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Preface to the Second Edition

Chapter 9 on optical parametric generation (OPG) is entirely new in this
second edition. It is based on modeling with two SNLO functions PW-
mix-BB for plane waves and OPG for diffractive waves. The plane wave
modeling might be appropriate for OPG in a waveguide. The OPG function
is included in the Matlab version of SNLO but not in the free version where
it runs too slowly to be practical.

Other changes from the first edition are minor, consisting of several cor-
rections of typographical errors and occasional attempts to improve the
presentation clarity.
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Preface to the First Edition

My goal in writing this book is to provide an intuitive understanding of the
principles that are important in designing crystal nonlinear optical devices. I
explain how the complicating effects of dispersion, diffraction, birefringence,
spectra, and three dimensional pulse envelopes, can all strongly influence
the performance of real devices. Over one hundred examples, based on
the SNLO modeling software, are presented to illustrate physical concepts.
These examples provide guidance for numerical experiments to help develop
intuition. They also serve as starting points for designing real devices and
predicting their performance.

The book is also intended as a users guide to the crystal nonlinear optics
software SNLO. It is essential to understand the theory underlying the
numerical models, and this book is also general text on second-order crystal
nonlinear optics. The theory should aid readers in developing their own
models, as well as documenting the capabilities and limitations of the SNLO
models. It is my intent that SNLO should contain the best information on
crystal properties so this book contains few specific crystal properties.

I try to keep the mathematics at the undergraduate level to emphasize
physical intuition, sometimes at the expense of mathematical elegance. This
is not a broad brush treatment. Judging from the number of pages, I con-
sider details to be important. ST units are used exclusively, and I have tried
diligently to maintain a consistent and standard nomenclature throughout.
Most of the important quantities are defined in the Introduction.



vi Preface to the First Edition

The interaction of three monochromatic plane-waves in a nonlinear crys-
tal is treated in several text books on nonlinear optics. In particular, Suther-
land’s Handbook of nonlinear optics has an extensive collection of useful
analytical solutions that apply to a variety of specific cases. I will describe
only a few such analytic solutions, emphasizing qualitative understanding.
Quantitative evaluations will be from numerically integrating the mixing
equations. Not only is this approach often faster, it is far more general be-
cause there are few restrictions on parameters such as linear absorption,
phase mismatch, etc.

This book goes far beyond the usual introductory discussion of plane
wave, monochromatic, low conversion mixing to include extensive discus-
sions of mixing with realistic beams and pulses, including mixing in opti-
cal cavities. I include only parametric processes, defined as frequency mix-
ing processes that do not involve significant energy transfer to the crystal.
Based on the many questions I receive about SNLO, one of the more confus-
ing topics in crystal nonlinear optics is the connection between walk offs and
acceptance bands. These are identical concepts described in the alternative
languages of space or time on the one hand, or their Fourier transforms of
k-space or frequency on the other. I will show how to relate the two, but
will emphasize the more intuitive space/time picture. This contrasts with
most introductions to nonlinear optics that emphasize the k/w description.
I also point out the strong symmetry between spatial and temporal effects,
and show how this equivalence can be used to translate understanding from
spatial to temporal effects and vice versa.

Despite the occasional use of the word photon, I do not discuss quantum
optics in any depth - it is outside my area of expertise, and it is a broad
enough topic to require another book the size of this one. However, the ideas
presented here are often essential in understanding the quantum optics of
devices based on second order optical nonlinearity.

Because of the vast number of papers published over the last forty years
on the topic of crystal nonlinear optics, comprehensive citations are impos-
sible. I make no attempt to cite all the important original papers on a topic.
I try to cite some of the classic papers, but mostly I cite recent papers that
can serve as recent entry points to the literature.

I owe many thanks to Binh Do and Xuan Liu for reviewing the text of
this book, to Jesse Smith for help with typesetting and figures, and to my
Sandia colleagues Darrell Armstrong, W. J. (Joe) Alford, T.D. Raymond,
Binh Do, Michael V. Pack, Russell Gehr, Mark C. Phillips, and Steven
Wilkinson for numerous collaborations and discussions over the years. I
also owe thanks to long time non-Sandia collaborators Mark Bowers and
Gunnar Arisholm, and to my thesis advisor John F. Ward.

Arlee V. Smith Albuquerque, New Mezxico, USA



Contents

Preface to the Second Edition
Preface to the First Edition

1 Introduction
1.1 Maxwell’s equations in linear medium . . . .. .. ... ..
1.2 Variable names and units . . . . . ... ... L.
1.3 Conversion factors & definitions . . . . . . .. . . ... ...
1.4 Definition of mixing strength S, . . . . . ... .. ... ..
1.5 Gaussian profiles . . . . . .. ..o oo
1.5.1 Sp/e? definitions . . . .. ...
1.5.2  FWHM definitions . . . . . .. ... ... ... ...
1.5.3 Supergaussians . . . . ... ...
1.5.4 Sech squared pulses . . .. ... ... ... .. ...
1.5.5 Rayleigh and dispersion lengths . . . . . . ... ...
1.6 Field expansions . . . ... .. ... ..
1.6.1 Fourier transform definitions . . . . .. .. .. ...

1.6.2 Fourier transform properties . . . . . . . ... .. ..
1.7 Abbreviations . . . . . ...

2 Linear crystal optics for monochromatic plane waves
2.1 A geometrical description . . . .. .. L.
2.1.1 RelatingDto E . . . ... ... ... ... ..

o
o
e

<

O © 00001~ ULU i WwWwwr—+=



viii

Contents
2.1.2  Finding the eigenpolarizations . . . . . . ... ... 15
2.1.3 Optical axes of biaxial crystals . . . ... ... ... 16
2.1.4 Propagation outside the principal planes . . . . . . . 17
2.1.5  Poynting vector walk off . . . . .. ... 18
2.1.6 Hi and lo index surfaces . . . ... ... . ... ... 19
2.1.7 Uniaxial crystals . . . . ... ... ... ... ... 19
2.1.8 Isotropic crystals . . . ... ... ... 21
2.2 Mathematics of the geometrical description . . . . .. . .. 22
2.2.1 Finding the D-ellipsoid . . . ... ... . ... ... 22
2.2.2  Defining the eigenpolarizations . . . . . . ... ... 25
2.2.3 Finding the opticaxes . . . . ... ... . ... ... 26
2.2.4  Computing the eigenpolarizations and refractive indices 27
2.2.5  General expression for the walk off angle p . . . . . 30
2.3 Derivations direct from Maxwell’s equations . . . . . . . .. 32
2.3.1 Finding the Cartesian components of E and D . . . 32
2.3.2 Finding njp and np; . . o .o oo oo 34
2.3.3 Finding the walk off angles . . . . ... . ... ... 35
2.4 Optical activity . . . . . ... ... oo oL 36
2.5 Entering and exiting crystals . . . . ... ... 0oL 37
2.5.1 Refractionangles . . . . ... ... ... ... ... 37
2.5.2  Electric field reflection and transmission coeflicients 39
2.6 Exercises . . . . .. ... 46
Monochromatic, plane-wave mixing 49
3.1 Mixing equations . . . . ... .. ..o 50
3.1.1 Derivation of mixing equations . . . . . . ... ... 50
3.1.2  Energy conservation . . ... ... ... ... ... 56
3.1.3 Manley-Rowe relation . . . . ... ... . ... ... 56
3.2 Integrating the mixing equations . . . .. . ... ... ... 57
3.3 Weak mixing . . . ... ... Lo 58
3.3.1 Phase matched, two input waves . . . . .. .. ... 58
3.3.2 Phase mismatched, two input waves . . . . .. ... 58
3.4 Intermediate mixing . . . . . ... ... oo 63
3.4.1 Strong blue wave: Parametric gain . . . . ... ... 63
3.4.2 Strongred wave . . . ... ... 68
3.4.3 Summary of intermediate mixing . . . . . ... ... 70
3.5 Strong mixing . . . . . ... 70
3.5.1 Cyclicmixing . . . .. ... ... ... . 71
3.5.2 Photon-balanced mixing . . . . . . ... ... ... 72
3.5.3 Phaseevolution . . . . ... ... ... .. 73
3.5.4 Eigenmode mixing . . . .. . ... ... L. 78
3.6 Higher order nonlinear effects . . . . ... ... ... ... .. 83

3.6.1 Self phase modulation and two-photon absorption . 84



Contents ix

3.6.2 Cross phase modulation and two-photon absorption 86

3.6.3 Stimulated Raman scattering . . . . ... ... ... 87
3.6.4 x@:x® cascade effects . . . ... ... ... ... 88
3.7 Mixing in waveguides . . . . . ... ..o oL 90
3.7.1 Higher order nonlinearity in waveguides . . . . . .. 95
3.8 Exercises . . .. ... ..o 96
Phase matching 103
4.1 Birefringent phase matching . . . . . ... ... ... .. .. 105
4.1.1 Collinear phase matching . . . . . ... ... . ... 105

4.1.2 Uniaxial noncollinear phase matching with fixed k3 . 111
4.1.3 Uniaxial noncollinear phase matching with fixed k1 . 115

4.1.4 Biaxial noncollinear phase matching . . .. .. ... 116
4.1.5 Noncritical phase matching . . . . ... .. .. ... 117
4.2 Quasi phase matching (QPM) . . . . . ... ... ... ... 118
4.2.1 General periodic quasi phase matching . . . . . . .. 119
4.2.2 Periodic modulationof degg . . . . .. . ... ... 121
4.2.3 Nonperiodic modulation of degg . . . . . . . . . . .. 125
4.2.4  Ferroelectric domains . . . . . .. .. .. ... ... 126
4.2.5 Wafer stacking and patterned crystal growth . . . . 128
4.2.6 Total internal reflection . . . ... ... .. .. ... 130
4.3 Compensated phase matching (CPM) . . ... .. ... .. 131
4.4 Wave guide modal phase matching . . . . ... ... .. .. 135
4.5 Photonic lattice phase matching . . ... ... ... .. .. 139
4.6 Acceptance bandwidths . . . . .. ... 148
4.6.1 Frequency bandwidths . . . . ... ... ... .. .. 149
4.6.2 Angle bandwidths . . . ... ... ... 0 0. 154
4.6.3 Crystal tilt tolerance . . . . . . .. ... ... ... 158
4.6.4 Temperature bandwidth . . . . .. .. ... .. ... 158
4.7 Temperature tuning . . . . . . ... ... 159
4.8 Exercises . . .. ..o 160
Propagation & mixing equations for structured waves 167
5.1 Diffractive propagation equations . . . . . . . . . ... ... 169
5.1.1 Isotropic crystal . . . . ... ... ... ... .. 169
5.1.2 Uniaxial crystal . . . . ... ... ... ... 172
5.1.3 Fourier shift rule and birefringent walk off . . . . . . 179
5.1.4 Huygen’s construction of birefringent walk off . . . . 179
5.1.5 Uniaxial propagator from Maxwell’s equations . . . 181
5.1.6 Biaxialcrystal . ... ... ... ... 0. 184
5.2 Dispersive propagation equations . . . . . ... ... ... 185
5.3 Diffractive and dispersive propagation equations . . . . . . 190
5.3.1 In (kg ky,w) space . . ... ... 190

532 In(x,y, t)space . . . . . ... 191



X

Contents

5.3.3 Uniaxial coefficients A-H . . . .. ... . ... ... 192
5.3.4 Biaxial coefficients A-H . . . ... ... . ... ... 193
5.3.5 Discussion of A-H coefficients . . . . . . . ... ... 194
5.3.6 Tilted beams . . . .. ... ... .. ... ... ... 195
5.4  Mixing equations for structured waves . . . . . ... .. .. 198
5.4.1 Time convolution . . . . . . ... . ... .. ... .. 199
5.4.2 Angle convolution . . ... ... ..., 202
5.4.3 Time and angle convolution . . . . ... . ... ... 203
5.5 Integrating the equations . . . .. . ... ... ... .. .. 205
5.5.1 Analytical/semi-analytical methods . . ... .. .. 205
5.5.2 Beam propagation methods . . . . ... .. .. ... 206
5.5.3 Time domain integration . . ... ... . ... ... 207
5.5.4 Limitations of numerical models . . . . .. .. ... 208
5.5.5 Noise simulation . . . ... ... .. ... ...... 208
Mixing temporally structured plane waves 213
6.1 Short pulse/broadband mixing equations . . . . . . . . . .. 214
6.2 Gaussian pulse propagation . . . . . ... ... ... ... 215
6.2.1 Motion of the nonlinear polarization pulse . . . . . . 217
6.3 Short-pulse SHG . . . . ... ... ... .. ... ... 218
6.3.1 Group velocity walk off and spectra . . . . . . . .. 218
6.3.2 Group velocity and efficiency . . . ... . ... ... 220
6.3.3 Group delay dispersion. . . . . .. ... ... ... 222
6.3.4 Strong short-pulse SHG . . . ... ... . ... ... 224
6.4 Chirped-pulse SHG . . . . . . ... .. ... .. ... ... 224
6.5 Short-pulse sum & difference frequency mixing . . . . . .. 226
6.5.1 Group velocity effect . . . . . ... ... 227
6.5.2 Triple chirped pulses . . . . . . ... ... ... ... 227
6.6 Broadband parametric amplification . . . ... .. .. ... 228
6.6.1 Short pump, weak mixing . . . . . ... .. .. ... 229
6.6.2 Short pump, strong mixing . . . . ... .. .. ... 229
6.7 Multimode mixing . . . . . . ... oL Lo 229
6.7.1 Sum frequency mixing . . . . . .. ... 230
6.7.2 Parametric amplification . . . . . . ... ... 234
6.8 Pulse shaping methods . . . . . .. .. ... ... ... 235
6.9 Short pulse measurement . . . . ... ... 238
6.10 Self phase modulation . . . . . ... ... ... .. ..... 241
6.11 Exercises . . . . . . . . 242
Mixing spatially structured, monochromatic beams 253
7.1 Diffractive mixing equations . . . . . . .. .. ... ... .. 254
7.2 Gaussian beam propagation fundamentals . . . . . . . . .. 256
7.2.1 Cylindrical focus . . . . .. ... ... 0. 256

7.2.2 Spherical focus . . .. ... o0 257



Contents xi

7.3 Mixing weakly focused beams (zp > L) . . ... ... ... 260
7.3.1 Weakmixing . . ... ... ... ... ... 260
7.3.2  Walk off compensation . . . . ... ... ... ... 267
7.3.3 Shaped and tilted beams . . . .. ... .. ... .. 268
7.3.4 Strongmixing. . . . . . ... Lo 269

7.4 Mixing tightly focused beams (zg ~ L) . . . . . . ... ... 273
7.4.1 Weak sum frequency mixing of focused beams . . . . 274
7.4.2  Weak difference frequency mixing of focused beams . 280
7.4.3 Beyond Boyd and Kleinman . . . . ... . ... ... 281
7.4.4 Plane wave simulations of focused beam mixing . . . 287
7.4.5 Intermediate mixing of focused beams . . . . . . .. 288
7.4.6 Strong mixing of focused beams . . . . . ... ... 290

7.5 Mixing highly structured beams . . . . . . ... ... .. .. 293
7.5.1 Mixing poor quality beams . . . . ... . ... ... 293
7.5.2 Imaging . . . . .. ..o 293

7.6 Vector field effects . . . ... ... 298

7.7 Beam quality and M2 . ... ... .. ... ... ... .. 299
7.7.1 Gaussian beams . . . ... ... L0 299
7.7.2 Nongaussian beams . . . . . ... ... ... ... 300
7.7.3 M?forpulsed beams . . . . .. ... ... ... ... 302

7.8 EXercises . . ... .. 303

8 Mixing spatially and temporally structured beams 311

8.1 Linear propagation . . . . . . . ... ... oL 311

8.2 Second harmonic generation . . . . . ... ... ... .. 312

8.3 Tilted beams & slanted envelopes . . . . . . ... ... ... 315
8.3.1 Apparent group velocity and GDD . . . . ... ... 316
8.3.2  Group velocity matched SHG of short, slanted pulses 321
8.3.3  Achromatic SHG of frequency chirped pulses . . . . 322
8.3.4 Mixing three short slanted pulses . . . . . . . . . .. 324
835 CPOPA . ... .. ... . 325
8.3.6  Group velocity matched QPM mixing . . ... ... 329
8.3.7 Snell'slawofslants. . . . . ... .. ... ... ... 331

8.4  Other group velocity matching methods . . . . . ... ... 333
8.4.1 Birefringent group velocity matching plus QPM . . . 333
8.4.2 Polarization mixed QPM . . . . . ... ... .. 333
8.4.3 Chirped gratings and pulses . . . . . ... ... ... 333
8.4.4 Spatial + temporal walk off compensation . . . . . . 333

8.5 Other applications of space/time structure . . . . . . . . .. 334
85.1 Grenouille . . . . . . ... oo 334
8.5.2  Crystal oscilloscope . . . . . ... ... ... .. 335

8.6 Exercises . . . . ... 336

9 Optical parametric generation (OPG) 343



xii

Contents

9.1 OPG pump threshold estimate . . . ... ... . ... ...
9.2 OPG gain bandwidths . . . . ... ... ... ... ... ..
9.3 OPG numerical modeling . . . .. ... ... ........
9.3.1 Quantum noise simulation . . . . . ... .. ... ..
9.4 Plane wave, broadband OPG modeling . . . . . . ... ...
9.4.1 Subthreshold gain vs. temporal walk off . . . . . ..
9.4.2 Plane wave OPG performance versus {R,©} . . . .
9.4.3 Time structured pumps . . . . . . ... . ... ...
9.4.4 Ultra broadband OPG . . . . .. .. ... ... ...
9.5 Diffractive, broadband OPG model . . . . . . . . ... ...
9.5.1 Theory of tilt & tune . . . . ... ... ... ...
9.5.2 BaselineOPG. . . .. ... ... .. ... ...
9.5.3 Long pulse, unseeded OPG, zp~L ... ... ...
9.5.4 Long pulse, seeded OPG, zp~L . . .. . ... ...
9.5.5 Short pulse, seeded & unseeded OPG, zp~ L . . . .
9.5.6 OPG with birefringent walk off . . . . . . ... ...
9.6 Back conversion reduction . . . . ... ..o
9.6.1 Red wave absorption . . . . . ... ... ... ...
9.6.2 Multiple crystals with red wave blocking . . . . . . .
9.7 Practical implementation of OPG . . . . . . ... ... ...
9.7.1 Avoiding oscillation . . . . ... ...
9.7.2 Optimum focusing . . . .. ... . ... ... ..
9.7.3 Optimum crystal length . . . ... ... ... ...
9.7.4 Minimizing back conversion . . . . ... . ... ...
9.7.5 Seeding . . . . .. ... oo
9.7.6 Cascade mixing . . . . . .. . ... ... ...
9.8 Exercises . . . . ...

10 Mixing CW monochromatic beams in optical cavities

10.1 Cavity design and mixing analysis . . . . ... . ... ...
10.1.1 Stable cavity design . . . . .. .. ... ... ...
10.1.2 Impedance matching . . . . .. ... ... ... ...
10.1.3 Internally generated waves. . . . . . .. . ... ...
10.1.4 Cavityloss . . .. .. ... oo oo
10.1.5 Constant field approximation . . . . .. . ... ...
10.1.6 Gaussian beams . . . . .. ... ... L.

10.2 Cavity sum frequency mixing . . . . . . . ... . ... ...
10.2.1 Sum: Wave one resonated . . . . . ... . ... ...
10.2.2 Sum: Waves one and two resonated . . . . . . . . ..
10.2.3 Sum: Wave three resonated . . . . . .. . ... ...
10.2.4 Sum: Waves one and three resonated . . . . . . . ..
10.2.5 Sum: Waves one, two, and three resonated . . . . . .

10.3 Optical parametric oscillators . . . . . . . ... . ... ...



Contents

10.3.1 Threshold power . . . . . . . ... .. ... .. ...
10.3.2 Constancy of the mean pump field . . . ... .. ..
10.3.3 OPO: Wave one resonated . . . . . . .. . ... ...
10.3.4 OPO: Waves one and two resonated . . . . .. . ..
10.3.5 OPO: Waves one and three resonated . . . .. . ..
10.3.6 OPO: Waves one, two, and three resonated . . . . .
10.4 Difference frequency generation . . . . . . ... . ... ...
10.4.1 Difference: Wave one resonated . . . . . .. .. ...
10.4.2 Difference: Wave two resonated . . . . . . . .. ...
10.4.3 Difference: Waves one and three resonated . . . . . .
10.4.4 Difference: Waves two and three resonated . . . . . .
10.4.5 Difference: Waves one and two resonant . . . . . . .
10.4.6 Difference: Waves one, two, and three resonated
10.4.7 Difference: Wave three resonated . . . . . . .. . ..
10.5 Exercises . . . . . . .. e e

11 Short pulse cavity devices

11.1 Synch-pumped OPOs (SP-OPOs) . . . . . ... . ... ...
11.1.1 Rate multiplied SP-OPOs . . . . . . ... ... ...
11.1.2 Cavity dumped SP-OPOs . . . . . . ... ... ...

11.2 Singly-resonant SP-OPOs . . . . . . ... ... ... ...
11.2.1 Equal group velocities . . . . .. . ... . ... ...
11.2.2 Unequal group velocities . . . . . . . .. . ... ...
11.2.3 Nonzero group delay dispersion . . . . . . ... ...
11.2.4 Nonzero intensity dependent refractive index, ns
11.2.5 SP-OPO stability . . . . .. ... ... ... .. ...

11.3 Doubly-resonant SP-OPOs . . . . . . ... ... ... ...

11.4 Frequency combs . . . . . .. .. .. Lo
11.4.1 Singly resonant SP-OPO combs . . . . . . ... . ..
11.4.2 Doubly resonant SP-OPO combs . . . . . ... . ..

11.5 CW-pumped, mode-locked OPOs . . . . . ... .. .. ...

11.6 Exercises . . . . . . .

12 Nanosecond optical parametric oscillators

12.1 Survey of nanosecond OPO types . . . . . ... . ... ...
12.1.1 Singly resonant (SRO) . . . . ... ... .. ... ..
12.1.2 Doubly resonant (DRO) . . . ... ... . ... ...
12.1.3 Cross resonant (CRO) . . . . ... ... . ... ...
12.1.4 Pumpresonant . . . . . . .. ... ... .. ... ..
12.1.5 Backward wave . . . . . .. ...

12.2 Efficiency of nanosecond OPOs . . . . . . ... . ... ...
12.2.1 All waves monochromatic . . . . . ... . ... ...
12.2.2 Broadband operation. . . . . ... ... ... ...

12.3 Spectral properties of nanosecond OPOs . . . . . . . . . ..



Xiv

Contents

12.3.1 Fine spectral control of SROs . . . . .. . ... ...
12.3.2 Fine spectral control of DROs . . . . . . . ... ...
12.3.3 Fine spectral controlof CROs . . . . . . ... .. ..
12.3.4 Fine spectral control of BWOs . . . .. . ... ...
12.4 Beam quality of nanosecond OPOs . . . . ... . ... ...
12.4.1 Confocal unstable cavity . . . . . . ... . ... ...
12.4.2 Image rotating cavity . . . . ... ... .. ... ..
12.4.3 Influence of optical imperfection . . .. . ... ...
12.5 Anomalies and pathologies . . . . . . ... ... .. ... ..
12.6 Exercises . . . . ...

13 Exotica

14

15

13.1 Single pass mixing . . . . . . . .. ...
13.1.1 Applications of cascade ns mixing . . . . ... ...
13.1.2 Angle multiplexed OPA pumping . . . . . ... ...
13.1.3 Wavelength multiplexed collinear OPA pumping . .
13.1.4 Nonuniform QPM gratings . . ... ... ... ...
13.1.5 Dark intermediate state cascade mixing . . . . . ..
13.1.6 Recirculating frequency doubler . . . . . . . .. . ..

13.2 Cavity nonlinear devices . . . . . . . ... ... ... ...
13.2.1 Cavity frequency multipliers. . . . . . . .. .. ...
13.2.2 Cavity wavelength multipliers . . . . . . .. ... ..
13.2.3 Enhanced OPOs . . . ... ... ... ... . ....
13.2.4 Nanosecond OPOs with reduced back conversion . .

13.3 Nonlinear devices inside a laser cavity . . . .. . ... ...
13.3.1 Intracavity SFG & DFG . . . . .. ... .. ... ..
13.3.2 Intracavity OPOs. . . . . . .. ... ... ... ...
13.3.3 Bifunctional (laser + nonlinear) crystals . . . . . . .

Tensor properties of crystals

14.1 Thermal expansion . . . . . . . .. . ... ... ... ....
14.1.1 Thermal strain tensor . . . . ... ... ... . ...
14.1.2 Shorter derivation of a(0) . . . . . ... . ... ...
14.1.3 Generalization to three dimensions . . . . . . . . ..
14.1.4 Thermal expansion in arbitrary plane . . . . . . ..

14.2 Thermal conductivity & resistivity . . . . ... .. ... ..

14.3 Refractive index . . . . . . . ... ... oL

14.4 Higher order tensors . . . . . . . ... .. ... ...
14.4.1 Strain-opticeffect . . . .. . ... ... ... ..
14.4.2 Stress and strain . . . . .. ... L
14.4.3 Linear electro-optic effect . . . . . ... . ... ...

14.5 Transformation properties of tensors . . . . . . . .. .. ..

Thermal Effects



Contents XV

15.1 Nonuniform heating: simplified analysis . . . . . ... ... 614
15.1.1 Disruption of phase matching . . . . . . . ... ... 616
15.1.2 Thermal lensing . . . . .. . ... ... ... ... 617
15.1.3 Thermal tilt . . . . . . ... . ... ... ... ... 618
15.1.4 Pulsed heating . . . . ... ... ... ... ... . 618

15.2 Nonuniform heating: detailed analysis . . . .. . ... ... 619
15.2.1 Computing the temperature profile . . . . . . . . .. 620
15.2.2 Thermo-optic effect . . . . . ... ... .. ... .. 623
15.2.3 Strain-opticeffect . . ... ... ... L. 624
15.2.4 Electro-opticeffect . . . . . . ... ... ... 626

16 Crystal nonlinearity 629

16.1 Thed tensor . . . .. . ... ... . ... ... .. ... 629
16.1.1 Definitionofd . . . . . . . . ... ... ... .. 629
16.1.2 Absolute signsofd . . . . . ... ... ... ... .. 632

16.2 Effective nonlinearity deg . . . . . . . . . . .. ... 632

16.3 Example deg calculations . . . .. .. ... ... ... ... 634
16.3.1 Isotropic example. . . . . . . ... ... . ... ... 634
16.3.2 Uniaxial example . . . . . . . ... ... ... .. .. 635
16.3.3 Biaxial example. . . . . .. . ... ... ... 635

16.4 General dog calculations . . . . . . .. ... 637
16.4.1 Signsof deg - . . . . . . ..o 639
16.4.2 deg surface . . . . . . ..o 640

16.5 Crystal symmetry andd . . . . . . . ... ... ... 641
16.5.1 Enantiomorphism. . . . .. . ... ... .. .. ... 645
16.5.2 Gyrotropy . . . . . . . ... o 646
16.5.3 Ferroelectricity and poling . . . . . ... . ... ... 646
16.5.4 Pyroelectricity . . . . ... . ... 0oL 647
16.5.5 Piezoelectricity . . . . . .. .. ... oo 647
16.5.6 Walk off compensation . . . . . .. ... ... . ... 648
16.5.7 Triclinic: 1,1 . . . . . .. . .. ... ... ... 648
16.5.8 Monoclinic: 2,m,2/m . . . . ... ... ... .. 651
16.5.9 Orthorhombic: 222, mm2, mmm . . . . . . . . . .. 656
16.5.10 Tetragonal: 4,4,4/m, 422, 4mm, 42m, 4/mmm . . . . 660
16.5.11Trigonal: 3,3,32,3m,3m . . . . . . . .. .. .. ... 666
16.5.12Hexagonal: 6, 6, 6/m, 622, 6mm, 6m2,6/mmm . . . . 671
16.5.13Cubic: 23,43m, m3,432,m3m . . . . . . .. .. ... 676

17 Measuring d 681

17.1 Phase matched methods . . . . . . . ... ... .. .. ... 681
17.1.1 Spherical crystal method . . . .. ... ... . ... 682
17.1.2 Parallelepiped crystal method . . . . . . . ... . .. 684

17.2 Non-phase matched methods . . . . . ... ... ... ... 687

17.2.1 Separated beams method . . . .. ... . ... ... 692



Xvi

Contents
17.2.2 Maker fringe methods . . . . ... ... ... ... .. 701
17.2.3 Powder methods . . . . .. ... ... ... .. ... 704
17.3 Wavelength or Miller scalingofd . . . . . ... . ... ... 704
17.4 Quantum calculationof d . . . . . . ... ..o 708
17.5 Exercises . . . . ... o 709
References 713

Index 757



1

Introduction

In this introduction we list important definitions and relations that will be
used throughout the book. We will use SI units exclusively. In a departure
from custom, for degenerate mixing where the two red waves have identical
frequencies, we keep the same three mixing equations as in nondegenerate
mixing by splitting the power or energy of the degenerate waves into two
equal parts. No degeneracy factor is needed.

Comments specific to SNLO and the exercises are contained in text boxes
like this one. SNLO is freeware available from AS-Photonics. It is useful in
selecting nonlinear crystals and modeling their performance. It contains
a number of preloaded examples that will be used in the exercises listed
at the end of each chapter.

1.1 Maxwell’s equations in linear medium

For reference we present Maxwell’s equations. Vector and tensor quantities
will be in bold face throughout the book.

V.-B =0, (1.1)
V.-D =p, (1.2)
vxE--2B (1.3)

ot’
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oD
VXH—E-FJ, (14)
where
D=¢e - E=¢(I+x)-E=¢E+P, (1.5)

and €, I, and x are (3x3) matrices. I is the unit matrix, € is the dielectric
tensor, and x is the linear susceptibility tensor.

B = 1o(H + M), (1.6)

fo€oc? = 1. (L.7)

In the case of an isotropic dielectric refractive index is given by

n=1/¢/e. (1.8)

We consider crystals that are nonconductive (J = 0), uncharged (p = 0),
and nonmagnetic (M = 0), so Maxwell’s equations reduce to

V.B=0, (1.9)
V.D=0, (1.10)
oH
VXE——,UJoE, (111)
oD

Combining the last two equations gives the wave equation

2

E=—u,—D. 1.1
V x V x Hogr (1.13)
Using the identity
VXxVxV=-VVL+V(V.V), (1.14)
the wave equation is often written as
2 0
E - ‘E) = o =—D. 1.1
VE- V(Y B) = o (1.15)
The Poynting vector which describes energy flow is defined by
S=Ex H. (1.16)

Throughout the book we use S as the symbol for irradiance.
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1.2 Variable names and units

B magnetic induction Whb/m?
D optical displacement field C/m?
E optical electric field V/m
H magnetic field A-m
P optical polarization C/m?
S Poynting vector W /m?
k wave vector m~!
Ak phase mismatch m~!
F pulse fluence J/m?
P power W
u pulse energy J
€ 8.85x 10712 F/m
o 1.26x10~6 H/m
c 3.00x108 m/s
€ij dielectric tensor element F/m
1(_J1_) linear susceptibility element dimensionless
Xg,)g second order susceptibility element m/V
X’Ej])g . third order susceptibility element m?/V?
di; X5 /2 m/V
degr effective nonlinearity m/V
S, characteristic irradiance W /m?
n refractive index dimensionless
nd nonlinear refractive index m?/W
Ng group velocity index dimensionless
Vg group velocity m/s
D group delay dispersion s?/m
« linear power absorption coefficient m-
I6] nonlinear power absorption coefficient m/W
A wavelength in vacuum m
v frequency Hz
p birefringent walk off angle rad
w angular frequency rad/s

1.3  Conversion factors & definitions

d(ST) = d(cgs) x 47/(3 x 10%) (1.17)
d = x®/2 (1.18)
XS = x®(cgs) x 4m/(3 x 10%) (1.19)
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ng = c¢/v, (1.20)
D(fs’/mm) = —GVD xn?/2nc® (1.21)
Ak = kz—k1— ke (1.22)
Akacceptance = 27/L (1.23)
Leonerence = w/Ak (1.24)

1.4 Definition of mixing strength S,

This book is mostly about second order nonlinear mixing of three waves.
We label them waves one, two, and three, with the convention shown in
Fig. 1.1. The frequencies satisfy (w3 = wi +ws) so the bluest wave is always
called wave three. We will see that the form of the mixing equations are
symmetric in the fields of the two red waves with frequencies w; and ws,
so we will not apply any general rule to distinguish between waves one
and two. We will also try to avoid terms such as pump, signal, and idler
because they are not uniquely defined in the literature. Similarly we will
try to avoid the labels type I, type II, type III that are applied to mixing
processes with certain polarization relationships. Instead we will simply
state the polarization and wavelength for each wave.

A A
(09}

Yy

3 A

Q]

FIGURE 1.1. Naming convention for the three waves interacting in a second order
nonlinear mixing process. The names of waves one and two are interchangeable.

In discussions of nonlinear mixing it is useful to use a characteristic irra-
diance S, defined for a particular crystal and set of wavelengths by

GocgfllﬁQﬁg . Gocfllleﬁg)\l)\Q 1.2
= : (1.25)

So =
2d25 wiwy L? 8m2d?; L?

where deg is the effective nonlinear coefficient, L is the crystal length, and
w1 and wy are the angular frequencies of the two redder waves. The n'’s are
the refractive indices of the three waves in the crystal, corrected for beam
tilts, as we will discuss in Chapter 3. If at least one of the input waves has



1.5 Gaussian profiles 5

an irradiance comparable to S,, efficient energy transfer among the three
waves is possible.

1.5 Gaussian profiles

1.5.1 Sy/e? definitions

It is customary to describe Gaussian pulse and beam profiles in terms of
the (Sys/e?) points, where Sys is the peak irradiance. For example, the
irradiance of a pulse with Gaussian time and space profiles is

S(x,y,t) = Sppe 2/ g2 wi = 2y* (1.26)
Integrating over any of the three Gaussian dimensions replaces the exponen-

tial with (\/7/2 d;), where d; is the width in the dimension being integrated.
For instance, integrating over time gives the fluence

Flz,y) = / Sy e 20/ g2t Wl o2yt ey gy (1.27)

= |:\/§T:| SM 672m2/w2 672y2/w3- (]‘28)

Integrating over x and over y gives the power

P(t) = / / Spp e720/7 g2t ful o2y dxdy  (1.29)
= [gwmwy] S o2/ (1.30)

Integrating over z, y, and ¢ gives the pulse energy

U= [(g>3/27wmwy:|SM. (1.31)

The energy and the on-axis fluence are related by

TW Wy

u:]:M 2 )

(1.32)

where F); is the peak fluence. For flat phase profiles, the Fourier transform
widths measured at (Sys/e?) satisfy

TAW = WAk = wyAky, = 2. (1.33)
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We can define an effective area for a beam as

2
A — (J |E(z, y)|*dedy)” (1.34)
JIE(z, y)|*dxdy
For a Gaussian beam the effective area is

Acft = Twzwy. (1.35)

1.5.2 FWHM definitions

Alternatively we can define the same Gaussian profiles in terms of full
widths at the half maximum irradiance points. We call the FWHM values
T, X, and Y. They are related to 7, woz, and wey by

T=72In(2) =1.177 7, (1.36)
X = w,\/2In(2), (1.37)
Y = wy\/21n(2). (1.38)

The lowest order Gaussian spatial and temporal irradiance profile can be
expressed

and

S(z,y,t) = Su o4 1n(2)x2/X26741n(2)y2/Y2674 1n(2)t2/T2' (1.39)

Integrating over any of the three Gaussian dimensions replaces the expo-
nential with (y/7/[41n2] d;), where d; is the width in the dimension being
integrated. For instance, integrating over time gives the fluence

Flx,y) = [,/—417;2 T] Sap e~4n(2)2?/X? —4In(2)y*/Y? (1.40)

Integrating over x and over y gives the power

P = |

Integrating over z, y, and ¢ gives the pulse energy

T
4In2

XY] Spp e~ 4Im@P/ T, (1.41)

3/2
T
U= [(m> TXY] S (1.42)
The energy and the on-axis fluence are related by
XY
U= Mg (1.43)

The numerical value of (y/7/[4In2]) is 1.0645. For flat phase fronts, the
Fourier transform full widths at (Sp;/2) obey

TAw= XAk, = YAk, =4In2 = 2.77. (1.44)
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1.5.3  Supergaussians

Often a profile that is more flat-topped than a lowest order Gaussian is
needed. We define a super Gaussian profile of order m by

S(z,y) = Su exp{—ln(2)[(i(—x>2 + (271’)2]1%} (1.45)

where m is an integer. The full widths at half maximum irradiance are X
and Y. The lowest order Gaussian corresponds to (m = 1). Larger values
of m make the profile progressively more like a top-hat.

1.5.4 Sech squared pulses

The time profile of ultra short pulses is sometimes best fit by a hyperbolic
secant profile of width (FWHM) T,

t
P(t) = Pas sech® (a T)’ (1.46)
where
a=2In(V2+1) = 1.76275, (1.47)
and % 2Py T
U= / P(t) dt = =22 (1.48)
oo o

1.5.5 Rayleigh and dispersion lengths

For a lowest order Gaussian spatial profile with a round waist of size w,
(radius at Sys/e?) the Rayleigh range is defined as

2
kwo Acﬁ‘yo

p =0 == (1.49)

where Acg o is the effective area at the beam waist and A is the wavelength
in the medium. At distance z from the waist the beam size is

w(z) = woy [1+ =, (1.50)
*R

and the phase front radius of curvature is

R(z) = z[l + é] (1.51)
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Similarly, for a lowest order Gaussian temporal profile with shortest du-
ration 7, the dispersion length is

7_2

=_° 1.52
=23, (1.52)
where D is the group delay dispersion, given by
0%k
D=_—. 1.
92 (1.53)

At a distance z from the point of minimum duration the duration is

T=Toy |14 (1.54)
“D
and the frequency chirp is
2 z/zp

(1.55)

1.6 Field expansions

As a mathematical convenience it is customary in optics to express an op-
tical field or polarization in terms of a carrier wave and a complex envelope
function. For example, an optical field E(z,y, z, t), which is always a real
quantity, can be written

1 . . . .
E(z,y,2,t) =5 E(z,y, z, t)e et L B (2, y, 2, t)e" T | (1.56)

where the field is factored into a carrier wave of frequency w. and wave
vector k., and a complex envelope function E(x,y, z,t) that defines the
modulation of the carrier wave in time and space. The carrier wave is an
arbitrarily chosen monochromatic plane wave that lies near the central tem-
poral and spatial frequencies of the real field.

Throughout this book real vector quantities such as an electric field or
a polarization are represented by bold upright letters, while the complex
field components are represented by the bold italic letters.

1.6.1 Fourier transform definitions

The envelope functions may be Fourier transformed between ¢ and w using

1 e -
E(z,y,z,w) = E/ E(z,y, 2 t)e™dt, (1.57)
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1 > .
E(z,y,2,t)= E / E(z,y, z,w)e” “tdw, (1.58)

where w represents detuning from the carrier frequency. Similarly, the en-
velope functions can be transformed from x to k. or from y to k, using

1 > .

E(kxayazat> = E/ E(xayazat)eilkzxdxa (159)
1 o .

E(xakyazat) = E/ E(xayazat)eilkyydya (160)

where k, and k, represent tilts relative to the carrier k-vector which is
usually assumed to point in the z direction.
We use < to indicate Fourier transform pairs, for example

E(x’y’z7t) @E(x’y’z’w)' (1'61)

1.6.2  Fourier transform properties

Here we list some convenient relations for transforms. The relation
1
E / El(w)EQ(wo — w)dw < El(t)EQ(t) (162)

indicates that the transform of the product of two fields is a convolution of
the individual transforms of the two fields.
The transform pair

1 2
Eo(f(m/g”")2 e ——Fyr.e (kaTo/2) (1.63)
V2

indicates that a Gaussian in x space with a constant phase is the transform
of a Gaussian in k, space with a constant phase. Note that the two widths,
xo and 2/x,, satisfy Eq. (1.33).
The relation JE
t
% — —iwE(w) (1.64)
relates the transform of the time derivative of a field to the field’s (t — w)
transform.
Similarly the relation
dE
dB(z) < ik, F(ky) (1.65)
dx
relates the transform of the space derivative of a field to the field’s (z — k;)
transform.
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1.7 Abbreviations

BB
B&K
BW
BWO
CW
CPM
CPOPA
CRO
DFG
DRO
FDTD
FFT
FWHM
GDD
GVD
GVM
LP
NCPM
OPA
OoPG
OPF
OPO
ppX
PW
QPM
ROC
SBS
SFG
SHG
SP
SPM
SRO
SRS
SVEA
THG
TPA
TRO
WOC

broad bandwidth

Boyd and Kleinman
bandwidth

backward wave oscillator
continuous wave

compensated phase match
chirped pulse optical parametric amplification
cross resonant oscillator
difference frequency generation
doubly resonant oscillator
finite difference time domain
fast Fourier transform

full width half maximum
group delay dispersion

group velocity dispersion
group velocity mismatch

long pulse

noncritical phase match
optical parametric amplifier
optical parametric generator
optical parametric fluorescence
optical parametric oscillator
periodically poled crystal X
plane wave

quasi phase match

radius of curvature

stimulated Brillouin scattering
sum frequency generation
second harmonic generation
short pulse or synchronously pumped
self phase modulation

singly resonant oscillator
stimulated Raman scattering
slowly varying envelope approximation
third harmonic generation

two photon absorption

triply resonant oscillator

walk off compensated
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Linear crystal optics for
monochromatic plane waves

The physics of three-wave mixing in anisotropic crystals can be conveniently
separated into three topics: how a light wave is changed when it enters or
exits the crystal, how a light wave propagates in the crystal, and how three-
wave mixing occurs in the crystal. Each of these topics can be considered
at different levels of complexity, but each begins with a treatment of mono-
chromatic plane waves. This chapter is devoted to the first two topics, linear
propagation of monochromatic plane waves in a crystal, and their behavior
on entering or exiting the crystal. Chapters 3 & 4 will explain nonlinear
mixing of the monochromatic plane waves. Once the behavior of mono-
chromatic plane waves is thoroughly explored, we will show in subsequent
chapters how linear combinations of monochromatic plane waves are used
to construct realistic beams and pulses, and how the equations that describe
those realistic cases are derived and applied.

As a starting point we rewrite Maxwell’s equations specifically for mono-
chromatic plane waves. Following the customary procedure, we write the
vectors for the polarization, the electric field, and the displacement in com-
plex notation,

[Pei(wtk~r) + P*ei(wtk~r):|, (21)

N = N =

[Eei(wtk~r) + E*ei(wtk~r):|, (22)
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D = l Defi(wtfkr) +D*ei(wt7k-r) ) (23)
2

The actual fields are represented by the real quantities P, E, and D, but
for many calculations it is more convenient to use the complex envelope
functions D, E, and P. These complex vectors are in general functions of
(z, vy, z, t). However, for monochromatic plane waves, they are independent
of space and time so we omit these arguments in this chapter, and treat
the envelope functions as simple complex vectors.

We substitute the expansions of Eqgs. (2.1)-(2.3) in the wave equation,
Eq. (1.13)

2 2

VxVxE-= hE+ﬂ. (2.4)

THogED = THege
The operator V becomes (+ik) when it operates on the exponent (+ik -
r). Similarly the operator (9/0t) becomes (+iw) when it operates on the
exponent (+iwt). Making these substitutions in Eq. (2.4) and equating the
positive (or negative) frequency components on each side of the equation
yields

kxkxE=—p,wD. (2.5)

In deriving this equation we assumed that E and D do not change on prop-
agation, so this is a wave equation for eigenpolarized light. This expression
implies that D must be normal to k, but D is not necessarily parallel to
E. However, k, D, and E must lie in a single plane.

We use a similar procedure to rewrite the Poynting vector equation to find
the energy flow for monochromatic plane waves. We start with Eq. (1.16),
the general Poynting vector equation,

S:LEXB:EXH. (2.6)
Mo

For monochromatic plane waves the third Maxwell equation, Eq. (1.3),
relates H to FE for eigenpolarized light in a nonmagnetic material by
kx E

H = .
How

2.7)

Substituting the expansions for E and H in Eq. (2.6), equating equal fre-
quency components, and using Eq. (2.7) plus

€ofloc? =1, (2.8)

we arrive at

(S) = NéoC

= 2|EPéxkxé, (2.9)
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where the angle brackets around S indicate a time average over the optical
cycle. We only care about the time averaged values, so we will leave the
brackets off in the remainder of the book, and S will be understood to
be the time averaged Poynting vector. The unit vector é is parallel to the
electric field, and the unit vector k is parallel to the propagation vector
(normal to the wave fronts). From Eq. (2.9) we see that the flow of optical
energy, represented by S, is perpendicular to E, but not necessarily parallel
to k. However, S, E, and E must lie in a single plane.

It is a good idea to memorize the two pairings of orthogonal vectors we
have just derived, (ELS) and (DLk).

The remainder of this chapter consists of finding solutions to Eq. (2.5)
in anisotropic crystals. The solutions will allow us to explore linear propa-
gation in biaxial crystals, and to show how uniaxial and isotropic crystals
are special cases of biaxial crystals. I choose this approach because it is not
difficult to understand propagation in biaxial crystals, and also because
the popular nonlinear crystals of the KTP family (KTP, RTP, KTA, RTA,
CTA), plus several borate crystals (LBO, CBO, BiBO, YCOB, GdCOB),
and KNbOj3 are all biaxial.

Our discussion of light propagation in biaxial crystals will progress from
a word-and-diagram geometrical sketch to a more mathematical description
based on that geometrical picture, and finally to more abstract mathemati-
cal derivations based directly on Maxwell’s equations and crystal dielectric
tensors.

2.1 A geometrical description

The word picture presented in this section is adapted from Born and Wolf’s
classic text Principles of Optics [1]. We consider only crystals that are
nonmagnetic (M=0) and nonconductive (J=0).

The solution to the wave equation for eigenpolarized light,

kxkxE=—p,wD, (2.10)

can be broken into two steps. The first step is to relate D to E in a general
way. The second step is to find the specific paired values of D and E that
solve the wave equation.

2.1.1 Relating D to E

Any two vector quantities in a nonisotropic crystal are generally related by
a (3 x 3) tensor. In our case of D and E, the relation is

D=c-E, (2.11)
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where € is the symmetric (3 x 3) dielectric tensor. It will be more convenient
to use this equation in the form

E=¢'D. (2.12)

As we discuss in Chapter 14, Eq. (2.12) can be associated with a three
dimensional ellipsoid with principal axes n., n,, and n. defined by

Ny =\ €z /€0 (2.13)

Ny = 1/ €yy/€o (2.14)

Ny, =€/ - (2.15)

This ellipsoid has various names in the literature. We will call it the D-
ellipsoid because, as we will see, it relates a given D to its paired E. The
D-ellipsoid is diagrammed in Fig. 2.1 where, for the purpose of illustration,
the ellipticity is greatly exaggerated. In practice the lengths of the principal
axes usually differ by 5% or less.

FIGURE 2.1. D-ellipsoid shown with the principal optical frame {z,y, z} which is
aligned to the primary axes of the ellipsoid with the convention (n, < ny < n.).

For biaxial crystals the three principal axes have different lengths, and
we adopt the standard labeling with (n, < n, < n.). For uniaxial crystals
two of the axes have equal length, while for isotropic crystals all three axes
have equal length. These are limiting cases of the biaxial crystal, so an
understanding of biaxial crystals will be easy to apply to them. We will
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relate the orientation of the D-ellipsoid to the underlying crystal structure
in Chapter 16. For now it is sufficient to know the D-ellipsoid exists for any
crystal.

The D-ellipsoid represents the dielectric response for all orientations of
D. If D-extended is drawn as a vector from the origin through the ellipsoid
surface, the electric field E associated with D is parallel to the surface
normal of the ellipsoid at the point where D intersects the surface. In
general E is not quite parallel to D. The two are exactly parallel only
when they are aligned with one of the principal axes of the D-ellipsoid.

2.1.2 Finding the eigenpolarizations

As we showed earlier, the relation (D1k) must hold in order to satisfy
the wave equation. If we consider a wave propagating along direction l%,
as shown in Fig. 2.2, D must lie in the plane normal to k. This plane
passes through the center of the D-ellipsoid and intersects the ellipsoid in
an ellipse that we can call the n-ellipse. The E field associated with D
must be aligned normal the D-ellipsoid and thus normal to the n-ellipse.
However, E does not generally lie in the plane of the n-ellipse.

FIGURE 2.2. D-ellipsoid and propagation vector, k. The plane normal to k that
passes through the origin intersects the D-ellipsoid in the n-ellipse indicated by
the heavy line. The eigenpolarization planes coincide with the major and minor
axes of this n-ellipse, and the associated refractive indices are equal to the semi
major and semi minor axes of the ellipse.

In order to satisfy the wave equation, E must lie in the same plane as
k and D. Otherwise the vector quantities on the two sides of Eq. (2.10)
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would not be parallel. This condition can be met only if D lies along one of
the principal axes of the n-ellipse. There are two possible solutions to the
wave equation corresponding to D lying along either of the principal axes
of the n-ellipse. The D vectors of the two solutions are thus orthogonal
to one another, and in combination with k define two eigenpolarization
planes that contain k and the paired solutions for D and E. Only waves
with D aligned along the major or minor axis of the n-ellipse propagate
without changes to the direction of D or E, that is as eigenpolarizations.
The corresponding two refractive index values correspond to the lengths
of the two principal axes of the n-ellipse. We use hi or lo to label the
eigenpolarization associated with the higher or lower refractive index.

To summarize, the problem of finding the eigenpolarizations and their
refractive indices is reduced to the problem of constructing the D-ellipsoid
based on the crystal’s dielectric tensor, followed by defining a propagation
vector k. The n-ellipse is then defined in the plane normal to k, and the two
eigenpolarization planes are those defined by k and the major and minor
axes of the n-ellipse. The two corresponding refractive indices are given by
the lengths of the semi major and semi minor axes of the n-ellipse.

2.1.83  Optical azes of biaxial crystals

Suppose we start with the propagation vector parallel to the z axis of the
D-ellipsoid and continuously rotate it in the zz plane until it is parallel
to x. Initially, when the propagation is along z, the n-ellipse lies in the
zy plane, and np;, the higher index, must be equal to n,, and n;, must
be equal to n,. As the propagation direction rotates away from z toward
the z, the n-ellipse pivots about the y-axis. Thus the y direction remains
an eigenpolarization with the refractive index n,, but the second refractive
index increases as the angle increases, going from n, for propagation along
z to n, for propagation along x. The second index starts out smaller than
n, and finishes larger than n,, so at some intermediate angle it must be
equal to n,. At that angle the n-ellipse must be a circle with both refractive
indices equal to n,. This propagation direction is known as the optic axis,
and its angle relative to z is traditionally labeled 2. By symmetry there
must be a second equivalent optic axis on the opposite side of the z-axis
at (—). As the propagation angle sweeps through € the major and minor
axes of the n-ellipse swap places. For angles smaller than €2 the major axis
is parallel to y, while for angles larger than 2 the minor axis is parallel to

Y.
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2.1.4 Propagation outside the principal planes

When the k-vector lies outside the three principal planes, xy, xz, or yz,
the n-ellipse and its eigenpolarization directions are generally rotated so
the eigenpolarizations do not align with the axes of the D-ellipsoid. Figure
2.3 illustrates the two eigenpolarization directions for various propagation
direction lying in one octant for the biaxial crystal KNbOgs. The eigenpo-
larizations twist as the propagation direction changes, but they are always
orthogonal to one another. The other octants are images of this one reflected
in the three principal planes, xy, yz, and xz. The angle of the optical axis,
Q, uniquely determines the entire eigenpolarization map for a crystal. All
crystals with identical optical axis directions share the same eigenpolariza-
tion map.

FIGURE 2.3. Eigenpolarization pairs plotted against the propagation direction
in one octant of the biaxial crystal KNbO3s. The polarization directions for the
lo refractive index follow lines originating on the yz arc, while the polarization
directions for the hi refractive index follow lines originating on the xy arc. The
optic axis is labeled oa. The other octants are reflections of this one in the three
principal planes, zy, yz, or xz.



18 2. Linear crystal optics for monochromatic plane waves

2.1.5 Poynting vector walk off

As described earlier, the electric field E paired with D is normal to the
surface of the D-ellipsoid at the point where D intersects it, so E is not
in general parallel to D. For an eigenpolarization the point of intersection
coincides with either the major or the minor axis of the n-ellipse, so the
tilt of E must lie in the plane containing both D and k. The small angle
between D and E is conventionally labeled p. E is tilted relative to D in
the direction of diminishing refractive index.

Recall that E and S are orthogonal. This implies that the angle between
k and S is also p. Each of the eigenpolarizations has an associated Poynting
vector walk off angle that we label py; or p;,. These tilts are illustrated in
Fig. 2.4.

FIGURE 2.4. Vectors Dy, Eni, Ski, and k lie in a single plane while vectors
D, E;,, Si, and k lie in an orthogonal plane. Walk off angle ps; is the angle
between Dy; and Ep; and also the angle between k and Sj;. Walk off angle pio
is the angle between D), and E;, and also the angle between k and S;,.

Because walk off occurs in the eigenpolarization planes, the lines in
Fig. 2.3 that show the eigenpolarization directions also indicate the di-
rections of the two Poynting vector walk off angles. For the hi eigenpolar-
ization (curves originating on the xy arc), the energy flow is tilted along
the hi eigenpolarization direction in the direction away from the xy plane,
while for the lo-index polarization (curves originating on the yz plane) the
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energy flow is tilted along the lo eigenpolarization direction toward the yz
plane.

Walk off always tilts S toward the direction of lower refractive index, so if
k is pivoted slightly in the plane of the lo eigenpolarization in the direction
of walk off, n;, decreases but np; is unaltered. This means that the lines
in Fig. 2.3 that indicate the directions of the lo eigenpolarization (curves
originating on the yz plane) are also curves of constant ny;. Similarly, the hi
eigenpolarization directions (curves originating on the zy plane) are curves
of constant m;,. For example, for propagation directions lying in the yz
plane, the hi eigenpolarization lies in the yz plane and ny; varies with
angle, but the lo eigenpolarization is normal to the yz plane and n;, = n,,
independent of angle. Similarly, along each of the lines originating on the
xy arc, nj, is constant, with a different value for each line, varying from n,
for the line lying in the yz plane to n, for the line lying in the xz plane
and terminating at the optic axis.

For propagation in a principal plane one of the walk off angles becomes
zero. For example, propagation in the yz plane makes (p, = 0), while
propagation in the zy plane makes (pp; = 0). Propagation in the 2z plane
makes (p;, = 0) for directions between oa and x, and (pp; = 0) for directions
between oa and z.

2.1.6 Hi and lo index surfaces

We have explained that there are two refractive indices associated with
each propagation direction. They can be represented by double surfaces as
shown in Fig. 2.5. The distance from the origin to the outer surface along
any propagation direction is np;. The distance to the inner surface is ng,.
The two surfaces touch only at their point of intersection with the optic
axes. The Poynting vector for a beam with lo polarization is normal to
the inner surface, the Poynting vector for the beam with hi polarization is
normal to the outer surface. The corresponding E fields are tangent to the
surfaces.

2.1.7 Uniaxial crystals

The symmetry of the crystal structure for certain classes of crystals requires
that two of the principal refractive indices be exactly equal (see Chapter 16).
In the transition from biaxial to uniaxial there are two possibilities: the
intermediate index n, can approach the high index (n, — n;) or the low
index (ny, — ng). If (ny, — n.), the two optic axes tilt toward the z axis,
while if (n, — n,), the optic axes tilt toward the z axis. The left diagram
in Fig. 2.6 shows the eigenpolarization directions for the crystal DLAP
which has principal indices at 1064 nm of (n, = 1.496), (n, = 1.558),
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FIGURE 2.5. The two n surfaces. The distance from the origin to the outer
surface at each value of (0, ¢) is nn: (0, ¢), while the distance to the inner surface
is n1o(0, ¢). The E field for an eigenpolarization is tangent to the corresponding
surface, and its Poynting vector S is normal to the corresponding surface. The
optic axis oa is the only point where the two surfaces touch.

and (n, = 1.565). Its optic axis lies near the x axis. The right diagram in
Fig. 2.6 shows the eigenpolarization directions for the crystal KTA which
has principal indices at 1064 nm of (n, = 1.782), (n, = 1.787), and (n, =
1.868). Its optic axis lies near the z axis.

If n, becomes exactly equal to n, the two optic axes merge into a single
optic axis oriented along z. The eigenpolarization directions then lie along
the latitude and longitude lines as shown in Fig. 2.7. The hi-index wave,
polarized along a line of constant longitude, is called the extraordinary, or
e-wave, while the [o-index wave, polarized along a line of constant latitude,
is called the ordinary, or o-wave. The n, surface is spherical with radius
ng(= ny), while the n. surface is an oblate ellipsoid of revolution with
polar radius of n,(= n,) and equatorial radius n.. The left hand diagram
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FIGURE 2.6. Eigenpolarization and walk off directions for DLAP (left) and KTA
(right). The line labeled oa is the optic axis. The other octants are reflections of
this one in the three principal planes.

of Fig. 2.8 shows a slice through the double n-surface for such a positive
uniaxial crystal. The o-wave has no Poynting vector walk off, while the walk
off of the e-wave is toward the z axis.

On the other hand, if n, becomes exactly equal to n., the crystal is neg-
ative uniaxial and the two optic axes converge to a single axis lying along
x. The eigenpolarization contours converge on the = axis rather than the z
axis. However, for such crystals it is customary to abandon the convention
(ng < ny < n.) and relabel the unique axis from x to z. The eigenpolariza-
tion directions then are identical to those shown in Fig. 2.7. The ordinary
or m, surface is again spherical while the extraordinary or n. surface is a
prolate ellipsoid of revolution. A cross section through the double index sur-
faces for a negative uniaxial crystal shown on the right in Fig. 2.8. Poynting
vector walk off of the e-wave is away from the z axis for a negative uniaxial
crystal.

2.1.8 Isotropic crystals

If (ny = ny = n.), all three refractive indices are equal so the D-ellipsoid is
a sphere. The crystal is isotropic, meaning all propagation directions and
polarizations are equivalent. There are no unique eigenpolarization direc-
tions determined by the crystal’s dielectric response, so all polarizations are
eigenpolarizations.

Exercise 1 illustrates computation of the hi and lo refractive indices plus
the walk off angles, for any propagation direction in a biaxial or uniaxial
crystal using the SNLO function RefInd.
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FIGURE 2.7. Eigenpolarization and walk off directions for a uniaxial crystal.
The polarization and walk off direction for an extraordinary, or e-wave, lies along
a line of constant longitude while the polarization direction for an ordinary, or
o-wave, lies along a line of constant latitude.

2.2  Mathematics of the geometrical description

In Sec. 2.1 we presented a qualitative, graphical description of linear propa-
gation of monochromatic plane waves in a biaxial crystal. In this section we
develop the quantitative mathematical counterpart. We will make minimal
reference to Maxwell’s equations here, saving that for the next section. The
derivations of this section are not particularly elegant, but they are tied di-
rectly to the geometrical picture using the D-ellipsoid and the n-ellipse. We
will retrace the path of the previous discussion, starting with a derivation
of the D-ellipsoid and following with analysis of the n-ellipse. If you are
satisfied with the qualitative version already presented you can skip ahead
to Sec. 2.4.

2.2.1 Finding the D-ellipsoid

The displacement D(w) produced by a monochromatic optical field E(w)
can be written

D) = ¢E(w) + P(w) = ¢ E(w) + €X'V (w)-E(w). (2.16)

The linear susceptibility x")(w) in its most general form is a symmetric
(3 x 3) tensor. Hiding the w arguments, the displacement D can be written

D=c-E, (2.17)
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FIGURE 2.8. Poynting vector walk off directions for a positive uniaxial crystal
(left) and negative uniaxial crystal (right).

where
€= e[I+x"], (2.18)
and I is the (3 x 3) identity matrix. In expanded form Eq. (2.17) is
Dy | = ez €y €y E, |. (2.19)
Dz ezx ezy ezz EZ

where the dielectric tensor € is symmetric. By rotating the reference frame so
it aligns with the dielectric principal frame € is diagonalized. Associating the
diagonal elements of € with the principal refractive indices, (€,, = €on2),

(€yy = €ony), and (e, = €on?) we write Eq. (2.17) in the principal reference
frame
D, ni 0 O E,
D, | =¢ 0 ng 0 E, |. (2.20)
D, 0 0 n? E,
The same equation in inverted form
E=¢"' D, (2.21)
yields, in the principal frame,
E, 1 1/n2 0 0 D,
E, | = = 0 l/ng 0 D, |. (2.22)
E, ° 0 0 1/n? D,

Next we define a refractive index n as the proportionality constant be-
tween D and the component of E parallel to D according to

' p (2.23)

€on?

Ey =
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Mixing spatially and temporally
structured beams

In this chapter we combine the ideas of Chapters 6 & 7 and apply them to
mixing of beams with both spatial and temporal structure. We will empha-
size the ability of spatial structure to modify the apparent group velocity
and apparent group velocity dispersion of spectrally broad pulses. This
ability is of practical use in achieving group velocity matched mixing, for
example. We first consider a rather general case of second harmonic gen-
eration to illustrate the coupling between spatial and temporal structure.
We then specialize to large diameter beams that allow us to ignore certain
aspects of spatial walk off.

8.1 Linear propagation

We copy from Chapter 5 the general envelope propagation equation
oFE tan(a + p) oFE cosp oF
_ = — tanl o _— e —_ -
0z ) o vg cos(a+ p) Ot
(A cosPp 0?’E (B cosp 0’FE
+i| = +| =
2 cos(a+ p) ) Oz 2 cos(a + p) ) Oy?
i D cosp A sin? acos® p sinacos?p \ O?°F
2 cos(a+p) 2 v2cosd(a+p) vgcos?(a+p) ) Ot?

—H(A sin acos® p Fcosacosp) 0’FE 8.1)

vg cos? (o + p) cos(a + p) ) Qxot
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This equation describes a beam propagating with its carrier k-vector tilted
at angle « relative to the integration axis z. The coefficients of the various
partial derivatives can be considered to be the effective walk off, the effective
group velocity, etc., each defined as the coefficient measured along a z axis
that is common to the three coupled beams involved in a mixing process.
Following the notation of Chapter 5, we indicate these effective coefficients
by tildes. For example, the effective walk off angle is

p=p+a. (8.2)

The angle p is the angle between the z-axis and the Poynting trajectory
of a point at the center of the light envelope. The true, or intrinsic, walk
off angle p is the walk off angle measured in the usual way, as the angle
between S and k. Similarly, the effective group velocity is

~ cos(a + p)
Vg = ng, (8.3)

and the effective group delay dispersion coefficient is

D_p_Cosp Asin2a cos®p 2Fsina cos?p ,
cos(a + p) v2  cos3(a + p) vy cos?(a+ p)

(8.4)

where D is the intrinsic group delay dispersion coefficient, A is the intrinsic
diffraction coefficient (approximately 1/k), and F is the intrinsic frequency
dependent walk off, which can usually be neglected. The effective coeffi-
cients can be used to propagate a pulse by numerically integrating the
propagation equation along the z direction. They are generic in the sense
that they are independent of the shape of the pulse envelope.

The mixing terms that couple the three equations were defined in Chap-

ter 5 as OE p
oL _ 0l g preitke (8.5)
0z e
where deg and 7 were defined in Eqgs. (3.31) and (3.33). In this chapter we
assume the pulses are long enough to neglect the additional mixing term

that is proportional to (O[E3E5]/0t).

8.2 Second harmonic generation

We begin with a simple illustration of second harmonic generation by a
small diameter, short fundamental pulse. This example shows how spatial
and temporal structure can become entangled via nonlinear mixing. We
will assume the diameter of the fundamental beam is large enough that
diffraction is unimportant, yet small enough that birefringent walk off is
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larger than the beam size. We also assume the pulse duration is long enough
that dispersion is unimportant, yet short enough that temporal walk off
between the fundamental and second harmonic is larger than the pulse
duration. We also assume mixing is weak enough that the fundamental is
not significantly depleted.

This SHG process is diagrammed in Fig. 8.1. The combination of spatial

7.

FIGURE 8.1. Second harmonic generation of a short, small diameter, fundamental
pulse in a crystal with temporal and spatial walk off of the second harmonic
relative to the fundamental. The output second harmonic is a slanted pulse whose
slant angle is determined by the magnitudes of the spatial and temporal walk offs.

0e
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p::

FIGURE 8.2. Second harmonic generation of a fundamental pulse with a slanted
pulse envelope in the same crystal as in Fig. 8.1. The ellipse outlined by the
solid line is the fundamental envelope; the shaded region is the second harmonic
envelope.

and temporal walk off creates a slanted second harmonic envelope. As the
pulses propagate through the crystal, the second harmonic pulse moves
laterally relative to the fundamental pulse and also lags behind. This leads
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to the slanted second harmonic pulse. The slant angle is easily calculated in
terms of the spatial (p) and temporal (nge —ng1) walk offs. After exiting the
crystal the slant angle is (¢ = arctan[(ng2 —ng41)/p]). Inside the crystal the
slant of the second harmonic envelope is (¢in: = arctanf(1 — ng1/ng2)/pl).

It is obvious that if the fundamental pulse is reshaped before entering the
crystal so that inside the crystal it has an elongated envelope slanted at the
same angle as the second harmonic just described, the fundamental envelope
will better overlap the second harmonic envelope through the crystal. This
isillustrated in Fig. 8.2. The group velocities of the fundamental and second
harmonic are unchanged and are still unequal. However, the apparent group
velocities, defined as the velocities of the points of intersection between the
envelopes and the z axis, are now equal.

Apparent group velocities are further explained in Fig. 8.3. In this dia-
gram, the fundamental is o polarized and (S; || k1 || 2). The second har-
monic is e polarized so Ss is tilted by the second harmonic walk off angle p
relative to z. The true group velocity of second harmonic is less than that of
the fundamental, so the center of its envelope, indicated in the figure by the
lower dot, travels more slowly along the z direction than the center of the
fundamental envelope, indicated by the upper dot. However, the apparent
group velocities are equal. This equality requires the proper slant angle of
the fundamental envelope.

(O] (O]

20

FIGURE 8.3. SHG using a slanted pulse. The k vectors are parallel to z, and the
fundamental is o polarized so its Poynting vector is along z. The second harmonic
is e polarized so its Poynting vector makes an angle of p with the z axis. The
envelope on the left is the fundamental envelope at (¢t = 0). The envelopes on the
right are the fundamental and second harmonic envelopes at (¢ > 0). The true
group velocity of the second harmonic is less than that of the fundamental so the
center of its envelope, indicated by the lower dot, lags behind the center of the
fundamental envelope, indicated by the upper dot. However, the apparent group
velocities, as measured at the point of intersection of the envelopes and the z
axis, are equal.
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Exercise 1 uses 2D-mix-SP to illustrate SHG of a 100 fs pulse in a 5 mm
long BBO crystal. The second harmonic envelope is slanted as shown in
Fig. 8.1

8.3 Tilted beams & slanted envelopes

For some cases the general propagation and mixing equations for tilted
beams listed in Eqgs. (8.1)-(8.5) are more general than necessary. If we as-
sume the pulse profiles look like large diameter pancakes we can incorporate
the x and y derivatives in the ¢ derivative terms to obtain equations similar
to the plane-wave mixing equations of Chapter 6. That is the topic of this
section. The group velocities and GDD coefficients in the modified equations
are the apparent group velocities and apparent GDD coefficients. Such a
treatment is permissible if certain conditions are met. We must assume the
beam diameters are large enough that spatial walk off is much smaller than
the beam diameters; we must assume the three pulses have equal slant an-
gles; we must assume the entrance and exit faces of the crystals are parallel
to the pulse envelopes. This situation is diagrammed in Fig. 8.4. The three
pulse envelopes are parallel and the pancakes have diameters much larger
than the spatial walk off associated with the noncollinear Poynting vectors.
These restrictions mean that along any axis parallel to the z axis each pan-
cake has a well defined apparent v, and apparent D coefficient. The further

FIGURE 8.4. Generalized short pulse envelope diagram. The pulses have paral-
lel, slanted envelopes, but different propagation directions. The crystal faces are
parallel to the envelopes.

simplifying assumptions that the n values in Eq. (8.5) can be replaced by
n values, and the crystal faces can be normal to z rather than parallel to
the envelopes, are usually used, although they are not truly justified.
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8.3.1 Apparent group velocity and GDD

We use the notation 9, and D to indicate apparent group velocities and
GDD coefficients. We must show how 7, and D can be computed from their
true values plus the propagation tilts and envelope slants. To help with this
we note that a slanted pulse can be created by reflecting a short, unslanted
pulse from a grating as shown in Fig. 8.5. We exploit this equivalence in
computing 0, and D. In the near field the reflected pulse is an undispersed
pulse with a slanted envelope. In the far field it is angularly dispersed by
the grating, with the red components tilted in the direction of the leading
edge of the near field pulse and the blue components tilted in the direction
of the trailing edge.

A

FIGURE 8.5. Slanted pulse generated by reflecting a normally incident, unslanted
pulse from a diffraction grating. The slant angle is ¢ and the propagation angle
is a¢, both measured relative to the z axis.

Figure 8.6 shows our notational conventions for a large diameter, short
light pulse propagating in a birefringent crystal. We assume both the prop-
agation vector k, and the normal to the pulse envelope lie in the same plane
as the birefringent walk off p. The apparent group velocity 9, is the velocity
of the intersection of the envelope with the z-axis. It is not a true group
velocity because it does not refer to a fixed point within the envelope. The
apparent group delay dispersion D is the dispersion of the apparent group
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FIGURE 8.6. The apparent group velocity 74 is the velocity of the point of in-
tersection between a short, slanted pulse and the z axis. Velocity vg is the group
velocity as it is usually defined. Subscript c refers to the carrier wave.

delay. It accounts for the dispersive reshaping of the envelope as measured
along the z axis.
The apparent velocity and dispersion are the full derivatives of k, with

respect to w,
1 dk,

g = (8.6)
and )
~  d%k,
D= . 8.7
T2 (8.7)

These definitions take account of the fact that k. is a function of both w
and «, and, for slanted pulses, « is a function of w and ¢. Figure 8.5 shows
how a light pancake propagating at carrier angle a. with slant angle ¢ can
be mathematically constructed. An unchirped light pancake with no slant
relative to its k vector (initial envelope) is normally incident on a diffraction
grating embedded in the crystal, from which the carrier wave diffracts at
angle (. + ¢). Figure 8.7 shows the corresponding k-vector diagram for
this process. In evaluating Eqs. (8.6) and (8.7) we use the expansion

= o0 T 9o ow

dk,  d(kcosa) Ok Ok da
dw dw

] cosa—ksinag—z. (8.8)
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FIGURE 8.7. Slanted pulse generation k vectors. Each k, vector of the reflected
pulse has a transverse component equal to the grating vector, kg, in the direction
parallel to the grating.

Using the standard definitions of walk off and group velocity
1 0k

1 0Ok
o = (8.10)
in Eq. (8.8) we find
Ai: dk _ [i—ktanpa—a] cosa—ksinaa—a. (8.11)
Vg dw Vg Ow Ow

We still need to find (0a/0w), the relation between angle and frequency.
This is derived by differentiating the grating equation

kEsin(a + ¢) = kg (8.12)
with respect to w to find
Ok 0k da| . da
la—w+ a_aa_w] sm(a+¢)+kcos(a+¢)a—w =0. (8.13)

Solving for (Oa/0w) for the central, or carrier wave, gives
Jal 1 tan(a. + @) _ —1[cospsin(ac + ¢)
ow|, kvg|tanptan(ac+¢) —1] kv | cos(ac+ ¢ + p)

For brevity we will write a.. as a below. Substituting this in Eq. (8.11) gives
a convenient expression for 9,

(8.14)

Og = vgw [1 — tan(a + p) tan (;5] = vy

cos(a+ ¢+ p)

1
coS ¢ oS p (8.15)
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Happily, this expression for the apparent group velocity can also be deduced
directly from the geometry of the diagram in Fig. 8.6. It also agrees with
Eq. (8.1) when (¢ = 0), in which case the x derivatives are zero for large
pancakes.

The apparent group delay dispersion,

Ak,
dw?

can be evaluated in a similar manner. After considerable tedious algebra,
the result is

ﬁ:

(8.16)

coS ¢ oS p
cos(a+ ¢+ p)

—Ai cos psin®(a + ¢) cos® p
v cosd(a+ ¢+ p)
—Fi cos ¢ sin(a + ¢) cos? p
vg  cos?(a+ ¢+ p)

ﬁ:

(8.17)

The coefficients A, D, and I are respectively the diffraction, group de-
lay dispersion, and frequency dependent walk off coefficients we derived in
Chapter 5. Comparing with Eq. (8.4) we see that when (¢ = 0), (D = D).
In case this derivation seems too abstract, we offer the following sim-
plified, intuitive derivation of D. The appearance of A (the z diffraction
coefficient) in the expression for D might seem odd at first glance. How-
ever, the role of diffraction becomes apparent if we look at the simplified
case of a slanted pulse propagating in vacuum with k parallel to the z-axis,
as shown in Fig. 8.8. The blue and red envelopes separate because of grating
angular dispersion, which is a manifestation of diffraction. Thus diffraction
accounts for the separation of the dots shown in Fig. 8.8 at the center of the
envelopes. In vacuum there is no true group delay dispersion which would
lead to a longitudinal separation of the dots, so D cannot contribute to D.
However, the apparent group delay dispersion D refers to the separation
of the x’s in Fig. 8.8, so it has a nonzero value due to diffraction, that is
proportional to the diffraction coefficient A. We can compute it from

k. = kcos(¢ — ¢¢), (8.18)
where ¢. is the diffraction angle of the carrier frequency. The expression
for D is 5

~  d?k, (d¢>
D= =—kl= . (8.19)
dw? | y—p, dw

Using the grating relation
¢ = arcsin(kgy/k), (8.20)
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FIGURE 8.8. Diffraction of a short light pancake from a grating. The red and
blue portions of the spectrum separate with the red portion diffracted at a larger
angle than the blue portion.

we find 06 )

E = —E tan(b, (821)
which, combined with Eq. (8.19) and the vacuum values (D = 0), (F = 0),
(A= 1/k), (p = 0), gives

~ 1 9
D=—Atan’s, (8.22)

in agreement with Eq. (8.17) when (o = 0), (p = 0). Note that because the
red light trails the blue light the apparent dispersion is always anomalous in
vacuum, so the sign of D is negative. This apparent group delay dispersion
is commonly used in femtosecond technology to stretch or compress pulses
using grating pairs[112].

Repeating this exercise for a grating embedded a dispersive, nonbirefrin-
gent material rather than in vacuum adds a contribution proportional to
D, the true group delay dispersion coeflicient, yielding

~ 1
D =D — A— tan® ¢, (8.23)
Yg
again in agreement with Eq. (8.17) for (o =0), (p = 0). Note that because

the signs of the D and A terms are opposite in normally dispersive media,
it may be possible to tune D to zero by adjusting ¢. If (D = 0) the wave
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will propagate without any change in shape caused by GDD. This can be
achieved if the slant angle is set to

t = Dvg 8.24
an ¢ = A (8.24)
or, using the approximation (A = 1/k),

tang = |/ Dvk . (8.25)

Now that we have derived propagation equations for slanted pulses that
include no transverse derivatives, we can forget the pulses are slanted and
tilted, and if the conditions listed earlier are met, we can use the apparent
group velocities defined by Eq. (8.15) and the apparent GDD coefficients
defined by Eq. (8.17) in the plane-wave mixing equations in place of v, and
D. We can integrate these mixing equations as though the pulses were true
plane waves with envelopes normal to z and k vectors parallel to z.

8.3.2  Group velocity matched SHG of short, slanted pulses

We return to our earlier example of group velocity matched SHG in a
birefringent crystal for a more quantitative treatment. We will demonstrate
the close relation between group velocity matched SHG of slanted pulses
and achromatic SHG using angular dispersion of the fundamental light.
Both of these maximize the phase matching bandwidth.

As we showed earlier, the shortest second harmonic pulses and the broad-
est second harmonic bandwidth, as well as the highest conversion efficiency,
are achieved when the group velocities of the fundamental and second har-
monic pulses are equal. The apparent group velocity for a pulse with a
slanted envelope is given by Eq. (8.15) which we reproduce here

. cos(a+ @ +

8y = v, 509+ 0) (8.26)
COS ¢ oS p

Assuming the two fundamental pulses have the same polarization, with

both carrier waves propagating along z, the second harmonic carrier must

also propagate along z, so (a3 = 0), giving

cos(¢3 + p3)

. 8.27
COS (3 COS p3 ( )

’LA)gg = ’Ugg
Usually the true group velocity of the second harmonic is slower than that
of the fundamental. In a negative uniaxial crystal such as BBO, the second
harmonic is e polarized while the fundamental is o polarized. For the o-
polarized fundamental, (p = 0) and (051 = vg1), SO its apparent group
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velocity is simply the true group velocity, regardless of the slant angle ¢.
However, the apparent group velocity of the e-polarized second harmonic
can be adjusted by changing the slant angle ¢. To increase 743 the slant
must be in the negative direction, meaning the normal to the envelope is
tilted in the same direction as the walk off p, so ¢3 and ps have opposite
signs. The pulse envelopes must all have the same slant (¢1 = ¢3 = ¢),
so matching the apparent group velocities of the fundamental and second
harmonic is achieved when ¢ is adjusted to satisfy

cos(¢ + p3)

. 8.28
cos ¢ cos p3 ( )

Vg1 = Vg3

Exercise 2 illustrates a calculation of the slant angles ¢ required for group
velocity matching (or achromatic phase matching) in second harmonic
generation.

8.3.8 Achromatic SHG of frequency chirped pulses

There are a variety of other ways to increase the acceptance bandwidth,
and we will discuss some of them later, but the method that is most obvi-
ous in the case of a swept-frequency fundamental pulse is achromatic phase
matching[195] in which the angle of the fundamental wave is varied with
wavelength so the beam always propagates along a phase matched direc-
tion in a birefringent crystal. We again illustrate using the example of an
o-polarized fundamental and an e-polarized second harmonic wave, appro-
priate for a negative uniaxial crystal such as BBO. The waves propagate
nearly parallel to the fixed z axis, and the propagation angle of the fun-
damental, measured relative to z, is ¥;. If 91 is properly varied as Aw; is
tuned, phase matching can be maintained. Because phase matching is main-
tained the fundamental and second harmonic waves have parallel propaga-
tion vectors as Aw is tuned so we drop the subscripts on 9. To first order
in ¥ the expression for Ak, due to tilt alone is

k3. K1z
Ak, = Oks P 0. (8.29)
99 |y_ 99 |y_
The second term is zero because the fundamental is o polarized, leaving
8k32
Ak, = 9. 8.30
99 |y_ ( )

Equating the Ak induced by tilt (9) to the negative of Ak induced by
tuning (Awq) gives the relation between tilt angle and detuning required
to maintain phase matching
Oks.,
oV

0= —2(i - i)Awl. (8.31)
9=0

Vg3 Vg1
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FIGURE 8.9. Angular dispersion of fundamental for first order achromatic phase
matching of second harmonic generation.

We use the birefringent walk off equation

ok

i —ktanp (8.32)
to rewrite this as
1 1
(kgz tanpg)ﬁ = (— - —)Aw:;, (833)
Vg3 Vg1

or in differential form as

819 (1/’093 - 1/v91>
dws ks.tanps (8.34)

This equation has the same form as the grating dispersion equation Eq. (8.14)
which, for (a = 0), becomes

09 -1 cospcosg
8(.«)3 o kg’Ugg COS(p+ (b) '

(8.35)

This equation describes a dispersion that can be provided by a grating. The
implication is that we can achieve achromatic phase matching to first order
in Aw by dispersing the fundamental using a grating as shown in Fig. 8.9.
If we equate the right hand sides of Eqs. (8.35) and (8.34) we find that it
reduces to

cos(¢ + p3)

8.36
cos ¢ cos p3 | (8:36)

’Ugl = ’Ugg

in agreement with the group velocity matching requirement of Eq. (8.28).
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This shows that achromatic SHG and group velocity matched SHG are
based on the same far field angular dispersion of the fundamental pulse.
Although the reasoning used in deriving this result for short pulses and for
swept frequencies differed, it is clear that achromatic phase matching and
matched apparent group velocities are in some sense equivalent.

If an extremely broad phase matching bandwidth is desired it is possible
to fine tune the propagation angle versus frequency with a correction term
proportional to (Aw?). This cannot be achieved with a single grating but
combinations of gratings and prisms or prisms alone can be used[195]. This
would be equivalent to adjusting the D’s to fulfill the optimum broadband
condition (D3 = D;/2) that was derived in Chapter 6.

8.3.4 Mixing three short slanted pulses

Ideal broadband phase matching for three short pulses requires matching
all three apparent group velocities so

Bg1 = Dg2 = Bys. (8.37)

In rare instances such a group velocity match can be found for collinear
mixing. One example[43] is (4024 nm + 983 nm « 790 nm) mixing along
propagation direction (0 = 70°, ¢ = 22°) in KNbOs3. Another lucky coinci-
dence is quasi phase matched mixing (1500 — 1800 nm + 2250 — 1970 nm
< 940 nm) in poled LiNbO3 with a period of 27.2 um and a temperature
of 52°C[196].

Group velocity matching can also sometimes be accomplished in birefrin-
gent crystals[197] by slanting the three pulse envelopes to a common angle
¢ and tilting the waves, as shown in Fig. 8.10. The carrier waves are phase
matched for a particular value of o by adjusting the propagation angle in
the crystal #. The transverse carrier k-vectors must add to zero. The com-
mon slant angle ¢ can be adjusted to seek a match of the 94s. The ability
to independently adjust «, ¢, and 6 in seeking to equalize three apparent
group velocities means success with this method is often possible. However,
matching the group velocities fixes both ¢ and «, leaving no independent
adjustment of the Ds. Dispersion can be adjusted only by selecting a dif-
ferent crystal, a different set of polarizations, or a different principal plane
if the crystal is biaxial.

Exercise 3 shows how to use SNLO function GVM to match the group
velocities of three pulses in noncollinearly phase matched mixing of slanted
pulses.
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FIGURE 8.10. Scheme for matching the apparent group velocities of three pulses
in a birefringent crystal. The pulses have a common slant angle but different
directions of propagation. Varying the crystal angle, the beam angles, and the
slant angle can sometimes achieve group velocity matching.

8.8.5 CPOPA

CPOPA is our acronym for chirped pulse optical parametric amplification.
To create the highest achievable optical fields it is necessary to make a
pulse as short as possible and the beam quality as high as possible. How-
ever, optical damage to nonlinear crystals and other optics places practical
limits on the irradiance and power of short pulses. Amplifier damage can
be avoided by starting with a low energy, short pulse, stretching the pulse
in time to create a much longer chirped pulse, amplifying the chirped pulse
to a high energy, and then recompressing the pulse using large area diffrac-
tion gratings. Optical parametric amplification in a nonlinear crystal is an
attractive amplification method because it can provide high gain over a
broad bandwidth with little added background from fluorescence.

One requirement for amplifying 10 fs pulses is that the gain be nearly
uniform over 1500 ecm~!. Such a broad bandwidth requires that we match
the apparent group velocities (041 = 042) and also closely approximate
(131 = —132). This is seldom possible using collinear phase matching, but
achromatic phase matching can sometimes achieve this. For simplicity it
would be best if the output light of interest, which we will label wy, is not
angle dispersed so it does not have a slanted pulse envelope. The slant or
dispersion of the other red wave at ws is of less concern and can be exploited
to achieve the required conditions on 7, and D. We can tilt the pump to
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FIGURE 8.11. Phase matching diagram for chirped pulse optical parametric am-
plifier. The pump is tilted and nearly monochromatic, while the red waves are
broadband, as indicate by the ranges of k-vectors. The input pulse is decomposed
into parallel waves indicated by the set of vectors labeled ki, while the inter-
nally generated pulse two consists of angle dispersed waves indicated by the set
of vectors labeled k.

adjust the tilt and slant of pulse two. Fortunately, this allows nearly ideal
adjustments to 9, and D in many cases.

Figure 8.11 shows a k-vector diagram for CPOPA with a tilted pump
beam (k3) and nondispersed wy beam. The wy beam is angle dispersed as
well as tilted so its carrier wave propagates at angle . We show a fixed
length k-vector for the pump because it has a much narrower bandwidth
than the two red waves which are diagrammed with ranges of k-vectors
necessitated by their broad bandwidths. Each frequency component of pulse
one must phase match with its conjugate frequency component in pulse
two. In other words, each conjugate pair (k1, ko) in the diagram must form
a closed triangle with the pump k-vector (ks3), or, as we have redundantly
diagrammed it, they must form a parallelogram with the pump k-vector
forming the diagonal. Including all of the frequency components of the
pulses leads to a set of parallelograms as shown in the figure.

Because we are assuming that all beams have infinite extent in the di-
rections normal to Z, there is no range of k; or k, in either the k3 or the
k1 vectors. This means the transverse component of each of the ks vectors
must be equal to the transverse component of the pump vector. This is ex-
actly the situation created when a large diameter ws pulse with no angular
dispersion is diffracted by a grating. Each wave in the first order diffracted
pulse has a transverse k-vector component equal to the grating vector kg,
defined as (2m/dg) where d, is the separation of grating grooves. This is
shown in the left hand diagram of Fig. 8.12.

The corresponding time domain diagram is shown on the right in Fig. 8.12.
The ws pulse propagates with a tilt angle « and a pulse envelope slant of
zero. The values of 042 and D, are given by Egs. (8.15) and (8.17) with
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FIGURE 8.12. Model for the formation of the pulse at w2 as a pulse diffracted
by a grating with vector ky. Left diagram is in (k,w) space; right diagram is
in (r,t) space. The incident pulse in this artificial construction is composed of
a set of monochromatic waves with parallel k-vectors indicate by the set of ko
vectors incident on the grating. The reflected pulse consists of a set of angle
dispersed waves, each with its transverse component equal to k, which represents
the transverse component of k3. The tilt angle is (a=arcsin[ky/k2])

(¢=0),
. cos(a + p2)
= Vg9 ———— %2 8.38
Vg2 = Vg2 <08 p2 ( )
.2 3

~ COS P2 1 sin” aecos® pa
Dy = Dy—23P2 4, - B ACO8 P2 8.39
2 % cos(a =+ pa) 2032 cos?(a + p2) (8.39)

where po is the birefringent walk off angle of beam two. The value of « is
adjusted by changing the tilt angle of the pump beam. It is set to achieve,
as nearly as possible, the ideal group velocity and GDD conditions, (041 =
0g2), (131 = —132). The internal structure for chirped w; and ws pulses is
shown in Fig. 8.13.

In CPOPA there is a reasonable likelihood of achieving simultaneous
matching of apparent group velocities and apparent GDD coefficients for
the two red pulses. Recall that the Dy and Ay coefficients in Eq. (8.39) are
both positive in a normally dispersive crystal, so 132 will be tuned toward
negative values by increasing the pump angle, which increases a. D; is
equal to Dy which is usually positive. The value of 945 also depends on py
and as. In general the problem of achieving ideal group velocity and GDD
coefficients in any particular crystal by varying only « is over constrained.
However, by choosing the right crystal from among a large selection of
candidates, it is often possible to meet the requirements for broadband
CPOPA.

Exercise 4 illustrates how to use Opoangles to search for broad phase
matching of noncollinear parametric amplification.
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FIGURE 8.13. Structure of pulses in chirped pulse amplification with tilted pump
beam. Ideally the apparent group velocities of waves one and two match and
the apparent GDD’s are equal and opposite so the red-to-blue and blue-to-red
structures within the two pulses are exactly complementary.

Exercise 5 illustrates how use GVM to find the values of 9, and D for
noncollinear parametric amplification

In CPOPA the initial short w; pulse is usually generated by a mode
locked laser, often a Ti:sapphire laser, with a wavelength near 800 nm, and
a duration of 10-100 fs. It is stretched by factors as high as 10° using diffrac-
tion gratings or prisms, producing linearly chirped pulses with durations
of picoseconds or even nanoseconds. The pump pulse is often provided by
a Q-switched laser such as a frequency doubled Nd:glass or Nd:YAG laser,
operating on a single longitudinal mode to generate a pulse of 530 nm light
with a duration of 100 ps to 10 ns. The wavelength of the second red wave
in this scheme is 1580 nm. The energy in the original 800 nm pulse is typ-
ically a few nJ while the desired final pulse energy might be joules or kilo
joules, so the required amplification can be 10° or more. Some of this gain
might be provided by laser amplifier stages such as Yb3*-doped silica fiber,
or by Ti:sapphire rods or slabs, but the final several factors of ten are usu-
ally provided by a parametric amplifier. The bandwidth of a 10 fs pulse is
approximately 1500 cm ™!, so phase matching must be good over the range
800+50 nm if we are to maintain the bandwidth of the amplified pulse and
recompressibility to 10 fs.

Exercise 6 uses PW-mix-SP to illustrate numerical modeling of high gain
CPOPA in the plane-wave limit.
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FIGURE 8.14. Noncollinear quasi phase matched CPOPA for pulse envelopes one
and two normal to z and k;. The tilt angle a2 is set to match apparent group
velocities 941 and 9g2. The vector (ks+kg) closes the triangle.

8.3.6  Group velocity matched QPM mixing
CPOPA

Quasi phase matching introduces added flexibility in group velocity match-
ing. Fig. 8.14 shows how CPOPA can be achieved in QPM assuming (vgo >
vg1). The envelopes of pulses one and two are parallel to one another and
perpendicular to k1. The tilt angle of pulse two («2) is adjusted to make
(0g1 = 0g2). The pump and QPM grating vectors (ks and k,) close the
phase matching diagram. The envelope structure of wave two corresponds
to that in Fig. 8.12.

There is no birefringent walk off in most quasi phase matched crystals so
the values of p are each zero in the equations for 9, and D. They become

by = v, 7COSC(§S:; ?) (8.40)
D= Dﬂ 1 M, (8.41)

cos(a+ o) @ cos3(a + ¢)

where we have discarded the F term in D and used (A = 1/k). Matching
apparent group velocities for pulses one and two requires

(g = arccos (M) . (8.42)
Vg2

Matching 941 and 942 gives broad amplification bandwidth, but still broader
bandwidth is possible if (132 = —131). Adjustment of ao alone is unlikely to
meet this requirement while maintaining group velocity matching. However,
adjusting both ay and ¢o(= ¢1) may achieve the desired D condition, but
this means wave one is slanted, which may be unacceptable.

In principle the pump k-vector can point in any direction as long as the
grating vector closes the phase matching diagram. In practice the grating
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FIGURE 8.15. Noncollinear quasi phase matched and group velocity matched
second harmonic generation. Angles o and ¢ are chosen to match apparent group
velocities 041 and 942. The grating vector ky closes the triangle.

vector should be as small as possible so the poling period is within practical
limits. This requires the k3 vector to be nearly parallel to the third side
of the triangle formed by ki and ko, as diagrammed in Fig. 8.14. The
magnitude of k, is always larger, and the poling period smaller, than for a
collinear QPM process.

Exercise 7 illustrates noncollinear, group velocity matched, quasi phase
matched CPOPA in ppLT.

SHG

Group velocity matched and quasi phase matched second harmonic gen-
eration is also possible[198, 199]. If the fundamental and second harmonic
have the same polarization, the group velocity of the second harmonic is
generally less than that of the fundamental, so group velocity matching
requires slowing the fundamental pulse. This can be achieved by tilting the
fundamental and using nonzero slant angle ¢ as shown in Fig. 8.15. The
quasi phase matching grating is chosen to make (Ak = 0), and will be
tilted. Group velocity matching requires o and ¢ angles that satisfy

’LA)gl =Vg1l——— = Ugs. (843)

For broadest bandwidth we would also satisfy
Dy = 2Ds, (8.44)

but this is nearly impossible to achieve.
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Once a group velocity matched geometry is found it is straightforward to
compute the quasi phase matching grating needed to meet the phase match
requirement (Ak, = [k3 — 2k cosaq — kg.] = 0) and (Ak, = [2kisino; —
kge] = 0). It is important to make sure the grating period is long enough
to be practical. If a geometry with (¢ = 0) is chosen, the QPM grating
vector must be large so it will accommodate the transverse phase mismatch.
Longer grating periods are possible if (¢ > 0) because this reduces «.
The transverse mismatch can be avoided by splitting the fundamental into
two parts, one propagating with angle «, the other with angle (—«). This
requires (¢ = 0), of course.

Exercise 8 illustrates noncollinear, quasi phase matched and group veloc-
ity matched SHG of 1550 nm light in ppLN.

Three pulse mizing

For the more general case where we wish to match the group velocities
of three different pulses we can slow the two faster pulses to match the
slowest group velocity by tilting them. Assuming wave three is the slowest,
we can adjust o and as with (¢ = 0) to match all three group velocities.
The quasi phase matching grating is then chosen to null the transverse
and longitudinal components of Ak. To obtain practical poling periods it
may be necessary to use a nonzero ¢ as well. This makes it possible to
use smaller tilts to achieve the desired group velocity reduction, and that
generally leads to longer, more practical grating periods.

8.3.7 Snell’s law of slants

To take advantage of pulse slants it is necessary to know how they transform
when the pulse enters or exits a crystal. We define angle v as the slant
relative to the normal to the k vector. We can derive a relation between
incident and transmitted ~ similar to Snell’s law that relates incident and
transmitted directions of the k vector. We begin by using the diagram in
Fig. 8.16 to express the apparent group velocity along the input face of the
crystal 0, as

N g
0 P— (8.45)
Using Eq. (8.15) this can be written
. cos(a+ ¢+ p)
x = — 4
Y Y9 Gin ¢cosp (8.46)
and using (v = ¢ + «) this becomes
b = _cos(y+p) (8.47)

Y sin(y — a)cosp’
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FIGURE 8.16. Angles for deriving v, for a slanted pulse.

Let the pulse travel from crystal 1 with refractive index n and group velocity
index n4 to crystal 2 with refractive index n’ and group velocity index
n’g. The continuity condition on the pulse envelope across the boundary is
(0g = 7)) so

cos(y + p) cos(y” + ¢)
9 = Vg . (8.48)
sin(y — a) cos p sin(y’ — o) cos p
subject to Snell’s law
nsina =n'sina’. (8.49)

The last two equations can be solved for v’ which can then be used to
calculate 9.

For example, suppose a pulse with zero slant (v = 0) in air is obliquely
incident on an optically isotropic window or prism (p’ = 0). Equation (8.48)

becomes

1 , cos(vy)
_— =, — 8.50
Yo sin(—a) Yo sin(y’ —a’)’ (8:50)
with
sina =n'sina’. (8.51)

Combining the last two equations gives

sin o 1 1
tany’ = ——— . 8.52
n [1— (1/n)2sin? a]1/2 (n’ n’) (8.52)




9
Optical parametric generation (OPG)

Here optical parametric generation (OPG) means the single-pass paramet-
ric amplification of quantum noise to the point of noticeable pump depletion
and beyond. It is attractive as a relatively simple means of frequency down-
conversion because it dispenses with the optical cavity used in an OPO. The
longitudinal cavity modes of an OPO are absent, yielding a less structured
output spectrum. However, we will see that relative to an OPO, OPG is
likely to sacrifice conversion efficiency, spectral control, beam quality, and
pulse-to-pulse stability.

Optical parametric generation relies on parametric amplification of the
quantum background which fills all possible spatial and temporal modes.
The amplified output light may be spectrally broad and have poor beam
quality. It is possible to improve the OPG spectrum, beam quality, and
efficiency by adding a narrow bandwidth seed beam that overpowers the
quantum background. A few microwatts or milliwatts is usually sufficient.
With or without seeding, OPG efficiency can be quite high, with reported
efficiencies up to 70%[205], but it is usually considerably lower than that.

Optical parametric generation requires a much higher single pass gain
than an OPO, making optical damage more likely. OPG has been demon-
strated in a variety of nonlinear crystals using short pump pulses (ps or fs)
where the irradiance damage limit is high, but for nanosecond and longer
pump pulses, OPG is limited to long crystals with high nonlinearity, usually
quasi phase matched LiNbO3 (ppLN), LiTaOs (ppLT), KTP (ppKTP), or
GaAs (opGAAS). There are only a few reports of OPG in birefringently
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phase matched crystals when the birefringent walk off is greater than a
small fraction of the pump diameter[206, 207, 208, 209].

In most OPG demonstrations a Gaussian pump beam is focused so its
Rayleigh range is approximately equal to the crystal length L. For this
focusing condition, when spatial and temporal walk offs are insignificant
the threshold pump power is approximately proportional to (1/L), so the
peak irradiance at the focal waist at threshold is proportional to (1/L?).
Using longer crystals to take advantage of this scaling is important if optical
damage lurks or if the available pump power is limited. Longer crystals
also help avoid problems caused by higher order nonlinearities such as the
intensity-dependent refractive index (n2) and two-photon absorption (/).
However, if generation of the shortest possible pulses is desired, the crystal
must be short enough that the temporal walk off is not much greater than
the pump duration.

Optical parametric fluorescence (OPF) is closely related to OPG. It also
involves parametric amplification of quantum noise, but the gain is much
lower, leading to countable numbers of generated photons and negligible
pump depletion. It is often used as the source of correlated and entangled
photons. It can also be used to measure second order nonlinear optical
coefficients, as discussed in Sec. 17.1.2

The amplitude of the initiating quantum noise is half a photon per mode
on average, or approximately (10719 J) per mode. Many modes are some-
times amplified, raising the initial noise level to perhaps 1076 J. Pump
levels usually lie in the nanojoule to millijoule range, so the threshold gain
is typically in the vicinity of 100 dB. In most other applications of nonlinear
crystals the input irradiances need be only a few times the characteristic
irradiance S, to achieve high mixing efficiency. In contrast, achieving a
threshold gain near 100 dB requires pump irradiances near (100x.S,).

The high gain of OPG implies that the red waves are strongly modi-
fied by gain over a mere 5% of the crystal length. In contrast, when the
pump is focused so the Rayleigh length is equal to the crystal length, the
diffractive length for the red beams is roughly the full crystal length. The
dispersive counterpart of the Rayleigh range is the dispersion length de-
fined by (zp = 72/2D). The value of D for ppLN near 1000 nm is roughly
250 fs?2/mm. For this value a 100 fs pulse would have a dispersion length
of 20 mm, again much longer than the gain length even in a 50 mm long
crystal. Temporal walk off lengths are also usually long compared with the
gain length. The implication is that parametric gain tends to overpower
diffraction and dispersion to a much greater extent than in most non-OPG
mixing applications.

The high gain of OPG also means there is only a small window of pump
power between threshold and the onset of back conversion. Back conversion
is present in most OPGs pumped at more than 1.25 times threshold and is
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the primary cause of the beam quality degradation and spectral broadening
observed whenever an OPG is pumped much above threshold.

The rate of energy transfer from the pump to the red pulses as they
propagate is proportional to the local product of the three optical fields.
This tends to lock the pulses together. The high gain of OPG can reshape
the red pulses, preventing them from separating at the rate predicted by
their group velocities. Similarly, the red beams tend to be entrained by the
pump beam. At pump levels well above threshold, past the point in the
crystal where the pump becomes depleted and the gain is reduced, this
pulse/beam locking is defeated, and walk off, dispersion, and diffraction
may dominate near the output end of the crystal, strongly influencing the
output beam/pulse profile, spectra, and efficiency.

To optimize OPG sources in terms of spectral line width, beam quality,
and efficiency it is common practice to use multiple stages of OPG in which
the first stage supplies most of the gain but low conversion, while a second,
low-gain stage provides the bulk of the energy conversion. Between these
stages the light can be spectrally or spatially filtered to optimize overall
performance.

We discuss all these topics in detail below. We begin by considering tem-
poral/spectral effects in the absence of diffraction or birefringent walk off,
using a plane wave, dispersive OPG model. This simplifies the initial discus-
sion, emphasizing the roles of temporal walk off and gain. We will follow by
adding spatial effects, including pump spatial profiles, diffraction, red wave
tilts, and birefringent walk off. We will explore different focusing conditions,
crystal lengths, temporal walk offs, tilted waves, seeding, back conversion,
pump bandwidths, and more.

9.1 OPG pump threshold estimate

To estimate the threshold gain we first consider the simplest case where
the pump pulse is long compared with any group velocity walk off pulses,
and long compared with any GDD-induced stretching of the pulses. We
also assume parallel Poynting vectors with small diffractive spreading of the
beams, permitting the use of plane wave propagation and mixing equations.
Threshold is reached when the pump pulse is slightly depleted at its peak.

According to Eq. (3.88) the parametric gain of the red1 irradiance, in the
monochromatic, plane wave limit, assuming an undepleted pump, no red2

input, and (Ak = 0), is

I'y = sinh?(yL), (9.1)
where L is the crystal length, and
S
L =422 (9.2)

So
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Here S5 is the irradiance of the blue (pump) pulse and S, is the usual
reference irradiance for this process, defined by

6003n1n2n3

So = —75.
2d§HW1L¢J2L2

(9.3)

For large gains the sinh function in Eq. (9.1) can be approximated as

1
sinh(yL) = §evL, (9.4)
leading to
1 1
r = 162’% = %P (2 g—i ) (9.5)

For a Gaussian pump pulse of duration 7, Gaussian waist w (both at
Iy /€?), and pulse energy Us, the peak pump irradiance at the pulse and
beam center is

Sanr = Us
M )2)3% Tw?
The average noise irradiance of the red1 beam at its pulse and beam center,
in a beam with the same shape as the blue beam, is at least

(9.6)

hl/l

S = (i (9.7)

It is many times larger than this if many frequency modes can be amplified.
In order to deplete the pump irradiance by 10% at pulse/beam center, the
redl irradiance must be amplified from this initial value of S7y; to

Sp =0.1 ? Ssar. (9.8)
3

Using Eq. (9.5) we write this threshold condition as

0.1 2 Sanr = 0.25 Siar exp (2 S3M>, (9.9)
V3 So

or, in terms of the pulse energy for a spatial and temporal Gaussian pump,

Uy Uy 2 Uy
A4— = 2| ——————— | = . 1
04 eXp( \/(w/2)3/2 Tw? So> eXp(\/ Tw? S, > (9.10)

Taking the logarithm of both sides and squaring gives the pump threshold
energy condition

1112[ u“’]_ 2 Uin (9.11)

04— .
hvs Tw? S,
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An important point is that Uy, estimated this way depends on the crystal
properties and the wavelengths through parameter S,, and on the pump
beam waist w and pulse duration 7. The threshold deduced from Eq. (9.11)
would be increased by temporal walk off of the red waves from the pump, by
diffractive spreading of the pump beam, or by any loss of the red beams. It
would be slightly decreased if many red frequency modes can be amplified.

Using Eq. (9.11) we find that typical threshold gains are in the range of
100-150 dB and the ratio (S3/S,) at threshold is in the range 150-300. To
increase the conversion efficiency from 0.1 to nearly 1.0, another 10 dB of
gain is necessary, requiring at least a 20% increase in pump energy. The
efficiency computed over the full pulse and beam profiles rather than at the
pulse/beam center is still quite low at this pump level, so stronger pumps
are frequently used to improve efficiency, but this causes back conversion
near the pump pulse/beam center.

9.2 OPG gain bandwidths

The high parametric gain required for OPG substantially alters the spec-
tral acceptance bandwidth of the red waves. At low gain the bandwidth
is defined by the condition (AkL = 27) but at higher gain the bandwidth
broadens. According to Sec. 3.4, the plane wave parametric gain expression,
now including Ak, is

=3

”yL:‘/g—i— (#)2. (9.13)

In Fig. 9.1 we plot the plane wave gain profiles versus the phase mismatch
AKkL for three values of S3/S5: [1, 150 (100 dB gain), 323 (150 dB gain)].
The broadened profiles at typical OPG gains imply red OPG spectra that
are broader than the low gain bandwidth

Iy

sinh(yL) ’2, (9.12)

vL

where

1 c

AI/12 = = .
|T12|  Lingt — ngs

(9.14)

For typical OPG gains the linewidth is approximately 2.5 times broader
than the low gain limit and, because it grows slowly with increasing gain,
we somewhat arbitrarily define the OPG acceptance bandwidth as (AKL =
16). This width applies near the OPG threshold. For higher pump levels
back conversion may further broaden the linewidth.
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FIGURE 9.1. Plane wave parametric gain I'1 defined in Eq. (9.12) versus phase
mismatch AkL for three values of S3/S,. The narrow curve is the familiar
sinc®(AkL/2) function. The dashed and chained curves are the gain profiles for
100 dB (S3/S. = 150) and 150 dB (S5/S. = 323) gains. The widths (FWHM) of
the high gain curves are 2.2 and 2.7 times that of the sinc? function.

9.3 OPG numerical modeling

Most of the discussion in this chapter is based on numerical modeling, so
it is important to understand what is included in our models. Numerical
methods for OPG are much the same as for other frequency mixing pro-
cesses. Beam propagation methods which incorporate accurate treatments
of diffraction, dispersion, phase matching, and nonlinear mixing, includ-
ing pump depletion, are used to compute output fields E;(z,y,t), from
which we calculate mixing efficiency, beam quality, pulse quality, beam
tilts, and so on. One difference from other mixing is the extreme gain of
OPG which requires the size of the propagation steps be much smaller.
Typically (300 — 500) z-steps are used. High transverse spatial resolution is
also necessary if the pump significantly exceeds threshold. The beams often
develop fine spatial structure, in particular strong irradiance spikes near the
beam center. At locations downstream from the first back conversion the
red waves can also develop large tilts, so keeping the beams fully contained
within the spatial grid may require large grids. This combination of large
beams and fine spatial structure demands high spatial resolution. The red
spectra also broaden with increasing pump strength so high time resolution
is necessary. The resulting small step sizes in {x,y, z,t} makes for a slow
model demanding a large memory. Educated adjustments of the grid sizes
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and resolutions to ensure convergence of the model without wasting com-
puter resources is an important aspect of OPG modeling. Model runs for
full dispersive/diffractive models typically require a few minutes to an hour.
Systematic studies varying parameters take much longer. For this reason,
we attempt to explain here the broad outlines of OPG behavior, based on
extensive modeling studies. We hope you will be able use this knowledge to
more efficiently explore the details of your OPG.

The SNLO function OPG uses beam propagation methods to model OPG.
It incorporates diffraction, dispersion, nonlinear mixing, starting quantum
noise, and phase matching to produce physically realistic results.

9.3.1 Quantum noise simulation

Because OPG is initiated by quantum noise, adequate simulations of that
noise are essential. In general we include both spatial and temporal noise
for both red waves. In Sec. 5.5 we explained how we treat all optical fields
as classical fields, so we do not use a true quantum treatment of the noise.
Instead, we use a stochastic electrodynamics treatment[143]. Each opti-
cal mode which might possibly be amplified is populated with a classi-
cal field with stochastic properties suitably chosen to approximate quan-
tum noise. Specifically, the average energy per mode is (hv/2), and the
energy distribution among the modes is Gaussian with a random phase
distribution[143, 144]. Model results when populating one red wave at (hv)
or both red waves at (hr/2) are usually indistinguishable, but we always
populate both waves.

To construct the noise we must define the modes and determine which
modes to include in a simulation. Our approach is to include noise in as
many modes as possible under the numerical constraints. We assign noise
with a mean value of (hr/2) to each volume element of the {x,y,t} grid.
That is

o h
< Unoise >= Amym;—c <|E]?>= 7” (9.15)
Defining volume V' by

V = AzAyAt, (9.16)

the mean square of the field is written

hv

E]? >= . 9.17
<1pp>= | 2] (917)

The noise field is a set of fields { E'}, one for each grid volume element, given
by

hv
e.cV

1/2
{E}_[ ] [~ In{R}]"*[cos{¢} + isin{¢}], (9.18)
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propagating in the opposite direction, right to left, the response is two up-
ward fields create a polarization directed to the left, which means deg is
negative. Thus for the same crystal sample, dog can change sign depending
its orientation. One way to analyze this is to keep the propagation direc-
tion fixed in space while we change the orientation of the crystal, keeping
all field directions fixed to the crystal with the assurance that the direc-
tions are then physically related to the nonlinearity of the crystal. In the
laboratory frame these rotations change the directions of the optical fields.
We can rotate about three axes as shown in Fig. 16.2, demonstrating that
for a single crystal there are four orientations that phase match and have
the same magnitude of deg. However, the sign of d.g changes depending
on the orientation of the crystal. If the sign of deg is positive for the ori-
entation shown in Fig. 16.2(a) it is also positive for the orientation in (b)
but negative for the orientations in (c¢) and (d). This example uses the e-
and o-polarized waves of a uniaxial crystal, but the same arguments obvi-
ously apply to the orthogonal polarizations of a biaxial crystal if the crystal
is rotated 180° about one of the eigenpolarization directions or about the
propagation direction.

16.4.2 d.g surface

We can pick one set of eigenpolarizations and calculate deg for all propaga-
tion directions to form a |deg| surface such as that shown in Fig. 16.3. This
example is for KNbO3 with two waves polarized along the hi index direction
and one polarized along the lo index direction. Reversing the propagation
direction does not change |deg| so we need to calculate dog for only 4 of the
eight octants. We chose (z > 0) for this example, but we could have chosen
the four with (y > 0) or the four with (z > 0) just as well. The |deg| surface
reflects the underlying crystal symmetry. Our example crystal, KNbOs, is
unchanged by rotation of 180° about Z or by reflection in the (y = 0) or
(z = 0) planes.

The phase matching loci in biaxial crystals form loops around one of
the principal axes or, rarely, around the optic axes[37]. It is convenient to
specify phase matching angles using polar angle # and azimuthal angle ¢
measured relative to the encircled axis. Plots of 0 and |deg| as functions of
¢ are then single valued and easy to interpret. The phase matching loops
traverse four octants. In crystals with lowest possible symmetry, the four
octants are different so a complete specification of |deg| requires a plot over
360° in ¢. I know of no reports of applications of nonlinear crystals with
such low symmetry. More symmetric crystals require a plot of |deg| over
only one or two octants. For example, the phase matching loci for second
harmonic generation of 1064 nm light in KNbOg3 loop around the z-axis.
Only a single octant is necessary for this crystal.
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FIGURE 16.3. The values of deg for KNbOgs versus propagation angle. The po-
larizations are: one lo and two hi. The rear half of the surface (z < 0) is a mirror
image of the front (z > 0) half.

The SNLO function BMIX allows the user to specify the reference axis
for plots of 8, deg and other properties.

The phase matching loci in uniaxial crystals always form circles about
the z-axis at constant 6. Simple expressions give deg as a function of ¢ and
it is customary to specify a crystal as either type I or type II depending on
whether ¢ is chosen to maximize deg for mixing with one e-wave or two.

16.5 Crystal symmetry and d

The forms of both the d and € tensors depend on how the reference frame
in which they are specified is oriented relative to the lattice structure of the
crystal, and also on the symmetry properties of the crystal’s unit cell. To ac-
count for this we consider two reference systems, a crystallographic system
that is tied to the crystal lattice, and an optical system that we superimpose
on it. The crystallographic system axes are labeled (a, b, ¢) and the optical
system axes are labeled (&, 7, ). Figure 16.4 shows the labeling convention.
The optical system is orthogonal but the crystallographic system is not
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necessarily orthogonal. Both systems are right handed meaning (& x § = 2)
and ((axb)-c¢ > 0). Various other reference frames abound in the literature
but these two are sufficient and by using only two reference frames I hope
to minimize confusion. In specifying the crystallographic frame relative to

FIGURE 16.4. Crystallographic axis convention.

the crystal lattice we will try to use the established conventions, but often
ambiguity remains and we will discuss this when it occurs.

There is always an orientation of the optical frame in which e is diagonal
with (€g2 < €yy < €.2). We will use this frame to specify both e and d.
There is ambiguity here as well because rotation of the optical frame by
180° about any of its axes will also be a frame meeting this criterion, so we
will be alert to the implications of this ambiguity as well. For biaxial crystals
the orientation of (&, 9, 2) is fixed relative to (a,b,c) by these standards.
For uniaxial crystals we will label the optical axis Z and it will lie along a
crystal symmetry axis that is conventionally labeled c. Orienting 2 along
this direction is sufficient to diagonalize e but it leaves the orientation of
the £ and ¢ axes undefined. We must specify their orientations relative to
(a,b,c) if d is to be uniquely specified. For isotropic crystals € is diagonal
for all orientations of (&, {, £) so we pick a convenient orientation relative
to (a,b,c), for example (Z = a, § = b, 2 = ¢). Some crystals exist in two
distinct mirror image, or enantiomorphic, forms. The right handed form is
assumed unless stated otherwise.

Before we proceed further, a little knowledge of crystallography is essen-
tial. Our discussion is based largely on the treatments presented in books
by Cady[466], Kittel[467], Butcher[468], and Boyd[14]. Perfect crystals con-
sist of identical unit cells stacked in space, each situated identically with
respect to its neighboring cells to form a crystal lattice. The unit cell is
the smallest parallelepiped out of which the crystal could be constructed.
There are seven types of unit cells that can be used to fill space. They
are listed in Table 16.5 along with a description of their shape specified by
the lengths of three adjacent sides (a, b, ¢) and the included angles (o, 3,7)
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using the labeling conventions shown in Fig. 16.4. The set of axes (a, b, ¢)
is the crystallographic reference frame.

TABLE 16.5. Crystal System Properties

System Unit cell Unit cell angles Type
Triclinic a#b#c a# B+ biaxial
Monoclinic a#b#c a=v=90°#0 biaxial
Orthorhombic a #b# ¢ a=pF=vy=090° biaxial
Tetragonal a=b#c a=pF=vy=090° uniaxial
Trigonal a=b=c 90°#a=0=~<120° uniaxial
Hexagonal a=b#c a=0=90°~=120° uniaxial
Cubic a=b=c a=p=y=90° isotropic

Each unit cell contains an identical array of atoms located at fixed posi-
tions relative to the cell. The symmetry of this array of atoms is in general
lower than that of the unit cell. At most its symmetry equals that of the
unit cell. It is known from group theory that there are 32 point symmetries
possible for the atomic structure. Point symmetries are defined by covering
operations such as rotation, reflection, and inversion about a point that
leave the appearance of the crystal unchanged. Table 16.6 lists the point
symmetry classes along with some familiar examples. If T" is a covering op-
eration, the transformed d must be the same as the original because the
appearance of the crystal has not changed. Thus

€ij = eéj = ETTjsfrs ) (1630)

and
dijie = dijp, = Tir TjsTadrst - (16.31)

The name of each crystal class reflects its symmetries or covering oper-
ations. Numbers indicate rotation symmetry. For example the number 2
indicates that the crystal appears unchanged by rotation through 180°, 3
means it is unchanged by rotation through 120°, etc. A bar over the number
indicates that rotation plus inversion is a covering operation. For example
3 means rotation by 120° plus inversion is a covering operation. Symme-
try on reflection in a plane is indicated by m. We will briefly discuss each
class and the corresponding properties of € and d beginning with the least
symmetric class and progressing to the most symmetric.

As is well known, a second order nonlinear response requires an asym-
metric medium. We will see that only 20 (18 when Kleinman symmetry
is assumed) of the 32 crystal classes have asymmetry that can support a
second order response. These are indicated in the Table 16.6.
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TABLE 16.6. Crystal symmetry classes

Crystal system  Crystal class

Schoenflies d #0 common name

Triclinic 1
1
Monoclinic 2
m
2/m
Orthorhombic 222
mm2
mmm

Tetragonal 4

4/m

422

4mm

42m

4/mmm
Trigonal 3

32

3m

3m
Hexagonal 6

6/m

622

6mm

6m2

6/mmm
Cubic 23

m3

432

43m

m3m

Cy

Cl' or SQ
)

CS or Clh
Con

D2 or V
CQU

Dgh or Vh
Cy

S

Can

Dy

C4v

ng or Vd
Dyp

C3

Cgi or SG
D3

C3v

D3q

Cs

Csn

Cen

Dg

Cﬁv

D3p

Dep

T

T

O

Ty

Op

yes
no
yes
yes
no
yes
yes
no
yes
yes
no
no
yes
yes chalcopyrite
no
yes
no
yes
yes
no
yes
yes
no
no
yes wurtzite
yes
no
yes
no
no
yes zinc blende
no

Values for d are not tabulated in this book
up to date, and used by SNLO in its calculations. To view the SNLO d,
run Qmix and select the crystal. The corresponding d tensor is displayed
in the text window of the Qmix form, along with its crystal class.

. The SNLO values are kept
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16.5.1 Enantiomorphism

It is possible for crystals without mirror or inversion symmetries to exist
in two distinct mirror image forms, or enantiomorphs. Crystal classes in
which enantiomorphism is allowed include classes (1, 2, 222, 4, 422, 3, 32,
6, 622, 23, 432) of which all but (422, 622, 432) have nonzero d. The two
mirror image crystal forms are traditionally called left-handed and right-
handed because all enantiomorphic classes also all exhibit optical activity.
The right-handed form of the crystal rotates linearly polarized light clock-
wise as viewed looking into the beam, while the left-handed form rotates it
counter clockwise.

The mirror symmetry of enantiomorphs is perfect, so all physical at-
tributes are the same for the two forms if they are described in mirror
image reference systems. It is customary to quote d for the right-handed
crystal form as expressed in a right-handed reference system, which is the
same as that for the left-handed form described in a corresponding left-
handed reference system. We illustrate this in Fig. 16.5. The left half of
the figure shows the right handed form of a crystal unit cell along with a
standard, right-handed (z, y, z) reference frame. The orientation of (z,y, 2)
must be specified relative to the unit cell structure if we are to have a unique
determination of d. For the triclinic class unit cell shown in the figure, the
standard orientation of (a,b,c¢) is (¢ < a < b) and (a, § > 90°). The origin
of this uniquely defined crystallographic frame is marked by the dot.

mirror plane

right handed form left handed form

FIGURE 16.5. Mirror image crystal structures and associated crystallographic
and optical reference systems.

The right half of Fig. 16.5 shows the mirror image, or left-handed, unit
cell, along with the mirror image reference frame (x’,y’,z"). If (z,y, 2)
is used for the right-handed enantiomorph and (z’,y’, z’) is used for the
left-handed enantiomorph, all the properties of the two forms are identi-
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cal, including the d tensor. Notice that (z’,y’,2’) is a left-handed frame.
If we invert all of its axes we have the right-handed frame (z”,y”,z").
However, inverting all the axes inverts the sign of d so, expressed in the
(x",y",2") frame, all of the d;j; terms of the left-handed crystal are the
negative of those for the standard right-handed crystal. Finally, notice that
if we apply our standard rule for orienting the crystallographic frame to the
left-handed crystal, we arrive at the right-handed frame (a’,b’, ¢’) with its
origin indicated by the dot. This frame has the same orientation relative to
(x”,y",2") that frame (a, b, ¢) has relative to (x,y, z). We conclude that if
we use right-handed crystallographic and reference frames for both crystal
forms, and follow the standard rule for orienting the crystallographic axes,
the sign of d is opposite for right- and left-handed enantiomorphs.

16.5.2  Guyrotropy

Gyrotropy is optical activity or the rotation of linearly polarized light on
propagation through material[4]. It was discussed in Chapter 2 in con-
nection with the linear optical properties of crystals. All enantiomorphic
crystals can exhibit gyrotropy with the two enantiomorphs giving opposite
directions of polarization rotation so a measurement of the rotation direc-
tion provides a convenient way to distinguish between enantiomorphs. Some
nonenantiomorphic crystals (classes m, mm2, 4, and 42m) can also exhibit
gyrotropy. In birefringent crystals the birefringence normally overwhelms
the gyrotropy so no rotation is evident unless the propagation direction
lies along an optical axis where birefringence disappears. Among the non-
birefringent crystal classes only classes 432 and 23 are gyrotropic. Both of
these are enantiomorphic and the sign of the rotation depends on whether
the crystal is a right or left enantiomorph. In these two classes gyrotropy
is equal valued for all propagation directions.

16.5.3 Ferroelectricity and poling

Distinguishing characteristics of ferroelectric crystals are that they belong
to one of the 10 ferroelectric classes with a polar axis, classes (1, 2, m, mm2,
4, 4mm, 3, 3m, 6, 6mm), that they have a spontaneous polarization along
a polar axis which can be reversed by a sufficiently strong applied electric
field, that they show dielectric hysteresis, and that they have a domain
structure. Above the Curie temperature these ferroelectric properties are
absent. All ferroelectric crystal classes also have second-order nonlinearity,
but not all nonlinear crystal classes are ferroelectric. Just because a crystal
species is a member of a ferroelectric crystal class does not mean it must be
ferroelectric. It only means ferroelectricity is not forbidden by symmetry.
Among commonly used nonlinear crystals, KNbOg, crystals of the KTP
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Index

M?, see beam quality
Ak, see phase mismatch
x@ tensor, see d-tensor
x®) tensor, 83-90

absorption

linear, 62

two photon, 83-90
acceptance angle, 148, 154, 205
acceptance bandwidth, 148, 205
acceptance temperature, 158
autocorrelation, 240

B & K, see Boyd & Kleinman
back conversion, see optical para-
metric oscillator, see para-
metric amplification
beacon effect, 263, 285
beam propagation, see propaga-
tion
beam quality, 299
M? CW, 299
M? pulsed, 302
biaxial crystal

D-ellipsoid, 14
diffraction, 184
eigenpolarizations, 15, 17, 27
linear optical properties, 13
optic axis, 16
principal axes, 14
principal planes, 17
propagation equation, 184, 193—
194
refractive index
hi & lo index surfaces, 19
walk off, 18-19, 32
birefringent walk off, see Poynt-
ing vector, walk off
bound wave, see driven wave
Boyd & Kleinman, 273-277, 279—
287, 290, 410, 416, 420,
445
Brewster’s angle, 47

carrier wave, 168-181, 185-195, 199,
202-204
definition, 8
cascade mixing, 75, 88, 581
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applications, 577

supercontinuum generation, 578

temporal soliton, 578
cavity
impedance matching, 405-409
linear cavity stability, 403
ring cavity stability, 401
stable cavity
design, 401-405
linear, 403
mode matching, 405
ring, 401-403
chalcopyrite, 643
coherence length
definition, 60
confocal parameter, see Rayleigh
range
convolution
angle, 202
time, 199-202
time & angle, 203
CPOPA, see parametric amplifi-
cation, chirped pulse
cross phase modulation, 86
crystal oscilloscope, 335
crystal symmetry
class
1, 649-650
2, 651-654
2/m, 655
222, 656
23,676
3, 667-669
32, 669
3m, 670
4, 661-662
4/m, 666
4/mmm, 666
422, 664
432, 678
4mm, 664
6, 671
6/m, 675

6/mmm, 675

622, 674

6mm, 674

1, 650

3, 669

3m, 671

4, 662-664

42m, 665

43m, 677

6, 673

6m2, 675

m, 654-655

m3, 678

m3m, 678

mm?2, 658-660

mmm, 660
classes, 641
d-tensor, 641
enantiomorphism, 645
ferroelectricity, 646
gyrotropy, 646
piezoelectricity, 647
pyroelectricity, 647
system

cubic, 676678

hexagonal, 671-676

orthorhombic, 656660

tetragonal, 660-666

triclinic, 648-656

trigonal, 666671

D-ellipsoid, 22, 27
biaxial crystal, 14
electro-optic effect, 89
d-tensor, 3
absolute signs, 632
crystal symmetry, 641
definition, 629-632
measurement, 699
separated beams method,
707
quantum calculation, 708

biaxial crystal, 635



definition, 632-638
plane wave, 54
structured beams, 198-204
direction cosine, 682, 683
isotropic crystal, 634
measurement, 681
Maker fringe method, 701
non-phase matched meth-
ods, 687
parametric fluorescence, 686
phase matched methods, 681
powder methods, 704
separated beams method,
692
spherical crystal, 682
Miller scaling, 85, 704
sign of, 268, 639-640
surface, 640
uniaxial crystal, 635
dark intermediate state, 581
degeneracy factor, 1
dielectric tensor, 1, 13, 22, 181
difference frequency mixing
cw cavity, 4569-474
triply resonant, 470-472
wave one resonant, 460-463
wave three resonant, 473—
474
wave two resonant, 463-464
waves one & three resonant,
464-467
waves one & two resonant,
469-470
waves two & three resonant,
468-469
focused beam, 280-287
Gaussian beam, 263-268
short pulse, 226-228
slanted pulse, 324
diffraction
k-space, 169-172
x-space, 171-172, 177
asymmetric, 172-178, 258

Index 759

biaxial crystal, 184
Huygens construction, 179
negative, 174
uniaxial crystal, 177, 181
uniaxial rates, 258
dispersion length
definition, 7
displacement, 3, 11
driven wave, 689-697

effective nonlinearity, see deg
eigenmode mixing, 78, 581
adiabatic, 581
eigenpolarization, 25
biaxial crystal, 15
definition, 12
electro-optic effect, 89, 626, 627
elliptic functions, see Jacobi ellip-
tic functions
enantiomorphism, 645
envelope function
definition, 8

ferroelectric
domains, 126
poling, 126, 646
ferroelectricity, 646
field envelope, 168-181, 185-195,
198-206, 208
definition, 8
field expansion, 8, 168
focus
astigmatism, 260
cylindrical, 256
Gaussian beam
e-wave, 258
o-wave, 257
radius of curvature, 256
Rayleigh range, 256
spherical, 257
Fourier transform, 9, 168, 171
definition, 8
properties, 9
convolution, 9, 201, 202



760 Index

shift rule, 179

free wave, 689-697
frequency doubler

recirculating cavity, 582
frequency quadrupler, 584
frequency tripler, 584
Fresnel’s formulae, 34
FROG, 238, 334
FWHM, 6

Gaussian beam, 5
1/€? width, 5
effective area, b
elliptical, 282
FWHM, 6
Gouy phase, 257-260
radius of curvature, 257
Rayleigh range, 256260
supergaussian, 7
Gaussian pulse, 5
1/€? width, 5
dispersive length, 215
frequency chirp, 215
FWHM, 5
Gouy phase, 215
GDD, see group delay dispersion
Gouy phase
diffractive, 274-293, 404-405
dispersive, 215-217
grenouille, 334
group delay, 188
group delay dispersion, 7, 188-198,
203
apparent, 316
dispersion length, 215
frequency chirp, 215
Gouy phase, 216
group velocity, 187-190
apparent, 314, 316
polarization pulse, 217
group velocity dispersion, 188-198,
203
group velocity matching
quasi phase matched, 329

second harmonic generation,
321-324, 330
three wave mixing, 324
walk off compensation, 333
GVD, see group velocity disper-
sion
gyrotropy, see optical activity

Huygen’s construction, 179

imaging, 293
parametric amplification, 296
up conversion, 294
intensity dependent refractive in-
dex, see ng
intermediate mixing
definition, 63
irradiance
definition, 2

Jacobi elliptic functions, 71

Kerr effect, see ns
Kleinman symmetry, 86, 630, 643,
648678

laser
intra cavity mixing
difference frequency, 593
instability, 593
parametric oscillator, 594
597
SHG mode locking, 594
sum frequency, 593
laser/nonlinear crystals, 597
linear electro-optic effect, 610

Maker fringe, see deg,measurement
Manley-Rowe relation, 56, 73, 74
Maxwell’s equations, 1
diffractive propagation, 181—
185
monochromatic plane wave,
11, 32
Miller scaling, 85, 201, 704



mixing angle 9, 73
definition, 55
mixing equations
broadband, 214
derivation, 50-55
plane-wave, monochromatic,
54
short pulse, 214
spatial & temporal structure,
203204
spatial structure, 202-203, 254
temporal structure, 199-202
waveguide, 93
mode matching, see cavity, stable
cavity
modeling
analytical, 205
noise simulation, 208
numerical, 205
limitations, 208
numerical beam propagation,

206
n-ellipse, 15, 27
ng, 83-85
cross phase modulation, 86
effective

cascade mixing, 75, 88
electro-optic effect, 88
self focus, 85
self phase modulation, 84-85
noise
quantum, 208-211
thermal, 211
noncritical, see phase matching
nonlinear mixing
broadband, 214, 229
cascade mixing, 75, 88
cavity
constant field approx., 409
frequency doubler, 582
frequency quadrupler, 584
frequency tripler, 584
elliptical beams, 282

Index 761

energy conservation, 56
Gaussian beams, 410
inside laser cavity, 593
intermediate, 63-70, 288-290
definition, 63
strong blue wave, 63
strong red wave, 68
summary, 70
Manley-Rowe, 56
short pulse, 214, 226
chirped, 227
pulse shaping, 235-238
short pulse measurement, 238
241
strong, 70-83, 269-273, 290
293
cyclic, 71
definition, 70
eigenmode mixing, 78-83
phase evolution, 73
photon balanced, 72
type 1, 274
type 2, 274
vector fields, 298
waveguide, 90-96
weak, h8-62, 260-268
definition, 58
focused beam, 260
Gaussian pulse, 217
nonlinear refractive index, see no

NOPA, 162

OPA, see parametric amplification
OPCPA, see parametric amplifi-
cation, chirped pulse
OPG, see parametric generation
OPO, see optical parametric os-
cillator
optic axis
biaxial crystal, 16, 26
uniaxial crystal, 20
optical activity, 36, 646
optical parametric oscillator
back conversion



762 Index

reduced by absorption, 592 influence of GDD, 511-516
reduced by frequency mix- influence of group velocity,
ing, 592 504-511
reduced by Raman, 592 rate multiplied, 503
cw, 428-459 similariton-like pulses, 517—
mean pump field, 431-432 519
threshold power, 428-431 soliton-like pulses, 519-520
triply resonant, 455-459 stability, 517, 520
wave one resonant, 432-440 threshold, 503-524
waves one & three resonant, wave one resonant, 503-521
449-455 waves one & two resonant,
waves one & two resonant, 521-522
440-449 tandem, 590-591
ew-pumped, mode locked, 524 wavelength doubler, 585587
intracavity DFG, 591 wavelength times M, 588
intracavity SFG, 589 wavelength tripler, 587
intracavity SHG, 589 optical rectification, 89

nanosecond. 531 orientationally patterned GaAs, 634

anomalies & pathologies, 563
back conversion, 538
backward wave, 535, 556

parametric amplification
angle multiplexed pumping,

, 578

beam quality, 557,7563 back conversion, 229, 234

broadband operation, 542- broadband, 228229, 234-235
548 chirped pulse, 228, 325328

cluster tuning, 554-556 focused beam. 290

confocal unstable cavity, 560 Gaussian beal,n 279973

cross resonant, 534, 542, 556
efficiency, 535-539
image rotating cavity, 561

imaging, 296
phase conjugation, 296
wavelength multiplexed pump-

injection seeding, 539, 551— ing, 579
554 parametric fluorescence, 297, 686
spectral properties, 548-557 parametric gain, 532
threshold, 532 cosh function, 63
wave one resonant, 533 gain equation, 63
wave three resonant, 535 linewidth gain broadening, 65
wavelength control, 550-557 low pump depletion, 63
waves one & two resonant, saturation, 272
533, H41 sinh function, 63
stability, 152 parametric generation, 343
synch-pumped, 502-503 bandwidth, 370, 380, 381
cavity dumped, 503 beam quality, 370, 380, 381
frequency combs, 522-524 cascade mixing, 389

influence of ny, 516-520 conical emission, 385



degenerate, 363
efficiency, 380, 381
gain bandwidth, 347
gain surface, 352
numerical modeling, 348
diffractive, dispersive, 364
dispersive plane wave, 350
noise simulation, 349
practical implementation, 387
Q-switched pump, 361
seeded, 374
beam quality, 377
efficiency, 355, 377
partial, 375
peak irradiance, 377
seed tuning, 375
spatial walk off, 381
spectral shift, 370, 380, 381
temporal walk off, 354
threshold gain, 345
tilt & tune theory, 364
tilt filtered spectra, 370
ultra broadband, 363
unseeded, 355, 368
bandwidth, 355, 371
efficiency, 355
waveguide, 350
paraxial approximation, 171, 180,
184
permutation symmetry, 630
phase amplification, 67
phase conjugation, 296, 585
phase matching
acceptance angle, 148, 154
acceptance bandwidth, 148
achromatic, 322
birefringent, 105, 108
collinear, 105-111
compensated, 131
crystal tilt tolerance, 158
distributed, 232
form birefringent, 107
noncollinear, 111-117,195-198

Index 763

noncritical, 117
photonic lattice, 139-148
quasi, 118-131
chirped gratings, 236
degg modulated, 121-131
eigenmode mixing, 581
group velocity matched, 329—
331
nonuniform gratings, 235,
579-581
patterned growth, 128
periodically poled, 126
pulse shaping, 580
spectral shaping, 580
total internal reflection, 130
wafer stack, 128
simultaneous processes, 581
tangential, 113-117
temperature tolerance, 158
temperature tuning, 159
thermal disruption, 616
triple tuning, 152
type I, 106
type II, 106
vector diagram, 103
waveguide
Cerenkov, 137
modal, 94, 135
windowing function, 232
phase mismatch
definition, 54
phasor diagram, 58, 118, 120, 132
photonic lattice, 139-148
bandgap, 145
effective index, 143
piezoelectric effect, 627
piezoelectricity, 647
polarization, 3, 11
Poynting Theorem, 40
Poynting vector, 2, 12, 278
walk off, 18-19, 30, 32, 35,
155,169-181, 190-198, 255,
260



764 Index

compensated, 267, 283, 648
principal plane, 17-36
propagation

Gaussian beam, 256-260
Gaussian pulse, 215
modeling, 206
propagation equation
biaxial crystal, 184
coefficients, 194
diffractive, 169-185
diffractive & dispersive, 190—
198, 311
dispersive, 185-190
tilted beam, 195-198
uniaxial crystal, 181
pyroelectric effect, 627
pyroelectricity, 647

QPM, see phase matching, quasi

quantum noise, 208-211

quasi phase matching, see phase
matching, quasi

radius of curvature, see cavity, see
Gaussian beam
Raman gain, 88
line width, 87
phonon polariton, 88
Stokes shift, 88
Rayleigh range, 85, 205, 273-277,
281-293, 295, 303, 401—
405
definition, 7
recirculating frequency doubler, 582
reflection
coefficient, 39
refractive index
hi & lo surfaces, 19
uniaxial, 172
refractive index ellipse, 608
relaxation oscillation, 454
resonator, see cavity

S, see Poynting vector

So-reference irradiance
definition, 4
second harmonic generation
acceptance bandwidth, 225
achromatic, 322
chirped pulse, 224
Gaussian beam, 260-263
walk off compensated, 267
group velocity matched, 321,
330
recirculating cavity, 582
short pulse, 218-226
efficiency, 220
Gouy phase, 222
group delay dispersion, 222
spatial & temporal structure,
312-315
temporal walk off, 218
self focus, 85
self phase modulation, 84-85, 241
waveguide, 95
self-steepening, 200
separated beams method, see d-
tensor,measurement
SHG, see second harmonic gener-
ation
sinc function
definition, 59
slanted pulses, 312, 313, 315
Snell’s law of slants, 331
Snell’s law, 37
SNLO, 46, 87, 178, 188, 194, 207,
255
2D-cav-LP, 401, 405, 416, 421,
428, 439, 446, 463, 474,
558-561, 563
2D-mix-LP, 263, 265, 268, 272,
277, 279, 280, 282, 286,
288, 583, 685, 692
2D-mix-SP, 241, 315, 331, 685
Bmix, 36, 111, 636, 640, 683,
701
Cavity, 405



GVM, 115, 322, 324, 327
Ncpm, 118, 153
OPG, 349, 350, 364, 374, 379,
385, 396-398
Opoangles, 116, 327
PW-cav-LP, 401,414, 415, 418—
421, 423, 425, 427, 434,
445, 453, 455, 457, 459,
463, 467, 468, 470, 472,
474, 538, 539, 542
PW-mix-BB, 230, 234, 235,
350, 355, 360, 361, 363,
387, 390, 392-395, 398
PW-mix-LP, 62, 65, 70, 72,
73, 78, 83, 94, 288, 583
PW-mix-SP, 217, 221, 224, 226
229, 238, 241, 328, 352,
389, 692
PW-OPO-BB, 210, 546-548,
552-556
PW-OPO-SP, 210, 506, 508,
509, 511, 513, 516, 518,
520, 525-530
Qmix, 111, 152, 158, 606, 635
QPM, 128, 153, 160, 330, 331,
439
Reflnd, 21
SPIDER, 238
SPM, see self phase modulation
Stokes shift, 88
strain-optic
effect, 609, 624626
tensor, 609
sum frequency mixing
broadband, 230-234
cw cavity, 411-428
triply resonant, 425-428
wave one resonant, 411-416
wave three resonant, 421—
423
waves one & three resonant,
423-425

Index 765

waves one & two resonant,
416-421
focused beam, 274-279, 288
Boyd & Kleinman, 274-276,
281-287
Gaussian beam, 263271
imaging, 294
short pulse, 226-228
slanted pulse, 324
windowing function, 232

temperature
bandwidth, 158
tuning, 159
temporal walk off
compensation, 230, 232
tensor
higher order, 609-610
linear electro-optic, 627
piezoelectric, 627
transformation properties, 610
611
thermal
nonuniform heating, 619-623
phase matching disruption, 616
temperature profile calcula-
tion, 620-623
thermal conductivity, 606-608
thermal diffusion time, 618
thermal expansion, 600-606
ellipsoid, 605
thermal lensing, 617
thermal resistivity, 606-608
thermal strain tensor, 604
thermal tilt, 618
thermo-optic effect, 623-624
third order effects, see x(*)
threshold power, see optical para-
metric oscillator
tilt angle, 53
tilted beam, 315
transmission
coefficient, 39



766 Index

uniaxial crystal

eigenpolarizations, 19
linear optical properties, 19
optic axis, 20
Poynting vector

walk off, 19, 31
propagation equation, 192
refractive index

o & e surfaces, 20

walk off, see Poynting vector or
group velocity
waveguide
channel, 91
degr, 92
effective area, 95
higher order nonlinearity, 95
modal overlap, 135
modal phase matching, 94, 135
modes, 91
nonlinear mixing, 90-96
parametric generation, 350
planar, 94
self phase modulation, 95
wurtzite, 643

zinc blende, 643
77.B, 709
77U, 709



