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Computing Real Logarithm of a Real Matrix
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Abstract

In this paper we will be interested in characterizing and computing
for a nonsingular real matrix A ∈ Rn×n a real matrix X ∈ Rn×n that
satisfies eX = A, that is, a logarithm of A. Firstly, we investigate the
conditions under which such logarithm exists, unique, polynomial in
A, or belongs to a particular class of matrices. Secondly, real Schur
decomposition will be used to compute X.
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1 Introduction

Logarithms of matrices arise in various contexts. For example [1, 3, 8], for a
physical system governed by a linear differential equation of the form

dy

dt
= Xy,

where X is n-by-n unknown matrix. From observations of the state vector
y(t), if y(0) = y◦ then we know that

y(t) = etXy◦.

By taking n observations at t = 1 for n initial states consisting of the columns
of the identity matrix, we obtain the matrix A = eX . Under certain conditions
on A, we can then solve for X, that is X = log A. This raises the question of
how to compute a logarithm of a matrix. We show that S(A), the solution set
of this matrix equation, is nonempty if and only if A is nonsingular.

In this paper we concerned with the real solvability of the matrix equation
eX = A in case of real matrix A. Not every nonsingular real matrix have a
real logarithm as the following example illustrates.
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Example 1 Let A = diag(1,−1). Then any logarithm of A is given by

X = Udiag(log(1), log(−1))U−1

= Udiag(2πij1, iπ(2j2 + 1))U−1

where j1, j2 ∈ Z and U is any nonsingular matrix commuting with A. All these
logarithms are matrices with noncomplex conjugate eigenvalues. Hence it can
not be similar to a real matrix and no real logarithm of A can be obtained.

The existence of a real logarithm of a real matrix is discussed in Section 2.
In Section 2, we also characterize such logarithm, that is, set the conditions
for which X is polynomial in A, symmetric, positive definite, or orthogonal.

The computation of a real logarithm X of a real matrix A arises in many
system identification, one of which is the mathematical modeling of dynamic
systems [4]. In Section 3, we propose a technique to compute such X based
on the real Schur decomposition.

2 Characterization of a real logarithm

In the following theorem we give a set of conditions on the matrix A that
guarantees the existence of a real logarithm of A. We start by a lemma which
constructs a real logarithm of a particular 2-by-2 matrices.

Lemma 2 The 2-by-2 real matrices of the form

A1 =

[ −λ 0
0 −λ

]
, λ > 0 and A2 =

[
a b
−b a

]
, b �= 0

have real logarithms given by

X1 =

[
Logλ π
−π Logλ

]
and X2 =

[
θ μ
−μ θ

]
,

respectively, where eθ±iμ = a ± ib.

Proof. To prove this lemma, it is enough to show that eX1 = A1 and eX2 = A2.
For the matrix X1, there exists a nonsingular matrix V such that

eX1 = eV diag(Logλ+iπ,Logλ−iπ)V −1

= V (−λI)V −1 = −λI = A1.

For X2, it is clear that X2 is a normal matrix, and since A2 and X2 are diag-
onalizable and commuting, they are simultaneously diagonalizable [7]. Then

eX2 = eUdiag(θ+iμ,θ−iμ)U−1

= Udiag(a + ib, a − ib)U−1

= A2.
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Next we set up a sufficient and necessary condition for the existence of
a real logarithm X of a real matrix A ∈ Rn×n . A proof of the following
theorem can be found in Culver [5], and Ulig [6], however the proof we provide
is different, it is based on the usage of real Jordan canonical form and the
previous lemma.

Theorem 3 Let A ∈ Rn×n be a real matrix. Then there exists a real logarithm
X of A if and only if A is nonsingular and each Jordan block of A belonging
to negative eigenvalue occurs an even number of times.

Proof. Let X be a real logarithm of A, that is, eX = A, By using [7, Th
3.4.5] each complex Jordan block (if exists) of any size occur in the Jordan
canonical form of a real matrix in conjugate pairs. Hence we may suppose
that the Jordan canonical form of X is

JX = diag(Jm1(x1), . . . , Jmr(xr), B2mr+1, . . . , B2mp), (1)

where x1, . . . , xr are real, xr+1, . . . , xp are complex, and x1, x2, . . . , xp are not
necessarily distinct and B2ms = diag(Jms(xs), Jms(xs)). The Jordan canonical
form JA of A = eX has the form

JA = diag(Jm1(e
x1), . . . , Jmr(e

xr), B
′

2mr+1
, . . . , B

′
2mp

), (2)

where B
′
2ms

= diag(Jms(e
xs), Jms(e

xs)), and x denotes the complex conjugate
of x. Clearly, exk �= 0 for any xk ∈ C, then A must be nonsingular. Moreover,
exk < 0 only if Im(xk) �= 0, in which case exk = exk . Thus negative eigenvalues
of A must be associated with Jordan blocks which occur in pairs.

Conversely, let A ∈ Rn×n satisfy the conditions in the theorem. From the
real Jordan canonical form we have

A = Sdiag(Jm1(λ1), . . . , Jmq(λq), J2mq+1(λq+1), . . . , J2mp(λp))S
−1, (3)

where S is a real n-by-n nonsingular matrix, λ1, . . . , λq are positive and λq+1, . . . , λp

are either negative or complex eigenvalues of A that are not necessarily dis-
tinct. It is easy to check that the Jordan canonical form of log(j) Jmk

(λk) is
given by

log(j) Jmk
(λk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

log(j) λk 1/λk −1/2λ2
k . . . (−1)mk−2

(mk−1)λ
mk−1

k

0 log(j) λk 1/λk . . . (−1)mk−3

(mk−2)λ
mk−2

k
...

...
...

. . .
...

0 0 0 . . . 1/λk

0 0 0 . . . log(j) λk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)
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where log(j) z is a branch of log z defined by

log(j) z = Logz + 2πij, j = 0,±1, . . . .

As for k = q + 1, . . . , p, J2mk
(λk) has the form

J2mk
=

⎡
⎢⎢⎢⎢⎢⎣

Lk I 0 . . . 0
0 Lk I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
0 0 0 . . . Lk

⎤
⎥⎥⎥⎥⎥⎦

,

where Lk =

[
ak bk

−bk ak

]
corresponding to either complex conjugate eigenval-

ues λ = ak+ibk and λ = ak−ibk, bk �= 0, each with multiplicity mk, or to a pair
of negative eigenvalues, that is, ak < 0 and bk = 0. We can use the integration
definition to find log(j) J2mk

(λk) for a certain branch of log z. Namely,

log(j) J2mk
(λk) =

1

2πi

∫
Γ

(log(j) z)(zI − J2mk
(λk))

−1dz, (5)

where Γ encloses the eigenvalues λk, λk of J2mk
(λk). The inverse (zI−J2mk

(λk))
−1

can be shown to take the general form

⎡
⎢⎢⎢⎣

(zI − Lk)
−1 (zI − Lk)

−2 (zI − Lk)
−3 . . . (zI − Lk)

−mk

0 (zI − Lk)
−1 (zI − Lk)

−2 . . . (zI − Lk)
−mk+1

...
...

...
. . .

...
0 0 0 . . . (zI − Lk)

−1

⎤
⎥⎥⎥⎦ . (6)

Substituting (6) in (5) and integrating along Γ, we have

log(j) J2mk
(λk) =

⎡
⎢⎢⎢⎢⎢⎢⎣

log(j) Lk L−1
k −1

2
(L−1

k )2 . . .
(−1)mk−2(L−1

k )mk−1

mk−1

0 log(j) Lk L−1
k . . .

(−1)mk−3(L−1
k )mk−2

mk−2
...

...
...

. . .
...

0 0 0 . . . L−1
k

0 0 0 . . . log(j) Lk

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(7)

where by using the previous lemma, Lk has a real logarithm of the form

log(j) Lk =

[
θk μk

−μk θk

]
, log(j)(ak ± ibk) = θk ± iμk.
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Now set

X = Sdiag(log(j1)(Jm1(λ1)), . . . , log(jq)(Jmq(λq)), log(jq+1)(J2mq+1(λq+1)), . . .

. . . , log(jp)(J2mp(λp)))S
−1

where for k = 1, 2, . . . , q, each log(jk)(Jmk
(λk)) is defined by equation (4) and

log(jk)(J2mk
(λk)) is given by (7) for all k = q + 1, . . . , p. Clearly if we take the

logarithms of the Jordan blocks in these forms with particular choice of j in
(4) we can get a real logarithm of A.

Also, a characterization of the uniqueness of the real logarithm in term of
the spectrum of A , σ(A), is given in the next theorem; Culver [5].

Theorem 4 Let A ∈ Rn×n. Then there exists a unique real logarithm X of
A if and only if A is nonderogatory and all the eigenvalues of A are positive
real , that is, if all the eigenvalues of A are positive and no Jordan blocks of A
belonging to the same eigenvalue appear more than once.

Now we deal with the real polynomial solvability of eX = A, that is, the
existence of polynomial p(z) such that X = p(A) and eX = A. The following
theorem establishes the conditions for real logarithm X of A to be polynomial
in A.

Theorem 5 Let A ∈ Rn×n, be nonsingular matrix with Jordan canonical form

A = Sdiag(Jm1(λ1), Jm2(λ2), . . . , Jmp(λp))S
−1

then X ∈ S(A) is polynomial in A if and only if the same value of the scalar
logarithm is used for the same eigenvalue of A, that is, if exk = λk for every
k = 1, 2, . . . , p, then λi = λj implies that xi = xj for all 1 ≤ i, j ≤ p.

From the previous theorem we conclude that if A ∈ Rn×n has any negative
eigenvalues, no real solution of eX = A can be polynomial in A.

Suppose that A is a real n-by-n matrix, next we give the additional con-
ditions on A for which its real logarithm is real normal, symmetric, skew
symmetric, positive (semi) positive or orthogonal logarithm. We start by the
following lemma on which our results are based.

Lemma 6 Let A ∈ Rn×n be a nonsingular matrix, and the negative eigenval-
ues of A, if exist, occur an even number of times, then A has a real normal
logarithm if and only if A is normal.

Proof. Suppose that there exists a real normal logarithm X of a real matrix
A. Then there exists a real orthogonal matrix Q ∈ Rn×n such that

X = Qdiag(D1, . . . , Ds, Ds+1, . . . , Dp)Q
T
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where Dj is 1-by-1 real matrix for all j = 1, 2, . . . , s and Dj is 2-by-2 real
matrix for all j = s + 1, . . . , p, each of them have the form

Dj =

[
aj bj

−bj aj

]

corresponding to the complex conjugate eigenvalues xj = aj + ibj and xj =
aj − ibj . Since eX = A, then

A = Qdiag(eD1 , . . . , eDs, eDs+1 , . . . , eDp)QT

Clearly, Dj and DT
j are commuting for all j = 1, 2, . . . , p. It follows that

eDjeDT
j = eDj+DT

j , for allj = 1, 2, . . . , p

then AAT = AT A, that is, A is normal.
Conversely, consider that A is normal matrix. Then there exists a real

orthogonal matrix Q ∈ Rn×n such that

A = Qdiag(D1, . . . , Ds, Ds+1, . . . , Dp)Q
T

where Dj is a positive number for j = 1, . . . , s, and for j = s + 1, . . . p, Dj is
2-by-2 matrix of the form

[
aj bj

−bj aj

]
or

[
α 0
0 α

]

corresponding to a complex conjugate eigenvalues aj + ibj and aj − ibj , or to
a pair of negative eigenvalues, that is, α < 0. Then by using Lemma 1 we can
construct a real logarithm X of A.

In the previous lemma, the nonsingular real normal matrix A has a real
normal logarithm X with prescribed spectrum σ(X) ⊂ K, K ⊂ C if and only
if the scalar equation ex = λ has a solution in K for every λ ∈ σ(A).

Theorem 7 Let A ∈ Rn×n, be nonsingular real matrix, that has a real loga-
rithm, that is, each Jordan block of A belonging to a negative eigenvalue occurs
an even number of times. Then

(a) There exists a symmetric logarithm of A if and only if A is positive
definite. This logarithm is unique.

(b) There exists a skew-symmetric logarithm of A if and only if A is orthog-
onal.

(c) There exists a real positive definite logarithm (positive semidefinite) of A
if and only if A − I > 0 (A − I ≥ 0).
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(d) There exists an orthogonal logarithm of A if and only if A is normal and
for every λ ∈ σ(A), we have |log λ| = 1, that is, for every λ = a + ib ∈
σ(A), we have

(log
√

a2 + b2)2 + (tan−1 b

a
)2 = 1

Proof. (a) The proof of this assertion follows due to the obvious fact that
the scalar equation ex = λ has a unique real solution if and only if λ > 0.
Hence the matrix equation eX = A has a symmetric solution if and only if A
is positive definite.
(b) Similarly, the scalar equation ex = λ has a solution belongs to iR if and
only if |λ| = 1. Then the matrix equation eX = A has a skew symmetric
solution if and only if A is orthogonal.
(c) The logarithm X of A is positive definite (semidefinite) if and only if all
the solutions of the scalar equation ex = λ are positive (nonnegative). Namely
X is positive definite (semidefinite) if and only if A is a real normal and
λ > 1(λ ≥ 1) for all λ ∈ σ(A).
(d) Since all the solutions of the scalar equation ex = λ lie on the unit circle if
and only if |log λ| = 1, therefor the matrix equation eX = A has an orthogonal
solution if and only if A is real normal and |log λ| = 1 for all λ ∈ σ(A).

3 Computation of a real logarithm X

In this section we study the problem of computing a real logarithm of a real
matrix. Our main tool for such computation is the real Schur decomposition
of the real matrix A.

Let A ∈ Rn×n be a nonsingular real matrix with no negative eigenvalues,
then there exists an orthogonal matrix Q ∈ Rn×n, such that

A = QTQT = Q

⎡
⎢⎢⎢⎣

T11 T12 T13 . . . T1m

0 T22 T23 . . . T2m
...

...
...

. . .
...

0 0 0 . . . Tmm

⎤
⎥⎥⎥⎦QT . (8)

Here each block Tii is either 1-by-1 or 2-by-2 with complex conjugate eigenval-
ues λi and λi, λi �= λi. Since A and T are similar, we have

log A = Q log TQT ,

so that log A is real if and only if log T is real. Hence we need an algorithm
for computing a real logarithm of the upper triangular block matrix T . If we
suppose that F = log T = (Fij), we look for those F which are functions of T,
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and hence F will inherit the upper triangular block structure from T. First we
compute

Fii = LogTii, for all i = 1, 2, . . . , m.

Once the diagonal blocks of F are known, the blocks in the strict upper trian-
gular of F can be derived from the commutativity result FT = TF . Indeed
by computing (i, j) entries in this equation, we get

j∑
k=i

FikTkj =

j∑
k=i

TikFkj, j > i

and thus, if σ(Tii) ∩ σ(Tjj) = φ, i �= j, we obtain an equation with unique
solution [2], namely

FijTjj − TiiFij = TijFjj − FiiTij +

j−1∑
k=i+1

(TikFkj − FikTkj), (9)

where Fij are computed one superdiagonal at a time. This Sylvester equation
results in a linear system of order 1,2 or 4 that can be solved using standard
methods.

From this algorithm for constructing F from its diagonal blocks we conclude
that F is real, and consequently log A is real if and only if each of the blocks
Fii is real. Next we discuss the real logarithms log Tii of 2-by-2 a real matrix
with complex conjugate eigenvalues.

Lemma 8 Let B = (bij) ∈ R2×2 with complex conjugate eigenvalues λ = a+ib
and λ = a − ib, b �= 0. Then B has a countable real logarithms.

Proof. Since B has complex conjugate eigenvalues λ and λ, λ �= λ, and
λ = a + ib, then there exists a nonsingular matrix V ∈ C2×2, such that

B = V diag(λ, λ)V −1.

Then B can be written in the form B = aI + ibV KV −1 = aI + bW , where

W = iV KV −1 and K =

[
1 0
0 −1

]
. Clearly W is a real matrix. Thus any

logarithm X of B is given by

X = V diag(log(j1) λ, log(j2) λ)V −1

= V diag(θ + iμ + i2πj1, θ − iμ + i2πj2)V
−1

where θ = Log |λ|, μ = Argλ and Argλ = −Argλ. Then the set of all log-
arithms of a 2-by-2 real matrix (with complex conjugate eigenvalues) is a
countable set, each logarithm is given by

X = θI + μW + V EV −1 (10)
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where E = i2πdiag(j1, j2). In fact equation (10) gives all the possible solutions
of eX = B. The logarithm in equation (10) is real if and only if V EV −1 is a real
matrix, that is, if and only if j1 = −j2. In this case V EV −1 = i2πj1V KV −1 =
2πj1W. Then any real logarithm X of B has the form

X = θI + (μ + 2πj1)W,

where W = 1
b
(B−aI). And indeed once θ and μ are known we have a countable

set of real logarithms.
The set of real logarithms of a real 2-by-2 matrix (with complex conjugate

eigenvalues) can also obtained in an alternative approach by using Lagrange
interpolation as follows.

Let B = (bij) ∈ R2×2 with complex conjugate eigenvalues λ = a + ib and
λ = a − ib, then there exists a polynomial r(z) of the first degree given by

r(z) = (log(j1) λ)
(z − λ)

(λ − λ)
+ (log(j2) λ)

(z − λ)

(λ − λ)

where log(j) z is a branch of log z. Hence we can define a logarithm X of B as

X = r(B) = (log(j1) λ)
(B − λI)

2ib
+ (log(j2) λ)

(B − λI)

−2ib

=
i

2b

[
(log(j2) λ)(B − λI) − (log(j1) λ)(B − λI)

]

=
i

2b

[
(Logλ + i2πj2)(B − λI) − (Logλ + i2πj1)(B − λI)

]

=
i

2b

[
(Logλ − i2πj2)(B − λI) − (Logλ + i2πj1)(B − λI)

]

where j1, j2 ∈ Z. This logarithm is real if the matrix in the bracket is pure
imaginary, that is, if j1 = −j2. For example if we set j1 = j2 = 0, we have the
principal logarithm LogB, namely

LogB =
i

2b

[
(Logλ)(B − λI) − (Logλ)(B − λI)

]

= − i

2b
2iIm

[
(Logλ)(B − λI)

]

=
1

b
Im

[
(Logλ)(B − λI)

]
.

Hence

LogB =
1

b

⎡
⎣ bLog |λ| + (b11 − a)Argλ b12Argλ

b21Argλ bLog |λ| + (b22 − a)Argλ

⎤
⎦ , (11)
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where a = 1
2
(b11 + b22) and b = 1

2

√−(b11 − b22)2 − 4b12b21.
We summarize the previous steps in the following algorithm.
Algorithm special-real-logarithm (B, j1)
(This algorithm computes a real logarithm of a real 2-by-2 matrix B.)
Input: A, j1

a = (b11 + b22)/2;
b = sqrt(−(b11 − b22)

2 − 4b12b21)/2;
θ = 1

2
Log(a2 + b2);

μ = tan−1(b/a);
X = θI + 1

b
(μ + 2πj1)(B − aI).

Now we can give an algorithm to compute a real logarithm of a block upper
triangular real matrix T . Assume that T defined by equation (8) such that
T11, . . . , Trr are 1-by-1 and Tr+1,r+1, . . . , Tmm are 2-by-2 matrices with complex
conjugate eigenvalues. The following algorithm compute a real logarithm F of
T.

Algorithm general-real-logarithm
Input: T
for i = 1 to r

Fii = log(Tii)
endfor
for i = r + 1 to m

Fii = special-real-logarithm (B, j1)
endfor
SUM = 0;
for i = 1 to m

for j = 2 to m
if (j − 1 ≥ i + 1) then

for k = i + 1 to j − 1
SUM = SUM + TikFkj − FikTkj

endfor
endif

Solve FijTjj − TiiFij = TijFjj − FiiTij + SUM .
(This system of equations can be solved by any standard method)
endfor

endfor.

Note that, if A is a real normal matrix then the above algorithm computes
the real logarithms even if A has negative or repeated eigenvalues provided
that the negative eigenvalues occur in pairs.
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3.1 Real logarithm of real normal matrix

If A ∈ Rn×n is a normal matrix and each of its negative eigenvalue occurs
an even number of times, then Theorem 6 implies that there exists a real
orthogonal matrix Q ∈ Rn×n such that

A = Qdiag(D1, . . . , Ds, Ds+1, . . . , Dp)Q
T ,

where Dj is a positive number for j = 1, . . . , s, and for j = s + 1, . . . p, Dj is
a 2-by-2 matrix of the form[

aj bj

−bj aj

]
or

[
α 0
0 α

]

corresponding to a pair of complex conjugate eigenvalues aj + ibj and aj − ibj ,
or to a pair of negative eigenvalues, that is, α < 0. Then by using Lemma 1
we can find a real matrix Xj such that eXj = Dj for all j = 1, 2, . . . , p, and
consequently

X = Qdiag(X1, X2, . . . , Xj)Q
T

is a real logarithm of A. If A has negative eigenvalues then there is no real
logarithm of A which is a polynomial in A.

Example 9 Consider the normal matrix

A =

⎡
⎣ 1 2 3

3 1 2
2 3 1

⎤
⎦

with eigenvalues 6, −1.5 ± 0.866i. The real Schur decomposition of A is given
by A = QTQT = Qdiag(D1, D2)Q

T , where

Q =

⎡
⎣ 0.5774 0.3004 0.7592

0.5774 0.5073 −0.6397
0.5774 −0.8077 −0.1195

⎤
⎦ ,

and

T =

⎡
⎣ 6 0 0

0 −1.5 0.866
0 −0.866 −1.5

⎤
⎦ .

Then by using Lemma 1, there exists a real logarithm X of A of the form

X = Qdiag(X1, X2)Q
T ,

where X1 = 1.792 and X2 =

[
0.549 2.618

−2.618 0.549

]
. Consequently

X =

⎡
⎣ 0.9634 −1.0969 1.9258

1.9259 0.9634 −1.0969
−1.0970 1.9258 0.9634

⎤
⎦ .
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