From ceph-ansible to Rook

Table of Contents

OpenStack Integration	2
Ceph Default	
Keystone	
Misc defaults	
Current deployment method utilizing ceph-ansible	4
Compare Ceph ansible vs Rook	
Manual POC with Rook	

OpenStack Integration

The integration into OpenStack is done by using various configuration files underneath <u>this</u> <u>repository</u> for the appropriate components:

- cinder-volume
- glance
- gnocchi
- manila
- nova

The configuration relies on prior generated Ansible facts:

Ceph Default

Default values regarding the configuration of Ceph are defined <u>here</u> and are utilised in the <u>OSISM</u> <u>container-image-ceph-ansible</u>.

Keystone

https://github.com/osism/testbed/blob/main/environments/ceph/configuration.yml#L34

ceph_conf_overrides: "client.rgw.{{ hostvars[inventory_hostname] ['ansible_hostname'] }}.rgw0": "rgw content length compat": "true" "rgw enable apis": "swift, s3, admin" "rgw keystone accepted admin roles": "admin" "rgw keystone accepted roles": "member, admin" "rgw keystone admin domain": "default" "rgw keystone admin password": "{{ ceph_rgw_keystone_password }}" "rgw keystone admin project": "service" "rgw keystone admin tenant": "service" "rgw keystone admin user": "ceph_rgw" "rgw keystone api version": "3" "rgw keystone implicit tenants": "true" "rgw keystone url": "https://apiint.testbed.osism.xyz:5000" "rgw keystone verify ssl": "false" "rgw s3 auth use keystone": "true" "rgw swift account in url": "true" "rgw swift versioning enabled": "true" "rgw verify ssl": "false"

Misc defaults https://github.com/osism/testbed/blob/main/environments/ceph/configuration.yml#L34

> ceph_conf_overrides: global: auth allow insecure global id reclaim: false # NOTE: default size of 2 because by default there are only 2 nodes osd pool default size: 2 osd pool default min size: 0 mon: mon allow pool delete: true

Current deployment method utilizing ceph-ansible

Currently the upstream <u>ceph-ansible</u> functionality is supplemented by <u>container-image-ceph-ansible</u>.

The following sequence describes the current testbed ceph deployment when executing *make ceph*:

- 1. *testbed/Makefile* \rightarrow target: *ceph*
- 2. *testbed/terraform/Makefile* \rightarrow target: *deploy-ceph*
- 3. *testbed/scripts/deploy/100-ceph-services-basic.sh* This script prepares and created LVM volumes and finally runs the following code:

```
osism apply ceph
if [[ $MANAGER_VERSION =~ ^7\.[0-9]\.[0-9]$ ||
        $MANAGER_VERSION == "latest" ]]; then
        osism apply ceph-pools
fi
osism apply copy-ceph-keys
osism apply cephclient
osism apply ceph-bootstrap-dashboard
```

Compare Ceph Ansible vs Rook

A comparison of the two setups can be found <u>in this document</u>. You can also find example settings for a testbed deployment using the ceph-ansible method.

Manual POC with Rook

- 1. Create a minimal setup with *make manager* via the OSISM testbed
- 2. Manually execute the steps to prepare the LVM volumes (from 100-ceph-services-basic.sh)

osism apply ceph-configure-lvm-volumes

for node in \$(find /opt/configuration/inventory/host_vars -mindepth 1 -type d); do
 if [[-e /tmp/\$(basename \$node)-ceph-lvm-configuration.yml]]; then

cp /tmp/\$(basename \$node)-ceph-lvm-configuration.yml \

/opt/configuration/inventory/host_vars/\$(basename \$node)/ceph-lvm-configuration.yml
fi

done

osism reconciler sync

osism apply ceph-create-lvm-devices

- osism apply facts
 - 3. Deploy Kubernetes with <u>/opt/configuration/scripts/deploy/005-</u> kubernetes.sh on the manager.
 - 4. Install the rook operator with osism apply rook-operator
 - 5. Execute rook apply cluster.yml and pass it a custom cluster file. An example is below

Define the settings for the rook-ceph cluster with common settings for a production cluster. # All nodes with available raw devices will be used for the Ceph cluster. At least three nodes are required # in this example. See the documentation for more details on storage settings available. # For example, to create the cluster: # kubectl create -f crds.yaml -f common.yaml -f operator.yaml kubectl create -f cluster.vaml ****** apiVersion: ceph.rook.io/v1 kind: CephCluster metadata: name: rook-ceph namespace: rook-ceph # namespace:cluster spec: cephVersion: # The container image used to launch the Ceph daemon pods (mon, mgr, osd, mds, rgw). # v17 is Quincy, v18 is Reef. # RECOMMENDATION: In production, use a specific version tag instead of the general v17 flag, which pulls the latest release and could result in different # versions running within the cluster. See tags available at https://hub.docker.com/r/ceph/ceph/tags/. # If you want to be more precise, you can always use a timestamp tag such as quay.io/ceph/ceph:v18.2.1-20240103 # This tag might not contain a new Ceph version, just security fixes from the underlying operating system, which will reduce vulnerabilities image: quay.io/ceph/ceph:v18.2.1 # Whether to allow unsupported versions of Ceph. Currently `quincy` and `reef` are supported. # Future versions such as `squid` (v19) would require this to be set to `true`. # Do not set to true in production. allowUnsupported: false # The path on the host where configuration files will be persisted. Must be specified. # Important: if you reinstall the cluster, make sure you delete this directory from each host or else the mons will fail to start on the new cluster. # In Minikube, the '/data' directory is configured to persist across reboots. Use "/data/rook" in Minikube environment. dataDirHostPath: /var/lib/rook # Whether or not upgrade should continue even if a check fails # This means Ceph's status could be degraded and we don't recommend upgrading but you might decide otherwise # Use at your OWN risk # To understand Rook's upgrade process of Ceph, read https://rook.io/docs/rook/latest/ceph-upgrade.html#ceph-version-upgrades skipUpgradeChecks: false # Whether or not continue if PGs are not clean during an upgrade continueUpgradeAfterChecksEvenIfNotHealthy: false # WaitTimeoutForHealthyOSDInMinutes defines the time (in minutes) the operator would wait before an OSD can be stopped for upgrade or restart.

If the timeout exceeds and OSD is not ok to stop, then the operator would skip upgrade for the current OSD and proceed with the next one

if `continueUpgradeAfterChecksEvenIfNotHealthy` is `false`. If `continueUpgradeAfterChecksEvenIfNotHealthy` is `true`, then operator would

continue with the upgrade of an OSD even if its not ok to stop after the timeout. This timeout won't be applied if `skipUpgradeChecks` is `true`

The default wait timeout is 10 minutes. waitTimeoutForHealthyOSDInMinutes: 10 mon: # Set the number of mons to be started. Generally recommended to be 3. # For highest availability, an odd number of mons should be specified. count: 3 # The mons should be on unique nodes. For production, at least 3 nodes are recommended for this reason. # Mons should only be allowed on the same node for test environments where data loss is acceptable. allowMultiplePerNode: false mgr: # When higher availability of the mgr is needed, increase the count to 2. # In that case, one mgr will be active and one in standby. When Ceph updates which # mgr is active, Rook will update the mgr services to match the active mgr. count: 2 allowMultiplePerNode: false modules: # List of modules to optionally enable or disable. # Note the "dashboard" and "monitoring" modules are already configured by other settings in the cluster CR. # - name: rook enabled: true # enable the ceph dashboard for viewing cluster status dashboard: enabled: true # serve the dashboard under a subpath (useful when you are accessing the dashboard via a reverse proxy) # urlPrefix: /ceph-dashboard # serve the dashboard at the given port. # port: 8443 # serve the dashboard using SSL ssl: true # The url of the Prometheus instance

- # prometheusEndpoint: <protocol>://<prometheus-host>:<port>
- # Whether SSL should be verified if the Prometheus server is using https
- # prometheusEndpointSSLVerify: false
- # enable prometheus alerting for cluster

monitoring:

requires Prometheus to be pre-installed

enabled: false

Whether to disable the metrics reported by Ceph. If false, the prometheus mgr module and Ceph exporter are enabled.

If true, the prometheus mgr module and Ceph exporter are both disabled. Default is false.

metricsDisabled: false

network:

connections:

- # Whether to encrypt the data in transit across the wire to prevent eavesdropping the data on the network.
- # The default is false. When encryption is enabled, all communication between clients and Ceph daemons, or between Ceph daemons will be encrypted.

When encryption is not enabled, clients still establish a strong initial authentication and data integrity is still validated with a crc check.

- # IMPORTANT: Encryption requires the 5.11 kernel for the latest nbd and cephfs drivers. Alternatively for testing only,
- # you can set the "mounter: rbd-nbd" in the rbd storage class, or "mounter: fuse" in the cephfs storage class.

The nbd and fuse drivers are *not* recommended in production since restarting the csi driver pod will disconnect the volumes. encryption:

enabled: false

- # Whether to compress the data in transit across the wire. The default is false.
- # See the kernel requirements above for encryption.

compression:

enabled: false

- # Whether to require communication over msgr2. If true, the msgr v1 port (6789) will be disabled
- # and clients will be required to connect to the Ceph cluster with the v2 port (3300).
- # Requires a kernel that supports msgr v2 (kernel 5.11 or CentOS 8.4 or newer).

requireMsgr2: false

enable host networking

provider: host

addressRanges:

public: - "192.168.16.0/20" cluster:

- "192.168.16.0/20"

enable the Multus network provider

#provider: multus

#selectors:

The selector keys are required to be `public` and `cluster`.

Based on the configuration, the operator will do the following:

1. if only the `public` selector key is specified both public_network and cluster_network Ceph settings will listen on that interface

2. if both `public` and `cluster` selector keys are specified the first one will point to 'public_network' flag and the second one to 'cluster_network'

#

In order to work, each selector value must match a NetworkAttachmentDefinition object in Multus

#

- # public: public-conf --> NetworkAttachmentDefinition object name in Multus
- # cluster: cluster-conf --> NetworkAttachmentDefinition object name in Multus
- # Provide internet protocol version. IPv6, IPv4 or empty string are valid options. Empty string would mean IPv4
 #ipFamily: "IPv6"
- # Ceph daemons to listen on both IPv4 and Ipv6 networks
- #dualStack: false

Enable multiClusterService to export the mon and OSD services to peer cluster.

- # This is useful to support RBD mirroring between two clusters having overlapping CIDRs.
- # Ensure that peer clusters are connected using an MCS API compatible application, like Globalnet Submariner.
- #multiClusterService:

enabled: false

enable the crash collector for ceph daemon crash collection

crashCollector:

disable: false

Uncomment daysToRetain to prune ceph crash entries older than the

- # specified number of days.
- #daysToRetain: 30
- # enable log collector, daemons will log on files and rotate

logCollector:

enabled: true

periodicity: daily # one of: hourly, daily, weekly, monthly

maxLogSize: 500M # SUFFIX may be 'M' or 'G'. Must be at least 1M.

- # automate [data cleanup process](https://github.com/rook/blob/master/Documentation/Storage-Configuration/ceph-
- teardown.md#delete-the-data-on-hosts) in cluster destruction.

cleanupPolicy:

- # Since cluster cleanup is destructive to data, confirmation is required.
- # To destroy all Rook data on hosts during uninstall, confirmation must be set to "yes-really-destroy-data".
- # This value should only be set when the cluster is about to be deleted. After the confirmation is set,
- # Rook will immediately stop configuring the cluster and only wait for the delete command.

If the empty string is set, Rook will not destroy any data on hosts during uninstall.

confirmation: ""

sanitizeDisks represents settings for sanitizing OSD disks on cluster deletion

sanitizeDisks:

- # method indicates if the entire disk should be sanitized or simply ceph's metadata
- # in both case, re-install is possible
- # possible choices are 'complete' or 'quick' (default)

method: quick

- # dataSource indicate where to get random bytes from to write on the disk
- # possible choices are 'zero' (default) or 'random'
- # using random sources will consume entropy from the system and will take much more time then the zero source

dataSource: zero

- # iteration overwrite N times instead of the default (1)
- # takes an integer value

iteration: 1

- # allowUninstallWithVolumes defines how the uninstall should be performed
- # If set to true, cephCluster deletion does not wait for the PVs to be deleted.

allowUninstallWithVolumes: false

- # To control where various services will be scheduled by kubernetes, use the placement configuration sections below.
- # The example under 'all' would have all services scheduled on kubernetes nodes labeled with 'role=storage-node' and
- # tolerate taints with a key of 'storage-node'.
- # placement:

- # all:
- # nodeAffinity:
- # requiredDuringSchedulingIgnoredDuringExecution:
- # nodeSelectorTerms:
- # - matchExpressions:
- # - key: role
- # operator: In
- # values:
- # - storage-node
- # podAffinity:
- # podAntiAffinity:
- # topologySpreadConstraints:
- # tolerations:
- key: storage-node #
- # operator: Exists
- # The above placement information can also be specified for mon, osd, and mgr components
- # mon:
- #placement:
- # mon:
- nodeAffinity: #
- # requiredDuringSchedulingIgnoredDuringExecution:
- # nodeSelectorTerms:
- # - matchExpressions:
- # - key: ceph-mon-placement
- # operator: In
- # values:
- # - enabled
- # mgr:
- # nodeAffinity:
- # requiredDuringSchedulingIgnoredDuringExecution:
- # nodeSelectorTerms:
- # - matchExpressions:
- # key: ceph-mgr-placement
- # operator: In
- #
- values: # - enabled
- # Monitor deployments may contain an anti-affinity rule for avoiding monitor
- # collocation on the same node. This is a required rule when host network is used
- # or when AllowMultiplePerNode is false. Otherwise this anti-affinity rule is a
- # preferred rule with weight: 50.
- # osd:
- # prepareosd:
- # mgr:
- # cleanup:

annotations:

- # all:
- # mon:
- # osd:
- # cleanup:
- # prepareosd:

clusterMetadata annotations will be applied to only `rook-ceph-mon-endpoints` configmap and the `rook-ceph-mon` and `rook-cephadmin-keyring` secrets.

 $\ensuremath{\texttt{\#}}$ And clusterMetadata annotations will not be merged with `all` annotations.

- # clusterMetadata:
- # kubed.appscode.com/sync: "true"
- # If no mgr annotations are set, prometheus scrape annotations will be set by default.
- # mgr:

labels:

- # all:
- # mon:
- # osd:
- # cleanup:
- # mgr:
- # prepareosd:

monitoring is a list of key-value pairs. It is injected into all the monitoring resources created by operator.

- # These labels can be passed as LabelSelector to Prometheus
- # monitoring:
- # crashcollector:

resources:

#The requests and limits set here, allow the mgr pod to use half of one CPU core and 1 gigabyte of memory

- # mgr:
- # limits:
- # cpu: "500m"
- # memory: "1024Mi"
- # requests:
- cpu: "500m" #
- memory: "1024Mi" #
- # The above example requests/limits can also be added to the other components
- # mon:
- # osd:
- # For OSD it also is a possible to specify requests/limits based on device class
- # osd-hdd:
- # osd-ssd:
- # osd-nvme:
- # prepareosd:
- # mgr-sidecar:
- # crashcollector:
- # logcollector:
- # cleanup:
- # exporter:

The option to automatically remove OSDs that are out and are safe to destroy.

removeOSDsIfOutAndSafeToRemove: false

prioritvClassNames:

- #all: rook-ceph-default-priority-class
- mon: system-node-critical
- osd: system-node-critical
- mgr: system-cluster-critical

#crashcollector: rook-ceph-crashcollector-priority-class

- storage: # cluster level storage configuration and selection
- useAllNodes: false useAllDevices: false

deviceFilter: "^sd[b-c]"

confia:

crushRoot: "custom-root" # specify a non-default root label for the CRUSH map

metadataDevice: "md0" # specify a non-rotational storage so ceph-volume will use it as block db device of bluestore. metadataDevice: ""

- # databaseSizeMB: "1024" # uncomment if the disks are smaller than 100 GB osdsPerDevice: "1" # this value can be overridden at the node or device level

encryptedDevice: "true" # the default value for this option is "false"

- # Individual nodes and their config can be specified as well, but 'useAllNodes' above must be set to false. Then, only the named
- # nodes below will be used as storage resources. Each node's 'name' field should match their 'kubernetes.io/hostname' label.
- # nodes:
- # name: "172.17.4.201"
- # devices: # specific devices to use for storage can be specified for each node
- # - name: "sdb"
- # - name: "nvme01" # multiple osds can be created on high performance devices
- # config:
- osdsPerDevice: "5" #
- name: "/dev/disk/by-id/ata-ST4000DM004-XXXX" # devices can be specified using full udev paths #
- config: # configuration can be specified at the node level which overrides the cluster level config #
- # name: "172.17.4.301"
- # deviceFilter: "^sd."

nodes:

- name: "testbed-node-0"

- devices:
- name: "/dev/sdb"
- name: "/dev/sdc"

```
- name: "testbed-node-1"
```

- devices:
- name: "/dev/sdb"
- name: "/dev/sdc"
- name: "testbed-node-2"
- devices:
 - name: "/dev/sdb"
 - name: "/dev/sdc"

when onlyApplyOSDPlacement is false, will merge both placement.All() and placement.osd

onlyApplyOSDPlacement: false

Time for which an OSD pod will sleep before restarting, if it stopped due to flapping

flappingRestartIntervalHours: 24

The section for configuring management of daemon disruptions during upgrade or fencing.

disruptionManagement:

If true, the operator will create and manage PodDisruptionBudgets for OSD, Mon, RGW, and MDS daemons. OSD PDBs are managed dynamically

via the strategy outlined in the [design](https://github.com/rook/rook/blob/master/design/ceph/ceph-managed-

disruptionbudgets.md). The operator will

block eviction of OSDs by default and unblock them safely when drains are detected.

managePodBudgets: true

A duration in minutes that determines how long an entire failureDomain like `region/zone/host` will be held in `noout` (in addition to the

default DOWN/OUT interval) when it is draining. This is only relevant when `managePodBudgets` is `true`. The default value is `30` minutes.

osdMaintenanceTimeout: 30

A duration in minutes that the operator will wait for the placement groups to become healthy (active+clean) after a drain was completed and OSDs came back up.

Operator will continue with the next drain if the timeout exceeds. It only works if `managePodBudgets` is `true`.

No values or θ means that the operator will wait until the placement groups are healthy before unblocking the next drain. pgHealthCheckTimeout: θ

csi defines CSI Driver settings applied per cluster.

csi:

readAffinity:

Enable read affinity to enable clients to optimize reads from an OSD in the same topology.

 $\ensuremath{\texttt{\#}}$ Enabling the read affinity may cause the OSDs to consume some extra memory.

For more details see this doc:

https://rook.io/docs/rook/latest/Storage-Configuration/Ceph-CSI/ceph-csi-drivers/#enable-read-affinity-for-rbd-volumes
enabled: false

cephfs driver specific settings.

cephfs:

Set CephFS Kernel mount options to use https://docs.ceph.com/en/latest/man/8/mount.ceph/#options.

- # kernelMountOptions: ""
- # Set CephFS Fuse mount options to use https://docs.ceph.com/en/quincy/man/8/ceph-fuse/#options.
- # fuseMountOptions: "

healthChecks

Valid values for daemons are 'mon', 'osd', 'status'

healthCheck:

daemonHealth: mon: disabled: false interval: 45s osd: disabled: false interval: 60s status: disabled: false interval: 60s # Change pod liveness probe timing or threshold values. Works for all mon,mgr,osd daemons. livenessProbe: mon: disabled: false mgr: disabled: false osd: disabled: false # Change pod startup probe timing or threshold values. Works for all mon,mgr,osd daemons. startupProbe: mon: disabled: false mgr: disabled: false osd: disabled: false