITORING SUPPORT (PREFERRED):
Run the following commands:

https://console.cloud.google.com/kubernetes/list

Page 185

Internal Only - General

gcloud container clusters describe <cluster_name> --zone <compute_zone> --

format json | jq '.loggingService'

gcloud container clusters describe <cluster_name> --zone <compute_zone> --

format json | jq '.monitoringService'

The output of the above commands should return
logging.googleapis.com/kubernetes and

monitoring.googleapis.com/kubernetes respectively if Logging and Cloud

Monitoring is Enabled.
LEGACY STACKDRIVER SUPPORT:
Note: This functionality was decommissioned on 31st March 2021, kept here for
posterity (see: https://cloud.google.com/stackdriver/docs/deprecations/legacy for more
information)
Both Logging and Monitoring support must be enabled.
For Logging, run the following command:

gcloud container clusters describe <cluster_name> --zone <compute_zone> --

format json | jq '.loggingService'

The output should return logging.googleapis.com if Legacy Stackdriver Logging is

Enabled.
For Monitoring, run the following command:

gcloud container clusters describe <cluster_name> --zone <compute_zone> --

format json | jq '.monitoringService'

The output should return monitoring.googleapis.com if Legacy Stackdriver

Monitoring is Enabled.

Remediation:

Using Google Cloud Console:
To enable Logging:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Select the cluster for which Logging is disabled.
3. Under the details pane, within the Features section, click on the pencil icon

named Edit logging.

4. Check the box next to Enable Logging.

5. In the drop-down Components box, select the components to be logged.
6. Click SAVE CHANGES, and wait for the cluster to update.

To enable Cloud Monitoring:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Select the cluster for which Logging is disabled.
3. Under the details pane, within the Features section, click on the pencil icon

named Edit Cloud Monitoring.

https://cloud.google.com/stackdriver/docs/deprecations/legacy
https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/kubernetes/list

Page 186

Internal Only - General

4. Check the box next to Enable Cloud Monitoring.

5. In the drop-down Components box, select the components to be logged.
6. Click SAVE CHANGES, and wait for the cluster to update.

Using Command Line:
To enable Logging for an existing cluster, run the following command:
gcloud container clusters update <cluster_name> --zone <compute_zone> --
logging=<components_to_be_logged>
See https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--logging
for a list of available components for logging.
To enable Cloud Monitoring for an existing cluster, run the following command:
gcloud container clusters update <cluster_name> --zone <compute_zone> --
monitoring=<components_to_be_logged>
See https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--
monitoring for a list of available components for Cloud Monitoring.

Default Value:

Logging and Cloud Monitoring is enabled by default starting in GKE version 1.14;
Legacy Logging and Monitoring support is enabled by default for earlier versions.

References:

1. https://cloud.google.com/stackdriver/docs/solutions/gke/observing
2. https://cloud.google.com/stackdriver/docs/solutions/gke/managing-logs
3. https://cloud.google.com/stackdriver/docs/solutions/gke/installing
4. https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--

logging
5. https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--

monitoring

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
8.2 Collect Audit Logs
 Collect audit logs. Ensure that logging, per the enterprise’s audit log
management process, has been enabled across enterprise assets.

● ● ●

v7
6.2 Activate audit logging
 Ensure that local logging has been enabled on all systems and networking

devices.
● ● ●

https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--logging
https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--monitoring
https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--monitoring
https://cloud.google.com/stackdriver/docs/solutions/gke/observing
https://cloud.google.com/stackdriver/docs/solutions/gke/managing-logs
https://cloud.google.com/stackdriver/docs/solutions/gke/installing
https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--logging
https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--logging
https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--monitoring
https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--monitoring

Page 187

Internal Only - General

5.7.2 Enable Linux auditd logging (Manual)

Profile Applicability:

• Level 2

Description:

Run the auditd logging daemon to obtain verbose operating system logs from GKE
nodes running Container-Optimized OS (COS).

Rationale:

Auditd logs provide valuable information about the state of the cluster and workloads,
such as error messages, login attempts, and binary executions. This information can be
used to debug issues or to investigate security incidents.

Impact:

Increased logging activity on a node increases resource usage on that node, which may
affect the performance of the workload and may incur additional resource costs. Audit
logs sent to Stackdriver consume log quota from the project. The log quota may require
increasing and storage to accommodate the additional logs.

Note that the provided logging daemonset only works on nodes running Container-
Optimized OS (COS).

Audit:

Using Google Cloud Console

1. Navigate to the Kubernetes Engine workloads by visiting:
https://console.cloud.google.com/kubernetes/workload

2. Observe the workloads and ensure that all filters are removed.
3. If the unmodified example auditd logging daemonset:

https://raw.githubusercontent.com/GoogleCloudPlatform/k8s-node-
tools/master/os-audit/cos-auditd-logging.yaml is being used, ensure that the cos-
auditd-logging daemonset is being run in the cos-auditd namespace with

the number of running pods reporting as expected.

Using Command Line:
If using the unmodified example auditd logging daemonset, run:
kubectl get daemonsets -n cos-audit

and observe that the cos-auditd-logging daemonset is running as expected.

If the name or namespace of the daemonset has been modified and is unknown, search
for the container being used by the daemonset:

https://console.cloud.google.com/kubernetes/workload
https://raw.githubusercontent.com/GoogleCloudPlatform/k8s-node-tools/master/os-audit/cos-auditd-logging.yaml
https://raw.githubusercontent.com/GoogleCloudPlatform/k8s-node-tools/master/os-audit/cos-auditd-logging.yaml

Page 188

Internal Only - General

kubectl get daemonsets -A -o json | jq '.items[] | select

(.spec.template.spec.containers[].image | contains ("gcr.io/stackdriver-

agents/stackdriver-logging-agent"))'| jq '{name: .metadata.name, annotations:

.metadata.annotations."kubernetes.io/description", namespace:

.metadata.namespace, status: .status}'

The above command returns the name, namespace and status of the daemonsets that
use the Stackdriver logging agent. The example auditd logging daemonset has a
description within the annotation as output by the command above:

{

 "name": "cos-auditd-logging",

 "annotations": "DaemonSet that enables Linux auditd logging on COS nodes.",

 "namespace": "cos-auditd",

 "status": {...

 }

}

Ensure that the status fields return that the daemonset is running as expected.

Remediation:

Using Command Line:
Download the example manifests:

curl https://raw.githubusercontent.com/GoogleCloudPlatform/k8s-node-

tools/master/os-audit/cos-auditd-logging.yaml > cos-auditd-logging.yaml

Edit the example manifests if needed. Then, deploy them:

kubectl apply -f cos-auditd-logging.yaml

Verify that the logging Pods have started. If a different Namespace was defined in the
manifests, replace cos-auditd with the name of the namespace being used:

kubectl get pods --namespace=cos-auditd

Default Value:

By default, the auditd logging daemonset is not launched when a GKE cluster is
created.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/linux-auditd-logging
2. https://cloud.google.com/container-optimized-os/docs

https://cloud.google.com/kubernetes-engine/docs/how-to/linux-auditd-logging
https://cloud.google.com/container-optimized-os/docs

Page 189

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
8.2 Collect Audit Logs
 Collect audit logs. Ensure that logging, per the enterprise’s audit log
management process, has been enabled across enterprise assets.

● ● ●

v7

6.3 Enable Detailed Logging
 Enable system logging to include detailed information such as an event
source, date, user, timestamp, source addresses, destination addresses, and
other useful elements.

 ● ●

Page 190

Internal Only - General

5.8 Authentication and Authorization

This section contains recommendations relating to authentication and authorization in
GKE.

Page 191

Internal Only - General

5.8.1 Ensure authentication using Client Certificates is Disabled

(Automated)

Profile Applicability:

• Level 1

Description:

Disable Client Certificates, which require certificate rotation, for authentication. Instead,
use another authentication method like OpenID Connect.

Rationale:

With Client Certificate authentication, a client presents a certificate that the API server
verifies with the specified Certificate Authority. In GKE, Client Certificates are signed by
the cluster root Certificate Authority. When retrieved, the Client Certificate is only
base64 encoded and not encrypted.

GKE manages authentication via gcloud for you using the OpenID Connect token
method, setting up the Kubernetes configuration, getting an access token, and keeping
it up to date. This means Basic Authentication using static passwords and Client
Certificate authentication, which both require additional management overhead of key
management and rotation, are not necessary and should be disabled.

When Client Certificate authentication is disabled, you will still be able to authenticate to
the cluster with other authentication methods, such as OpenID Connect tokens. See
also Recommendation 6.8.1 to disable authentication using static passwords, known as
Basic Authentication.

Impact:

Users will no longer be able to authenticate with the pre-provisioned x509 certificate.
You will have to configure and use alternate authentication mechanisms, such as
OpenID Connect tokens.

Audit:

The audit script for this recommendation utilizes 3 variables:
$CLUSTER_NAME
$COMPUTE_ZONE
Please set these parameters on the system where you will be executing your gcloud
audit script or command.
Using Google Cloud Console

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. From the list of clusters, click on the desired cluster. On the Details pane, make
sure 'Client certificate' is set to 'Disabled'.

https://console.cloud.google.com/kubernetes/list

Page 192

Internal Only - General

Using Command line
To check that the client certificate has not been issued, run the following command:
gcloud container clusters describe $CLUSTER_NAME \

 --zone $COMPUTE_ZONE \

 --format json | jq '.masterAuth.clientKey'

The output of the above command returns null ({ }) if the client certificate has not been

issued for the cluster (Client Certificate authentication is disabled).
Note. Depreciated as of v1.19. For Basic Authentication, Legacy authorization can be
edited for standard clusters but cannot be edited in Autopilot clusters.

Remediation:

Currently, there is no way to remove a client certificate from an existing cluster. Thus a
new cluster must be created.
Using Google Cloud Console

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. Click CREATE CLUSTER
3. Configure as required and the click on 'Availability, networking, security, and

additional features' section
4. Ensure that the 'Issue a client certificate' checkbox is not ticked
5. Click CREATE.

Using Command Line
Create a new cluster without a Client Certificate:
gcloud container clusters create [CLUSTER_NAME] \

 --no-issue-client-certificate

Default Value:

Clusters created from GKE version 1.12 have Basic Authentication and Client
Certificate issuance disabled by default.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-
cluster#restrict_authn_methods

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster#restrict_authn_methods
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster#restrict_authn_methods

Page 193

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

6.8 Define and Maintain Role-Based Access Control
 Define and maintain role-based access control, through determining and
documenting the access rights necessary for each role within the enterprise to
successfully carry out its assigned duties. Perform access control reviews of
enterprise assets to validate that all privileges are authorized, on a recurring
schedule at a minimum annually, or more frequently.

 ●

v7 16 Account Monitoring and Control
 Account Monitoring and Control

Page 194

Internal Only - General

5.8.2 Manage Kubernetes RBAC users with Google Groups for

GKE (Manual)

Profile Applicability:

• Level 2

Description:

Cluster Administrators should leverage G Suite Groups and Cloud IAM to assign
Kubernetes user roles to a collection of users, instead of to individual emails using only
Cloud IAM.

Rationale:

On- and off-boarding users is often difficult to automate and prone to error. Using a
single source of truth for user permissions via G Suite Groups reduces the number of
locations that an individual must be off-boarded from, and prevents users gaining
unique permissions sets that increase the cost of audit.

Impact:

When migrating to using security groups, an audit of RoleBindings and

ClusterRoleBindings is required to ensure all users of the cluster are managed using

the new groups and not individually.

When managing RoleBindings and ClusterRoleBindings, be wary of inadvertently

removing bindings required by service accounts.

Audit:

Using G Suite Admin Console and Google Cloud Console

1. Navigate to manage G Suite Groups in the Google Admin console at:
https://admin.google.com/dashboard

2. Ensure there is a group named gke-security-groups@[yourdomain.com].

The group must be named exactly gke-security-groups.

3. Ensure only further groups (not individual users) are included in the gke-
security-groups group as members.

4. Go to the Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

5. From the list of clusters, click on the desired cluster. In the Details pane, make

sure Google Groups for RBAC is set to Enabled.

https://admin.google.com/dashboard
https://console.cloud.google.com/kubernetes/list

Page 195

Internal Only - General

Remediation:

Follow the G Suite Groups instructions at: https://cloud.google.com/kubernetes-
engine/docs/how-to/role-based-access-control#google-groups-for-gke.
Then, create a cluster with:

gcloud container clusters create <cluster_name> --security-group

<security_group_name>

Finally create Roles, ClusterRoles, RoleBindings, and ClusterRoleBindings that

reference the G Suite Groups.

Default Value:

Google Groups for GKE is disabled by default.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/google-groups-rbac
2. https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-

control

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

6.8 Define and Maintain Role-Based Access Control
 Define and maintain role-based access control, through determining and
documenting the access rights necessary for each role within the enterprise to
successfully carry out its assigned duties. Perform access control reviews of
enterprise assets to validate that all privileges are authorized, on a recurring
schedule at a minimum annually, or more frequently.

 ●

v7
16.2 Configure Centralized Point of Authentication
 Configure access for all accounts through as few centralized points of
authentication as possible, including network, security, and cloud systems.

 ● ●

https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control#google-groups-for-gke
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control#google-groups-for-gke
https://cloud.google.com/kubernetes-engine/docs/how-to/google-groups-rbac
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control

Page 196

Internal Only - General

5.8.3 Ensure Legacy Authorization (ABAC) is Disabled

(Automated)

Profile Applicability:

• Level 1

Description:

Legacy Authorization, also known as Attribute-Based Access Control (ABAC) has been
superseded by Role-Based Access Control (RBAC) and is not under active
development. RBAC is the recommended way to manage permissions in Kubernetes.

Rationale:

In Kubernetes, RBAC is used to grant permissions to resources at the cluster and
namespace level. RBAC allows the definition of roles with rules containing a set of
permissions, whilst the legacy authorizer (ABAC) in Kubernetes Engine grants broad,
statically defined permissions. As RBAC provides significant security advantages over
ABAC, it is recommended option for access control. Where possible, legacy
authorization must be disabled for GKE clusters.

Impact:

Once the cluster has the legacy authorizer disabled, the user must be granted the ability
to create authorization roles using RBAC to ensure that the role-based access control
permissions take effect.

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. From the list of clusters, click on each cluster to open the Details pane, and make
sure 'Legacy Authorization' is set to 'Disabled'.

Using Command Line:
To check Legacy Authorization status for an existing cluster, run the following
command:
gcloud container clusters describe <cluster_name> --zone <compute_zone> --

format json | jq '.legacyAbac'

The output should return null ({}) if Legacy Authorization is Disabled. If Legacy

Authorization is Enabled, the above command will return true value.

Remediation:

Using Google Cloud Console:

https://console.cloud.google.com/kubernetes/list

Page 197

Internal Only - General

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Select Kubernetes clusters for which Legacy Authorization is enabled.
3. Click EDIT.
4. Set 'Legacy Authorization' to 'Disabled'.
5. Click SAVE.

Using Command Line:
To disable Legacy Authorization for an existing cluster, run the following command:
gcloud container clusters update <cluster_name> --zone <compute_zone> --no-

enable-legacy-authorization

Default Value:

Kubernetes Engine clusters running GKE version 1.8 and later disable the legacy
authorization system by default, and thus role-based access control permissions take
effect with no special action required.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-
control

2. https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-
cluster#leave_abac_disabled_default_for_110

Additional Information:

On clusters running GKE 1.6 or 1.7, Kubernetes Service accounts have full permissions
on the Kubernetes API by default. To ensure that the role-based access control
permissions take effect for a Kubernetes service account, the cluster must be created or
updated with the option --no-enable-legacy-authorization. This requirement is

removed for clusters running GKE version 1.8 or higher.

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

6.8 Define and Maintain Role-Based Access Control
 Define and maintain role-based access control, through determining and
documenting the access rights necessary for each role within the enterprise to
successfully carry out its assigned duties. Perform access control reviews of
enterprise assets to validate that all privileges are authorized, on a recurring
schedule at a minimum annually, or more frequently.

 ●

v7 4 Controlled Use of Administrative Privileges
 Controlled Use of Administrative Privileges

https://console.cloud.google.com/kubernetes/list
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster#leave_abac_disabled_default_for_110
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster#leave_abac_disabled_default_for_110

Page 198

Internal Only - General

Controls
Version

Control IG 1 IG 2 IG 3

v7 16 Account Monitoring and Control
 Account Monitoring and Control

Page 199

Internal Only - General

5.9 Storage

This section contains recommendations relating to security-related configurations for
storage in GKE.

Page 200

Internal Only - General

5.9.1 Enable Customer-Managed Encryption Keys (CMEK) for

GKE Persistent Disks (PD) (Manual)

Profile Applicability:

• Level 2

Description:

Use Customer-Managed Encryption Keys (CMEK) to encrypt dynamically-provisioned
attached Google Compute Engine Persistent Disks (PDs) using keys managed within
Cloud Key Management Service (Cloud KMS).

Rationale:

GCE persistent disks are encrypted at rest by default using envelope encryption with
keys managed by Google. For additional protection, users can manage the Key
Encryption Keys using Cloud KMS.

Impact:

Encryption of dynamically-provisioned attached disks requires the use of the self-
provisioned Compute Engine Persistent Disk CSI Driver v0.5.1 or higher.

If CMEK is being configured with a regional cluster, the cluster must run GKE 1.14 or
higher.

Audit:

Using Google Cloud Console:

1. Go to Compute Engine Disks by visiting:
https://console.cloud.google.com/compute/disks

2. Select each disk used by the cluster, and ensure the Encryption Type is listed

as Customer Managed.

Using Command Line:
Identify the Persistent Volumes Used by the cluster:
kubectl get pv -o json | jq '.items[].metadata.name'

For each volume used, check that it is encrypted using a customer managed key by
running the following command:

gcloud compute disks describe <pv_name> --zone <compute_zone> --format json |

jq '.diskEncryptionKey.kmsKeyName'

This returns null ({ }) if a customer-managed encryption key is not used to encrypt the

disk.

https://console.cloud.google.com/compute/disks

Page 201

Internal Only - General

Remediation:

This cannot be remediated by updating an existing cluster. The node pool must either
be recreated or a new cluster created.
Using Google Cloud Console:
This is not possible using Google Cloud Console.
Using Command Line:
Follow the instructions detailed at: https://cloud.google.com/kubernetes-
engine/docs/how-to/using-cmek.

Default Value:

Persistent disks are encrypted at rest by default, but are not encrypted using Customer-
Managed Encryption Keys by default. By default, the Compute Engine Persistent Disk
CSI Driver is not provisioned within the cluster.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/using-cmek
2. https://cloud.google.com/compute/docs/disks/customer-managed-encryption
3. https://cloud.google.com/security/encryption-at-rest/default-encryption/
4. https://cloud.google.com/kubernetes-engine/docs/concepts/persistent-volumes
5. https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.11 Encrypt Sensitive Data at Rest
 Encrypt sensitive data at rest on servers, applications, and databases containing
sensitive data. Storage-layer encryption, also known as server-side encryption,
meets the minimum requirement of this Safeguard. Additional encryption methods

may include application-layer encryption, also known as client-side encryption,
where access to the data storage device(s) does not permit access to the plain-text
data.

 ● ●

v7

14.8 Encrypt Sensitive Information at Rest
 Encrypt all sensitive information at rest using a tool that requires a secondary
authentication mechanism not integrated into the operating system, in order to
access the information.

 ●

https://cloud.google.com/kubernetes-engine/docs/how-to/using-cmek
https://cloud.google.com/kubernetes-engine/docs/how-to/using-cmek
https://cloud.google.com/kubernetes-engine/docs/how-to/using-cmek
https://cloud.google.com/compute/docs/disks/customer-managed-encryption
https://cloud.google.com/security/encryption-at-rest/default-encryption/
https://cloud.google.com/kubernetes-engine/docs/concepts/persistent-volumes
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create

Page 202

Internal Only - General

5.9.2 Enable Customer-Managed Encryption Keys (CMEK) for

Boot Disks (Automated)

Profile Applicability:

• Level 2

Description:

Use Customer-Managed Encryption Keys (CMEK) to encrypt node boot disks using
keys managed within Cloud Key Management Service (Cloud KMS).

Rationale:

GCE persistent disks are encrypted at rest by default using envelope encryption with
keys managed by Google. For additional protection, users can manage the Key
Encryption Keys using Cloud KMS.

Impact:

Encryption of dynamically-provisioned attached disks requires the use of the self-
provisioned Compute Engine Persistent Disk CSI Driver v0.5.1 or higher.

If CMEK is being configured with a regional cluster, the cluster must run GKE 1.14 or
higher.

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. Click on each cluster, and click on any Node pools
3. On the Node pool Details page, under the Security heading, check that Boot

disk encryption type is set to Customer managed with the desired key.

Using Command Line:
Run this command:
gcloud container node-pools describe $NODE_POOL --cluster $CLUSTER_NAME --

zone $COMPUTE_ZONE

Verify that the output of the above command includes a diskType of either pd-
standard, pd-balanced or pd-ssd, and the bootDiskKmsKey is specified as the

desired key.

https://console.cloud.google.com/kubernetes/list

Page 203

Internal Only - General

Remediation:

This cannot be remediated by updating an existing cluster. The node pool must either
be recreated or a new cluster created.
Using Google Cloud Console:
To create a new node pool:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. Select Kubernetes clusters for which node boot disk CMEK is disabled.
3. Click ADD NODE POOL.

4. In the Nodes section, under machine configuration, ensure Boot disk type is
Standard persistent disk or SSD persistent disk.

5. Select Enable customer-managed encryption for Boot Disk and select the

Cloud KMS encryption key to be used.
6. Click CREATE.

To create a new cluster:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. Click CREATE and click `CONFIGURE for the required cluster mode.

3. Under NODE POOLS, expand the default-pool list and click Nodes.

4. In the Configure node settings pane, select Standard persistent disk or SSD
Persistent Disk as the Boot disk type.

5. Select Enable customer-managed encryption for Boot Disk check box

and choose the Cloud KMS encryption key to be used.
6. Configure the rest of the cluster settings as required.
7. Click CREATE.

Using Command Line:
Create a new node pool using customer-managed encryption keys for the node boot
disk, of <disk_type> either pd-standard or pd-ssd:
gcloud container node-pools create <cluster_name> --disk-type <disk_type> --

boot-disk-kms-key

projects/<key_project_id>/locations/<location>/keyRings/<ring_name>/cryptoKey

s/<key_name>

Create a cluster using customer-managed encryption keys for the node boot disk, of
<disk_type> either pd-standard or pd-ssd:

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/kubernetes/list

Page 204

Internal Only - General

gcloud container clusters create <cluster_name> --disk-type <disk_type> --

boot-disk-kms-key

projects/<key_project_id>/locations/<location>/keyRings/<ring_name>/cryptoKey

s/<key_name>

Default Value:

Persistent disks are encrypted at rest by default, but are not encrypted using Customer-
Managed Encryption Keys by default. By default, the Compute Engine Persistent Disk
CSI Driver is not provisioned within the cluster.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/using-cmek
2. https://cloud.google.com/compute/docs/disks/customer-managed-encryption
3. https://cloud.google.com/security/encryption-at-rest/default-encryption/
4. https://cloud.google.com/kubernetes-engine/docs/concepts/persistent-volumes
5. https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

3.11 Encrypt Sensitive Data at Rest
 Encrypt sensitive data at rest on servers, applications, and databases containing
sensitive data. Storage-layer encryption, also known as server-side encryption,
meets the minimum requirement of this Safeguard. Additional encryption methods
may include application-layer encryption, also known as client-side encryption,
where access to the data storage device(s) does not permit access to the plain-text
data.

 ● ●

v7

14.8 Encrypt Sensitive Information at Rest
 Encrypt all sensitive information at rest using a tool that requires a secondary
authentication mechanism not integrated into the operating system, in order to
access the information.

 ●

https://cloud.google.com/kubernetes-engine/docs/how-to/using-cmek
https://cloud.google.com/compute/docs/disks/customer-managed-encryption
https://cloud.google.com/security/encryption-at-rest/default-encryption/
https://cloud.google.com/kubernetes-engine/docs/concepts/persistent-volumes
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create

Page 205

Internal Only - General

5.10 Other Cluster Configurations

This section contains recommendations relating to any remaining security-related
cluster configurations in GKE.

Page 206

Internal Only - General

5.10.1 Ensure Kubernetes Web UI is Disabled (Automated)

Profile Applicability:

• Level 1

Description:

Note: The Kubernetes web UI (Dashboard) does not have admin access by default in
GKE 1.7 and higher. The Kubernetes web UI is disabled by default in GKE 1.10 and
higher. In GKE 1.15 and higher, the Kubernetes web UI add-on KubernetesDashboard
is no longer supported as a managed add-on.

The Kubernetes Web UI (Dashboard) has been a historical source of vulnerability and
should only be deployed when necessary.

Rationale:

You should disable the Kubernetes Web UI (Dashboard) when running on Kubernetes
Engine. The Kubernetes Web UI is backed by a highly privileged Kubernetes Service
Account.

The Google Cloud Console provides all the required functionality of the Kubernetes
Web UI and leverages Cloud IAM to restrict user access to sensitive cluster controls
and settings.

Impact:

Users will be required to manage cluster resources using the Google Cloud Console or
the command line. These require appropriate permissions. To use the command line,
this requires the installation of the command line client, kubectl, on the user's device

(this is already included in Cloud Shell) and knowledge of command line operations.

Audit:

Using Google Cloud Console:
Currently not possible, due to the add-on having been removed. Must use the command
line.
Using Command Line:
Run the following command:

gcloud container clusters describe <cluster_name> --zone <compute_zone> --

format json | jq '.addonsConfig.kubernetesDashboard'

Ensure the output of the above command has JSON key attribute disabled set to true:

Page 207

Internal Only - General

{

 "disabled": true

}

Remediation:

Using Google Cloud Console:
Currently not possible, due to the add-on having been removed. Must use the command
line.
Using Command Line:
To disable the Kubernetes Dashboard on an existing cluster, run the following
command:

gcloud container clusters update <cluster_name> --zone <zone> --update-

addons=KubernetesDashboard=DISABLED

Default Value:

The Kubernetes web UI (Dashboard) does not have admin access by default in GKE
1.7 and higher. The Kubernetes web UI is disabled by default in GKE 1.10 and higher.
In GKE 1.15 and higher, the Kubernetes web UI add-on KubernetesDashboard is no

longer supported as a managed add-on.

References:

1. https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-
cluster#disable_kubernetes_dashboard

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8

4.8 Uninstall or Disable Unnecessary Services on
Enterprise Assets and Software
 Uninstall or disable unnecessary services on enterprise assets and software,
such as an unused file sharing service, web application module, or service
function.

 ● ●

v7

2.2 Ensure Software is Supported by Vendor
 Ensure that only software applications or operating systems currently supported
by the software's vendor are added to the organization's authorized software
inventory. Unsupported software should be tagged as unsupported in the inventory
system.

● ● ●

v7

18.4 Only Use Up-to-date And Trusted Third-Party
Components
 Only use up-to-date and trusted third-party components for the software
developed by the organization.

 ● ●

https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster#disable_kubernetes_dashboard
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster#disable_kubernetes_dashboard

Page 208

Internal Only - General

5.10.2 Ensure that Alpha clusters are not used for production

workloads (Automated)

Profile Applicability:

• Level 1

Description:

Alpha clusters are not covered by an SLA and are not production-ready.

Rationale:

Alpha clusters are designed for early adopters to experiment with workloads that take
advantage of new features before those features are production-ready. They have all
Kubernetes API features enabled, but are not covered by the GKE SLA, do not receive
security updates, have node auto-upgrade and node auto-repair disabled, and cannot
be upgraded. They are also automatically deleted after 30 days.

Impact:

Users and workloads will not be able to take advantage of features included within
Alpha clusters.

Audit:

The audit script for this recommendation utilizes 3 variables:
$CLUSTER_NAME
$COMPUTE_ZONE
Please set these parameters on the system where you will be executing your gcloud
audit script or command.
Using Google Cloud Console

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/list

2. If a cluster appears under the 'Kubernetes alpha clusters' heading, it is an Alpha
cluster.

Using Command Line
Run the command:
gcloud container clusters describe $CLUSTER_NAME \

 --zone $COMPUTE-ZONE \

 --format json | jq '.enableKubernetesAlpha'

The output of the above command will return true if it is an Alpha cluster.

Remediation:

Alpha features cannot be disabled. To remediate, a new cluster must be created.
Using Google Cloud Console

https://console.cloud.google.com/kubernetes/list

Page 209

Internal Only - General

1. Go to Kubernetes Engine by visiting
https://console.cloud.google.com/kubernetes/

2. Click CREATE CLUSTER, and choose "SWITCH TO STANDARD CLUSTER" in
the upper right corner of the screen.

3. Under Features in the the CLUSTER section, "Enable Kubernetes alpha features
in this cluster" will not be available by default and to use Kubernetes alpha
features in this cluster, first disable release channels.
Note: It will only be available if the cluster is created with a Static version for the
Control plane version, along with both Automatically upgrade nodes to the next
available version and Enable auto-repair being checked under the Node pool
details for each node.

4. Configure the other settings as required and click CREATE.

Using Command Line:
Upon creating a new cluster
gcloud container clusters create [CLUSTER_NAME] \

 --zone [COMPUTE_ZONE]

Do not use the --enable-kubernetes-alpha argument.

Default Value:

By default, Kubernetes Alpha features are disabled.

References:

1. https://cloud.google.com/kubernetes-engine/docs/concepts/alpha-clusters

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8 16.8 Separate Production and Non-Production Systems
 Maintain separate environments for production and non-production systems.

 ● ●

v7
18.9 Separate Production and Non-Production Systems
 Maintain separate environments for production and nonproduction systems.

Developers should not have unmonitored access to production environments.
 ● ●

https://console.cloud.google.com/kubernetes/
https://cloud.google.com/kubernetes-engine/docs/concepts/alpha-clusters

Page 210

Internal Only - General

5.10.3 Consider GKE Sandbox for running untrusted workloads

(Automated)

Profile Applicability:

• Level 2

Description:

Use GKE Sandbox to restrict untrusted workloads as an additional layer of protection
when running in a multi-tenant environment.

Rationale:

GKE Sandbox provides an extra layer of security to prevent untrusted code from
affecting the host kernel on your cluster nodes.

When you enable GKE Sandbox on a Node pool, a sandbox is created for each Pod
running on a node in that Node pool. In addition, nodes running sandboxed Pods are
prevented from accessing other GCP services or cluster metadata. Each sandbox uses
its own userspace kernel.

Multi-tenant clusters and clusters whose containers run untrusted workloads are more
exposed to security vulnerabilities than other clusters. Examples include SaaS
providers, web-hosting providers, or other organizations that allow their users to upload
and run code. A flaw in the container runtime or in the host kernel could allow a process
running within a container to 'escape' the container and affect the node's kernel,
potentially bringing down the node.

The potential also exists for a malicious tenant to gain access to and exfiltrate another
tenant's data in memory or on disk, by exploiting such a defect.

Impact:

Using GKE Sandbox requires the node image to be set to Container-Optimized OS with
containerd (cos_containerd).

It is not currently possible to use GKE Sandbox along with the following Kubernetes
features:

• Accelerators such as GPUs or TPUs
• Istio
• Monitoring statistics at the level of the Pod or container
• Hostpath storage
• Per-container PID namespace
• CPU and memory limits are only applied for Guaranteed Pods and Burstable

Pods, and only when CPU and memory limits are specified for all containers
running in the Pod

Page 211

Internal Only - General

• Pods using PodSecurityPolicies that specify host namespaces, such as
hostNetwork, hostPID, or hostIPC

• Pods using PodSecurityPolicy settings such as privileged mode
• VolumeDevices
• Portforward
• Linux kernel security modules such as Seccomp, Apparmor, or Selinux Sysctl,

NoNewPrivileges, bidirectional MountPropagation, FSGroup, or ProcMount

Audit:

Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

2. Click on each cluster, and click on any Node pools that are not provisioned by
default.

3. On the Node pool Details page, under the Security heading on the Node pool

details page, check that Sandbox with gVisor is set to 'Enabled'.

The default node pool cannot use GKE Sandbox.
Using Command Line:
Run this command:
gcloud container node-pools describe $NODE_POOL --cluster $CLUSTER_NAME --

zone $COMPUTE_ZONE --format json | jq '.config.sandboxConfig'

The output of the above command will return the following if the Node pool is running a
sandbox:

{

 "sandboxType":"gvisor"

}

If there is no sandbox, the above command output will be null ({ }).

The default node pool cannot use GKE Sandbox.

Remediation:

Once a node pool is created, GKE Sandbox cannot be enabled, rather a new node pool
is required. The default node pool (the first node pool in your cluster, created when the
cluster is created) cannot use GKE Sandbox.
Using Google Cloud Console:

1. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/.

2. Select a cluster and click ADD NODE POOL.

3. Configure the Node pool with following settings:
o For the node version, select v1.12.6-gke.8 or higher.

o For the node image, select Container-Optimized OS with
Containerd (cos_containerd) (default).

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/kubernetes/

Page 212

Internal Only - General

o Under Security, select Enable sandbox with gVisor.

4. Configure other Node pool settings as required.
5. Click SAVE.

Using Command Line:
To enable GKE Sandbox on an existing cluster, a new Node pool must be created,
which can be done using:
 gcloud container node-pools create <node_pool_name> --zone <compute-zone> -

-cluster <cluster_name> --image-type=cos_containerd --sandbox="type=gvisor"

Default Value:

By default, GKE Sandbox is disabled.

References:

1. https://cloud.google.com/kubernetes-engine/docs/concepts/sandbox-pods
2. https://cloud.google.com/kubernetes-engine/docs/concepts/node-pools
3. https://cloud.google.com/kubernetes-engine/docs/how-to/sandbox-pods

Additional Information:

The default node pool (the first node pool in your cluster, created when the cluster is
created) cannot use GKE Sandbox.

When using GKE Sandbox, your cluster must have at least two node pools. You must
always have at least one node pool where GKE Sandbox is disabled. This node pool
must contain at least one node, even if all your workloads are sandboxed.

It is optional but recommended that you enable Stackdriver Logging and Stackdriver
Monitoring, by adding the flag --enable-stackdriver-kubernetes. gVisor messages

are logged.

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8 16.8 Separate Production and Non-Production Systems
 Maintain separate environments for production and non-production systems.

 ● ●

v7
18.9 Separate Production and Non-Production Systems
 Maintain separate environments for production and nonproduction systems.
Developers should not have unmonitored access to production environments.

 ● ●

https://cloud.google.com/kubernetes-engine/docs/concepts/sandbox-pods
https://cloud.google.com/kubernetes-engine/docs/concepts/node-pools
https://cloud.google.com/kubernetes-engine/docs/how-to/sandbox-pods

Page 213

Internal Only - General

5.10.4 Ensure use of Binary Authorization (Automated)

Profile Applicability:

• Level 2

Description:

Binary Authorization helps to protect supply-chain security by only allowing images with
verifiable cryptographically signed metadata into the cluster.

Rationale:

Binary Authorization provides software supply-chain security for images that are
deployed to GKE from Google Container Registry (GCR) or another container image
registry.

Binary Authorization requires images to be signed by trusted authorities during the
development process. These signatures are then validated at deployment time. By
enforcing validation, tighter control over the container environment can be gained by
ensuring only verified images are integrated into the build-and-release process.

Impact:

Care must be taken when defining policy in order to prevent inadvertent denial of
container image deployments. Depending on policy, attestations for existing container
images running within the cluster may need to be created before those images are
redeployed or pulled as part of the pod churn.

To prevent key system images from being denied deployment, consider the use of
global policy evaluation mode, which uses a global policy provided by Google and
exempts a list of Google-provided system images from further policy evaluation.

Audit:

Using Google Cloud Console:
To check that Binary Authorization is enabled for the GKE cluster:

1. Go to the Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list

2. Select the cluster for which Binary Authorization is disabled.
3. Under the details pane, within the Security section, ensure that 'Binary

Authorization' is set to 'Enabled'.
Then, assess the contents of the policy:

4. Go to Binary Authorization by visiting:
https://console.cloud.google.com/security/binary-authorization

5. Ensure a policy is defined and the project default rule is not configured to 'Allow
all images'.

https://console.cloud.google.com/kubernetes/list
https://console.cloud.google.com/security/binary-authorization

Page 214

Internal Only - General

Using Command Line:
To check that Binary Authorization is enabled for the GKE cluster:
gcloud container clusters describe <cluster_name> --zone <compute_zone> --

format json | jq .binaryAuthorization

The above command output will be the following if Binary Authorization is enabled:

{

 "enabled": true

}

Then, assess the contents of the policy:

gcloud container binauthz policy export > current-policy.yaml

Ensure that the current policy is not configured to allow all images (evaluationMode:
ALWAYS_ALLOW):

cat current-policy.yaml

...

defaultAdmissionRule:

 evaluationMode: ALWAYS_ALLOW

Remediation:

Using Google Cloud Console

1. Go to Binary Authorization by visiting:
https://console.cloud.google.com/security/binary-authorization.

2. Enable the Binary Authorization API (if disabled).
3. Create an appropriate policy for use with the cluster. See

https://cloud.google.com/binary-authorization/docs/policy-yaml-reference for
guidance.

4. Go to Kubernetes Engine by visiting:
https://console.cloud.google.com/kubernetes/list.

5. Select the cluster for which Binary Authorization is disabled.
6. Under the details pane, within the Security section, click on the pencil icon

named Edit Binary Authorization.

7. Check the box next to Enable Binary Authorization.

8. Choose Enforce policy and provide a directory for the policy to be used.

9. Click SAVE CHANGES.

Using Command Line:
Update the cluster to enable Binary Authorization:

https://console.cloud.google.com/security/binary-authorization
https://cloud.google.com/binary-authorization/docs/policy-yaml-reference
https://console.cloud.google.com/kubernetes/list

Page 215

Internal Only - General

gcloud container cluster update <cluster_name> --zone <compute_zone> --

binauthz-evaluation-mode=<evaluation_mode>

Example:

gcloud container clusters update $CLUSTER_NAME --zone $COMPUTE_ZONE --

binauthz-evaluation-mode=PROJECT_SINGLETON_POLICY_ENFORCE

See: https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--
binauthz-evaluation-mode for more details around the evaluation modes available.
Create a Binary Authorization Policy using the Binary Authorization Policy Reference:
https://cloud.google.com/binary-authorization/docs/policy-yaml-reference for guidance.
Import the policy file into Binary Authorization:

gcloud container binauthz policy import <yaml_policy>

Default Value:

By default, Binary Authorization is disabled.

References:

1. https://cloud.google.com/binary-authorization/docs/setting-up
2. https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--

binauthz-evaluation-mode

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
2.3 Address Unauthorized Software
 Ensure that unauthorized software is either removed from use on enterprise
assets or receives a documented exception. Review monthly, or more frequently.

● ● ●

v7

5.2 Maintain Secure Images
 Maintain secure images or templates for all systems in the enterprise based on
the organization's approved configuration standards. Any new system deployment
or existing system that becomes compromised should be imaged using one of
those images or templates.

 ● ●

https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--binauthz-evaluation-mode
https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--binauthz-evaluation-mode
https://cloud.google.com/binary-authorization/docs/policy-yaml-reference
https://cloud.google.com/binary-authorization/docs/setting-up
https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--binauthz-evaluation-mode
https://cloud.google.com/sdk/gcloud/reference/container/clusters/update#--binauthz-evaluation-mode

Page 216

Internal Only - General

5.10.5 Enable Security Posture (Manual)

Profile Applicability:

• Level 2

Description:

Rationale:

The security posture dashboard provides insights about your workload security posture
at the runtime phase of the software delivery life-cycle.

Impact:

GKE security posture configuration auditing checks your workloads against a set of
defined best practices. Each configuration check has its own impact or risk. Learn more
about the checks: https://cloud.google.com/kubernetes-engine/docs/concepts/about-
configuration-scanning

Example: The host namespace check identifies pods that share host namespaces.
Pods that share host namespaces allow Pod processes to communicate with host
processes and gather host information, which could lead to a container escape

Audit:

Check the SecurityPostureConfig on your cluster:
gcloud container clusters --location describe
securityPostureConfig:
mode: BASIC

Remediation:

Enable security posture via the UI, gCloud or API.
https://cloud.google.com/kubernetes-engine/docs/how-to/protect-workload-configuration

Default Value:

GKE security posture has multiple features. Not all are on by default. Configuration
auditing is enabled by default for new standard and autopilot clusters.

securityPostureConfig: mode: BASIC

References:

1. https://cloud.google.com/kubernetes-engine/docs/concepts/about-security-
posture-dashboard

https://cloud.google.com/kubernetes-engine/docs/concepts/about-configuration-scanning
https://cloud.google.com/kubernetes-engine/docs/concepts/about-configuration-scanning
https://cloud.google.com/kubernetes-engine/docs/how-to/protect-workload-configuration
https://cloud.google.com/kubernetes-engine/docs/concepts/about-security-posture-dashboard
https://cloud.google.com/kubernetes-engine/docs/concepts/about-security-posture-dashboard

Page 217

Internal Only - General

CIS Controls:

Controls
Version

Control IG 1 IG 2 IG 3

v8
2.4 Utilize Automated Software Inventory Tools
 Utilize software inventory tools, when possible, throughout the enterprise to
automate the discovery and documentation of installed software.

 ● ●

v7

5.5 Implement Automated Configuration Monitoring
Systems
 Utilize a Security Content Automation Protocol (SCAP) compliant configuration
monitoring system to verify all security configuration elements, catalog approved

exceptions, and alert when unauthorized changes occur.

 ● ●

Page 218

Internal Only - General

Appendix: Summary Table

CIS Benchmark Recommendation Set
Correctly

Yes No

1 Control Plane Components

2 Control Plane Configuration

2.1 Authentication and Authorization

2.1.1 Client certificate authentication should not be used for
users (Automated)

3 Worker Nodes

3.1 Worker Node Configuration Files

3.1.1 Ensure that the proxy kubeconfig file permissions are set
to 644 or more restrictive (Automated)

3.1.2 Ensure that the proxy kubeconfig file ownership is set to
root:root (Automated)

3.1.3 Ensure that the kubelet configuration file has
permissions set to 600 (Automated)

3.1.4 Ensure that the kubelet configuration file ownership is
set to root:root (Automated)

3.2 Kubelet

3.2.1 Ensure that the Anonymous Auth is Not Enabled Draft
(Automated)

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow (Automated)

3.2.3 Ensure that a Client CA File is Configured (Automated)

3.2.4 Ensure that the --read-only-port is disabled (Automated)

3.2.5 Ensure that the --streaming-connection-idle-timeout
argument is not set to 0 (Automated)

Page 219

Internal Only - General

CIS Benchmark Recommendation Set
Correctly

Yes No

3.2.6 Ensure that the --make-iptables-util-chains argument is
set to true (Automated)

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture
(Automated)

3.2.8 Ensure that the --rotate-certificates argument is not
present or is set to true (Automated)

3.2.9 Ensure that the RotateKubeletServerCertificate
argument is set to true (Automated)

4 Policies

4.1 RBAC and Service Accounts

4.1.1 Ensure that the cluster-admin role is only used where
required (Automated)

4.1.2 Minimize access to secrets (Automated)

4.1.3 Minimize wildcard use in Roles and ClusterRoles
(Automated)

4.1.4 Ensure that default service accounts are not actively
used (Automated)

4.1.5 Ensure that Service Account Tokens are only mounted
where necessary (Automated)

4.1.6 Avoid use of system:masters group (Automated)

4.1.7 Limit use of the Bind, Impersonate and Escalate
permissions in the Kubernetes cluster (Manual)

4.1.8 Avoid bindings to system:anonymous (Automated)

4.1.9 Avoid non-default bindings to system:unauthenticated
(Automated)

Page 220

Internal Only - General

CIS Benchmark Recommendation Set
Correctly

Yes No

4.1.10 Avoid non-default bindings to system:authenticated
(Automated)

4.2 Pod Security Standards

4.2.1 Ensure that the cluster enforces Pod Security Standard
Baseline profile or stricter for all namespaces. (Manual)

4.3 Network Policies and CNI

4.3.1 Ensure that the CNI in use supports Network Policies
(Manual)

4.3.2 Ensure that all Namespaces have Network Policies
defined (Automated)

4.4 Secrets Management

4.4.1 Prefer using secrets as files over secrets as environment
variables (Automated)

4.4.2 Consider external secret storage (Manual)

4.5 Extensible Admission Control

4.5.1 Configure Image Provenance using
ImagePolicyWebhook admission controller (Manual)

4.6 General Policies

4.6.1 Create administrative boundaries between resources
using namespaces (Manual)

4.6.2 Ensure that the seccomp profile is set to RuntimeDefault
in the pod definitions (Automated)

4.6.3 Apply Security Context to Pods and Containers (Manual)

4.6.4 The default namespace should not be used (Automated)

5 Managed services

Page 221

Internal Only - General

CIS Benchmark Recommendation Set
Correctly

Yes No

5.1 Image Registry and Image Scanning

5.1.1 Ensure Image Vulnerability Scanning is enabled
(Automated)

5.1.2 Minimize user access to Container Image repositories
(Manual)

5.1.3 Minimize cluster access to read-only for Container Image
repositories (Manual)

5.1.4 Ensure only trusted container images are used (Manual)

5.2 Identity and Access Management (IAM)

5.2.1 Ensure GKE clusters are not running using the Compute
Engine default service account (Automated)

5.2.2 Prefer using dedicated GCP Service Accounts and
Workload Identity (Manual)

5.3 Cloud Key Management Service (Cloud KMS)

5.3.1 Ensure Kubernetes Secrets are encrypted using keys
managed in Cloud KMS (Automated)

5.4 Node Metadata

5.4.1 Ensure the GKE Metadata Server is Enabled
(Automated)

5.5 Node Configuration and Maintenance

5.5.1 Ensure Container-Optimized OS (cos_containerd) is
used for GKE node images (Automated)

5.5.2 Ensure Node Auto-Repair is enabled for GKE nodes
(Automated)

5.5.3 Ensure Node Auto-Upgrade is enabled for GKE nodes
(Automated)

Page 222

Internal Only - General

CIS Benchmark Recommendation Set
Correctly

Yes No

5.5.4 When creating New Clusters - Automate GKE version
management using Release Channels (Automated)

5.5.5 Ensure Shielded GKE Nodes are Enabled (Automated)

5.5.6 Ensure Integrity Monitoring for Shielded GKE Nodes is
Enabled (Automated)

5.5.7 Ensure Secure Boot for Shielded GKE Nodes is Enabled
(Automated)

5.6 Cluster Networking

5.6.1 Enable VPC Flow Logs and Intranode Visibility
(Automated)

5.6.2 Ensure use of VPC-native clusters (Automated)

5.6.3 Ensure Control Plane Authorized Networks is Enabled
(Automated)

5.6.4 Ensure clusters are created with Private Endpoint
Enabled and Public Access Disabled (Automated)

5.6.5 Ensure clusters are created with Private Nodes
(Automated)

5.6.6 Consider firewalling GKE worker nodes (Manual)

5.6.7 Ensure use of Google-managed SSL Certificates
(Automated)

5.7 Logging

5.7.1 Ensure Logging and Cloud Monitoring is Enabled
(Automated)

5.7.2 Enable Linux auditd logging (Manual)

5.8 Authentication and Authorization

Page 223

Internal Only - General

CIS Benchmark Recommendation Set
Correctly

Yes No

5.8.1 Ensure authentication using Client Certificates is
Disabled (Automated)

5.8.2 Manage Kubernetes RBAC users with Google Groups
for GKE (Manual)

5.8.3 Ensure Legacy Authorization (ABAC) is Disabled
(Automated)

5.9 Storage

5.9.1 Enable Customer-Managed Encryption Keys (CMEK) for
GKE Persistent Disks (PD) (Manual)

5.9.2 Enable Customer-Managed Encryption Keys (CMEK) for
Boot Disks (Automated)

5.10 Other Cluster Configurations

5.10.1 Ensure Kubernetes Web UI is Disabled (Automated)

5.10.2 Ensure that Alpha clusters are not used for production
workloads (Automated)

5.10.3 Consider GKE Sandbox for running untrusted workloads
(Automated)

5.10.4 Ensure use of Binary Authorization (Automated)

5.10.5 Enable Security Posture (Manual)

Page 224

Internal Only - General

Appendix: CIS Controls v7 IG 1 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Client certificate authentication should not be used for
users

3.2.1 Ensure that the Anonymous Auth is Not Enabled Draft

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

4.1.1 Ensure that the cluster-admin role is only used where
required

4.1.4 Ensure that default service accounts are not actively
used

4.1.8 Avoid bindings to system:anonymous

4.1.9 Avoid non-default bindings to system:unauthenticated

4.1.10 Avoid non-default bindings to system:authenticated

4.2.1 Ensure that the cluster enforces Pod Security Standard
Baseline profile or stricter for all namespaces.

4.6.3 Apply Security Context to Pods and Containers

5.1.2 Minimize user access to Container Image repositories

5.2.1 Ensure GKE clusters are not running using the Compute
Engine default service account

5.2.2 Prefer using dedicated GCP Service Accounts and
Workload Identity

5.5.3 Ensure Node Auto-Upgrade is enabled for GKE nodes

5.5.4 When creating New Clusters - Automate GKE version
management using Release Channels

5.6.3 Ensure Control Plane Authorized Networks is Enabled

5.7.1 Ensure Logging and Cloud Monitoring is Enabled

5.10.1 Ensure Kubernetes Web UI is Disabled

Page 225

Internal Only - General

Page 226

Internal Only - General

Appendix: CIS Controls v7 IG 2 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Client certificate authentication should not be used for
users

3.1.1 Ensure that the proxy kubeconfig file permissions are set
to 644 or more restrictive

3.1.2 Ensure that the proxy kubeconfig file ownership is set to
root:root

3.1.3 Ensure that the kubelet configuration file has permissions
set to 600

3.1.4 Ensure that the kubelet configuration file ownership is set
to root:root

3.2.1 Ensure that the Anonymous Auth is Not Enabled Draft

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow

3.2.3 Ensure that a Client CA File is Configured

3.2.4 Ensure that the --read-only-port is disabled

3.2.5 Ensure that the --streaming-connection-idle-timeout
argument is not set to 0

3.2.6 Ensure that the --make-iptables-util-chains argument is
set to true

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

3.2.8 Ensure that the --rotate-certificates argument is not
present or is set to true

3.2.9 Ensure that the RotateKubeletServerCertificate argument
is set to true

4.1.1 Ensure that the cluster-admin role is only used where
required

4.1.2 Minimize access to secrets

4.1.3 Minimize wildcard use in Roles and ClusterRoles

Page 227

Internal Only - General

Recommendation Set
Correctly

Yes No

4.1.4 Ensure that default service accounts are not actively
used

4.1.8 Avoid bindings to system:anonymous

4.1.9 Avoid non-default bindings to system:unauthenticated

4.1.10 Avoid non-default bindings to system:authenticated

4.2.1 Ensure that the cluster enforces Pod Security Standard
Baseline profile or stricter for all namespaces.

4.3.1 Ensure that the CNI in use supports Network Policies

4.3.2 Ensure that all Namespaces have Network Policies
defined

4.6.2 Ensure that the seccomp profile is set to RuntimeDefault
in the pod definitions

4.6.3 Apply Security Context to Pods and Containers

5.1.1 Ensure Image Vulnerability Scanning is enabled

5.1.2 Minimize user access to Container Image repositories

5.1.3 Minimize cluster access to read-only for Container Image
repositories

5.1.4 Ensure only trusted container images are used

5.2.1 Ensure GKE clusters are not running using the Compute
Engine default service account

5.2.2 Prefer using dedicated GCP Service Accounts and
Workload Identity

5.4.1 Ensure the GKE Metadata Server is Enabled

5.5.1 Ensure Container-Optimized OS (cos_containerd) is
used for GKE node images

5.5.2 Ensure Node Auto-Repair is enabled for GKE nodes

5.5.3 Ensure Node Auto-Upgrade is enabled for GKE nodes

5.5.4 When creating New Clusters - Automate GKE version
management using Release Channels

5.5.5 Ensure Shielded GKE Nodes are Enabled

5.5.6 Ensure Integrity Monitoring for Shielded GKE Nodes is
Enabled

5.5.7 Ensure Secure Boot for Shielded GKE Nodes is Enabled

5.6.1 Enable VPC Flow Logs and Intranode Visibility

Page 228

Internal Only - General

Recommendation Set
Correctly

Yes No

5.6.2 Ensure use of VPC-native clusters

5.6.3 Ensure Control Plane Authorized Networks is Enabled

5.6.7 Ensure use of Google-managed SSL Certificates

5.7.1 Ensure Logging and Cloud Monitoring is Enabled

5.7.2 Enable Linux auditd logging

5.8.2 Manage Kubernetes RBAC users with Google Groups for
GKE

5.10.1 Ensure Kubernetes Web UI is Disabled

5.10.2 Ensure that Alpha clusters are not used for production
workloads

5.10.3 Consider GKE Sandbox for running untrusted workloads

5.10.4 Ensure use of Binary Authorization

5.10.5 Enable Security Posture

Page 229

Internal Only - General

Appendix: CIS Controls v7 IG 3 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Client certificate authentication should not be used for
users

3.1.1 Ensure that the proxy kubeconfig file permissions are set
to 644 or more restrictive

3.1.2 Ensure that the proxy kubeconfig file ownership is set to
root:root

3.1.3 Ensure that the kubelet configuration file has permissions
set to 600

3.1.4 Ensure that the kubelet configuration file ownership is set
to root:root

3.2.1 Ensure that the Anonymous Auth is Not Enabled Draft

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow

3.2.3 Ensure that a Client CA File is Configured

3.2.4 Ensure that the --read-only-port is disabled

3.2.5 Ensure that the --streaming-connection-idle-timeout
argument is not set to 0

3.2.6 Ensure that the --make-iptables-util-chains argument is
set to true

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

3.2.8 Ensure that the --rotate-certificates argument is not
present or is set to true

3.2.9 Ensure that the RotateKubeletServerCertificate argument
is set to true

4.1.1 Ensure that the cluster-admin role is only used where
required

4.1.2 Minimize access to secrets

4.1.3 Minimize wildcard use in Roles and ClusterRoles

Page 230

Internal Only - General

Recommendation Set
Correctly

Yes No

4.1.4 Ensure that default service accounts are not actively
used

4.1.5 Ensure that Service Account Tokens are only mounted
where necessary

4.1.8 Avoid bindings to system:anonymous

4.1.9 Avoid non-default bindings to system:unauthenticated

4.1.10 Avoid non-default bindings to system:authenticated

4.2.1 Ensure that the cluster enforces Pod Security Standard
Baseline profile or stricter for all namespaces.

4.3.1 Ensure that the CNI in use supports Network Policies

4.3.2 Ensure that all Namespaces have Network Policies
defined

4.6.2 Ensure that the seccomp profile is set to RuntimeDefault
in the pod definitions

4.6.3 Apply Security Context to Pods and Containers

4.6.4 The default namespace should not be used

5.1.1 Ensure Image Vulnerability Scanning is enabled

5.1.2 Minimize user access to Container Image repositories

5.1.3 Minimize cluster access to read-only for Container Image
repositories

5.1.4 Ensure only trusted container images are used

5.2.1 Ensure GKE clusters are not running using the Compute
Engine default service account

5.2.2 Prefer using dedicated GCP Service Accounts and
Workload Identity

5.3.1 Ensure Kubernetes Secrets are encrypted using keys
managed in Cloud KMS

5.4.1 Ensure the GKE Metadata Server is Enabled

5.5.1 Ensure Container-Optimized OS (cos_containerd) is
used for GKE node images

5.5.2 Ensure Node Auto-Repair is enabled for GKE nodes

5.5.3 Ensure Node Auto-Upgrade is enabled for GKE nodes

5.5.4 When creating New Clusters - Automate GKE version
management using Release Channels

Page 231

Internal Only - General

Recommendation Set
Correctly

Yes No

5.5.5 Ensure Shielded GKE Nodes are Enabled

5.5.6 Ensure Integrity Monitoring for Shielded GKE Nodes is
Enabled

5.5.7 Ensure Secure Boot for Shielded GKE Nodes is Enabled

5.6.1 Enable VPC Flow Logs and Intranode Visibility

5.6.2 Ensure use of VPC-native clusters

5.6.3 Ensure Control Plane Authorized Networks is Enabled

5.6.6 Consider firewalling GKE worker nodes

5.6.7 Ensure use of Google-managed SSL Certificates

5.7.1 Ensure Logging and Cloud Monitoring is Enabled

5.7.2 Enable Linux auditd logging

5.8.2 Manage Kubernetes RBAC users with Google Groups for
GKE

5.9.1 Enable Customer-Managed Encryption Keys (CMEK) for
GKE Persistent Disks (PD)

5.9.2 Enable Customer-Managed Encryption Keys (CMEK) for
Boot Disks

5.10.1 Ensure Kubernetes Web UI is Disabled

5.10.2 Ensure that Alpha clusters are not used for production
workloads

5.10.3 Consider GKE Sandbox for running untrusted workloads

5.10.4 Ensure use of Binary Authorization

5.10.5 Enable Security Posture

Page 232

Internal Only - General

Appendix: CIS Controls v7 Unmapped

Recommendations

Recommendation Set
Correctly

Yes No

 No unmapped recommendations to CIS Controls v7

Page 233

Internal Only - General

Appendix: CIS Controls v8 IG 1 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Client certificate authentication should not be used for
users

3.1.1 Ensure that the proxy kubeconfig file permissions are set
to 644 or more restrictive

3.1.2 Ensure that the proxy kubeconfig file ownership is set to
root:root

3.1.3 Ensure that the kubelet configuration file has permissions
set to 600

3.1.4 Ensure that the kubelet configuration file ownership is set
to root:root

3.2.1 Ensure that the Anonymous Auth is Not Enabled Draft

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

4.1.1 Ensure that the cluster-admin role is only used where
required

4.1.2 Minimize access to secrets

4.1.3 Minimize wildcard use in Roles and ClusterRoles

4.1.4 Ensure that default service accounts are not actively
used

4.1.6 Avoid use of system:masters group

4.1.7 Limit use of the Bind, Impersonate and Escalate
permissions in the Kubernetes cluster

4.5.1 Configure Image Provenance using
ImagePolicyWebhook admission controller

5.1.2 Minimize user access to Container Image repositories

5.1.3 Minimize cluster access to read-only for Container Image
repositories

Page 234

Internal Only - General

Recommendation Set
Correctly

Yes No

5.2.1 Ensure GKE clusters are not running using the Compute
Engine default service account

5.2.2 Prefer using dedicated GCP Service Accounts and
Workload Identity

5.5.3 Ensure Node Auto-Upgrade is enabled for GKE nodes

5.5.4 When creating New Clusters - Automate GKE version
management using Release Channels

5.6.3 Ensure Control Plane Authorized Networks is Enabled

5.6.4 Ensure clusters are created with Private Endpoint
Enabled and Public Access Disabled

5.6.5 Ensure clusters are created with Private Nodes

5.6.6 Consider firewalling GKE worker nodes

5.7.1 Ensure Logging and Cloud Monitoring is Enabled

5.7.2 Enable Linux auditd logging

5.10.4 Ensure use of Binary Authorization

Page 235

Internal Only - General

Appendix: CIS Controls v8 IG 2 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Client certificate authentication should not be used for
users

3.1.1 Ensure that the proxy kubeconfig file permissions are set
to 644 or more restrictive

3.1.2 Ensure that the proxy kubeconfig file ownership is set to
root:root

3.1.3 Ensure that the kubelet configuration file has permissions
set to 600

3.1.4 Ensure that the kubelet configuration file ownership is set
to root:root

3.2.1 Ensure that the Anonymous Auth is Not Enabled Draft

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow

3.2.3 Ensure that a Client CA File is Configured

3.2.4 Ensure that the --read-only-port is disabled

3.2.5 Ensure that the --streaming-connection-idle-timeout
argument is not set to 0

3.2.6 Ensure that the --make-iptables-util-chains argument is
set to true

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

3.2.8 Ensure that the --rotate-certificates argument is not
present or is set to true

3.2.9 Ensure that the RotateKubeletServerCertificate argument
is set to true

4.1.1 Ensure that the cluster-admin role is only used where
required

4.1.2 Minimize access to secrets

4.1.3 Minimize wildcard use in Roles and ClusterRoles

Page 236

Internal Only - General

Recommendation Set
Correctly

Yes No

4.1.4 Ensure that default service accounts are not actively
used

4.1.5 Ensure that Service Account Tokens are only mounted
where necessary

4.1.6 Avoid use of system:masters group

4.1.7 Limit use of the Bind, Impersonate and Escalate
permissions in the Kubernetes cluster

4.1.8 Avoid bindings to system:anonymous

4.1.9 Avoid non-default bindings to system:unauthenticated

4.1.10 Avoid non-default bindings to system:authenticated

4.2.1 Ensure that the cluster enforces Pod Security Standard
Baseline profile or stricter for all namespaces.

4.3.1 Ensure that the CNI in use supports Network Policies

4.3.2 Ensure that all Namespaces have Network Policies
defined

4.5.1 Configure Image Provenance using
ImagePolicyWebhook admission controller

4.6.2 Ensure that the seccomp profile is set to RuntimeDefault
in the pod definitions

4.6.4 The default namespace should not be used

5.1.1 Ensure Image Vulnerability Scanning is enabled

5.1.2 Minimize user access to Container Image repositories

5.1.3 Minimize cluster access to read-only for Container Image
repositories

5.1.4 Ensure only trusted container images are used

5.2.1 Ensure GKE clusters are not running using the Compute
Engine default service account

5.2.2 Prefer using dedicated GCP Service Accounts and
Workload Identity

5.3.1 Ensure Kubernetes Secrets are encrypted using keys
managed in Cloud KMS

5.4.1 Ensure the GKE Metadata Server is Enabled

5.5.1 Ensure Container-Optimized OS (cos_containerd) is
used for GKE node images

Page 237

Internal Only - General

Recommendation Set
Correctly

Yes No

5.5.2 Ensure Node Auto-Repair is enabled for GKE nodes

5.5.3 Ensure Node Auto-Upgrade is enabled for GKE nodes

5.5.4 When creating New Clusters - Automate GKE version
management using Release Channels

5.5.5 Ensure Shielded GKE Nodes are Enabled

5.5.6 Ensure Integrity Monitoring for Shielded GKE Nodes is
Enabled

5.5.7 Ensure Secure Boot for Shielded GKE Nodes is Enabled

5.6.1 Enable VPC Flow Logs and Intranode Visibility

5.6.2 Ensure use of VPC-native clusters

5.6.3 Ensure Control Plane Authorized Networks is Enabled

5.6.4 Ensure clusters are created with Private Endpoint
Enabled and Public Access Disabled

5.6.5 Ensure clusters are created with Private Nodes

5.6.6 Consider firewalling GKE worker nodes

5.6.7 Ensure use of Google-managed SSL Certificates

5.7.1 Ensure Logging and Cloud Monitoring is Enabled

5.7.2 Enable Linux auditd logging

5.9.1 Enable Customer-Managed Encryption Keys (CMEK) for
GKE Persistent Disks (PD)

5.9.2 Enable Customer-Managed Encryption Keys (CMEK) for
Boot Disks

5.10.1 Ensure Kubernetes Web UI is Disabled

5.10.2 Ensure that Alpha clusters are not used for production
workloads

5.10.3 Consider GKE Sandbox for running untrusted workloads

5.10.4 Ensure use of Binary Authorization

5.10.5 Enable Security Posture

Page 238

Internal Only - General

Appendix: CIS Controls v8 IG 3 Mapped

Recommendations

Recommendation Set
Correctly

Yes No

2.1.1 Client certificate authentication should not be used for
users

3.1.1 Ensure that the proxy kubeconfig file permissions are set
to 644 or more restrictive

3.1.2 Ensure that the proxy kubeconfig file ownership is set to
root:root

3.1.3 Ensure that the kubelet configuration file has permissions
set to 600

3.1.4 Ensure that the kubelet configuration file ownership is set
to root:root

3.2.1 Ensure that the Anonymous Auth is Not Enabled Draft

3.2.2 Ensure that the --authorization-mode argument is not set
to AlwaysAllow

3.2.3 Ensure that a Client CA File is Configured

3.2.4 Ensure that the --read-only-port is disabled

3.2.5 Ensure that the --streaming-connection-idle-timeout
argument is not set to 0

3.2.6 Ensure that the --make-iptables-util-chains argument is
set to true

3.2.7 Ensure that the --eventRecordQPS argument is set to 0
or a level which ensures appropriate event capture

3.2.8 Ensure that the --rotate-certificates argument is not
present or is set to true

3.2.9 Ensure that the RotateKubeletServerCertificate argument
is set to true

4.1.1 Ensure that the cluster-admin role is only used where
required

4.1.2 Minimize access to secrets

4.1.3 Minimize wildcard use in Roles and ClusterRoles

Page 239

Internal Only - General

Recommendation Set
Correctly

Yes No

4.1.4 Ensure that default service accounts are not actively
used

4.1.5 Ensure that Service Account Tokens are only mounted
where necessary

4.1.6 Avoid use of system:masters group

4.1.7 Limit use of the Bind, Impersonate and Escalate
permissions in the Kubernetes cluster

4.1.8 Avoid bindings to system:anonymous

4.1.9 Avoid non-default bindings to system:unauthenticated

4.1.10 Avoid non-default bindings to system:authenticated

4.2.1 Ensure that the cluster enforces Pod Security Standard
Baseline profile or stricter for all namespaces.

4.3.1 Ensure that the CNI in use supports Network Policies

4.3.2 Ensure that all Namespaces have Network Policies
defined

4.5.1 Configure Image Provenance using
ImagePolicyWebhook admission controller

4.6.2 Ensure that the seccomp profile is set to RuntimeDefault
in the pod definitions

4.6.4 The default namespace should not be used

5.1.1 Ensure Image Vulnerability Scanning is enabled

5.1.2 Minimize user access to Container Image repositories

5.1.3 Minimize cluster access to read-only for Container Image
repositories

5.1.4 Ensure only trusted container images are used

5.2.1 Ensure GKE clusters are not running using the Compute
Engine default service account

5.2.2 Prefer using dedicated GCP Service Accounts and
Workload Identity

5.3.1 Ensure Kubernetes Secrets are encrypted using keys
managed in Cloud KMS

5.4.1 Ensure the GKE Metadata Server is Enabled

5.5.1 Ensure Container-Optimized OS (cos_containerd) is
used for GKE node images

Page 240

Internal Only - General

Recommendation Set
Correctly

Yes No

5.5.2 Ensure Node Auto-Repair is enabled for GKE nodes

5.5.3 Ensure Node Auto-Upgrade is enabled for GKE nodes

5.5.4 When creating New Clusters - Automate GKE version
management using Release Channels

5.5.5 Ensure Shielded GKE Nodes are Enabled

5.5.6 Ensure Integrity Monitoring for Shielded GKE Nodes is
Enabled

5.5.7 Ensure Secure Boot for Shielded GKE Nodes is Enabled

5.6.1 Enable VPC Flow Logs and Intranode Visibility

5.6.2 Ensure use of VPC-native clusters

5.6.3 Ensure Control Plane Authorized Networks is Enabled

5.6.4 Ensure clusters are created with Private Endpoint
Enabled and Public Access Disabled

5.6.5 Ensure clusters are created with Private Nodes

5.6.6 Consider firewalling GKE worker nodes

5.6.7 Ensure use of Google-managed SSL Certificates

5.7.1 Ensure Logging and Cloud Monitoring is Enabled

5.7.2 Enable Linux auditd logging

5.8.1 Ensure authentication using Client Certificates is
Disabled

5.8.2 Manage Kubernetes RBAC users with Google Groups for
GKE

5.8.3 Ensure Legacy Authorization (ABAC) is Disabled

5.9.1 Enable Customer-Managed Encryption Keys (CMEK) for
GKE Persistent Disks (PD)

5.9.2 Enable Customer-Managed Encryption Keys (CMEK) for
Boot Disks

5.10.1 Ensure Kubernetes Web UI is Disabled

5.10.2 Ensure that Alpha clusters are not used for production
workloads

5.10.3 Consider GKE Sandbox for running untrusted workloads

5.10.4 Ensure use of Binary Authorization

5.10.5 Enable Security Posture

Page 241

Internal Only - General

Page 242

Internal Only - General

Appendix: CIS Controls v8 Unmapped

Recommendations

Recommendation Set
Correctly

Yes No

 No unmapped recommendations to CIS Controls v8

Page 243

Internal Only - General

Page 244

Internal Only - General

Appendix: Change History

Date Version Changes for this version

May 30, 2024 1.6.0 Removed recommendation
5.10.5 (Ticket 21588)

June 1, 2024 1.6.0 Modified recommendations
to automate AAC
2.1.2
3.1.1
3.1.2
3.1.3
3.1.4
4.1.6
4.3.2
4.4.1
4.6.2
4.6.4
5.1.4
5.2.2
5.6.7
5.10.3

May 30, 2024 1.6.0 Added recommendation
4.1.10 Avoid non-default
bindings to
system:authenticated

May 30, 2024 1.6.0 Added recommendation
4.1.9 Avoid non-default
bindings to
system:unauthenticated

May 30, 2024 1.6.0 Added recommendation
4.1.8 Avoid bindings to
system:anonymous

Page 245

Internal Only - General

Date Version Changes for this version

May 10, 2040 1.6.0 Rather than specifying just
Pod Security Admission, this
control should require the
cluster have an appropriate
mechanism to ensure
compliance with Pod
Security Standards Baseline
profile. (Ticket 21157)

May 10, 2024 1.6.0 Merged recommendation
5.6.7 with 4.3 (Ticket 21769)

May 9, 2024 1.6.0 Edited level 1 profile
definition (Ticket 21599)

April 22, 2024 1.6.0 Removed legacy Compute
Engine Instance metadata
control (Ticket 21587)

Apr 21, 2023 1.5.0 Reference 5.6.7 not 6.6.7
(Ticket 18561)

Apr 21, 2023 1.5.0 Update references (Ticket
18562)

Apr 21, 2023 1.5.0 Update reference from 5.2
to 4.2 (Ticket 18563)

Apr 21, 2023 1.5.0 Edit recommendation Title
(Ticket 18564)

Apr 21, 2023 1.5.0 Review output of DOXC -
PDF and generation of
extraneous subheads when
expanding the TOC. (Ticket
18566)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes for control 3.1.1
(Ticket 19758)

Sep 28, 2023 1.5.0 Proposed changes for GKE
control 3.2.5 (--streaming-
connection-idle-timeout)
(Ticket 19782)

Page 246

Internal Only - General

Date Version Changes for this version

Sep 28, 2023 1.5.0 Proposed changes for GKE
control 3.2.6 (--make-
iptables-util-chains) (Ticket
19803)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 3.2.4
(Ticket 19764)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 3.2.2
(Ticket 19763)

Sep 28, 2023 1.5.0 UPDATE: Proposed change
for control 3.2.1 (Ticket
19762)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes for control 3.1.4
(Ticket 19761)

Sep 28, 2023 1.5.0 UPDATE: Proposed change
for control 3.1.3 (Ticket
19760)

Sep 28, 2023 1.5.0 UPDATE: Proposed change
for control 3.1.2 (Ticket
19759)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 3.2.7
(Ticket 19765)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes for control 3.2.8
(Ticket 19882)

Sep 28, 2023 1.5.0 Proposed changes for
'Ensure that the --tls-cert-file
and --tls-private-key-file
arguments are set as
appropriate' (Ticket 19917)

Page 247

Internal Only - General

Date Version Changes for this version

Sep 28, 2023 1.5.0 Proposed change to GKE
Kubelet "--rotate-
certificates" control (Ticket
19826)

Sep 28, 2023 1.5.0 UPDATE - Proposed
changes for control 3.2.11
(Ticket 19852)

Sep 28, 2023 1.5.0 UPDATE: Proposed change
to control 4.1.1 (Ticket
19766)

Sep 28, 2023 1.5.0 UPDATE: Proposed change
to control 4.1.2 (Ticket
19767)

Sep 28, 2023 1.5.0 UPDATE: Proposed change
to control 4.1.3 (Ticket
19768)

Sep 28, 2023 1.5.0 UPDATE: Proposed change
to control 4.1.4 (Ticket
19769)

Sep 28, 2023 1.5.0 UPDATE: Proposed update
to control 4.1.5 (Ticket
19770)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 4.1.6
(Ticket 19771)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 4.2.1
(Ticket 19772)

Sep 28, 2023 1.5.0 UPDATE: Proposed change
to control 4.2.2 (Ticket
19773)

Sep 28, 2023 1.5.0 UPDATE: Proposed change
to control 4.2.3 (Ticket
19774)

Page 248

Internal Only - General

Date Version Changes for this version

Sep 28, 2023 1.5.0 UPDATE: Proposed change
to control 4.2.4 (Ticket
19775)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 4.2.5
(Ticket 19918)

Sep 28, 2023 1.5.0 UPDATE: Proposed change
to control 4.2.6 (Ticket
19778)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 4.2.7
(Ticket 19919)

Sep 28, 2023 1.5.0 UPDATE: Proposed change
to control 4.2.8 (Ticket
19779)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 4.3.1
(Ticket 19776)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 4.3.2
(Ticket 19780)

Sep 28, 2023 1.5.0 UPDATE: Proposed change
to control 4.4.1 (Ticket
19781)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 4.4.2
(Ticket 19784)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 4.5.1
(Ticket 19785)

Sep 28, 2023 1.5.0 UPDATE: Proposed change
to control 4.6.1 (Ticket
19777)

Page 249

Internal Only - General

Date Version Changes for this version

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 4.6.2
(Ticket 19786)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 4.6.3
(Ticket 19787)

Sep 28, 2023 1.5.0 UPDATE: Proposed change
to control 4.6.4 (Ticket
19788)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes for control 5.1.1
(Ticket 19789)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.1.2
(Ticket 19790)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.1.3
(Ticket 19792)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.1.4
(Ticket 19810)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.2.1
(Ticket 19793)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes for control 5.2.2
(Ticket 19794)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.3.1
(Ticket 19797)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes for control 5.4.2
(Ticket 19811)

Page 250

Internal Only - General

Date Version Changes for this version

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes for control 5.5.1
(Ticket 19812)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.5.2
(Ticket 19798)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes for control 5.5.3
(Ticket 19799)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.5.4
(Ticket 19800)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes for control 5.5.5
(Ticket 19801)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes for control 5.5.5
(Ticket 19802)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.5.6
(Ticket 19804)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.5.7
(Ticket 19813)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.6.1
(Ticket 19814)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.6.3
(Ticket 19920)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.6.4
(Ticket 19922)

Page 251

Internal Only - General

Date Version Changes for this version

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.6.5
(Ticket 19921)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.6.6
(Ticket 19815)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.6.7
(Ticket 19805)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes for control 5.6.8
(Ticket 19816)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes for control 5.7.2
(Ticket 19817)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.8.3
(Ticket 19818)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes for control 5.9.1
(Ticket 19806)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.10.1
(Ticket 19807)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.10.3
(potential removal?) (Ticket
19808)

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes for control 5.10.4
(Ticket 19821)

Page 252

Internal Only - General

Date Version Changes for this version

Sep 28, 2023 1.5.0 UPDATE: Proposed
changes to control 5.10.6
(potential
removal/reworking?) (Ticket
19809)

Oct 4, 2023 1.5.0 UPDATE: Additional
proposed changes for
control 5.6.3 (Ticket 19931)

Oct 5, 2023 1.5.0 UPDATE: Proposed
changes to control 5.7.1
(Ticket 19945)

Oct 5, 2023 1.5.0 UPDATE: Proposed
changes to control 5.8.4
(Ticket 19957)

Oct 5, 2023 1.5.0 UPDATE: Proposed
changes to control 5.10.5
(Ticket 19946)

Oct 5, 2023 1.5.0 Recommend that control
'Ensure Basic
Authentication using static
passwords is Disabled' be
removed (Ticket 19954)

Oct 5, 2023 1.5.0 DELETE: Consider
deleting/removing control
5.8.2. given the deprecation
of basic auth (Ticket 19958)

Oct 6, 2023 1.5.0 Proposed change for
Ensure Basic Authentication
using static passwords is
Disabled (Ticket 19961)

Oct 11, 2023 1.5.0 Update: Control 5.1.2 -
change drop down to drop-
down (Ticket 19969)

Page 253

Internal Only - General

Date Version Changes for this version

Oct 11, 2023 1.5.0 UPDATE - Control 5.2.1,
change drop down to drop-
down (Ticket 19970)

Oct 11, 2023 1.5.0 UPDATE: Control 5.2.2,
change e.g to for example
(Ticket 19971)

Oct 11, 2023 1.5.0 UPDATE: Couple of
changes to control 5.4.2
(Ticket 19975)

Oct 11, 2023 1.5.0 UPDATE: Control 5.5.4,
change drop down to drop-
down (Ticket 19972)

Oct 11, 2023 1.5.0 UPDATE: Proposed
changes for control 5.6.2
(Ticket 19973)

Oct 11, 2023 1.5.0 UPDATE: Control 5.7.1,
change drop down to drop-
down (Ticket 19974)

Oct 11, 2023 1.5.0 UPDATE: Proposed
changes for control 5.8.1
(Ticket 19968)

Page 254

Internal Only - General

Date Version Changes for this version

Apr 9, 2023 1.4.0 The current state of check
GKE 3.2.9 is at best
undefined: "set to 0 or a
level which ensures
appropriate event capture".
(Ticket 17664)

Apr 9, 2023 1.4.0 Ticket #16491

Edited recommendation
5.2.10

Apr 3, 2023 1.4.0 Ticket # 16624

Updated Recommendation
5.3.2 moved flags in audit
process to end of the
command line

Apr 3, 2023 1.4.0 Ticket # 16625Updated
Recommendation 5.7.1
default value statement.

Apr 3, 2023 1.4.0 Ticket #18522
Set Pod Security Policy
Recommendations to
Manual in preparation for
PSP removal in v1.25 and
beyond.

Mar 22, 2023 1.4.0 Ticket #17029
Recommendation 4.2.1
Minimize the admission of
privileged containers is
deprricated.

Page 255

Internal Only - General

Date Version Changes for this version

Mar 13, 2023 1.4.0 Ticket #16686
Updated recommendation
4.2.4 to resolve conflict with
4.2.8

Mar 13, 2023 1.4.0 Ticket # 15917
edited –event-qps option
with eventRecordQPS

	Terms of Use
	Table of Contents
	Overview
	Intended Audience
	Consensus Guidance
	Typographical Conventions

	Recommendation Definitions
	Title
	Assessment Status
	Automated
	Manual

	Profile
	Description
	Rationale Statement
	Impact Statement
	Audit Procedure
	Remediation Procedure
	Default Value
	References
	CIS Critical Security Controls® (CIS Controls®)
	Additional Information
	Profile Definitions
	Acknowledgements

	Recommendations
	1 Control Plane Components
	2 Control Plane Configuration
	2.1 Authentication and Authorization
	2.1.1 Client certificate authentication should not be used for users (Automated)

	3 Worker Nodes
	3.1 Worker Node Configuration Files
	3.1.1 Ensure that the proxy kubeconfig file permissions are set to 644 or more restrictive (Automated)
	3.1.2 Ensure that the proxy kubeconfig file ownership is set to root:root (Automated)
	3.1.3 Ensure that the kubelet configuration file has permissions set to 600 (Automated)
	3.1.4 Ensure that the kubelet configuration file ownership is set to root:root (Automated)

	3.2 Kubelet
	3.2.1 Ensure that the Anonymous Auth is Not Enabled Draft (Automated)
	3.2.2 Ensure that the --authorization-mode argument is not set to AlwaysAllow (Automated)
	3.2.3 Ensure that a Client CA File is Configured (Automated)
	3.2.4 Ensure that the --read-only-port is disabled (Automated)
	3.2.5 Ensure that the --streaming-connection-idle-timeout argument is not set to 0 (Automated)
	3.2.6 Ensure that the --make-iptables-util-chains argument is set to true (Automated)
	3.2.7 Ensure that the --eventRecordQPS argument is set to 0 or a level which ensures appropriate event capture (Automated)
	3.2.8 Ensure that the --rotate-certificates argument is not present or is set to true (Automated)
	3.2.9 Ensure that the RotateKubeletServerCertificate argument is set to true (Automated)

	4 Policies
	4.1 RBAC and Service Accounts
	4.1.1 Ensure that the cluster-admin role is only used where required (Automated)
	4.1.2 Minimize access to secrets (Automated)
	4.1.3 Minimize wildcard use in Roles and ClusterRoles (Automated)
	4.1.4 Ensure that default service accounts are not actively used (Automated)
	4.1.5 Ensure that Service Account Tokens are only mounted where necessary (Automated)
	4.1.6 Avoid use of system:masters group (Automated)
	4.1.7 Limit use of the Bind, Impersonate and Escalate permissions in the Kubernetes cluster (Manual)
	4.1.8 Avoid bindings to system:anonymous (Automated)
	4.1.9 Avoid non-default bindings to system:unauthenticated (Automated)
	4.1.10 Avoid non-default bindings to system:authenticated (Automated)

	4.2 Pod Security Standards
	4.2.1 Ensure that the cluster enforces Pod Security Standard Baseline profile or stricter for all namespaces. (Manual)

	4.3 Network Policies and CNI
	4.3.1 Ensure that the CNI in use supports Network Policies (Manual)
	4.3.2 Ensure that all Namespaces have Network Policies defined (Automated)

	4.4 Secrets Management
	4.4.1 Prefer using secrets as files over secrets as environment variables (Automated)
	4.4.2 Consider external secret storage (Manual)

	4.5 Extensible Admission Control
	4.5.1 Configure Image Provenance using ImagePolicyWebhook admission controller (Manual)

	4.6 General Policies
	4.6.1 Create administrative boundaries between resources using namespaces (Manual)
	4.6.2 Ensure that the seccomp profile is set to RuntimeDefault in the pod definitions (Automated)
	4.6.3 Apply Security Context to Pods and Containers (Manual)
	4.6.4 The default namespace should not be used (Automated)

	5 Managed services
	5.1 Image Registry and Image Scanning
	5.1.1 Ensure Image Vulnerability Scanning is enabled (Automated)
	For Images Hosted in GCR:
	Using Google Cloud Console:
	Using Command Line:

	For Images Hosted in AR:
	Using Google Cloud Console:
	Using Command Line:

	For Images Hosted in GCR:
	Using Google Cloud Console
	Using Command Line

	For Images Hosted in AR:
	Using Google Cloud Console
	Using Command Line
	5.1.2 Minimize user access to Container Image repositories (Manual)

	For Images Hosted in AR:
	For Images Hosted in GCR:
	For Images Hosted in AR:
	For Images Hosted in GCR:
	5.1.3 Minimize cluster access to read-only for Container Image repositories (Manual)

	For Images Hosted in AR:
	For Images Hosted in GCR:
	For Images Hosted in AR:
	For Images Hosted in GCR:
	5.1.4 Ensure only trusted container images are used (Manual)

	5.2 Identity and Access Management (IAM)
	5.2.1 Ensure GKE clusters are not running using the Compute Engine default service account (Automated)
	5.2.2 Prefer using dedicated GCP Service Accounts and Workload Identity (Manual)

	5.3 Cloud Key Management Service (Cloud KMS)
	5.3.1 Ensure Kubernetes Secrets are encrypted using keys managed in Cloud KMS (Automated)

	5.4 Node Metadata
	5.4.1 Ensure the GKE Metadata Server is Enabled (Automated)

	5.5 Node Configuration and Maintenance
	5.5.1 Ensure Container-Optimized OS (cos_containerd) is used for GKE node images (Automated)
	5.5.2 Ensure Node Auto-Repair is enabled for GKE nodes (Automated)
	5.5.3 Ensure Node Auto-Upgrade is enabled for GKE nodes (Automated)
	5.5.4 When creating New Clusters - Automate GKE version management using Release Channels (Automated)
	5.5.5 Ensure Shielded GKE Nodes are Enabled (Automated)
	5.5.6 Ensure Integrity Monitoring for Shielded GKE Nodes is Enabled (Automated)
	5.5.7 Ensure Secure Boot for Shielded GKE Nodes is Enabled (Automated)

	5.6 Cluster Networking
	5.6.1 Enable VPC Flow Logs and Intranode Visibility (Automated)
	5.6.2 Ensure use of VPC-native clusters (Automated)
	5.6.3 Ensure Control Plane Authorized Networks is Enabled (Automated)
	5.6.4 Ensure clusters are created with Private Endpoint Enabled and Public Access Disabled (Automated)
	5.6.5 Ensure clusters are created with Private Nodes (Automated)
	5.6.6 Consider firewalling GKE worker nodes (Manual)
	5.6.7 Ensure use of Google-managed SSL Certificates (Automated)

	5.7 Logging
	5.7.1 Ensure Logging and Cloud Monitoring is Enabled (Automated)
	5.7.2 Enable Linux auditd logging (Manual)

	5.8 Authentication and Authorization
	5.8.1 Ensure authentication using Client Certificates is Disabled (Automated)
	5.8.2 Manage Kubernetes RBAC users with Google Groups for GKE (Manual)
	5.8.3 Ensure Legacy Authorization (ABAC) is Disabled (Automated)

	5.9 Storage
	5.9.1 Enable Customer-Managed Encryption Keys (CMEK) for GKE Persistent Disks (PD) (Manual)
	5.9.2 Enable Customer-Managed Encryption Keys (CMEK) for Boot Disks (Automated)

	5.10 Other Cluster Configurations
	5.10.1 Ensure Kubernetes Web UI is Disabled (Automated)
	5.10.2 Ensure that Alpha clusters are not used for production workloads (Automated)
	5.10.3 Consider GKE Sandbox for running untrusted workloads (Automated)
	5.10.4 Ensure use of Binary Authorization (Automated)
	5.10.5 Enable Security Posture (Manual)

	Appendix: Summary Table
	Appendix: CIS Controls v7 IG 1 Mapped Recommendations
	Appendix: CIS Controls v7 IG 2 Mapped Recommendations
	Appendix: CIS Controls v7 IG 3 Mapped Recommendations
	Appendix: CIS Controls v7 Unmapped Recommendations
	Appendix: CIS Controls v8 IG 1 Mapped Recommendations
	Appendix: CIS Controls v8 IG 2 Mapped Recommendations
	Appendix: CIS Controls v8 IG 3 Mapped Recommendations
	Appendix: CIS Controls v8 Unmapped Recommendations
	Appendix: Change History

