
Machine Learning for Human Movement
Classification Based on Kinect Skeleton Data

Faculty of Information Engineering, Computer Science and Statistics
Bachelor’s Degree in Computer Science

Lucian Dorin Crainic
ID number 1938430

Advisor
Prof. Maurizio Mancini

Academic Year 2023/2024



Machine Learning for Human Movement Classification Based on Kinect Skele-
ton Data
Bachelor’s Thesis. Sapienza University of Rome

© 2024 Lucian Dorin Crainic. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: crainic.lucian@gmail.com

mailto:crainic.lucian@gmail.com


It does not matter how slowly you go as long as you do not stop.





v

Abstract

This thesis conducts a detailed comparative study of several Machine Learning mod-
els, with a focus on their application to Kinect skeleton data for classifying human
movements. The primary aim of this research is to evaluate these models to deter-
mine the most effective ones for accurately classifying movements recorded through
Kinect sensors.

This study begins with an introduction to Kinect technology, highlighting its
ability to capture detailed movement data. Following this, an examination of a range
of Machine Learning models, such as Support-Vector Machines, Random Forests,
Linear Regression, and so on. Each model is tested to evaluate its accuracy, pro-
cessing efficiency, and robustness in accurately classifying various movements.

The core of this comparative analysis is a diverse dataset consisting of several
movements captured through a Microsoft Kinect. The research methodology in-
volves several steps: pre-processing the data, extracting key features that are char-
acteristic of specific movements, and applying the selected models to this improved
data. Performance evaluation of each model using standard metrics like accuracy,
precision, recall, and F1 score, which provide a complete picture of their effective-
ness.

Over this study, valuable understandings are gained into the specific strengths
and limitations of each model in the context of movement classification. The find-
ings reveal that some models prove enhanced performance in certain situations,
which is influenced by factors like the complexity of the captured movements and
the characteristics of the dataset.

This thesis acts as a useful guide for researchers and professionals. It helps them
pick the best models for similar work and sets the stage for more research in this
area. The findings can be used to develop more accurate and efficient models for
classifying human movements.





vii

Contents

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Dataset overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Dataset analysis 4
2.1 Data collection methodology . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Data structure and attributes . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Patients characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Movements visualization . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Methodology 13
3.1 Overview of the models . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Models analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Random forests . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Gradient boosting . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Linear-discriminant analysis . . . . . . . . . . . . . . . . . . . 16
3.2.5 Multi-layer perceptron . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Data splitting methods . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Feature engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Results and Discussion 27
4.1 Models evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusions 38
5.1 Discoveries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Acknowledgements 41

Bibliography 42





1

Chapter 1

Introduction

This thesis is structured in the following way: Chapter 1 presents the problem
statement, literature review, dataset overview, aims, and objectives of the study.
Chapter 2 presents the data collection methodology, data structure and attributes,
patient’s characteristics, movement visualization, and data pre-processing. Chap-
ter 3 presents the methodology used in this study, including the models, data
splitting methods, and Feature Engineering approach. Chapter 4 presents the
evaluation metrics used, results obtained, and discussion of the results. Finally,
Chapter 5 presents conclusions of this study and future work.

1.1 Problem statement
Traditionally, movement classification requires high-quality sensors and complicated
computer vision algorithms. However, with the arrival of the Microsoft Kinect
sensor and the release of the Kinect SDK [15], it is now possible to obtain high-
quality 3D skeleton data with a relatively low-cost device and with minimal effort.
This opens up the possibility of using this data to classify movements performed by
individuals, which can be used in a variety of applications, such as rehabilitation,
sports, and fall risk assessment. In this thesis, the focus is on the latter, with
the goal of using Kinect skeleton data to classify movements performed by elderly
individuals.

1.2 Literature review
In recent times, detection and classification of human activity have found a wide
range of applications in various fields. Among various sensors used, the Kinect sen-
sor stands out for its affordability and ease of use. S.A. Abdul Shukor and Nor
Asilah Saidin conducted a study utilizing a Kinect sensor to detect human falls.
Their system demonstrated accurate results [25]. Tao Wang et al. conducted a
study that involved gait analysis using a Kinect sensor for automatic and real-time
detection of depression. The model developed achieved a classification accuracy of
93.75% [29]. Naveen Kumar Mangal and Anil Kumar Tiwari conducted a study
that developed a filter to improve the quality of three-dimensional coordinate data
surrounding the body. With the aim of generating a movement signature crucial for



2 1. Introduction

kinematic analysis of musculoskeletal disorders. Findings from the study revealed
that the range of motion values derived from the proposed filter significantly im-
proved the monitoring accuracy of skeletal joints using a Kinect sensor [18]. Shalini
Nehra and Jagdish Lal Raheja created a human activity recognition system designed
for indoor monitoring and detection of daily activities using a Kinect sensor. The re-
sults demonstrated the system’s consistently high accuracy across various datasets,
as reported in [20]. Tan-Hsu Tan et al. conducted a study that developed a de-
tection system to identify both daily and abnormal activities in elderly individuals.
The performance was evaluated using a fourfold Cross-Validation approach, with
precision at 95.5%, recall at 95.6%, specificity at 99.8%, accuracy at 99.6%, and an
F1 score of 95.3% [27]. Weiyan Ren et al. used a Kinect sensor to gather posture
data from twenty individuals while lying in bed. Data was then subjected to a
Machine Learning approach using Support-Vector Machines architecture, resulting
in a classification success rate of 97.1% [24]. Ömer Faruk İnce et al. introduced
an innovative biometric system designed to identify human activities within three-
dimensional space. The study used the K-Nearest Neighbor algorithm as part of a
Machine Learning approach for classification, achieving an accuracy of 86.1% [34].
Pramod Kumar Pisharady and Martin Saerbeck presented a multi-class algorithm
for human posture detection and recognition. This algorithm remained invariant to
changes in position and scale by leveraging geometric properties from Kinect data.
Tested in both offline and real-time applications, it achieved a classification success
of 95.78% [23]. Tao Wang et al. introduced a method for accurately distinguishing
between various postures of five different individuals. A classification success rate
exceeding 99% was achieved [29].

After reviewing the literature, a consistent trend was observed: the effectiveness
of motion classification tends to reduce as the number of classes increases. Therefore,
there is a recognized need for further research to improve classification performance
in multi-class scenarios [3]. This study is specially focused on improving classifica-
tion accuracy across 10 distinct classes.

1.3 Dataset overview
In this thesis, a dataset of Kinect skeleton data is used. Composed of recorded
movements performed by a group of 22 individuals in front of a Kinect sensor,
data is saved as a series of 3D coordinates. It contains 10 different movements,
each performed a various number of times by each individual. The movements are
listed in Table 1.1.



1.4 Objectives 3

Table 1.1. Movements used in this study, along with a brief description.

No. Movement Name Description
1 Reach Overhead In a standing position, the subject raises one of their

arms above their head.
2 Chair to Chair Starting from a sitting position, the subject stands up,

and then sits down on another chair.
3 Cross-Reach Left In a standing position, the subject using their left arm

reaches across their body to the right side.
4 Cross-Reach Right In a standing position, the subject using their right

arm reaches across their body to the left side.
5 Reach Forward In a standing position, the subject reaches forward

with one of their arms.
6 Hoop Walk Starting from a standing position, the subject walks

inside a hoop placed on the floor and then walks out
of it.

7 Right Leg Stand In a standing position, the subject raises their left leg
and holds it in the air for a few seconds.

8 Left Leg Stand In a standing position, the subject raises their right
leg and holds it in the air for a few seconds.

9 Mat Walk Starting from a standing position, the subject walks
over a mat placed on the floor and then off it.

10 TUG Walk Starting from a sitting position, the subject is asked
to stand up, walk 3 meters, turn around, walk back to
the chair, and sit down while being timed.

1.4 Objectives
In this thesis work the task that is set to be accomplished is to classify movements
using Kinect skeleton data, this task is divided into several objectives that would
help to accomplish it. Objectives are described as follows:

1. Visualize and label Kinect skeleton data using 3D plot animations.

2. Pre-process data to remove noise and outliers for better classification results.

3. Analyze different approaches for handling data, such as using raw data or
applying Feature Engineering techniques.

4. Implement and evaluate various Machine Learning models.

5. Conduct a comprehensive comparative analysis of the performance of the mod-
els based on evaluation metrics and execution time.

6. Provide insights into the interpretability of selected models, aiding in under-
standing approaches used to classify movements.



4

Chapter 2

Dataset analysis

In this chapter, the dataset used in this thesis is analyzed. The data collection
methodology is described, along with a recording setup. Data structure and at-
tributes are presented, along with patient’s characteristics. Finally, data pre-processing
steps are described.

2.1 Data collection methodology
Data used in this thesis is collected at Waterford Hospital in Ireland as part of a
Fear of Falling study conducted on a group of 22 elderly individuals. Following a
recording setup a Microsoft Kinect is used to record movements performed.

Microsoft kinect

The first generation of Kinect sensor, Kinect V1 in Figure 2.1, is a motion sensing
input device developed by Microsoft and first released in 2010 for game consoles
and Microsoft Windows PCs [32]. A new version of a Kinect sensor, Kinect V2, was
released in 2014, with improved hardware and software [9].

Figure 2.1. Microsoft Kinect Sensor.

Kinect sensor

Kinect Sensor is a horizontal bar connected to a small base with a motorized pivot
and is designed to be positioned lengthwise above or below a video display. The
device features a color camera, an infrared (IR) emitter, an IR depth sensor, an
engine for tilting, a microphone array, and an LED light [2]. The sensor is capable



2.1 Data collection methodology 5

of sending three types of data: color images, 3D depth images, and bone information
corresponding to a 3D imaging field [33][3]. Along with its open-source libraries,
the Kinect system has helped to develop a wide range of applications in the fields of
computer vision, robotics, and human-computer interaction. This is because Kinect
offers a cost-effective and broadly accessible method for capturing 3D human motion
data, with the advantage of allowing users to interact with the system without a
need for any physical devices [10].

Figure 2.2. Skeletal joints recognized by a Microsoft Kinect sensor [14].

PyKinect2

PyKinect2 is a Python library for Microsoft’s Kinect V2 sensor. It provides a wrap-
per for Kinect Windows SDK 2.0, which allows for the use of the sensor in Python.
Library abstracts complex functionality of the hardware into an easy-to-use API.
Key features include:

• Skeletal tracking: detects and tracks human bodies, providing joint positions
and orientations.

• Color, depth, and infrared streams: Accesses raw sensor streams for visual
processing or analysis.

• Coordinate mapping: translates between different spatial representations. Such
as mapping skeletal joints to color or depth images for overlay visualization.

PyKinect2 library is a great bridge between Kinect sensor and Python programming
language, allowing for the use of the sensor in a variety of applications [1].



6 2. Dataset analysis

Recording setup

The patient’s data recording setup illustrated in Figure 2.3 consists of consumer-
level hardware (a laptop, a Kinect V2 depth camera, an external webcam, and
a smartphone) and a dedicated application developed within the project. Once
launched, an operator can display a sample stimulus on an external monitor to
show target movements to patients (1. Stimulus playback) so they can repeat (2.
patient performs movement) them by selecting one of them from a list in the appli-
cation. Then, by pressing the ”record” button (3. record/analyze skeleton + RGB +
accelerometer), recording of the patient’s full body movement can be started. The
application stores recorded patient’s movement files in a separate folder, naming
them based on their patient ID, movement ID, and repetition ID.

Figure 2.3. Setup used at Waterford Hospital for data collection.

Full body capture mainly relies on the PyKinect library [1], which provides
functions for getting the patient’s body segment’s position and rotation 25 times
per second. The application gets the data and stores it as a multi-dimensional
time series (one per body segment and coordinate type) in CSV files like the one
displayed in Figure 2.4.



2.2 Data structure and attributes 7

Figure 2.4. Example of a CSV file containing Kinect skeleton data.

The accelerometer is captured via a smartphone running an app streaming 3D
gyroscope data at 50 frames per second. Again, the application on the computer
stores it as a multi-dimensional time series (one per rotation axis). Communication
between smartphone and computer is based on a wireless network and Open Sound
Control (OSC) protocol [30].

2.2 Data structure and attributes
Data used in this thesis consists of a series of CSV files, each containing 3D coor-
dinates of the joints of a patient performing a movement. Total number of CSV
files is 637. In Figure 2.5 distribution of the CSV files between the movements is
presented with a median of 68 files per movement.

Figure 2.5. CSV files distribution between movements. M009 is the only movement with
less than 68 files due to it not being performed multiple times by the patients.

The dataset is organized in a directory structure. Each patient has a folder
named with their ID (Patient-ID) and inside there are 10 folders for each move-
ment, named with the movement ID (M-XXX). For every movement folder, there is
a folder for each repetition of the movement, named with a repetition ID (R-XXX).
Inside each repetition folder, there is a CSV file that contains Kinect skeleton data.
In Figure 2.6 an example of a directory structure is displayed.



8 2. Dataset analysis

Patients

Patient-1

M000

R000

FILE.CSV

R001

R002

Figure 2.6. Directory structure example using first patient and first movement in the
dataset.

The CSV file is organized as a series of columns, each column representing a
joint in Table 2.1 that a Kinect sensor records. Each joint is represented by 7
columns, one for each position and rotation coordinate (x, y, z) and one for the
state (used to indicate if the joint is tracked or not). Besides joints columns, there
are 2 columns for timestamp and datetime of the recording.

Table 2.1. Joints processed with PyKinect2 library.

Joints
AnkleLeft AnkleRight ElbowLeft ElbowRight
FootLeft FootRight HandLeft HandRight
HandTipLeft HandTipRight Head HipLeft
HipRight KneeLeft KneeRight Neck
ShoulderLeft ShoulderRight SpineBase SpineMid
SpineShoulder ThumbLeft ThumbRight WristLeft
WristRight



2.3 Patients characteristics 9

2.3 Patients characteristics

Patients that take part in the study are 22 elderly individuals, in Figure 2.7 age
distribution is presented, with a median age of 67 years.

Figure 2.7. Age distribution of patients.

In Figure 2.8 patient’s characteristics are presented. Fear of Falling is present
in 57% of patients, this is a relatively high percentage, due to the study being
conducted on a Fear of Falling assessment group. Gender is dominated by females
with a 95% of patients, this is also expected since most studies in literature had
mostly female patients (>50%) [17]. Education is also presented, with the majority
of patients having a Secondary or Third Level education.

Figure 2.8. Characteristics of patients in the study.

What is fear of falling ?

The definition of Fear of Falling had various interpretations over the years. Initially,
it is described as a phobic reaction to standing or walking. However, it is reclassified
as a syndrome characterized by the aftermath of a fall. As understanding develops,
this fear is seen as a loss of confidence in one’s balance ability. It is also further
defined as an ongoing concern about falling, which leads to avoidance of performing



10 2. Dataset analysis

daily activities. Recently, it has been described as continuous avoidance of activities
due to a concern of falling [16].

2.4 Movements visualization
Kinect skeleton data comes as a series of 3D coordinates, which can be visualized in
3D space. In this section, the implementation of movement visualization is presented.
It is implemented using Python programming language and Plotly library [13].

The first step in a visualization process is to identify a set of joints to be used.
In this approach, the dataset contains 25 joints but only 16 joints are used and
are displayed in Table 2.2.

Table 2.2. Selected Kinect joints used for visualization.

Joints
Head Spine Shoulder Spine Mid
Spine Base Shoulder Right Elbow Right
Wrist Right Shoulder Left Elbow Left
Wrist Left Hip Right Knee Right
Ankle Right Hip Left Knee Left
Ankle Left

Once joints are selected, the next step is to transform the data. In its original
state data is organized incorrectly for 3D visualization, and y and z coordinates are
inverted. To fix this, the y and z coordinates are swapped.

After the transformation is performed, data is ready to be visualized. Snippet 2.1
shows an implementation of the visualization process, it begins by extracting joint
coordinates and their connections, assigning colors and sizes to major joints, and
configuring a 3D layout. Animation frames are generated by iteratively capturing
snapshots of joint positions and connections over time. These frames are then
combined and displayed in an interactive 3D plot, allowing a user to play/stop the
animation and rotate the plot to view a movement from different angles.

Listing 2.1. Code snippet creates connecting lines between joints using their 3D coordi-
nates, enabling visualization of joint movements.

1 for index, row in data.iterrows():
2 x_values = [row[f"{joint}.px"] for joint in joints]
3 y_values = [row[f"{joint}.py"] for joint in joints]
4 z_values = [row[f"{joint}.pz"] for joint in joints]
5 lines = []
6 for connection in connections:
7 start, end = connection
8 lines.append(go.Scatter3d(
9 x=[row[f"{start}.px"], row[f"{end}.px"]],

10 y=[row[f"{start}.py"], row[f"{end}.py"]],
11 z=[row[f"{start}.pz"], row[f"{end}.pz"]],))



2.4 Movements visualization 11

In Figure 2.9 a set of movements performed by the patients is presented. The
movements are displayed in a 3D plot, with the x, y, and z axes representing plot
axes.

(a) Chair to Chair (b) Chair to Chair corrupted

(c) Cross-Reach Left (d) Tug Walk

Figure 2.9. Visualization of movements performed by the patients. Each plot is a 3D
visualization containing frames that display the animation.

Movement visualization allows for the identification of corrupted data, Figure
2.9b displays a movement that is corrupted, it is not possible to identify the move-
ment due to the data being incorrect. This led to further investigation and the
identification of corrupted data in the dataset, all of the data of Patient-1 is cor-
rupted and is removed from the dataset to not affect the classification task. This
corruption is due to the patient not being in the field of view of the Kinect sensor,
and the data is not recorded correctly.



12 2. Dataset analysis

2.5 Data pre-processing
An original dataset containing Kinect skeleton data is processed to remove noise
and outliers. This process is needed to improve classification results. Data pre-
processing steps are described in the following sections.

Cleaning

From the original dataset, a process of cleaning data is performed. Consisting of
removing columns that contain zero values and the ones that are not needed for this
classification task. Columns that are kept are listed in Table 2.2, only positional
coordinates are kept, and state columns and rotation columns (x, y, z) are removed
due to not giving any useful information. As mentioned in Section 2.4, all corrupted
data that is identified with the visualization process is removed from the dataset.

Normalization

Pose normalization is performed using the formula described in [19] as follows:

Pn,i(x, y, z) = Pn,i(x, y, z)− Pspinebase,1(x, y, z) (2.1)

Equation 2.1 is used to normalize the pose of a patient performing a movement.
By subtracting the coordinates of the spine base joint in the first frame from the
coordinates of all joints in the data. This is done to remove the effect of the position
of a patient in the recording setup and align all frames to the same position.

Transformation

Once data cleaning and normalization are performed, it is transformed into a format
that can be used for a classification task. Using the Scikit-Learn library [6], Min-
Max Scaler is used to scale data between 0 and 1 then Standard Scaler is used to
standardize it. After this process data is ready for a Machine Learning model.



13

Chapter 3

Methodology

In this chapter, the methodology used to split data and train models is presented.
In addition, the fundamental concepts behind the models used are explained.

3.1 Overview of the models
In this comparative study, a total of ten popular models are selected for analysis
of their performance on Kinect skeleton data.

Scikit-learn

Scikit-Learn is a Python library designed for Machine Learning, it offers a wide
range of state of the art algorithms for medium-scale supervised and unsupervised
problems. It emphasizes ease of use, performance, and API consistency, targeting
non-specialists with its high-level approach. It stands out for its minimal depen-
dencies and broad accessibility, being distributed under the simplified BSD license.
It integrates well with the Python ecosystem, making it highly desirable for both
academic and commercial applications [22].

Models selection

Models presented in Table 3.1 are used for a classification task. Selected based on
popularity and performance, these models are widely used in the Machine Learning
community. Models are implemented using Scikit-Learn library and its functions
for training, testing, and evaluating [6].



14 3. Methodology

Table 3.1. Models selected for use in this thesis.

Model Name
1 Support-Vector Machines 6 Linear-Discriminant Analysis
2 Gaussian Naive Bayes 7 Multi-Layer Perceptron
3 Random Forests 8 K-Nearest Neighbors
4 Gradient Boosting 9 Ada Boost
5 Logistic Regression 10 Decision Trees

3.2 Models analysis
In this section models that performed best in Chapter 4 are analyzed in terms of
their implementation.

3.2.1 Random forests
Also known as random decision forests, it is a method of ensemble learning used
for classification, regression, and various other tasks. It involves building numerous
decision trees during a training phase. In classification tasks, the class chosen by a
majority of trees is an output of the random forest [12].

Figure 3.1. The process starts with multiple training sets that undergo randomization to
create several subsets S1. Each subset is used to train a separate decision tree (T1 to
T3). Trained trees are then used to make predictions on a test set. Predictions (C1
to C4) from each tree are aggregated through a voting mechanism to produce a final
classification result (C). This ensemble approach leverages multiple models to improve
prediction accuracy and robustness [21].

The main steps involved in building a Random Forests classifier are as follows:



3.2 Models analysis 15

1. Define M as the number of features in each subset.

2. Randomly select a feature subset θk from the full set, distinct from proceding
subset θ1, ..., θk−1.

3. Train decision trees on each θk denoted as h(X, θk).

4. Iteratively select new θk subsets and train until all trees are built.

5. Classify test data by majority vote of all trees in the forest.

Random Forests consist of numerous decision trees. Randomization in tree build-
ing through sampling instances and feature subsets via bagging enhances diversity,
reducing overfitting and improving generalization. Feature subsets θk are chosen by
bagging, and the importance of features is ranked by their impact on the model’s
accuracy ”strength” and ”correlation” of the forest are influenced by M , with op-
timal values providing a balance. Random Forests efficiency is due to its parallel
structure, accelerating classification significantly [21].

3.2.2 Gradient boosting
Gradient Boosting is a Machine Learning method that refines predictions iteratively,
combining strengths of simple models, like decision trees, into a more accurate en-
semble. Each iteration, represented by Fm(x), improves upon the last by adding
a weighted decision tree ρmhm(x) that addresses the previous errors. The process
follows the principle of gradient descent, where hm(x) is trained to predict the neg-
ative gradient of a loss function, effectively reducing residual between the predicted
and true values. Ensemble begins with a single model F0(x), which is updated by
the formula:

Fm(x) = Fm−1(x) + ρmhm(x) (3.1)
The aim is to minimize loss function L(y, Fm(x)) at each step, ensuring the model’s
prediction becomes progressively more accurate [5].

Figure 3.2. Starting with training data, an algorithm iteratively trains decision trees
(Sample 1 to Sample L). Each tree is trained on errors of the previous ones, aiming
to correct these mistakes. Over multiple iterations, each tree improves the model’s
predictions, and the final output is a combined effort of all trees, effectively reducing
prediction errors [7].



16 3. Methodology

3.2.3 Logistic regression
Logistic Regression is a statistical model used for binary classification that predicts
the probability of a binary response based on one or more predictor variables. It
applies a logistic function to a linear combination of input features to produce a
value between 0 and 1, interpreted as a probability of the instance being in a positive
class. Equation 3.2 shows the logistic function for binary classification.

P (Z) =
1

1 + e−(β0+β1x)
(3.2)

In multi-class classification, the One Vs Rest approach involves training a sep-
arate Logistic Regression classifier for each class to distinguish that class from all
other classes. For each classifier, the class is designed to identify as the positive
class, and all others are lumped into a single negative class. The logistic function
is the same as for binary classification, presented in Equation 3.2. It is applied
multiple times, one for each class.

Figure 3.3. The horizontal axis labeled Z represents an input variable (which is a linear
combination of the features), and the vertical axis labeled P(Z) represents a probability
that an outcome is a positive class. The curve transitions smoothly from 0 to 1, with an
inflection point at Z=0, where P(Z) = 0.5. This S-shaped curve allows logistic regression
to convert continuous predictions into a probability between 0 and 1, facilitating binary
classification [8].

3.2.4 Linear-discriminant analysis
Linear-Discriminant Analysis (LDA) is a method used in Statistics and Machine
Learning to find a linear combination of features that separates two or more classes
of objects or events. It does so by maximizing a ratio of between-class variance
to a within-class variance in any particular data set, thereby ensuring maximum
separability.

In a binary class, the goal is to find a linear combination w that separates the
classes. This involves computing mean vectors m1 and m2 for each class, within-



3.2 Models analysis 17

class scatter matrix SW , and between-class scatter matrix SB. Linear discriminants
are then the eigenvectors of S−1

W SB [31].

Figure 3.4. The intuition behind LDA. Data samples in two dimensions are projected in
a lower-dimension space. The line has to be chosen so that the projection maximizes
the ”separability” of projected samples [31].

For multi-class problems, the same principle applies but extends to multiple
classes. Within class scatter matrix SW and between class scatter matrix SB are
computed considering all classes, and the objective is to find linear discriminants
that maximize separation among all classes.

The simplicity and effectiveness of LDA, especially under assumptions of nor-
mality and equal class covariances, make it a powerful tool for classification [4].

3.2.5 Multi-layer perceptron
Multi-Layer Perceptron architecture includes at least three layers, an input layer,
an output layer, and one or more hidden layers, each composed of nodes with non-
linear activation functions[26]. They are referred to as ”vanilla” Neural Networks
[11].

y(vi) = tanh(vi) (3.3)

y(vi) = (1 + e−vi)−1 (3.4)

A linear function can simplify multiple layers to a two-layer model, mapping
weighted inputs to neuron outputs. Non-linear activation functions, like hyperbolic
tangent 3.3 ranging from -1 to 1, or sigmoid function 3.4 ranging from 0 to 1, are
used to introduce non-linearity into a model. This allows a model to learn complex
patterns in the data.



18 3. Methodology

In the context of MLP, complete connectivity is maintained, every node within a
given layer connects to every node in the subsequent layer via weighted connections.
The learning process involves dynamic adjustment of connection weights following
the processing of each data point. This adjustment is made in response to the
disparity between actual output and expected outcome, to minimize error.

Figure 3.5. Feed-forward network consists of an input layer, one or more hidden layers,
and an output layer [26].



3.3 Data splitting methods 19

3.3 Data splitting methods
Due to the structure of data, a traditional approach of splitting data into training
and testing sets is not effective. Two different approaches will be presented, one
ineffective and one effective.

Traditional

Data is split into 70% training and 30% testing following a traditional approach
used in Machine Learning literature. The code snippet in 3.1 demonstrates this
approach.

Listing 3.1. Traditional approach to splitting data into training and testing sets.

1 def split_data(data: pd.DataFrame) -> tuple:
2 X = data.iloc[:, :-1].values
3 y = data.iloc[:, -1].values
4

5 X_train, X_test, y_train, y_test = train_test_split(
6 X, y, test_size=0.33, random_state=42)
7

8 return X_train, X_test, y_train, y_test

Figure 3.6 visualization demonstrates why this approach is ineffective. Every
row in the dataset is associated with a specific patient. Data is split randomly, so
there is a chance that the same patient will appear in both training and testing
sets. This means that a model will be trained on data that it will also be tested on,
which will result in a high accuracy score. However, this is not a good indicator of
a model’s performance on unseen data.

Figure 3.6. Patient presence in both training and testing sets visualization.



20 3. Methodology

Effective

Data is split into training and testing sets based on a patient’s unique IDs. They
are split into training and testing sets, and then data is split based on patient’s
unique ids. The code snippet in 3.2 demonstrates this approach.

Listing 3.2. Effective approach to splitting data into training and testing sets.

1 def split_data(data: pd.DataFrame) -> tuple:
2 unique_patient = data['patient'].unique()
3

4 train_patients , test_patients = train_test_split(←↩
unique_patients , test_size=0.3, random_state=42)

5

6 train_data = data[data['patient'].isin(train_patients)]
7 test_data = data[data['patient'].isin(test_patients)]
8

9 X_train = train_data.drop(columns=['label', 'patient'])
10 y_train = train_data['label']
11

12 X_test = test_data.drop(columns=['label', 'patient'])
13 y_test = test_data['label']
14

15 return X_train, X_test, y_train, y_test

Figure 3.7 visualization demonstrates why this approach is effective. Data is
split based on patient’s unique IDs, so a model will be trained on data that will not
be tested. This means that a model will be tested on unseen data, which is a good
indicator of a model’s performance.

Figure 3.7. Patients split between training and testing sets visualization, ensuring that a
patient is only present in one of the sets.



3.3 Data splitting methods 21

Sequential

Data is split into training and testing sets based on the patient’s unique IDs, then
sets are split into sequences. Where each sequence represents a stack of frames
that make up a movement. The code snippet in 3.3 demonstrates this splitting
technique.

Listing 3.3. Effective approach to splitting data into training and testing sets.

1 def sequences(df: pd.DataFrame , feature_columns: list, ←↩
sequence_column: str) -> tuple:

2 sequences = []
3 labels = []
4 current_sequence = []
5 current_check = None
6

7 for _, row in df.iterrows():
8 check = row[sequence_column]
9 label = row['label']

10 if check != current_check and current_sequence:
11 sequences.append(np.array(current_sequence))
12 labels.append(label)
13 current_sequence = []
14 current_sequence.append(row[feature_columns].to_numpy())
15 current_check = check
16

17 if current_sequence:
18 sequences.append(np.array(current_sequence))
19 labels.append(label)
20

21 return sequences , labels

Figure 3.8 visualization shows how for each movement data is split into sequences
for training and testing. However, using only this approach is not enough, as the
sequences are of different lengths due to each movement having a variable number
of frames. This means that sequences cannot be used as input for models since they
require a fixed input size.

Figure 3.8. Visualization of the sequences splitting approach.



22 3. Methodology

To solve this variable length problem, sequences are aggregated into a single
feature vector. Code snippet 3.4 demonstrates this approach. In Figure 3.9, the
length of sequences before and after aggregation is visualized. Aggregation is done
by calculating the mean of each feature for each frame in the sequence. This results
in a single feature vector for each sequence, which can be used as input for the
models.

Listing 3.4. Sequences are aggregated into a single feature vector.

1 def aggregate_features(sequences: list) -> np.ndarray:
2 return np.array([np.mean(sequence , axis=0) if sequence.size←↩

!= 0 else np.zeros(sequence.shape[1]) for sequence in ←↩
sequences])

However, there are some drawbacks to this approach. The aggregation results
in a loss of information, as data is no longer represented as a sequence of frames.
In addition, aggregation results in a loss of temporal information, as the order of
frames is lost. This means that models will not be able to learn temporal patterns
in data.

Figure 3.9. Visualization of the length of the sequences before and after aggregation.



3.4 Feature engineering 23

3.4 Feature engineering
Feature engineering is the final approach used in this thesis. It is used to extract
new features from raw Kinect skeleton data, to improve the performance of the
models.

Overview

This process is implemented to improve the performance of the models due to them
not being able to differentiate well between movements based on raw data. This
allows us to obtain data that is more informative and easier to interpret. Features
extracted from Kinect skeleton data are presented in Table 3.2.

Table 3.2. Features extracted from Kinect skeleton data.

Features
1 Duration 2 Area
3 Velocity 4 Distance
5 Vertical displacement 6 Horizontal displacement
7 Forward displacement

Calculation Methods

Features presented in Table 3.2 are calculated using the following methods. For each
feature, the method used to calculate it is presented, along with a brief description.

Table 3.3. Selected body parts from Kinect skeleton data joints.

Body parts selected
Head ShoulderLeft ShoulderRight SpineShoulder

SpineMid SpineBase ElbowLeft ElbowRight
WristLeft WristRight HipLeft HipRight
KneeLeft KneeRight AnkleLeft AnkleRight

Duration

Duration is defined as how long it takes for a movement to be performed from start
to finish. It is calculated as a difference between maximum and minimum datetime
column values. It is calculated in seconds.

Duration = (max_datetime − min_datetime) (3.5)

Area

The area is defined as an aggregate area of convex hulls formed by trajectories of
selected body parts. It operates by extracting (x, y, z) coordinates for each specified



24 3. Methodology

body part, constructing a convex hull for these points, and then calculating the hull’s
volume.

Area =

n∑
i=0

Volume(Hull(Pi)) (3.6)

In Equation 3.6, Pi is a set of points representing trajectory of body part i in
3D space, where i ∈ {1, 2, ..., n} for n body parts. The Convex hull of Pi is denoted
as Hull(Pi), which is the smallest convex set that contains all points in Pi. Volume
(area in 3D) of Hull(Pi) is calculated using a formula for the volume of a convex
polyhedron, which depends on the vertices of the hull. The total area calculated is
a sum of the volumes of these convex hulls for specified body parts.

Listing 3.5. Area calculation method using ConvexHull class from SciPy library [28].

1 def area(df: pd.DataFrame , body_parts: list) -> float:
2 def calculate(points: np.ndarray) -> float:
3 hull = ConvexHull(points)
4 return hull.volume
5 trajectories = {}
6 for column in body_parts:
7 body_part = column.split('.')[0]
8 trajectory = df[[body_part + '.px', body_part + '.py', ←↩

body_part + '.pz']].values
9 trajectories[body_part] = trajectory

10 temp = {}
11 for body_part , trajectory in trajectories.items():
12 temp[body_part] = calculate(trajectory)
13 return sum(temp.values())

Figure 3.10. Visualization of the area occupied by two movements, red area represents
Chair to Chair while blue area represents Right Leg Stand.

Velocity

Velocity is defined as a rate of change of displacement over time. It is calculated
as the square root of the sum of squared displacement over time difference for each



3.4 Feature engineering 25

axis.

velocity =

√(
displacementx
time difference

)2

+

( displacementy
time difference

)2

+

(
displacementz
time difference

)2

(3.7)

Listing 3.6. Velocity calculation method.

1 def velocity(df: pd.DataFrame) -> float:
2 first = df.iloc[0]
3 last = df.iloc[20]
4 start = first['datetime'].split('_')[1].split('.')[0]
5 end = last['datetime'].split('_')[1].split('.')[0]
6 diff = pd.to_datetime(end) - pd.to_datetime(start)
7 velx = last['Head.px'] - first['Head.px'] / diff.total_seconds←↩

()
8 vely = last['Head.py'] - first['Head.py'] / diff.total_seconds←↩

()
9 velz = last['Head.pz'] - first['Head.pz'] / diff.total_seconds←↩

()
10 return math.sqrt(velx**2 + vely**2 + velz**2)

Figure 3.11. Visualization of the median velocity of each movement in the dataset. This
shows how velocity varies between movements and can be used to differentiate between
them.

Distance

Distance is defined as the total 3D Euclidean distance between consecutive points
representing a position of a body part, typically the head. It is calculated by taking
each pair of consecutive rows in the dataset, computing the distance between their
(x, y, z) head positions in 3D space using the Euclidean distance formula, and
summing up these distances to find an overall total distance covered by a body part
in the sequence.



26 3. Methodology

Distance =

n−1∑
i=0

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 (3.8)

Listing 3.7. Distance calculation method.

11 def calculate(row1: pd.Series, row2: pd.Series, point="Head") -> ←↩
float:

12 return np.sqrt((row2[f'{point}.px'] - row1[f'{point}.px'])**2 +
13 (row2[f'{point}.py'] - row1[f'{point}.py'])**2 ←↩

+
14 (row2[f'{point}.pz'] - row1[f'{point}.pz'])**2)
15

16 def distance(df: pd.DataFrame) -> float:
17 return sum(calculate(df.iloc[i], df.iloc[i+1]) for i in range(←↩

len(df) - 1))

Time steps displacement

Following joints: AnkeLeft, AnkleRight, WristLeft, WristRight, SpineMid have been
selected for calculation of displacement. These joints have been selected as they are
the most informative for the movements in the dataset.

Time step displacement is defined as a total change in the position of a body
part from the start to the end of a movement. It is calculated by taking absolute
differences in positions of a body part between consecutive time steps, and then
summing up these differences over all time steps.

Time steps displacement =
n∑

t=1

|P (t)− P (t− 1)| (3.9)

In Equation 3.9, P is a placeholder for axis positions of a body part, and t is the
time step.

1. Vertical is calculated by taking Y axis positions.

2. Horizontal is calculated by taking X axis positions.

3. Forward is calculated by taking Z axis positions.

Listing 3.8. Vertical time steps displacement calculation method.

18 def vertical(df: pd.DataFrame , joint: str) -> float:
19 df['vertical_diff'] = df[f'{joint}.py'].diff().abs()
20 total_vertical = df['vertical_diff'].sum()
21 return total_vertical



27

Chapter 4

Results and Discussion

This chapter presents results obtained from experiments conducted in the previous
chapter. Classification models are evaluated using different approaches and metrics.
Results are then discussed and compared to each other.

4.1 Models evaluation
Performed using Scikit-Learn library [6]. It provides a wide range of validation
methods and metrics to evaluate the performance of the models. The following
sections will present validation methods and metrics used in this thesis.

Validation

Validation is a process of evaluating the performance of the models. The goal of
validation is to estimate the performance of the model on new data, not used during
the training process. The following validation methods are used:

Hold-Out

This method is widely used for its simplicity and speed. The dataset is split into
two subsets. The training set is used to train the model, Testing set is used to
evaluate the performance of the model. Typically, a common split ratio is:

• Training set: 70% of the dataset.

• Testing set: 30% of the dataset.

Cross-Validation

This method is used in literature for its effectiveness and robustness. It can be time-
consuming for large datasets, but it is the best method to evaluate the performance
of the models.

• K fold: Data is divided into K folds, then K-1 folds are used for training, and
the remaining fold is used for testing. This process is repeated K times, with
each fold being used exactly once for testing. Fig 4.1 display KFold split.



28 4. Results and Discussion

Figure 4.1. KFold Visualization from Scikit-Learn documentation [22].

• Group k fold: Variation of k fold designed for situations where data has
inherent groupings or dependencies that should be preserved in train/test
split. In this method, data is divided into K folds, and then an additional
constraint is imposed to ensure that data points from the same group are in
the same fold. Fig 4.2 display GroupKFold split.

Figure 4.2. GroupKFold Visualization from Scikit-Learn documentation [22].

An advantage of using Cross-Validation over Hold-Out is that all samples are
used for both training and testing, and each sample is used for testing exactly once.
This method helps to reduce the variance of the estimated performance of a model,
by averaging results over several trials. A disadvantage of using Cross-Validation is
that it is computationally expensive for very large datasets.



4.1 Models evaluation 29

In this thesis, both methods are used to evaluate the performance of the mod-
els. The Hold-Out method is used to evaluate the performance of the models for
Traditional approach and Sequence approach datasets due to their large di-
mensions. Cross-Validation method is used with the Hold-Out method to evaluate
the performance of the models for Correct approach and Feature Engineer-
ing approach dataset due to them scoring the best results and being effective
approaches. Confronting the results of two methods will show the correctness of an
evaluation.

Metrics

This section will report metrics used to benchmark different models used in this
thesis.

Accuracy score

Accuracy is a proportion of correct predictions, considering both true positives and
true negatives, among a total number of samples. The formula used to calculate
accuracy is the following:

TP + TN
TP + TN + FP + FN (4.1)

where TP is a number of true positives, TN is a number of true negatives, FP is
a number of false positives and FN is a number of false negatives.

Precision score

Precision is the ability of a classifier not to label as positive a sample that is negative.
The formula used to calculate precision is the following:

TP
TP + FP (4.2)

Recall score

Recall is the ability of a classifier to find all the positive samples. The formula used
to calculate the recall is the following:

TP
TP + FN (4.3)

F1 score

F1 score is a harmonic mean of precision and recall. The formula used to calculate
the F1 score is the following:

2× (precision × recall)
precision + recall (4.4)



30 4. Results and Discussion

Matthews correlation coefficent

Matthews correlation coefficent (or φ coefficient) takes into account true and false
positives and negatives and is regarded as a balanced measure that can be used
even if the classes are of very different sizes. Formula used to calculate φ coefficient
is as follows:

TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(4.5)

These metrics will be used to show the effectiveness of the approaches proposed
in this thesis.

4.2 Results
Combining validation methods and metrics presented above, the following tables will
show results obtained from experiments conducted. Results are divided into two
categories: Exploratory shows two approaches that were tested but did not obtain
good results due to wrong implementation or loss of information. Effective shows
two approaches that obtained good results and are suitable for this task. Presented
in the following order: Traditional approach, Sequence approach, Effective approach
and Feature Engineering approach.

Exploratory

The following approaches are included because they are a starting point in this thesis,
and show how different implementations can affect the accuracy of the models.

Traditional approach

Presented in Section 3.3, it is the first one to be tested and it got surprisingly
good results. Such a simple approach and yet high accuracy raised doubts about
the validity of results, after further investigation, it has been discovered that the
dataset is not properly split into training and testing sets.

Table 4.1. Evaluation results using Hold-Out validation method.

Model Accuracy F1 Recall Precision MCC
Random Forests 0.99 0.99 0.99 0.99 0.99
K-Nearest Neighbors 0.98 0.98 0.98 0.98 0.98
Decision Trees 0.96 0.96 0.96 0.96 0.96
Support-Vector Machines 0.87 0.86 0.85 0.86 0.86
Logistic Regression 0.82 0.80 0.80 0.80 0.80

In Table 4.1, results obtained from the Hold-Out method are presented. High
values are obtained for all the metrics, with Random Forests obtaining the highest
values with a score of 0.99 for accuracy. This confirmed doubts about the validity
of results, a patient is both present in the training and testing set. This led to
models overfitting the data and obtaining high accuracy.



4.2 Results 31

Sequence approach

Presented in Section 3.3, it achieved the lowest results of all the approaches. Tested
to see if concatenating frames of a movement into a sequence would help models
differentiate between movements and obtain higher accuracy.

Table 4.2. Evaluation results using Hold-Out validation method.

Model Accuracy F1 Recall Precision MCC
K-Nearest Neighbors 0.56 0.54 0.54 0.54 0.51
Random Forests 0.55 0.52 0.53 0.53 0.49
Support-Vector Machines 0.52 0.47 0.49 0.46 0.47
Logistic Regression 0.44 0.41 0.42 0.43 0.38
Decision Trees 0.41 0.38 0.39 0.40 0.34

In Table 4.2, results obtained from the Hold-Out method are presented. Low
values are obtained for all the metrics, with K-Nearest Neighbors obtaining the
highest values with a score of 0.56 for accuracy. These results are considered low
based on other approaches, however in the context of randomly guessing a movement
of a patient accuracy would be 0.10 as there are 10 movements. This means that
models can differentiate between movements, but sequence implementation leads to
a loss of information and a high accuracy cannot be obtained.

Effective

The following approaches obtained the best results and are suitable for this task.
The main difference between the two approaches is in the data used to train the
models. Correct Approach uses data as it is from the Kinect sensor, while Feature
Engineering Approach uses data after applying Feature Engineering techniques.

Correct approach

Presented in Section 3.3, considered effective because raw Kinect data can obtain a
high accuracy. Data is not modified in any way, besides the removal of rotational
and state data, and pre-processing to remove noise.

In Table 4.3 results obtained from the Hold-Out method are presented. Ran-
dom Forests obtains the highest values for all the metrics, with a score of 0.74 for
accuracy. Other models such as Gradient Boosting, Linear-Discriminant Analysis,
Support-Vector Machines, K-Nearest Neighbors obtained great results as well with
a score greater than 0.70 for accuracy. This confirms that data obtained from the
Kinect sensor is suitable for the task of movement classification without any major
tweaks.



32 4. Results and Discussion

Table 4.3. Evaluation results using Hold-Out validation method.

Model Accuracy F1 Recall Precision MCC
Random Forests 0.74 0.73 0.73 0.73 0.71
Gradient Boosting 0.73 0.72 0.72 0.72 0.69
Linear-Discriminant Analysis 0.72 0.71 0.71 0.74 0.68
Support-Vector Machines 0.71 0.71 0.71 0.72 0.68
K-Nearest Neighbors 0.71 0.69 0.69 0.70 0.67
Logistic Regression 0.66 0.64 0.64 0.64 0.62
Multi-Layer Perceptron 0.63 0.59 0.62 0.61 0.59
Naive Bayes 0.63 0.60 0.61 0.62 0.58
Decision Trees 0.63 0.60 0.62 0.61 0.58
Ada Boost 0.35 0.22 0.28 0.24 0.32

In Table 4.3 Hold-Out validation method is used for all models, while in Table
4.4 Cross-Validation is used with only 3 models to compare two validation meth-
ods and show that there is no major difference between them. The results obtained
from the two methods are similar.

Hold-Out method is used for its speed, with 10 minutes of training time while
Cross-Validation runs for hours without finishing. This is because this approach
uses raw Kinect data, that contains over 59000 rows and 100 columns.

Table 4.4. Comparison of obtained results with Cross-Validation and Hold-Out methods.
Metrics reported are (from top to bottom): Accuracy, F1, Recall, Precision, MCC.

Model Cross-Validation Hold-Out
Linear-Discriminant Analysis 0.73 0.72

0.71 0.71
0.70 0.71
0.75 0.74
0.70 0.68

K-Nearest Neighbors 0.71 0.71
0.70 0.69
0.70 0.69
0.71 0.70
0.68 0.67

Naive Bayes 0.66 0.63
0.62 0.60
0.63 0.62
0.66 0.61
0.62 0.58



4.2 Results 33

In Table 4.5 are displayed results of a final approach, where two movements
Mat Walk and Hoop Walk are removed from the dataset one at a time. Results
show that the accuracy of models increased by 4% to 5%. This is because the
two movements are very similar, and this caused models to struggle to differentiate
between them no matter the features used.
By removing either one of the movements, the model’s accuracy increased by the
same amount. This leaves a decision to the user to choose which movement to
remove based on the context of the application.

Table 4.5. Comparison of obtained results with Mat Walk and Hoop Walk removed from
the dataset. Metrics reported are (from top to bottom): Accuracy, F1, Recall, Precision,
MCC.

Model Hoop Walk Removed Mat Walk Removed
Random Forests 0.79 0.79

0.79 0.79
0.79 0.79
0.79 0.79
0.76 0.76

Gradient Boosting 0.78 0.78
0.78 0.78
0.78 0.78
0.78 0.79
0.74 0.75

Linear-Discriminant Analysis 0.76 0.76
0.77 0.77
0.76 0.76
0.80 0.79
0.73 0.73



34 4. Results and Discussion

Feature engineering approach

Presented in Section 3.4, considered most effective because it obtained the highest
accuracy of all approaches and it is fastest to train. Data is modified by applying
Feature Engineering techniques presented in 3.4, this leads to the dataset having
fewer rows and columns.

Table 4.6. Evaluation results using Cross-Validation method.

Model Accuracy F1 Recall Precision MCC
Multi-Layer Perceptron 0.83 0.83 0.84 0.84 0.81
Logistic Regression 0.82 0.83 0.83 0.84 0.80
Linear-Discriminant Analysis 0.81 0.82 0.83 0.84 0.80
Support-Vector Machines 0.81 0.82 0.83 0.83 0.80
Random Forests 0.79 0.80 0.80 0.82 0.77
Gradient Boosting 0.78 0.79 0.79 0.82 0.76
K-Nearest Neighbors 0.78 0.79 0.80 0.80 0.76
Decision Trees 0.73 0.73 0.74 0.77 0.70
Naive Bayes 0.63 0.63 0.66 0.66 0.60
Ada Boost 0.46 0.38 0.46 0.42 0.43

In Table 4.6 results obtained from the Cross-Validation method are displayed.
High values are obtained for all metrics, with Multi-Layer Perceptron and Lo-
gistic Regression obtaining the highest values with a score of 0.83 and 0.82 for
accuracy. Other models such as Linear-Discriminant Analysis, Gradient Boosting,
Random Forests, Support-Vector Machines, K-Nearest Neighbors obtained great re-
sults as well with a score greater than 0.70 for accuracy.

This confirms that Feature Engineering techniques applied to data are suitable
for the task of movement classification. This approach is also the fastest to train,
with a training time of 1 minute.

Table 4.7 presents results obtained from the Hold-Out validation method. Sim-
ilar to the ones obtained with the validation method, with a lower training time of
10 seconds. However, Cross-Validation is preferred over Hold-Out because it is
more used in literature.

Table 4.8 presents the results of a final approach used in the Correct approach.
Results show that the accuracy of the models increased by 8% to 12%. This is a
larger increase than the one obtained in the Correct approach, this is due to the
Feature Engineering techniques applied to be more informative than raw Kinect
data. Leading to models being able to differentiate between two movements more
easily.



4.2 Results 35

Table 4.7. Comparison of obtained results with Cross-Validation and Hold-Out methods.
The metrics reported are (from top to bottom): Accuracy, F1, Recall, Precision, and
MCC.

Model Cross-Validation Hold-Out
Linear-Discriminant Analysis 0.81 0.82

0.82 0.82
0.83 0.83
0.84 0.83
0.80 0.80

Logistic Regression 0.82 0.80
0.83 0.81
0.83 0.82
0.84 0.82
0.80 0.78

Multi-Layer Perceptron 0.83 0.70
0.83 0.71
0.84 0.71
0.84 0.78
0.81 0.68

Table 4.8. Comparison of obtained results with Mat Walk and Hoop Walk removed from
the dataset. Metrics reported are (from top to bottom): Accuracy, F1, Recall, Precision,
MCC.

Model Hoop Walk Removed Mat Walk Removed
Multi-Layer Perceptron 0.90 0.91

0.90 0.91
0.90 0.92
0.92 0.92
0.89 0.90

Logistic Regression 0.90 0.91
0.91 0.91
0.91 0.91
0.92 0.92
0.89 0.90

Linear-Discriminant Analysis 0.91 0.90
0.91 0.91
0.91 0.91
0.92 0.92
0.90 0.89



36 4. Results and Discussion

4.3 Discussion
This section discusses results obtained from experiments conducted in the previous
chapter. Differences between approaches, best-performing models, and similarities
between movements are topics of discussion.

Differences between approaches

Four approaches are tested in this thesis, each one with a different implementation.
It is presented that Feature Engineering approach obtained the best results in
terms of accuracy and training time. However, Correct approach also obtained
great results but it is lacking in training time. These two approaches are considered
the most effective and suitable for this task of movement classification. Neverthe-
less, their implementation is completely different, with one using raw Kinect data
containing a very large number of rows and columns, while the other uses data
after applying Feature Engineering techniques transforming it into a more informa-
tive dataset. This demonstrates how an approach used to solve a problem can affect
the results obtained. Other two approaches Traditional approach and Sequence
approach prove that an incorrect data splitting method and a loss of information
can lead to low accuracy. Their implementation is not suitable for this task but
was a crucial step in the development phase to better understand why models were
not performing well.

Best performing models

Models listed below obtained the best results in the two approaches considered
effective.

1. Random Forests and Gradient Boosting are two best per-
forming models in Correct approach with a 0.74 and 0.73
accuracy score respectively.

2. Multi-Layer Perceptron and Logistic Regression are two
best performing models in Feature Engineering approach with
a 0.83 and 0.82 accuracy score.

The results above demonstrate how models perform differently depending on
the approach used, due to data used to train models being of different dimensions
and information.

Movements similarity

It is demonstrated in Table 4.5 and Table 4.8 that by removing Mat Walk and
Hoop Walk from the dataset, the accuracy of the models increased.

This problem is first noticed when a Confusion Matrix is plotted for Feature
Engineering approach using Multi-Layer Perceptron model. In Figure 4.3a Confu-
sion Matrix of all 10 movements is displayed, the model is struggling to differentiate
between movements 3 and 5 (Mat Walk and Hoop Walk). In Figure 4.3b one be-
tween Mat Walk and Hoop Walk is removed, the model does not struggle anymore
to differentiate between the two movements.



4.3 Discussion 37

(a) 10 Movements. (b) 9 Movements.

Figure 4.3. Confusion Matrix of Multi-Layer Perceptron model using Feature Engineering
approach.

To confirm this, 3D Visualization of movements used in Section 2.4 is used. A
random sample of Mat Walk and Hoop Walk is plotted, in Figure 4.4a and Figure
4.4b two movements are displayed. They are very similar due to them being both
walking movements, the only difference is that in Mat Walk patient is walking on
a mat while in Hoop Walk patient is walking in a hoop. This is the reason why
models struggle to differentiate between two movements.

(a) Hoop Walk (b) Mat Walk

Figure 4.4. 3D Visualization plots of two similar movements.



38

Chapter 5

Conclusions

This chapter presents the key findings of this thesis, highlighting its limitations and
reviewing potential approaches for future research to improve results and develop
more effective models.

5.1 Discoveries
Presented below are the key findings of this thesis:

1. Pre-processed raw data obtained from the Kinect sensor is suitable for this
task of movement classification. However, it alone does not provide enough
information for the models to obtain a high accuracy.

2. Feature Engineering is a crucial process of creating new features from raw
data with the goal of improving the accuracy and training time of the models.

3. Multi-Layer Perceptron is the best-performing model for this task, with a
score of 0.83 using 10 movements and 0.91 using 9 movements after removing
one of the similar movements and using a Feature Engineering approach.

4. Data splitting techniques are an essential step in the process of training the
models, an incorrect split can lead to overfitting and an incorrect evaluation.
Using ”Patient-ID” as a split criteria is the best approach to avoid any data
leakage between training and testing sets.

5. Sequence of frames is not a good approach to take for this type of data,
due to every movement having a variable number of frames, and Machine
Learning models need a fixed length input. Transforming data into fixed-
length sequences will lead to a loss of information and a decrease in accuracy.

6. 3D visualization of movements allows us to visually identify and label them.
It is discovered that ”Mat Walk” and ”Hoop Walk” are very similar, with
the only difference being the object that the patient is walking over. This
led to models struggling to differentiate between these two movements and by
removing one of them from the dataset accuracy of the models improved.



5.2 Limitations 39

5.2 Limitations

Limitations encountered in this work will be presented, along with an exploration
of their impact and the strategies used to overcome them.

A list of 10 movement names was provided with the dataset, however, move-
ments were not labeled according to the list and only a unique ID was assigned to
each one. This led to a need to update labels after visually identifying them with
the help of a 3D visualization.
While data was collected an unknown number of movements have not been per-
formed correctly by the patients. It was not possible to develop a technique that
would identify and remove them, so they have been kept in the dataset. This limi-
tation may have affected the accuracy of the models due to the noise introduced.

The dataset dimensions are relatively small, with only 10 movements and 21
patients. This led to only using Training and Testing sets for the evaluation of the
models, as the dataset was too small to split into Training/Validation/Testing sets.
A larger dataset is needed to split it into these sets and evaluate the models better.
Features calculated in the Feature Engineering approach are not accurate to the
literature due to only using positional data from the Kinect sensor. However, they
still provide enough information for models to obtain a high accuracy.

5.3 Future work

Kinect skeleton data is suitable for this task of movement classification, leading
to the possibility of implementing new techniques and approaches to improve the
accuracy of the models.

Feature Engineering approach obtains a high accuracy and reduces the training
time of the models by reducing the dimension of the original dataset. It is recom-
mended to use it if the dataset is going to be scaled up to include more movements
and patients, as the training time will increase exponentially.
The number of features has been reduced but it was not possible to tell which ones
contribute most to the accuracy of the models. In future work, it is recommended to
calculate the importance of each feature and remove the ones that do not contribute
to the accuracy of the models. With the help of domain experts, it is possible to
calculate new and more meaningful features that can help the models differentiate
between movements.
As stated before two movements (Mat Walk and Hoop Walk) are very similar. It is
suggested to remove one of them from the dataset to obtain a realistic evaluation of
the models, this will help to differentiate between movements that are very similar.

This thesis only used Machine Learning models from Scikit-Learn library. It is
possible to implement new models from TensorFlow library, such as Convolutional
Neural Networks and Long-Short Term Memory networks. These models are more
complex and require a larger dataset to train on, but they can obtain a higher ac-



40 5. Conclusions

curacy than models used in this thesis with a correct implementation.
It is crucial to acquire new data from the Kinect sensor and add new movements
and patients. This will allow us to scale up the dataset and study how models
perform on more classes and patients.

The possible approaches for future work on this task are endless, above are only
a few suggestions that can be implemented. The goal of this thesis is to study the
feasibility of using Kinect skeleton data for movement classification and provide a
baseline for future research with this type of data.



41

Acknowledgements

I am thankful to my parents, Rodica and Dorin, whose sacrifices have been the
starting point of my success. The hard work and faith they have demonstrated,
alongside the decision to emigrate from Romania to Italy for the sake of providing
me with a brighter future, have been the driving force of my aspirations. Their love
and support have been my constant source of strength.
A heartfelt thanks to my girlfriend, Margherita, for her enduring patience, en-
couragement, and love. Her belief in my capabilities and understanding during the
demanding times of this degree have been invaluable.
Last but not least, I would like to express my appreciation to my two cats, Mimmi
and Shelby. Their companionship during the long nights of study has been a relief.
They have been silent and sleepy witnesses to my struggles and accomplishments,
their presence is a constant reminder of the importance of the little things in life.

To all of you, I am eternally thankful. Your contributions to my life and this
work have not only helped shape this academic effort but also enriched my personal
growth.



42

Bibliography

[1] GitHub - Kinect/PyKinect2: Wrapper to expose Kinect for Windows v2 API
in Python — github.com. https://github.com/Kinect/PyKinect2.

[2] Abbasi, J., Salarieh, H., and Alasty, A. A motion capture algo-
rithm based on inertia-Kinect sensors for lower body elements and step length
estimation. Biomedical Signal Processing and Control, 64 (2021), 102290.
Available from: https://www.sciencedirect.com/science/article/pii/
S1746809420304110, doi:10.1016/j.bspc.2020.102290.

[3] Açış, B. and Güney, S. Classification of human movements by using
Kinect sensor. Biomedical Signal Processing and Control, 81 (2023), 104417.
Available from: https://www.sciencedirect.com/science/article/pii/
S1746809422008710, doi:10.1016/j.bspc.2022.104417.

[4] Balakrishnama, S. and Ganapathiraju, A. LINEAR DISCRIMINANT
ANALYSIS - A BRIEF TUTORIAL.

[5] Bentéjac, C., Csörgő, A., and Martínez-Muñoz, G. A com-
parative analysis of gradient boosting algorithms. Artificial Intelligence
Review, 54 (2021), 1937. Available from: https://doi.org/10.1007/
s10462-020-09896-5, doi:10.1007/s10462-020-09896-5.

[6] Buitinck, L., et al. API design for machine learning software: experiences
from the scikit-learn project. In ECML PKDD Workshop: Languages for Data
Mining and Machine Learning, pp. 108–122 (2013).

[7] Cha, G.-W., Moon, H.-J., and Kim, Y.-C. Comparison of Random Forest
and Gradient Boosting Machine Models for Predicting Demolition Waste Based
on Small Datasets and Categorical Variables. International Journal of Envi-
ronmental Research and Public Health, 18 (2021), 8530. Available from: https:
//www.mdpi.com/1660-4601/18/16/8530, doi:10.3390/ijerph18168530.

[8] Cramer, J. S. The Origins of Logistic Regression (2002). Available from:
https://papers.ssrn.com/abstract=360300, doi:10.2139/ssrn.360300.

[9] Cruz, L., Lucio, D., and Velho, L. Kinect and RGBD Images: Challenges
and Applications. In 2012 25th SIBGRAPI Conference on Graphics, Patterns
and Images Tutorials, pp. 36–49. IEEE, Ouro Preto, Brazil (2012). ISBN 978-
0-7695-4830-2 978-1-4673-5091-4. Available from: http://ieeexplore.ieee.
org/document/6382717/, doi:10.1109/SIBGRAPI-T.2012.13.

https://github.com/Kinect/PyKinect2
https://www.sciencedirect.com/science/article/pii/S1746809420304110
https://www.sciencedirect.com/science/article/pii/S1746809420304110
http://dx.doi.org/10.1016/j.bspc.2020.102290
https://www.sciencedirect.com/science/article/pii/S1746809422008710
https://www.sciencedirect.com/science/article/pii/S1746809422008710
http://dx.doi.org/10.1016/j.bspc.2022.104417
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1007/s10462-020-09896-5
http://dx.doi.org/10.1007/s10462-020-09896-5
https://www.mdpi.com/1660-4601/18/16/8530
https://www.mdpi.com/1660-4601/18/16/8530
http://dx.doi.org/10.3390/ijerph18168530
https://papers.ssrn.com/abstract=360300
http://dx.doi.org/10.2139/ssrn.360300
http://ieeexplore.ieee.org/document/6382717/
http://ieeexplore.ieee.org/document/6382717/
http://dx.doi.org/10.1109/SIBGRAPI-T.2012.13


Bibliography 43

[10] Gowing, M., Ahmadi, A., Destelle, F., Monaghan, D. S., O’Connor,
N. E., and Moran, K. Kinect vs. Low-cost Inertial Sensing for Gesture
Recognition. In MultiMedia Modeling (edited by C. Gurrin, F. Hopfgartner,
W. Hurst, H. Johansen, H. Lee, and N. O’Connor), Lecture Notes in Computer
Science, pp. 484–495. Springer International Publishing, Cham (2014). ISBN
978-3-319-04114-8. doi:10.1007/978-3-319-04114-8_41.

[11] Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical
Learning. Springer Series in Statistics. Springer, New York, NY (2009). ISBN
978-0-387-84857-0 978-0-387-84858-7. Available from: http://link.springer.
com/10.1007/978-0-387-84858-7, doi:10.1007/978-0-387-84858-7.

[12] Ho, T. K. The random subspace method for constructing decision forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (1998),
832. Conference Name: IEEE Transactions on Pattern Analysis and Machine
Intelligence. Available from: https://ieeexplore.ieee.org/document/
709601, doi:10.1109/34.709601.

[13] Inc., P. T. Collaborative data science (2015). Available from: https://plot.
ly.

[14] Jais, H. M., Mahayuddin, Z. R., and Arshad, H. A review on
gesture recognition using kinect. In 2015 International Conference on
Electrical Engineering and Informatics (ICEEI), pp. 594–599. IEEE, Den-
pasar, Bali, Indonesia (2015). ISBN 978-1-4673-6778-3 978-1-4673-7319-7.
Available from: http://ieeexplore.ieee.org/document/7352569/, doi:10.
1109/ICEEI.2015.7352569.

[15] Jana, A. Kinect for Windows SDK Programming Guide. Packt Publishing, 1
edn. (2012). ISBN 978-1-84969-238-0. Available from: https://www.perlego.
com/book/389793/kinect-for-windows-sdk-programming-guide-pdf.

[16] Jung, D. Fear of Falling in Older Adults: Comprehensive Re-
view. Asian Nursing Research, 2 (2008), 214. Available from: https:
//linkinghub.elsevier.com/retrieve/pii/S1976131709600037, doi:10.
1016/S1976-1317(09)60003-7.

[17] MacKay, S., Ebert, P., Harbidge, C., and Hogan, D. B. Fear of Falling
in Older Adults: A Scoping Review of Recent Literature. Canadian geriatrics
journal: CGJ, 24 (2021), 379. doi:10.5770/cgj.24.521.

[18] Mangal, N. K. and Tiwari, A. K. Kinect v2 tracked Body Joint Smoothing
for Kinematic Analysis in Musculoskeletal Disorders. Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE
Engineering in Medicine and Biology Society. Annual International Conference,
2020 (2020), 5769. doi:10.1109/EMBC44109.2020.9175492.

[19] Maudsley-Barton, S., McPhee, J., Bukowski, A., Leightley, D.,
and Yap, M. H. A comparative study of the clinical use of motion anal-
ysis from Kinect skeleton data. In 2017 IEEE International Conference on

http://dx.doi.org/10.1007/978-3-319-04114-8_41
http://link.springer.com/10.1007/978-0-387-84858-7
http://link.springer.com/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1007/978-0-387-84858-7
https://ieeexplore.ieee.org/document/709601
https://ieeexplore.ieee.org/document/709601
http://dx.doi.org/10.1109/34.709601
https://plot.ly
https://plot.ly
http://ieeexplore.ieee.org/document/7352569/
http://dx.doi.org/10.1109/ICEEI.2015.7352569
http://dx.doi.org/10.1109/ICEEI.2015.7352569
https://www.perlego.com/book/389793/kinect-for-windows-sdk-programming-guide-pdf
https://www.perlego.com/book/389793/kinect-for-windows-sdk-programming-guide-pdf
https://linkinghub.elsevier.com/retrieve/pii/S1976131709600037
https://linkinghub.elsevier.com/retrieve/pii/S1976131709600037
http://dx.doi.org/10.1016/S1976-1317(09)60003-7
http://dx.doi.org/10.1016/S1976-1317(09)60003-7
http://dx.doi.org/10.5770/cgj.24.521
http://dx.doi.org/10.1109/EMBC44109.2020.9175492


44 Bibliography

Systems, Man, and Cybernetics (SMC), pp. 2808–2813 (2017). Available
from: https://ieeexplore.ieee.org/abstract/document/8123052, doi:
10.1109/SMC.2017.8123052.

[20] Nehra, S. and Raheja, J. Unobtrusive and Non-Invasive Human Ac-
tivity Recognition using Kinect Sensor. pp. 58–63 (2020). doi:10.1109/
Indo-TaiwanICAN48429.2020.9181359.

[21] Parmar, A., Katariya, R., and Patel, V. A Review on Random For-
est: An Ensemble Classifier. In International Conference on Intelligent Data
Communication Technologies and Internet of Things (ICICI) 2018 (edited by
J. Hemanth, X. Fernando, P. Lafata, and Z. Baig), Lecture Notes on Data
Engineering and Communications Technologies, pp. 758–763. Springer Inter-
national Publishing, Cham (2019). ISBN 978-3-030-03146-6. doi:10.1007/
978-3-030-03146-6_86.

[22] Pedregosa, F., et al. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12 (2011), 2825.

[23] Pisharady, P. K. and Saerbeck, M. Kinect based body posture detec-
tion and recognition system: 4th International Conference on Graphic and Im-
age Processing, ICGIP 2012. International Conference on Graphic and Image
Processing, ICGIP 2012, (2013). Available from: http://www.scopus.com/
inward/record.url?scp=84880152714&partnerID=8YFLogxK, doi:10.1117/
12.2009926.

[24] Ren, W., Ma, O., Ji, H., and Liu, X. Human Posture Recognition Using a
Hybrid of Fuzzy Logic and Machine Learning Approaches. IEEE Access, PP
(2020), 1. doi:10.1109/ACCESS.2020.3011697.

[25] Saidin, N. and Abdul Shukor, S. An Analysis of Kinect-Based Human
Fall Detection System. pp. 220–224 (2020). doi:10.1109/ICSPC50992.2020.
9305797.

[26] Svozil, D., Kvasnicka, V., and Pospichal, J. Introduction to multi-
layer feed-forward neural networks. Chemometrics and Intelligent Laboratory
Systems, 39 (1997), 43. Available from: https://www.sciencedirect.com/
science/article/pii/S0169743997000610, doi:10.1016/S0169-7439(97)
00061-0.

[27] Tan, T.-H., Gochoo, M., Chen, H.-S., Liu, S.-H., and Huang, Y.-F.
Activity Recognition Based on DCNN and Kinect RGB Images. pp. 1–4 (2020).
doi:10.1109/iFUZZY50310.2020.9297815.

[28] Virtanen, P., et al. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17 (2020), 261. doi:10.1038/
s41592-019-0686-2.

[29] Wang, T., Li, C., Wu, C., Zhao, C., Sun, J., Peng, H., Hu, X., and
Hu, B. A Gait Assessment Framework for Depression Detection Using Kinect

https://ieeexplore.ieee.org/abstract/document/8123052
http://dx.doi.org/10.1109/SMC.2017.8123052
http://dx.doi.org/10.1109/SMC.2017.8123052
http://dx.doi.org/10.1109/Indo-TaiwanICAN48429.2020.9181359
http://dx.doi.org/10.1109/Indo-TaiwanICAN48429.2020.9181359
http://dx.doi.org/10.1007/978-3-030-03146-6_86
http://dx.doi.org/10.1007/978-3-030-03146-6_86
http://www.scopus.com/inward/record.url?scp=84880152714&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=84880152714&partnerID=8YFLogxK
http://dx.doi.org/10.1117/12.2009926
http://dx.doi.org/10.1117/12.2009926
http://dx.doi.org/10.1109/ACCESS.2020.3011697
http://dx.doi.org/10.1109/ICSPC50992.2020.9305797
http://dx.doi.org/10.1109/ICSPC50992.2020.9305797
https://www.sciencedirect.com/science/article/pii/S0169743997000610
https://www.sciencedirect.com/science/article/pii/S0169743997000610
http://dx.doi.org/10.1016/S0169-7439(97)00061-0
http://dx.doi.org/10.1016/S0169-7439(97)00061-0
http://dx.doi.org/10.1109/iFUZZY50310.2020.9297815
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2


Bibliography 45

Sensors. IEEE Sensors Journal, 21 (2021), 3260. Conference Name: IEEE
Sensors Journal. Available from: https://ieeexplore.ieee.org/document/
9187648, doi:10.1109/JSEN.2020.3022374.

[30] Wright, M. and Freed, A. Open SoundControl: A New Protocol for
Communicating with Sound Synthesizers.

[31] Xanthopoulos, P., Pardalos, P. M., and Trafalis, T. B. Lin-
ear Discriminant Analysis. In Robust Data Mining (edited by P. Xan-
thopoulos, P. M. Pardalos, and T. B. Trafalis), SpringerBriefs in Optimiza-
tion, pp. 27–33. Springer, New York, NY (2013). ISBN 978-1-4419-9878-
1. Available from: https://doi.org/10.1007/978-1-4419-9878-1_4, doi:
10.1007/978-1-4419-9878-1_4.

[32] Xu, X. and McGorry, R. W. The validity of the first and second gener-
ation Microsoft Kinect™ for identifying joint center locations during static
postures. Applied Ergonomics, 49 (2015), 47. Available from: https://
www.sciencedirect.com/science/article/pii/S0003687015000149, doi:
10.1016/j.apergo.2015.01.005.

[33] Zheng, Z., Wang, Q., Deng, D., Wang, Q., and Huang, W.
CG-Recognizer: A biosignal-based continuous gesture recognition sys-
tem. Biomedical Signal Processing and Control, 78 (2022), 103995.
Available from: https://www.sciencedirect.com/science/article/pii/
S1746809422004438, doi:10.1016/j.bspc.2022.103995.

[34] İnce, �. F., Ince, I. F., Yıldırım, M. E., Park, J. S., Song,
J. K., and Yoon, B. W. Human activity recognition with anal-
ysis of angles between skeletal joints using a RGB-depth sensor.
ETRI Journal, 42 (2020), 78. Publisher: John Wiley & Sons Inc.
Available from: https://research.bau.edu.tr/en/publications/
human-activity-recognition-with-analysis-of-angles-between-skelet-2,
doi:10.4218/etrij.2018-0577.

https://ieeexplore.ieee.org/document/9187648
https://ieeexplore.ieee.org/document/9187648
http://dx.doi.org/10.1109/JSEN.2020.3022374
https://doi.org/10.1007/978-1-4419-9878-1_4
http://dx.doi.org/10.1007/978-1-4419-9878-1_4
http://dx.doi.org/10.1007/978-1-4419-9878-1_4
https://www.sciencedirect.com/science/article/pii/S0003687015000149
https://www.sciencedirect.com/science/article/pii/S0003687015000149
http://dx.doi.org/10.1016/j.apergo.2015.01.005
http://dx.doi.org/10.1016/j.apergo.2015.01.005
https://www.sciencedirect.com/science/article/pii/S1746809422004438
https://www.sciencedirect.com/science/article/pii/S1746809422004438
http://dx.doi.org/10.1016/j.bspc.2022.103995
https://research.bau.edu.tr/en/publications/human-activity-recognition-with-analysis-of-angles-between-skelet-2
https://research.bau.edu.tr/en/publications/human-activity-recognition-with-analysis-of-angles-between-skelet-2
http://dx.doi.org/10.4218/etrij.2018-0577

	Introduction
	Problem statement
	Literature review
	Dataset overview
	Objectives

	Dataset analysis
	Data collection methodology
	Data structure and attributes
	Patients characteristics
	Movements visualization
	Data pre-processing

	Methodology
	Overview of the models
	Models analysis
	Random forests
	Gradient boosting
	Logistic regression
	Linear-discriminant analysis
	Multi-layer perceptron

	Data splitting methods
	Feature engineering

	Results and Discussion
	Models evaluation
	Results
	Discussion

	Conclusions
	Discoveries
	Limitations
	Future work

	Acknowledgements
	Bibliography

