An overview of the Plutus Core cost model

17th September 2024

1 Introduction

Plutus Core (PLC) is the on-chain language of the Cardano blockchain. It is
a low-level language which is used for purposes such as transaction validation,
enabling the use of smart contracts on Cardano. Scripts will generally be written
in some higher-level language and then compiled into Plutus Core. Plutus Core
scripts are assigned costs which depend on their execution time and memory
consumption, and a user must pay a charge based on the script cost in order to
have their script executed on the chain. These charges have two purposes:

e To make sure that users pay for the computational resources which they
consume.

e To deter the use of overly-expensive scripts (and in particular, ones which
run forever) in order to avoid denial-of-service attacks on the chain.

This document provides an outline of the costing mechanism and the parameters
that it depends upon. A full specification will be published at some time in the
future.

2 The Plutus Core Cost Model

Plutus Core is essentially the untyped lambda calculus augmented with some
“built-in” types (integer, bool, ...) and “built-in” functions (“builtins” for
short) which carry out integer arithmetic, cryptographic calculations, and so
on. There are currently 10 basic lambda-calculus operations (var, lam, apply,
force, delay, constant, builtin, error, constr, and case) and 75 built-in
functions, most of which are underlain by Haskell or C library functions.

For a full description of the language and the built-in functions, see the
Plutus Core specification.!

We have a cost model which assigns CPU and memory costs to every PLC
script. CPU costs are measured in units called ExCPU: one ExCPU unit is notion-
ally equivalent to one picosecond of CPU time on a dedicated benchmarking
machine. Memory usage is measured in ExMemory units, with one unit being
equal to 8 bytes, or one 64-bit word. Every built-in type has a size measure

IThis can be built from source at https://github.com/IntersectMBO/plutus/tree/
master/doc/plutus-core-spec; a prebuilt version of the specification is available
as a PDF at https://ci.iog.io/job/input-output-hk-plutus/master/x86_64-linux.
packages.plutus-core-spec/latest/download/1.



which calculates the number of ExMemory units required to hold a given value of
the type, and these measures are also used to find the sizes of inputs to built-in
functions.

2.1 CPU costing

We assign a constant CPU and memory cost to each of the basic lambda-calculus
operations of the Plutus Core evaluator (which we sometimes call machine
steps). Currently all of the basic operations have the same cost. There is
also a (very small) startup cost for the evaluator. Built-in functions are more
complicated: each has two associated costing functions (one for CPU and one
for memory) which assign a cost to calling the function based on the size of
its arguments. For example the CPU cost of calling addInteger is a linear
function of the maximum of the sizes of its arguments, since in the worst case
we have to traverse the entirety of both arguments in order to calculate the
output. The basic “shape” of a CPU costing function (constant, linear in the
size of one of the function’s arguments, linear in the sum of the sizes of two
of the function’s arguments, etc.) is arrived at from an understanding of the
expected behaviour of the function and also by running benchmarks and exam-
ining the results to check that nothing unexpected is happening. Values for the
coeflicients of the costing function are obtained by running microbenchmarks
(budgeting benchmarks) on our reference machine. These run the builtins with
inputs of varying sizes and record the execution time, and then we use the R
statistical system to fit a function of the expected shape to the data and infer
the coefficients which give the best fit (and we check that we do get a good fit
to the expected “shape”): the coefficients are then stored in a JSON file which
is used by the Plutus Core evaluator to construct suitable Haskell versions of
the costing functions.

Experiments on our reference machine indicate that CPU costs obtained
from the cost model predict the actual execution times of scripts reasonably well,
underestimating actual times by a maximum of about 5% and overestimating by
a maximum of about 15% (which is to be expected since our costing functions
are based on worst-case behaviour). Other machines will have different CPU
speeds and different architectures, but experiments show that actual times are
still roughly proportional to the CPU cost assigned by the cost model.

2.2 Memory costing

Memory costs for built-in functions are measured using costing functions similar
to the ones for CPU consumption, but the costing functions measure only the
size of the output of a function and do not attempt to take any account of mem-
ory allocated during the execution of the builtin. No inference is performed:
we obtain memory costing functions simply by looking at the definition of the
function. We also make no attempt to account for garbage collection in the
Haskell heap during script evaluation. This is a very crude measure of memory
usage (for example, a cryptographic signature verification function might per-
form a lengthy computation using lots of memory in the C heap, but we only
take account of the memory used by its boolean return value, so the memory
cost will be 1 ExMemory unit). Our memory model produces an upper bound for
the maximum amount of non-garbage-collectable memory that a Plutus Core



program might allocate during its execution. The memory cost of a program
mostly serves as a guard against runaway memory allocation, and we regard
CPU costing as our primary measure of cost.

2.3 Cost models and cost model parameters

A Plutus Core cost model consists of CPU and memory costs for all of the
basic Plutus Core operations together with CPU and memory costing functions
for all of the built-in functions. The specific cost model used when a script
is evaluated on the chain may depend on the Plutus language version and the
protocol version. This allows us to account for factors such as improvements
in the efficiency of the evaluator, and also to maintain backwards compatiblity
and ensure that the evaluation costs of scripts already on the chain remain
unchanged, which is important when the history of the chain is replayed.

A specific set of values for the machine step costs and the coefficients of
the costing functions is referred to as a set of cost model parameters (although
cost model coefficients might be a better name). The Cardano ledger protocol
parameters contain cost model parameters for each Plutus language version
and each protocol version, and these are supplied to the Plutus Core evaluator
before a script is evaluated to ensure that the execution costs are calculated
appropriately.

2.4 Measuring costs during script execution

Plutus Core scripts are deterministic: it is always known in advance exactly
what the arguments of a script will be when it is executed on the chain, and
hence it is also known exactly how the execution will proceed. This means
that an overall cost can be assigned to a program by running it and adding
up the total costs of the machine steps and the builtin calls. This is done by
running the Plutus Core evaluator in counting mode. When a program is run on
the chain the submitter supplies an expected CPU and memory budget (which
they pay for in Ada). To prevent denial of service it is necessary to check
that the submitter has not lied about the budget, and this is done by running
the evaluator in restricting mode: it is supplied with the claimed budget and
this is decremented as evaluation proceeds, with an error occurring if either
the CPU or memory component ever become negative. Keeping track of costs
adds some overhead to execution times, and to minismise this we allow some
slippage in machine step costs. A charge is made for the execution of each
machine step, but the on-chain evaluator only checks that the total budget
has not been exceeded once every 200 machine steps: this allows a program to
perform slightly more computation than has been budgeted for but reduces the
costing overhead significantly. Slippage only applies to machine steps: the cost
of evaluating a built-in function is calculated just before it is called and it is
checked that calling it willnot cause the script’s budget to be exceeded, so we
never call a function if its execution will be too expensive.

There are per-script limits for CPU and memory usage of scripts on the
chain. These are the steps and memory components of the maxTxExecution—
Units protocol parameter and in Protocol Version 9 they have values of 10,000,000,000
ExCPU and 14,000,000 ExMemory respectively. There are also per-block bounds
in maxBlockExecutionUnits on total CPU usage (20,000,000,000 ExCPU, twice



the maximum script CPU usage) and total memory usage (62,000,000 ExMemory,
about 4.4 times the maximum script memory usage). Another relevant protocol
parameter is executionUnitPrices which relates abstract costs to real-world
Ada costs: in Protocol Version 9 this specifies monetary costs of 7.21 x 107>
Ada per ExCPU unit and 5.77 x 10~2 Ada per ExMemory unit.

3 Costing functions for Plutus Core builtins

Tables 1 and 2 show the forms of the CPU and memory costing functions for the
Plutus Core built-in functions on Cardano for PlutusV3 and Protocol Version
9. The symbols x,y, z, . . . refer to the arguments of the costing functions, which
are the sizes of the actual arguments of the builtin; occasionally we will need to
refer to the actual value of an argument, and in that case we use the symbols
X, Y, %, ...

Symbols such as a,b,c,... refer to the coefficients of the costing functions.
Concrete values for these coeflicients are stored in the Cardano protocol param-
eters: see Section 3.1 for more on this.

Function Arity CPU Memory
addInteger 2 a+b-max(z,y) | a+b-max(z,y)
andByteString 2 a+by+cz a+b-max(y, z)
appendByteString 2 a+b(z+y) a+b(z+y)
appendString 2 a+b(x+y) a+b(x+y)
bData 1 constant constant
blake2b_224 1 a+ bx constant
blake2b_256 1 a+bx constant
bls12_381_G1_add 2 constant constant
bls12_381_G1_compress 1 constant constant
bls12_381_G1_equal 2 constant constant
bls12_381_G1_hashToGroup 2 a+ bx constant
bls12_381_G1l_neg 1 constant constant
bls12_381_G1_scalarMul 2 a+bx constant
bls12_381_G1_uncompress 1 constant constant
bls12_381_G2_add 2 constant constant
bls12_381_G2_compress 1 constant constant
bls12_381_G2_equal 2 constant constant
bls12_381_G2_hashToGroup 2 a+ bx constant
bls12_381_G2_neg 1 constant constant
bls12_381_G2_scalarMul 2 a+ bx constant
bls12_381_G2_uncompress 1 constant constant
bls12_381_finalVerify 2 constant constant
bls12_381_millerLoop 2 constant constant
bls12_381_mulMlResult 2 constant constant
byteStringToIlnteger 2 co+cCc1y + ch2 a+ by
chooseData 6 constant constant
chooselList 3 constant constant
chooselUnit 2 constant constant
complementByteString 1 a+bx a+bx
consByteString 2 a+ by a+b(z+y)

Table 1: Costing functions for Plutus Core built-in functions (1)



Function Arity CPU Memory
constrData 2 constant constant
countSetBits 1 a+bx a+bx
decodeUtf8 1 a+ bx a+ bz
divideInteger 2 See Note 1 a+b-max(z — y,c)
encodeUtf8 1 a+bx a+bx
. a+bxr ifx=y
equalsByteString 2 {c ity constant
equalsData 2 a +b-min(z,y) constant
equalsInteger 2 a+ b-min(z,y) constant
equalsString 2 {a oo li v ; Y constant
c ifx#y
findFirstSetBit 1 a+ bx constant
fstPair 1 constant constant
headList 1 constant constant
iData 1 constant constant
ifThenElse 3 constant constant
indexByteString 2 constant constant
integerToByteString 3 co+ciz + ca2? {Z %f y=0
[(yl-1)/8]+1 ify #0
keccak_256 1 a+ bx constant
lengthOfByteString 1 constant constant
lessThanByteString 2 a+b-min(z,y) constant
lessThanEqualsByteString 2 a+b-min(z,y) constant
lessThanEqualsInteger 2 a+b-min(z,y) constant
lessThanInteger 2 a + b - min(z,y) constant
listData 1 constant constant
mapData 1 constant constant
mkCons 2 constant constant
mkNilData 1 constant constant
mkNilPairData 1 constant constant
mkPairData 2 constant constant
modInteger 2 See Note 1 a+ by
multiplyInteger 2 a+ bxy a+b(z+vy)
nulllist 1 constant constant
orByteString 2 a+by+cz a+ b-max(y, z)
quotientInteger 2 See Note 1 a+b-max(z —y,c)
readBit 2 constant constant
remainderInteger 2 See Note 1 a+ by
replicateByte 2 ax X
ripemd_160 1 a+ bx constant
rotateByteString 2 a+bx a+ bx
serialiseData 1 a+bx a+bx
sha2_256 1 a+ bx constant
sha3_256 1 a+ bx constant
shiftByteString 2 a+bx a+bx
sliceByteString 3 a+ bz a+ bz
sndPair 1 constant constant
subtractInteger 2 a + b-max(z,y) a+ b-max(z,y)
tailList 1 constant constant
trace 2 constant constant
unBData 1 constant constant
unConstrData 1 constant constant
unlData 1 constant constant
unListData 1 constant constant
unMapData 1 constant constant
verifyEcdsaSecp256k1Signature 3 constant constant
verifyEd25519Signature 3 a+by constant
verifySchnorrSecp256ki1Signature 3 a+ by constant
xorByteString 2 a+by+cz a+ b-max(y, z)

Table 2: Costing functions for Plutus Core built-in functions (2)




Note 1. The CPU costing functions for the four integer division functions
(divideInteger, modInteger, quotientInteger and remainderInteger) are
rather complicated. For x < y the cost is constant since essentially no work has
to be done; however for = > y the cost is a quadratic function of the sizes of the
two inputs with a lower bound to ensure that the cost is never negative:

constant ifz <
CPU cost = 2 2\ s i
max(d, coo + c10Z + co1y + 202 + cr1zy + co2y”) if x> y.

3.1 Cost model parameters in the protocol parameters

In the protocol parameters the cost model parameters take the form of a list
of named constants which correspond to the coefficients a, b, c,... in Tables 1
and 2 above. An excerpt from the cost model parameters for Protocol Version
9 is shown in Figure 1. The tags are obtained from the names of the builtins
and the various coefficients of the costing functions. We won’t spell out the full
details of how the tags are obtained, but reference to Tables 1 and 2 should
make this fairly clear. For instance,

e For integer arguments X of size x and Y of size y, the cost of calling the
addInteger function to add X to Y will be 420- max(z, y) + 100788 ExCPU
units and max(x,y) + 1 ExMemory units.

e For bytestring arguments X of size x and Y of size y, the cost of calling the
appendByteString function to append Y to X will be 173(x + y) + 1000
ExCPU units and = 4+ y + 1 ExMemory units.

e The CPU cost of calling the bData function on a bytestring will be a
constant 11183 ExCPU units and 32 ExMemory units, irrespective of the
size of the input.

e The CPU cost of the Plutus Core evaluator’s basic apply operation (and
all of the other basic operations (machine steps)) is a constant 16000 ExCPU
units and the memory cost is a constant 100 ExMemory units.

e For string arguments X of size x and Y of size y, the CPU cost of calling
the equalsString function to check if X and Y are equal will be 1000 +
605942 ExCPU units if x = y and 39184 ExCPU units if x # y; the memory
cost will be a constant 1 ExMemory unit.



"costModels": {

"PlutusScriptV3": {
"addInteger-cpu-arguments-intercept": 100788,
"addInteger-cpu-arguments-slope": 420,
"addInteger-memory-arguments-intercept": 1,
"addInteger-memory-arguments-slope": 1,
"appendByteString-cpu-arguments-intercept": 1000,
"appendByteString-cpu-arguments-slope": 173,
"appendByteString-memory-arguments-intercept": O,
"appendByteString-memory-arguments-slope": 1,
"appendString-cpu-arguments-intercept": 1000,
"appendString-cpu-arguments-slope": 59957,
"appendString-memory-arguments-intercept": 4,
"appendString-memory-arguments-slope": 1,
"bData-cpu-arguments": 11183,
"bData-memory-arguments": 32,

"cekApplyCost-exBudgetCPU": 16000,
"cekApplyCost-exBudgetMemory": 100,
"cekBuiltinCost-exBudgetCPU": 16000,
"cekBuiltinCost-exBudgetMemory": 100,
"cekCaseCost-exBudgetCPU": 16000,
"cekCaseCost-exBudgetMemory": 100,

"equalsString-cpu-arguments-constant": 39184,
"equalsString-cpu-arguments-intercept": 1000,
"equalsString-cpu-arguments-slope": 60594,
"equalsString-memory-arguments": 1,

Figure 1: Extract from cost model parameters



