{{#Text}}<div class="prettify-flashcard">{{/Text}} <!this makes the box around
text-->

<script>

// #ep#HHHH#gR##H HINT REVEAL SHORTCUTS ##t#####H###H##H#H

// A1l shortcuts will also open with "H" if using the Hint Hotkeys add-on
var ButtonShortcuts = {

"Lecture Notes" : "Alt+1",
"Missed Questions" : "Alt+2",
"Pathoma" : "Alt+3",

"Boards and Beyond" : "Alt+4",
"First Aid" : "Alt+5",
"Sketchy" : "Alt+6",

Ilsketchy 2" : IIII,

"Sketchy Extra": "",
"Picmonic": "",

"Pixorize" : "Alt+7",

"Physeo" : "Alt+8",

"Bootcamp" : "Alt+F2",

"OME" : "ALlt+F1",

"Additional Resources" : "Alt+9",

var ToggleAllButtonsShortcut men

var ToggleNextButtonShortcut "H";

// #HHHEHsaas## SHOW HINTS AUTOMATICALLY ####HAHAHBHEHEH
var ButtonAutoReveal = {

"Lecture Notes" : false,
"Missed Questions" : false,
"Pathoma" : false,

"Boards and Beyond" : false,

"First Aid" : false,
"Sketchy" : false,
"Sketchy 2": false,
"Sketchy Extra": false,
"Picmonic": false,

"Pixorize" : false,

"Physeo" : false,

"Bootcamp" : false,

"OME" : false, // not currently a button
"Additional Resources" : false,

3

var ScrollToButton = true;

// ####anaaaaisist TAG SHORTCUT #####HAHAHAHEH
var toggleTagsShortcut = "C";

// ENTER THE TAG TERM WHICH, WHEN PRESENT, WILL TRIGGER A RED BACKGROUND
var tagID = "XXXYYYzzz"

// WHETHER THE WHOLE TAG OR ONLY THE LAST PART SHOULD BE SHOWN
var numTagLevelsToShow = 0;

// #HE####HBHEHEHHE CLOZE ONE BY ONE ####H#H#H#H#H#HHHHH
var revealNextShortcut = "N"

var revealNextWordShortcut = "Shift+N"

var toggleAllShortcut = ", "

// Changes how "Reveal Next" and clicking behaves. Either "cloze" or "word".
// "word" reveals word by word.
var revealNextClozeMode = "cloze"

// What cloze is hidden with

var clozeHider = (elem) => "{3"

/*

You can replace the above line with below examples. '|JJ' or '_' works well for
hiding clozes.

// Fixed length:

var clozeHider = (elem) => "

// Replace each character with "JJ":

var clozeHider = (elem) => "|JJ".repeat(elem.textContent.length)

// Show whitespaces:

var clozeHider = (elem) => "[" + elem.textContent.split(" ").map((t) =>
"' .repeat(t.length)).join(" ") + "]"

// Color-filled box (doesn't hide images):

var clozeHider = (elem) => “<span style="background-color: red; color:
transparent;">${elem.innerHTML}"

*/

</script>

<div class="clozefield" id="text">{{cloze:Text}}</div>

<! -- ##H##A##A##AAR EDIT CLOZE DURING REVIEW ##H#AHHAHHAHHAH
-change below (not above) to "edit:cloze:Text" for editable
field,
but be sure to have the correct add-on installed-->

<div class="editcloze" id="text">{{edit:cloze:Text}}</div>

< -- ##A##HA#HA#HAAR TEXT-TO-SPEECH ####HHAHHAHHAHH
replace the arrows/dashes from the statement below with double curly brackets-->

<!--tts en_US voices=Apple_Samantha,Microsoft_Zira speed=1.4:cloze-only:Text-->

<div class="prettify-divider prettify-divider--answer"></div>

<!-- BUTTON FIELDS -->
<!-- CLlOZE ONE BY ONE BUTTONS -->

<div id="one-by-one" style="display: none;">{{One by one}}</div>

<div id="1byl-btns" style="display: none;">

<button id="button-reveal-next" class="button-general"
onclick="revealNextCloze()">Reveal Next</button>

<button id="button-toggle-all" class="button-general"
onclick="toggleAllCloze()">Toggle All</button>

</div>
<script>
() =>{
let clozeOneByOneEnabled = true;
clozeOneByOneEnabled = document.getElementById("one-by-one").textContent !

p—— L
- 4

if (clozeOneByOneEnabled) {
document.getElementById("1byl-btns").style.display = "block";

3

1O

</script>

<!-- Remove 'style="display: none"' in the line saying '<span style="display:
none">' to show the OME field -->
{{#Lecture Notes}}

<button id="button-1n" class="button-general" onclick="toggleHintBtn('hint-
'Lnl)Il>

 Lecture Notes

</button>

<div dir="auto" id="notes" class="hints" style="display: none;">{{edit:Lecture
Notes}}</div>

{{/Lecture Notes}}

<!-- BUTTON FIELDS -->
{{#Missed Questions}}

<button id="button-mg" class="button-general" onclick="toggleHintBtn('hint-
mqu)n>

 Missed Questions

</button>

<div dir="auto" id="missed" class="hints" style="display: none;">{{edit:Missed
Questions}}</div>

{{/Missed Questions}}

{{#Pathoma}}

<button id="button-pat" class="button-general" onclick="toggleHintBtn('hint-
pat !)||>

</button>
<div dir="auto" id="pathoma" class="hints" style="display:
none; ">{{edit:Pathoma}}</div>

{{/Pathoma}}

{{#Boards and Beyond}}

<button id="button-bb" class="button-general" onclick="toggleHintBtn('hint-
bbl)|I>

 Boards and Beyond

</button>

<div dir="auto" id="bnb" class="hints" style="display: none;">{{edit:Boards
and Beyond}}</div>

{{/Boards and Beyond}}

{{#Extra}}<p></p>
<div id="extra">{{edit:Extra}}</div>

{{/Extra}}

<!-- Extra field -->
{{#First Aid}}

<button id="button-fa" class="button-general" onclick="toggleHintBtn('hint-
fal)II>

 First Aid
</button>
<div dir="auto" id="firstaid" class="hints" style="display:
none; ">{{edit:First Aid}}</div>

{{/First Aid}}

{{#Sketchy}}

<button id="button-sketchy" class="button-general"
onclick="toggleHintBtn('hint-sketchy')">
 Sketchy
</button>
<div dir="auto" id="sketchy" class="hints" style="display:
none;">{{edit:Sketchy}}</div>

{{/Sketchy}}

{{#Sketchy 2}}

<button id="button-sketchy2" class="button-general"
onclick="toggleHintBtn('hint-sketchy2')">
 Sketchy 2
</button>
<div dir="auto" id="sketchy2" class="hints" style="display:
none; ">{{edit:Sketchy 2}}</div>

{{/Sketchy 2}}

{{#Sketchy Extra}}

<button id="button-sketchyextra" class="button-general"
onclick="toggleHintBtn('hint-sketchyextra')">
 Sketchy Extra
</button>
<div dir="auto" id="sketchyextra" class="hints" style="display:
none;">{{edit:Sketchy Extra}}</div>

{{/Sketchy Extra}}

{{#Picmonic}}

<button id="button-picmonic" class="button-general"
onclick="toggleHintBtn('hint-picmonic')">
 Picmonic
</button>
<div dir="auto" id="picmonic" class="hints" style="display:
none; ">{{edit:Picmonic}}</div>

{{/Picmonic}}

{{#Pixorize}}

<button id="button-pixorize" class="button-general"
onclick="toggleHintBtn('hint-pixorize')">

 Pixorize

</button>

<div dir="auto" id="pixorize" class="hints" style="display:
none;">{{edit:Pixorize}}</div>

{{/Pixorize}}

{{#Physeo}}

<button id="button-physeo" class="button-general"
onclick="toggleHintBtn('hint-physeo')">

</button>

<div dir="auto" id="physeo" class="hints" style="display:
none;">{{edit:Physeo}}</div>

{{/Physeo}}

{{#Bootcamp}}

<button id="button-bootcamp" class="button-general"
onclick="toggleHintBtn('hint-bootcamp')">
 Bootcamp
</button>
<div dir="auto" id="bootcamp" class="hints" style="display:
none; ">{{edit:Bootcamp}}</div>

{{/Bootcamp}}

{{#0ME}}
<div class="banner-ome">

</div>

<button id="button-ome" class="button-general" onclick="toggleHintBtn('hint-
ome')||>
 OnlineMedEd
</button>
<div id="ome" class="hints" style="display: none;">{{edit:0OME}}</div>

{{/0OME}}

{{#Additional Resources}}

<button id="button-ar" class="button-general" onclick="toggleHintBtn('hint-
arl)|I>

 Additional Resources

</button>

<div dir="auto" id="additional" class="hints" style="display:
none;">{{edit:Additional Resources}}</div>

{{/Additional Resources}}

<!-- ANKING HYPERLINK IMAGE -->
<img src="_AnKingRound.png" alt="The AnKing"
id="pic">

<!I-- NOT-PERSISTING EVENT LISTENER -->
<script>
if (window.ankingEventListeners) {

for (const listener of ankingEventListeners) {
const type = listener[0]
const handler = listener[1]
document.removeEventListener (type, handler)
}
}
window.ankingEventListeners = []

window.ankingAddEventListener = function(type, handler) {
document.addEventListener (type, handler)
window.ankingEventListeners.push([type, handler])

}
</script>
<!-- Shortcut Matcher Function -->
<script>
var specialCharCodes = {
II_II: "minUS",
II:II: Ilequallll
"[": "bracketleft",
"1": "bracketright",
";": "semicolon",
lllll: llquotell,
"*": "backquote",
"\\": "backslash",
II, II: "Comma",
II.H: "periOd",
II/II: "SlaSh",
iy

// Returns function that match keyboard event to see if it matches given
shortcut.
function shortcutMatcher(shortcut) {
let shortcutKeys = shortcut.toLowerCase().split(/[+]/).map(key =>
key.trim())
let mainKey = shortcutKeys[shortcutKeys.length - 1]

if (mainKey.length === 1) {

if (/\d/.test(mainKey)) {
mainKey = "digit" + mainKey

} else if (/[a-zA-Z]/.test(mainKey)) {
mainKey = "key" + mainKey

} else {
let code = specialCharCodes[mainKey];
if (code) {

mainKey = code

}

}

3

let ctrl = shortcutKeys.includes("ctrl")
let shift = shortcutKeys.includes("shift")
let alt = shortcutKeys.includes("alt")

let matchShortcut = function (ctrl, shift, alt, mainKey, event) {

if (mainKey !== event.code.toLowerCase()) return false

if (ctrl !'== (event.ctrlKey || event.metaKey)) return false
if (shift !== event.shiftKey) return false

if (alt !== event.altKey) return false

return true
}.bind(window, ctrl, shift, alt, mainKey)

return matchShortcut
}

</script>

<!-- HINT BUTTONS SETUP -->

<script>
(function() {
window.toggleHintBtn = function(containerId, noScrolling=false) {
const container = document.getElementById(containerId)
const link = container.getElementsByTagName("a")[0]
const button = container.getElementsByTagName("button")[0]
const hint = container.getElementsByTagName("div")[0]

if (hint.style.display == "none") {
button.classList.add("expanded-button")
hint.style.display = "block"
link.style.display = "none"
if (ScrollToButton && !'noScrolling) {
hint.scrollIntoView({
behavior: "smooth", // "auto" for instant scrolling
block: "start",
inline: "nearest"

1)

}

} else {
button.classList.remove("expanded-button")
hint.style.display = "none"
link.style.display = ""

}

}

window.toggleNextButton = function(){

// adapted from Hint Hotkey add-on
var customEvent = document.createEvent('MouseEvents');
customEvent.initEvent('click', false, true);
var arr = document.getElementsByTagName('a');
for (var i=0; i<arr.length; i++) {

var el = arr[i];

if (el.style.display === 'none') {

continue;

if (el.classList.contains("hint")) {
el.dispatchEvent(customEvent);
break

b
b
b

const isToggleNextShortcut = shortcutMatcher(ToggleNextButtonShortcut)
ankingAddEventListener ("keydown", (evt) => {
if (evt.repeat) return
if (isToggleNextShortcut(evt)) {
toggleNextButton()

b
1)

const setupHintBtn = function(elem) {
const containerId = elem.id
const fieldName = elem.dataset.name
const button = elem.getElementsByClassName("button")[0]

if (ButtonAutoReveal[fieldName]) {
toggleHintBtn(containerId, noScrolling=true)
}

const isShortcut = shortcutMatcher (ButtonShortcuts[fieldName])
const isToggleAllShortcut = shortcutMatcher(ToggleAllButtonsShortcut)
ankingAddEventListener("keydown", (evt) => {

if (evt.repeat) return

if (isShortcut(evt) || isToggleAllShortcut(evt)) {
toggleHintBtn(containerId)
}
1)
}

const hints = document.getElementsByClassName("hintBtn")
for (let i = 0; i < hints.length; i++) {
setupHintBtn(hints[i])
3
1O

</script>

<!l-- AUTOFLIP BACK SCRIPT -->
<script>
// autoflip hides card in front template
document.getElementById("qga").style.removeProperty("display")
</script>

<I-- CLOZE ONE BY ONE SCRIPT -->
<style>
.cloze-replacer:hover {
cursor: pointer;

.cloze-hidden {
display: none;
}

.cloze-replacer .hidden {
display: none;
}

.cloze-hint {
color: #009400 !important;
3

#extra.hidden {
display: none;

}
</style>

<script>
(function() {
var clozeOneByOneEnabled = true;
clozeOneByOneEnabled = document.getElementById("one-by-one").textContent !

—_— I,
- I4

if (!'clozeOneByOneEnabled) {
return

}

// Needed for amboss to recognize first word in .cloze-hidden
const CLOZE_REPLACER_SEP = " "

const hideAllCloze = function(initial) {
let clozes = document.getElementsByClassName('"cloze")
let count = @ // hidden cloze count
for (const cloze of clozes) {
const existingHidden = cloze.getElementsByClassName("cloze-hidden")[0]
if (existingHidden) {
revealCloze(cloze);

if (cloze.offsetWidth === 0) {
continue

const clozeReplacer = document.createElement("span")
const clozeHidden = document.createElement("span")

clozeReplacer.classList.add("cloze-replacer")
clozeHidden.classList.add("cloze-hidden")
while (cloze.childNodes.length > 0) {

clozeHidden.appendChild(cloze.childNodes[0])
}

cloze.appendChild(clozeReplacer)
cloze.appendChild(clozeHidden)

if (window.clozeHints && window.clozeHints[count]) {
clozeReplacer.classList.add("cloze-hint")
clozeReplacer.innerHTML = window.clozeHints[count] +
CLOZE_REPLACER_SEP
} else {
clozeReplacer.innerHTML = clozeHider(cloze) + CLOZE_REPLACER_SEP
}

count += 1

if (initial) {
cloze.addEventListener("touchend", revealClozeClicked)
cloze.addEventListener("click", revealClozeClicked)

b
b

const extra = document.getElementById("extra");
if (extra) {
extra.classList.add("hidden");
}
}

const revealCloze = function(cloze) {
const clozeReplacer = cloze.getElementsByClassName('"cloze-replacer")[0]
const clozeHidden = cloze.getElementsByClassName("cloze-hidden")[0]
if (!clozeReplacer || !clozeHidden) return;

cloze.removeChild(clozeReplacer)

cloze.removeChild(clozeHidden)

while (clozeHidden.childNodes.length > 0) {
cloze.appendChild(clozeHidden.childNodes[0])

maybeRevealExtraField()
}

const revealClozeWord = function(cloze) {
const clozeReplacer = cloze.getElementsByClassName('"cloze-replacer")[0]
const clozeHidden = cloze.getElementsByClassName("cloze-hidden")[0]
if (!'clozeReplacer || !'clozeHidden) return;

let range = new Range()
range.setStart(clozeHidden, 0)
const foundSpace = setRangeEnd(range, clozeHidden, "beforeFirstSpace")
if (!foundSpace) {
range.setEnd(clozeHidden, clozeHidden.childNodes. length)
}
let fragment = range.extractContents()
cloze.insertBefore(fragment, clozeReplacer)
// Extract whitespaces after word
range = new Range()
range.setStart(clozeHidden, 0)
const foundWord = setRangeEnd(range, clozeHidden, "beforeFirstChar")
if (!foundword) {
range.setEnd(clozeHidden, clozeHidden.childNodes. length)
}
fragment = range.extractContents();
cloze.insertBefore(fragment, clozeReplacer)
if (!foundword) {
cloze.removeChild(clozeHidden)

cloze.removeChild(clozeReplacer)
maybeRevealExtraField()
return

3

clozeReplacer.innerHTML = clozeHider(clozeHidden) + CLOZE_REPLACER_SEP

if (clozeReplacer.classList.contains("cloze-hint")) [
clozeReplacer.classList.remove("cloze-hint")

]
maybeRevealExtraField()

}

const revealNextClozeOf = (type) => {
const nextHidden = document.querySelector(".cloze-hidden")
if(!nextHidden) {
return
}

const cloze = clozeElOfClozeHidden(nextHidden);

if (type === "word") {
revealClozeWord(cloze)

} else if (type === "cloze") {
revealCloze(cloze)

} else {

console.error("Invalid type: " + type)
3
3

const revealClozeClicked = function(ev) {
let elem = ev.currentTarget
if (!ev.altKey && (revealNextClozeMode !== "word")) {
revealCloze(elem)
} else {
revealClozeWord(elem)
}

ev.stopPropagation()
ev.preventDefault()

}

window.revealNextCloze = function() {
revealNextClozeOf (revealNextClozeMode)

}

window.toggleAllCloze = function() {
let elems = document.querySelectorAll(".cloze-hidden")
if(elems.length > 0) {
for (const elem of elems) {
const cloze = clozeElOfClozeHidden(elem)
revealCloze(cloze)
}
} else {
hideAllCloze(initial=false)
}

b

const clozeElOfClozeHidden = (cloze) => {
while (!'cloze.classList.contains("cloze")) {
cloze = cloze.parentElement;

return cloze;

}

const maybeRevealExtraField = () => {
let elems = document.querySelectorAll(".cloze-hidden")
if (elems.length == 0) {
const extra = document.getElementById("extra")

if (extra) {
extra.classList.remove("hidden")
}

b
b

/**
* mode: 'beforeFirstSpace' or 'beforeFirstChar'
* Return “true’ if it exists and setEnd() was called, otherwise “false’
*/
const setRangeEnd = function(range, node, mode) {
if (node.nodeType === Node.TEXT_NODE) {
const regex = mode === 'beforeFirstSpace' ? /\s/ : /\S/
const match = node.textContent.match(regex)
if (match) {
if (match.index === 0) {
while (node.previousSibling === null) {
node = node.parentElement
}
range.setEndBefore(node)
} else {
range.setEnd(node, match.index);
}
return true;
} else {
return false;

}
} else if (mode === 'beforeFirstChar' && isCharNode(node)) {
range.setEndBefore(node)
return true
} else if (!ignoreSpaceInNode(node)) {
for (const child of node.childNodes) {
if (setRangeEnd(range, child, mode)) {
return true;

}
return false;
}
}
const ignoreSpaceInNode = function (node) {
return node.tagName === "MJX-ASSISTIVE-MML"
}

const isCharNode = function(node) {
return ["IMG", "MJX-CONTAINER"].includes(node.tagName)

}

hideAllCloze(initial=true)

let isShowNextShortcut = shortcutMatcher(window.revealNextShortcut)
let isShowWordShortcut = shortcutMatcher(window.revealNextWordShortcut)
let isToggleAllShortcut = shortcutMatcher(window.toggleAllShortcut)
ankingAddEventListener("keydown", (ev) => {
let next isShowNextShortcut(ev)
let word isShowWordShortcut(ev)
let all = isToggleAllShortcut(ev)
if (next) {
revealNextClozeOf ("cloze")
} else if (word) {
revealNextClozeOf ("word")
} else if (all) {
toggleAllCloze()
} else {

return;
3
ev.stopPropagation()
ev.preventDefault()
1)
HO

</script>

<!l-- CLICKABLE COLORFUL TAGS -->
{{#Tags}}
<div id="tags-container">{{clickable::Tags}}</div>
<script>
var tagContainer = document.getElementById("tags-container")
if (tagContainer.childElementCount == 0) {
var taglList = tagContainer.innerHTML.split(" ");
var kbdList = [];
var newTagContent = document.createElement("div");

for (var i = 0; i < tagList.length; i++) {
var newTag = document.createElement("kbd");
var tag = tagList[i];

// numTagLevelsToShow == @ means the whole tag should be shown
if(numTagLevelsToShow !'= 0){

tag = tag.split('::').slice(-numTagLevelsToShow).join("::");
}

newTag.innerHTML = tag;
newTagContent.append(newTag)

}
tagContainer.innerHTML = newTagContent.innerHTML;
tagContainer.style.cursor = "default";

if (tagContainer.innerHTML.indexOf(tagID) != -1) {

tagContainer.style.backgroundColor = "rgba(251,11,11, .15)";
}

function showtags() {
var tagContainerShortcut = document.getElementById('"tags-container");

if (tagContainerShortcut.style.display
—_—= Ilnonell) {
tagContainerShortcut.style.display = "block";
} else {
tagContainerShortcut.style.display
nnonen;
}

}

var isShortcut = shortcutMatcher(toggleTagsShortcut)
ankingAddEventListener('keyup', function (e) {
if (isShortcut(e)) {
showtags();
}

1)

</script>

{{/Tags}}

<!-- WIKIPEDIA SEARCHES -->
<div id="popup-container">
<button id="close-popup-btn" onclick="closePopup(true)">×</button>
↪
<div id="tc"></div>
<div id="fadebottom_v"></div>
<div id="ic"></div>

</div>
<style>
#tc {
color: #222222;
position: absolute;
top: 16px;
margin: Opx;
left: 15px;
text-decoration: none;
height: 320px;
overflow: hidden;
overflow-y: scroll;
white-space: pre-wrap;
width: 300px;
}

#tc p {
margin: Opx;
}

#tc::-webkit-scrollbar {
display: none;

}

#fadebottom_v {
height: 30px;
width: 300px;
background: -webkit-linear-gradient(270deg, rgba(255, 255, 255, 0.1),
rgba(255, 255, 255, 1));
z-index: 111;
position: absolute;
bottom: 0Opx;
left: 15px;
}

#hc {
color: #666;
font-weight: bold;

}

#ic {
right: 0px;
top: 30px;
position: absolute;

3

#ic img {
width: 160px;
height: auto;
object-fit: cover;
overflow: hidden;

b

#popup-image {
width: 140px;
height: auto;

}

#popup-container {
background: #fff;
position: absolute;
bottom: 30px;
right: 10px;
z-index: 110;

-webkit-box-shadow: 0 30px 90px -20px rgba(®, 0, 0, 0.3), 0 0 1px 1px
rgha(e, 0, 0, 0.05);

box-shadow: 0 30px 90px -20px rgba(e@, 0, 0, 0.3), 0 0 1px 1px rgba(o6, 0, O,
0.05);

padding: 0;

display: none;

font-size: 17px;

line-height: 20px;

border-radius: 2px;

width: 480px;

height: 340px;

overflow: hidden;

font-family: Arial;

text-align: left;

border: 1px solid #d0dedo;

border-radius: 5px;

b

#close-popup-btn {
position: absolute;
top: 1px;
right: 5px;
width: 32px;
height: 32px;
background: none;
border: 0;
cursor: pointer;
font-family: 'Josefin Sans', sans-serif;
font-size: 20px;
outline: none;
text-align: right;
z-index: 112;

}

#open-wiki-btn {
position: absolute;
top: 10px;
right: 30px;
width: 15px;
height: 32px;
background: none;
border: 0;
cursor: pointer;
text-decoration: none;
color: #222222;
font-family: 'Josefin Sans', sans-serif;
font-size: 17px;
outline: none;
text-align: left;
z-index: 112;

}

</style>

<script>
function getSummaryFor(word) {
word = word.replace(/ALN\., \/#\ISBNAEN*; t {3=\-_"~() \'\sT+|[\., \/#\I$B\N&\™; :
{3=\-_~O\'\s]+$/g, "");

var pc = document.getElementById("popup-container");
var hc = document.getElementById("hc");
var tc = document.getElementById("tc");
var ic = document.getElementById("ic");

var imgelem = document.getElementById("popup-image");
imgelem.src = "";
var shortsum = "";

fetch("https://en.wikipedia.org/api/rest_vi1/page/summary/" + word)
.then(function (response) { return response.json(); })
.then(function (response) {
shortsum = response.description;
shortsum = shortsum.replace(/(Disambiguation.*)/g, "Disambiguation");
tc.innerHTML = "" + capfl(shortsum) + "" + "\n" +
response.extract_html + "\n";
tc.style.width = "420px";
if (response.extract_html && !response.extract.endswith("to:")) {
pc.style.display = "block";
document.getElementById("open-wiki-btn").href =
response.content_urls.desktop.page;
} else {
pc.style.display = "none";

if (!'response.thumbnail.source || response.type === "disambiguation") {
tc.style.width = "420px";
} else {
tc.style.width = "300px"; imgelem.src = response.thumbnail.source;
}
1)

.catch(function (error) {
console. log(error);

});
}
function closePopup(deselectAlso = false) {
pcc.style.display = 'none';
if (deselectAlso) { clearSelection(); }
}
var pcc = document.getElementById("popup-container");
var prevSel = "";

ankingAddEventListener('click', function () {
var currentSelection = getSelectionText();
if (currentSelection !== "") { prevSel = currentSelection; }
if (currentSelection && !mustClickW) {
getSummaryFor (currentSelection);
} else { closePopup(); }

1)

ankingAddEventListener('keyup', function (e) {
if (e.key == "w") {
if (pcc.style.display === "block") { closePopup(); } else
{ getSummaryFor(prevSel); }

iOF

function getSelectionText() {
var text = "";
if (window.getSelection) {
text = window.getSelection().toString();
} else if (document.selection && document.selection.type != "Control")
{ text = document.selection.createRange().text; }
return text;
}

function capfl(s) {
return s.charAt(0).toUpperCase() + s.slice(1);
}

function clearSelection() {
if (window.getSelection) { window.getSelection().removeAllRanges(); }

else if (document.selection) { document.selection.empty(); }

}

//CUSTOMIZATION

//this is a variable controlling whether user must click the "w" key to open
the popup.

//1if set to true: user must select text, then click the "w" key to open
wikipedia popup. Clicking "w" key again will close the popup.

//if set to false: user only needs to select text. popup will open
automatically. Clicking "w" is an alternative but not obligatory way of
opening/closing the popup in this mode.

//BELOW SET to true or to false.

var mustClickW = true;

//END CUSTOMIZATION
</script>

