
{{#Text}}<div class="prettify-flashcard">{{/Text}} <!this makes the box around
text-->

<script>
// ############## HINT REVEAL SHORTCUTS ##############
// All shortcuts will also open with "H" if using the Hint Hotkeys add-on
var ButtonShortcuts = {
 "Lecture Notes" : "Alt+1",
 "Missed Questions" : "Alt+2",
 "Pathoma" : "Alt+3",
 "Boards and Beyond" : "Alt+4",
 "First Aid" : "Alt+5",
 "Sketchy" : "Alt+6",
 "Sketchy 2": "",
 "Sketchy Extra": "",
 "Picmonic": "",
 "Pixorize" : "Alt+7",
 "Physeo" : "Alt+8",
 "Bootcamp" : "Alt+F2",
 "OME" : "Alt+F1",
 "Additional Resources" : "Alt+9",
}
var ToggleAllButtonsShortcut = "'"
var ToggleNextButtonShortcut = "H";
// ############## SHOW HINTS AUTOMATICALLY ##############
var ButtonAutoReveal = {
 "Lecture Notes" : false,
 "Missed Questions" : false,
 "Pathoma" : false,
 "Boards and Beyond" : false,
 "First Aid" : false,
 "Sketchy" : false,
 "Sketchy 2": false,
 "Sketchy Extra": false,
 "Picmonic": false,
 "Pixorize" : false,
 "Physeo" : false,
 "Bootcamp" : false,
 "OME" : false, // not currently a button
 "Additional Resources" : false,
}

var ScrollToButton = true;

// ############## TAG SHORTCUT ##############
var toggleTagsShortcut = "C";

// ENTER THE TAG TERM WHICH, WHEN PRESENT, WILL TRIGGER A RED BACKGROUND
var tagID = "XXXYYYZZZ"

// WHETHER THE WHOLE TAG OR ONLY THE LAST PART SHOULD BE SHOWN

var numTagLevelsToShow = 0;

// ############## CLOZE ONE BY ONE ##############
var revealNextShortcut = "N"
var revealNextWordShortcut = "Shift+N"
var toggleAllShortcut = ","

// Changes how "Reveal Next" and clicking behaves. Either "cloze" or "word".
// "word" reveals word by word.
var revealNextClozeMode = "cloze"

// What cloze is hidden with
var clozeHider = (elem) => " "👑
/*
You can replace the above line with below examples. '█' or '_' works well for
hiding clozes.

// Fixed length:
var clozeHider = (elem) => "███"
// Replace each character with "█":
var clozeHider = (elem) => "█".repeat(elem.textContent.length)
// Show whitespaces:
var clozeHider = (elem) => "[" + elem.textContent.split(" ").map((t) =>
"█".repeat(t.length)).join(" ") + "]"
// Color-filled box (doesn't hide images):
var clozeHider = (elem) => `<span style="background-color: red; color:
transparent;">${elem.innerHTML}`
*/

</script>

<div class="clozefield" id="text">{{cloze:Text}}</div>

<!-- ############## EDIT CLOZE DURING REVIEW ##############
-change below (not above) to "edit:cloze:Text" for editable

field,
but be sure to have the correct add-on installed-->

<div class="editcloze" id="text">{{edit:cloze:Text}}</div>

<!-- ############## TEXT-TO-SPEECH ##############
replace the arrows/dashes from the statement below with double curly brackets-->

<!--tts en_US voices=Apple_Samantha,Microsoft_Zira speed=1.4:cloze-only:Text-->

<div class="prettify-divider prettify-divider--answer"></div>

<!-- BUTTON FIELDS -->
<!-- ClOZE ONE BY ONE BUTTONS -->

<div id="one-by-one" style="display: none;">{{One by one}}</div>

<div id="1by1-btns" style="display: none;">
 <button id="button-reveal-next" class="button-general"
onclick="revealNextCloze()">Reveal Next</button>
 <button id="button-toggle-all" class="button-general"
onclick="toggleAllCloze()">Toggle All</button>
</div>

<script>
 (() => {
 let clozeOneByOneEnabled = true;
 clozeOneByOneEnabled = document.getElementById("one-by-one").textContent !
== "";

 if (clozeOneByOneEnabled) {
 document.getElementById("1by1-btns").style.display = "block";
 }
 })()

 </script>

<!-- Remove 'style="display: none"' in the line saying '<span style="display:
none">' to show the OME field -->
{{#Lecture Notes}}

 <button id="button-ln" class="button-general" onclick="toggleHintBtn('hint-
ln')">
 Lecture Notes
 </button>
 <div dir="auto" id="notes" class="hints" style="display: none;">{{edit:Lecture
Notes}}</div>

{{/Lecture Notes}}

<!-- BUTTON FIELDS -->
{{#Missed Questions}}

 <button id="button-mq" class="button-general" onclick="toggleHintBtn('hint-
mq')">
 Missed Questions
 </button>
 <div dir="auto" id="missed" class="hints" style="display: none;">{{edit:Missed
Questions}}</div>

{{/Missed Questions}}

{{#Pathoma}}

 <button id="button-pat" class="button-general" onclick="toggleHintBtn('hint-
pat')">

 </button>
 <div dir="auto" id="pathoma" class="hints" style="display:
none;">{{edit:Pathoma}}</div>

{{/Pathoma}}

{{#Boards and Beyond}}

 <button id="button-bb" class="button-general" onclick="toggleHintBtn('hint-
bb')">
 Boards and Beyond
 </button>
 <div dir="auto" id="bnb" class="hints" style="display: none;">{{edit:Boards
and Beyond}}</div>

{{/Boards and Beyond}}

{{#Extra}}<p></p>
<div id="extra">{{edit:Extra}}</div>

{{/Extra}}

<!-- Extra field -->
{{#First Aid}}

 <button id="button-fa" class="button-general" onclick="toggleHintBtn('hint-
fa')">

 First Aid
 </button>
 <div dir="auto" id="firstaid" class="hints" style="display:
none;">{{edit:First Aid}}</div>

{{/First Aid}}

{{#Sketchy}}

 <button id="button-sketchy" class="button-general"
onclick="toggleHintBtn('hint-sketchy')">
 Sketchy
 </button>
 <div dir="auto" id="sketchy" class="hints" style="display:
none;">{{edit:Sketchy}}</div>

{{/Sketchy}}

{{#Sketchy 2}}

 <button id="button-sketchy2" class="button-general"
onclick="toggleHintBtn('hint-sketchy2')">
 Sketchy 2
 </button>
 <div dir="auto" id="sketchy2" class="hints" style="display:
none;">{{edit:Sketchy 2}}</div>

{{/Sketchy 2}}

{{#Sketchy Extra}}

 <button id="button-sketchyextra" class="button-general"
onclick="toggleHintBtn('hint-sketchyextra')">
 Sketchy Extra
 </button>
 <div dir="auto" id="sketchyextra" class="hints" style="display:
none;">{{edit:Sketchy Extra}}</div>

{{/Sketchy Extra}}

{{#Picmonic}}

 <button id="button-picmonic" class="button-general"
onclick="toggleHintBtn('hint-picmonic')">
 Picmonic
 </button>
 <div dir="auto" id="picmonic" class="hints" style="display:
none;">{{edit:Picmonic}}</div>

{{/Picmonic}}

{{#Pixorize}}

 <button id="button-pixorize" class="button-general"
onclick="toggleHintBtn('hint-pixorize')">
 Pixorize
 </button>
 <div dir="auto" id="pixorize" class="hints" style="display:
none;">{{edit:Pixorize}}</div>

{{/Pixorize}}

{{#Physeo}}

 <button id="button-physeo" class="button-general"
onclick="toggleHintBtn('hint-physeo')">

 </button>
 <div dir="auto" id="physeo" class="hints" style="display:
none;">{{edit:Physeo}}</div>

{{/Physeo}}

{{#Bootcamp}}

 <button id="button-bootcamp" class="button-general"
onclick="toggleHintBtn('hint-bootcamp')">
 Bootcamp
 </button>
 <div dir="auto" id="bootcamp" class="hints" style="display:
none;">{{edit:Bootcamp}}</div>

{{/Bootcamp}}

{{#OME}}
<div class="banner-ome">

</div>

 <button id="button-ome" class="button-general" onclick="toggleHintBtn('hint-
ome')">
 OnlineMedEd
 </button>
 <div id="ome" class="hints" style="display: none;">{{edit:OME}}</div>

{{/OME}}

{{#Additional Resources}}

 <button id="button-ar" class="button-general" onclick="toggleHintBtn('hint-
ar')">
 Additional Resources
 </button>
 <div dir="auto" id="additional" class="hints" style="display:
none;">{{edit:Additional Resources}}</div>

{{/Additional Resources}}

<!-- ANKING HYPERLINK IMAGE -->
<img src="_AnKingRound.png" alt="The AnKing"
id="pic">

<!-- NOT-PERSISTING EVENT LISTENER -->
<script>
 if (window.ankingEventListeners) {

 for (const listener of ankingEventListeners) {
 const type = listener[0]
 const handler = listener[1]
 document.removeEventListener(type, handler)
 }
 }
 window.ankingEventListeners = []

 window.ankingAddEventListener = function(type, handler) {
 document.addEventListener(type, handler)
 window.ankingEventListeners.push([type, handler])
 }
</script>

<!-- Shortcut Matcher Function -->
<script>
 var specialCharCodes = {
 "-": "minus",
 "=": "equal",
 "[": "bracketleft",
 "]": "bracketright",
 ";": "semicolon",
 "'": "quote",
 "`": "backquote",
 "\\": "backslash",
 ",": "comma",
 ".": "period",
 "/": "slash",
 };
 // Returns function that match keyboard event to see if it matches given
shortcut.
 function shortcutMatcher(shortcut) {
 let shortcutKeys = shortcut.toLowerCase().split(/[+]/).map(key =>
key.trim())
 let mainKey = shortcutKeys[shortcutKeys.length - 1]
 if (mainKey.length === 1) {
 if (/\d/.test(mainKey)) {
 mainKey = "digit" + mainKey
 } else if (/[a-zA-Z]/.test(mainKey)) {
 mainKey = "key" + mainKey
 } else {
 let code = specialCharCodes[mainKey];
 if (code) {
 mainKey = code
 }
 }
 }
 let ctrl = shortcutKeys.includes("ctrl")
 let shift = shortcutKeys.includes("shift")
 let alt = shortcutKeys.includes("alt")

 let matchShortcut = function (ctrl, shift, alt, mainKey, event) {
 if (mainKey !== event.code.toLowerCase()) return false
 if (ctrl !== (event.ctrlKey || event.metaKey)) return false
 if (shift !== event.shiftKey) return false
 if (alt !== event.altKey) return false
 return true
 }.bind(window, ctrl, shift, alt, mainKey)

 return matchShortcut
 }
</script>

<!-- HINT BUTTONS SETUP -->

<script>
 (function() {
 window.toggleHintBtn = function(containerId, noScrolling=false) {
 const container = document.getElementById(containerId)
 const link = container.getElementsByTagName("a")[0]
 const button = container.getElementsByTagName("button")[0]
 const hint = container.getElementsByTagName("div")[0]

 if (hint.style.display == "none") {
 button.classList.add("expanded-button")
 hint.style.display = "block"
 link.style.display = "none"
 if (ScrollToButton && !noScrolling) {
 hint.scrollIntoView({
 behavior: "smooth", // "auto" for instant scrolling
 block: "start",
 inline: "nearest"
 });
 }
 } else {
 button.classList.remove("expanded-button")
 hint.style.display = "none"
 link.style.display = ""
 }
 }

 window.toggleNextButton = function(){
 // adapted from Hint Hotkey add-on
 var customEvent = document.createEvent('MouseEvents');
 customEvent.initEvent('click', false, true);
 var arr = document.getElementsByTagName('a');
 for (var i=0; i<arr.length; i++) {
 var el = arr[i];
 if (el.style.display === 'none') {
 continue;
 }
 if (el.classList.contains("hint")) {
 el.dispatchEvent(customEvent);
 break
 }
 }
 }

 const isToggleNextShortcut = shortcutMatcher(ToggleNextButtonShortcut)
 ankingAddEventListener("keydown", (evt) => {
 if (evt.repeat) return
 if (isToggleNextShortcut(evt)) {
 toggleNextButton()
 }
 })

 const setupHintBtn = function(elem) {
 const containerId = elem.id
 const fieldName = elem.dataset.name
 const button = elem.getElementsByClassName("button")[0]

 if (ButtonAutoReveal[fieldName]) {
 toggleHintBtn(containerId, noScrolling=true)
 }

 const isShortcut = shortcutMatcher(ButtonShortcuts[fieldName])
 const isToggleAllShortcut = shortcutMatcher(ToggleAllButtonsShortcut)
 ankingAddEventListener("keydown", (evt) => {
 if (evt.repeat) return

 if (isShortcut(evt) || isToggleAllShortcut(evt)) {
 toggleHintBtn(containerId)
 }
 })
 }

 const hints = document.getElementsByClassName("hintBtn")
 for (let i = 0; i < hints.length; i++) {
 setupHintBtn(hints[i])
 }
 })()
 </script>

<!-- AUTOFLIP BACK SCRIPT -->
<script>
 // autoflip hides card in front template
 document.getElementById("qa").style.removeProperty("display")
</script>

<!-- CLOZE ONE BY ONE SCRIPT -->
<style>
 .cloze-replacer:hover {
 cursor: pointer;
 }
 .cloze-hidden {
 display: none;
 }
 .cloze-replacer .hidden {
 display: none;
 }
 .cloze-hint {
 color: #009400 !important;
 }
 #extra.hidden {
 display: none;
 }
</style>

<script>
 (function() {
 var clozeOneByOneEnabled = true;
 clozeOneByOneEnabled = document.getElementById("one-by-one").textContent !
== "";

 if (!clozeOneByOneEnabled) {
 return
 }

 // Needed for amboss to recognize first word in .cloze-hidden
 const CLOZE_REPLACER_SEP = " "

 const hideAllCloze = function(initial) {
 let clozes = document.getElementsByClassName("cloze")
 let count = 0 // hidden cloze count
 for (const cloze of clozes) {
 const existingHidden = cloze.getElementsByClassName("cloze-hidden")[0]
 if (existingHidden) {
 revealCloze(cloze);
 }
 if (cloze.offsetWidth === 0) {
 continue
 }
 const clozeReplacer = document.createElement("span")
 const clozeHidden = document.createElement("span")

 clozeReplacer.classList.add("cloze-replacer")
 clozeHidden.classList.add("cloze-hidden")
 while (cloze.childNodes.length > 0) {
 clozeHidden.appendChild(cloze.childNodes[0])
 }
 cloze.appendChild(clozeReplacer)
 cloze.appendChild(clozeHidden)

 if (window.clozeHints && window.clozeHints[count]) {
 clozeReplacer.classList.add("cloze-hint")
 clozeReplacer.innerHTML = window.clozeHints[count] +
CLOZE_REPLACER_SEP
 } else {
 clozeReplacer.innerHTML = clozeHider(cloze) + CLOZE_REPLACER_SEP
 }
 count += 1
 if (initial) {
 cloze.addEventListener("touchend", revealClozeClicked)
 cloze.addEventListener("click", revealClozeClicked)
 }
 }
 const extra = document.getElementById("extra");
 if (extra) {
 extra.classList.add("hidden");
 }
 }

 const revealCloze = function(cloze) {
 const clozeReplacer = cloze.getElementsByClassName("cloze-replacer")[0]
 const clozeHidden = cloze.getElementsByClassName("cloze-hidden")[0]
 if (!clozeReplacer || !clozeHidden) return;

 cloze.removeChild(clozeReplacer)
 cloze.removeChild(clozeHidden)
 while (clozeHidden.childNodes.length > 0) {
 cloze.appendChild(clozeHidden.childNodes[0])
 }
 maybeRevealExtraField()
 }

 const revealClozeWord = function(cloze) {
 const clozeReplacer = cloze.getElementsByClassName("cloze-replacer")[0]
 const clozeHidden = cloze.getElementsByClassName("cloze-hidden")[0]
 if (!clozeReplacer || !clozeHidden) return;

 let range = new Range()
 range.setStart(clozeHidden, 0)
 const foundSpace = setRangeEnd(range, clozeHidden, "beforeFirstSpace")
 if (!foundSpace) {
 range.setEnd(clozeHidden, clozeHidden.childNodes.length)
 }
 let fragment = range.extractContents()
 cloze.insertBefore(fragment, clozeReplacer)
 // Extract whitespaces after word
 range = new Range()
 range.setStart(clozeHidden, 0)
 const foundWord = setRangeEnd(range, clozeHidden, "beforeFirstChar")
 if (!foundWord) {
 range.setEnd(clozeHidden, clozeHidden.childNodes.length)
 }
 fragment = range.extractContents();
 cloze.insertBefore(fragment, clozeReplacer)
 if (!foundWord) {
 cloze.removeChild(clozeHidden)

 cloze.removeChild(clozeReplacer)
 maybeRevealExtraField()
 return
 }
 clozeReplacer.innerHTML = clozeHider(clozeHidden) + CLOZE_REPLACER_SEP
 if (clozeReplacer.classList.contains("cloze-hint")) [
 clozeReplacer.classList.remove("cloze-hint")
]
 maybeRevealExtraField()
 }

 const revealNextClozeOf = (type) => {
 const nextHidden = document.querySelector(".cloze-hidden")
 if(!nextHidden) {
 return
 }
 const cloze = clozeElOfClozeHidden(nextHidden);
 if (type === "word") {
 revealClozeWord(cloze)
 } else if (type === "cloze") {
 revealCloze(cloze)
 } else {
 console.error("Invalid type: " + type)
 }
 }

 const revealClozeClicked = function(ev) {
 let elem = ev.currentTarget
 if (!ev.altKey && (revealNextClozeMode !== "word")) {
 revealCloze(elem)
 } else {
 revealClozeWord(elem)
 }
 ev.stopPropagation()
 ev.preventDefault()
 }

 window.revealNextCloze = function() {
 revealNextClozeOf(revealNextClozeMode)
 }

 window.toggleAllCloze = function() {
 let elems = document.querySelectorAll(".cloze-hidden")
 if(elems.length > 0) {
 for (const elem of elems) {
 const cloze = clozeElOfClozeHidden(elem)
 revealCloze(cloze)
 }
 } else {
 hideAllCloze(initial=false)
 }
 }

 const clozeElOfClozeHidden = (cloze) => {
 while (!cloze.classList.contains("cloze")) {
 cloze = cloze.parentElement;
 }
 return cloze;
 }

 const maybeRevealExtraField = () => {
 let elems = document.querySelectorAll(".cloze-hidden")
 if (elems.length == 0) {
 const extra = document.getElementById("extra")

 if (extra) {
 extra.classList.remove("hidden")
 }
 }
 }

 /**
 * mode: 'beforeFirstSpace' or 'beforeFirstChar'
 * Return `true` if it exists and setEnd() was called, otherwise `false`
 */
 const setRangeEnd = function(range, node, mode) {
 if (node.nodeType === Node.TEXT_NODE) {
 const regex = mode === 'beforeFirstSpace' ? /\s/ : /\S/
 const match = node.textContent.match(regex)
 if (match) {
 if (match.index === 0) {
 while (node.previousSibling === null) {
 node = node.parentElement
 }
 range.setEndBefore(node)
 } else {
 range.setEnd(node, match.index);
 }
 return true;
 } else {
 return false;
 }
 } else if (mode === 'beforeFirstChar' && isCharNode(node)) {
 range.setEndBefore(node)
 return true
 } else if (!ignoreSpaceInNode(node)) {
 for (const child of node.childNodes) {
 if (setRangeEnd(range, child, mode)) {
 return true;
 }
 }
 return false;
 }
 }

 const ignoreSpaceInNode = function (node) {
 return node.tagName === "MJX-ASSISTIVE-MML"
 }

 const isCharNode = function(node) {
 return ["IMG", "MJX-CONTAINER"].includes(node.tagName)
 }

 hideAllCloze(initial=true)

 let isShowNextShortcut = shortcutMatcher(window.revealNextShortcut)
 let isShowWordShortcut = shortcutMatcher(window.revealNextWordShortcut)
 let isToggleAllShortcut = shortcutMatcher(window.toggleAllShortcut)
 ankingAddEventListener("keydown", (ev) => {
 let next = isShowNextShortcut(ev)
 let word = isShowWordShortcut(ev)
 let all = isToggleAllShortcut(ev)
 if (next) {
 revealNextClozeOf("cloze")
 } else if (word) {
 revealNextClozeOf("word")
 } else if (all) {
 toggleAllCloze()
 } else {

 return;
 }
 ev.stopPropagation()
 ev.preventDefault()
 });
 })()
</script>

<!-- CLICKABLE COLORFUL TAGS -->
{{#Tags}}
<div id="tags-container">{{clickable::Tags}}</div>
<script>
 var tagContainer = document.getElementById("tags-container")
 if (tagContainer.childElementCount == 0) {
 var tagList = tagContainer.innerHTML.split(" ");
 var kbdList = [];
 var newTagContent = document.createElement("div");

 for (var i = 0; i < tagList.length; i++) {
 var newTag = document.createElement("kbd");
 var tag = tagList[i];
 // numTagLevelsToShow == 0 means the whole tag should be shown
 if(numTagLevelsToShow != 0){
 tag = tag.split('::').slice(-numTagLevelsToShow).join("::");
 }
 newTag.innerHTML = tag;
 newTagContent.append(newTag)
 }
 tagContainer.innerHTML = newTagContent.innerHTML;
 tagContainer.style.cursor = "default";
 }
 if (tagContainer.innerHTML.indexOf(tagID) != -1) {
 tagContainer.style.backgroundColor = "rgba(251,11,11,.15)";
 }

 function showtags() {
 var tagContainerShortcut = document.getElementById("tags-container");

 if (tagContainerShortcut.style.display
 === "none") {
 tagContainerShortcut.style.display = "block";
 } else {
 tagContainerShortcut.style.display =
 "none";
 }
 }

 var isShortcut = shortcutMatcher(toggleTagsShortcut)
 ankingAddEventListener('keyup', function (e) {
 if (isShortcut(e)) {
 showtags();
 }
 });

</script>
{{/Tags}}

<!-- WIKIPEDIA SEARCHES -->
<div id="popup-container">
 <button id="close-popup-btn" onclick="closePopup(true)">×</button>
 ↪
 <div id="tc"></div>
 <div id="fadebottom_v"></div>
 <div id="ic"></div>

</div>
<style>
 #tc {
 color: #222222;
 position: absolute;
 top: 16px;
 margin: 0px;
 left: 15px;
 text-decoration: none;
 height: 320px;
 overflow: hidden;
 overflow-y: scroll;
 white-space: pre-wrap;
 width: 300px;
 }

 #tc p {
 margin: 0px;
 }

 #tc::-webkit-scrollbar {
 display: none;
 }

 #fadebottom_v {
 height: 30px;
 width: 300px;
 background: -webkit-linear-gradient(270deg, rgba(255, 255, 255, 0.1),
rgba(255, 255, 255, 1));
 z-index: 111;
 position: absolute;
 bottom: 0px;
 left: 15px;
 }

 #hc {
 color: #666;
 font-weight: bold;
 }

 #ic {
 right: 0px;
 top: 30px;
 position: absolute;
 }

 #ic img {
 width: 160px;
 height: auto;
 object-fit: cover;
 overflow: hidden;
 }

 #popup-image {
 width: 140px;
 height: auto;
 }

 #popup-container {
 background: #fff;
 position: absolute;
 bottom: 30px;
 right: 10px;
 z-index: 110;

 -webkit-box-shadow: 0 30px 90px -20px rgba(0, 0, 0, 0.3), 0 0 1px 1px
rgba(0, 0, 0, 0.05);
 box-shadow: 0 30px 90px -20px rgba(0, 0, 0, 0.3), 0 0 1px 1px rgba(0, 0, 0,
0.05);
 padding: 0;
 display: none;
 font-size: 17px;
 line-height: 20px;
 border-radius: 2px;
 width: 480px;
 height: 340px;
 overflow: hidden;
 font-family: Arial;
 text-align: left;
 border: 1px solid #d0d0d0;
 border-radius: 5px;
 }

 #close-popup-btn {
 position: absolute;
 top: 1px;
 right: 5px;
 width: 32px;
 height: 32px;
 background: none;
 border: 0;
 cursor: pointer;
 font-family: 'Josefin Sans', sans-serif;
 font-size: 20px;
 outline: none;
 text-align: right;
 z-index: 112;
 }

 #open-wiki-btn {
 position: absolute;
 top: 10px;
 right: 30px;
 width: 15px;
 height: 32px;
 background: none;
 border: 0;
 cursor: pointer;
 text-decoration: none;
 color: #222222;
 font-family: 'Josefin Sans', sans-serif;
 font-size: 17px;
 outline: none;
 text-align: left;
 z-index: 112;
 }
</style>

<script>
 function getSummaryFor(word) {
 word = word.replace(/^[\.,\/#\!$%\^&*;:{}=\-_`~() \'\s]+|[\.,\/#\!$%\^&*;:
{}=\-_`~()\'\s]+$/g, "");
 var pc = document.getElementById("popup-container");
 var hc = document.getElementById("hc");
 var tc = document.getElementById("tc");
 var ic = document.getElementById("ic");
 var imgelem = document.getElementById("popup-image");
 imgelem.src = "";
 var shortsum = "";

 fetch("https://en.wikipedia.org/api/rest_v1/page/summary/" + word)
 .then(function (response) { return response.json(); })
 .then(function (response) {
 shortsum = response.description;
 shortsum = shortsum.replace(/(Disambiguation.*)/g, "Disambiguation");
 tc.innerHTML = "" + capfl(shortsum) + "" + "\n" +
response.extract_html + "\n";
 tc.style.width = "420px";
 if (response.extract_html && !response.extract.endsWith("to:")) {
 pc.style.display = "block";
 document.getElementById("open-wiki-btn").href =
response.content_urls.desktop.page;
 } else {
 pc.style.display = "none";
 }
 if (!response.thumbnail.source || response.type === "disambiguation") {
 tc.style.width = "420px";
 } else {
 tc.style.width = "300px"; imgelem.src = response.thumbnail.source;
 }
 })
 .catch(function (error) {
 console.log(error);
 });
 }

 function closePopup(deselectAlso = false) {
 pcc.style.display = 'none';
 if (deselectAlso) { clearSelection(); }
 }

 var pcc = document.getElementById("popup-container");
 var prevSel = "";
 ankingAddEventListener('click', function () {
 var currentSelection = getSelectionText();
 if (currentSelection !== "") { prevSel = currentSelection; }
 if (currentSelection && !mustClickW) {
 getSummaryFor(currentSelection);
 } else { closePopup(); }
 });

 ankingAddEventListener('keyup', function (e) {
 if (e.key == "w") {
 if (pcc.style.display === "block") { closePopup(); } else
{ getSummaryFor(prevSel); }
 }
 });

 function getSelectionText() {
 var text = "";
 if (window.getSelection) {
 text = window.getSelection().toString();
 } else if (document.selection && document.selection.type != "Control")
{ text = document.selection.createRange().text; }
 return text;
 }

 function capfl(s) {
 return s.charAt(0).toUpperCase() + s.slice(1);
 }

 function clearSelection() {
 if (window.getSelection) { window.getSelection().removeAllRanges(); }

 else if (document.selection) { document.selection.empty(); }
 }

 //CUSTOMIZATION
 //this is a variable controlling whether user must click the "w" key to open
the popup.
 //if set to true: user must select text, then click the "w" key to open
wikipedia popup. Clicking "w" key again will close the popup.
 //if set to false: user only needs to select text. popup will open
automatically. Clicking "w" is an alternative but not obligatory way of
opening/closing the popup in this mode.
 //BELOW SET to true or to false.
 var mustClickW = true;
 //END CUSTOMIZATION
</script>

