

Software requirement specification

(SRS) document template

Project name: Group Project Milestone 2

Date: 9/20/24

Version: 1

By: Samuel Griffey, Chris Aldous, Elijah Rutherford, Sam Christmas

Version Author Version description Date completed

1.0 All Console Prototype 9/20/24

Approving party Version approved Signature Date

Reviewer Version reviewed Signature Date

Review history

Revision history

Approval history

1 Introduction

1.1 Product scope

1.2 Product value

1.3 Intended audience

1.4 Intended use

1.5 General description

Table of contents

5 Definitions and acronyms

4 Non-functional requirements

4.1 Security

4.2 Capacity

4.3 Compatibility

4.4 Reliability

4.5 Scalability

4.6 Maintainability

4.7 Usability

4.8 Other non-functional requirements

3 External interface requirements

3.1 User interface requirements

3.2 Hardware interface requirements

3.3 Software interface requirements

3.4 Communication interface requirements

2 Functional requirements

Describe the purpose of the document.

Introduction

The purpose of this document is to describe the high-level functionality and features of the
UVSim application.

1.1 Product scope

UVSim is a software simulator designed to help computer science students learn machine
language and computer architecture through practical experience. It allows students to
write, load, and execute BasicML programs in a controlled virtual environment. This simulator
is aimed to help instructors provide an additional tool to aid in their students learning.

1.2 Product value

UVSim is a useful tool that allows educators to provide their students an opportunity to gain
valuable experience developing with BasicML in a low-risk environment where they can
experiment and gain a better understanding of computer architecture.

1.3 Intended audience

The intended audience for UVSim includes computer science students, educators and
instructors, educational institutions, and self-learners.

1.4 Intended use

UVSim is intended to serve as a supplemental resource for instructors, allowing their students
to gain experience writing, loading, and executing BasicML programs in order to gain a better
understanding of computer architecture.

1.5 General description

UVSim will be able to load existing files containing BasicML instructions. It will be able to
execute BasicML instructions, perform operations such as Add, Subtract, Divide, and
Multiply. It will provide branching controls that allow users to allow controlling the flow of
executions based on the value in the accumulator. It will also include methods to manage
memory.
UVSim will have features such as a user-friendly interface and error handling.

1

Give a summary of the functions the software would perform

and the features to be included.

Describe how will the intended audience use this product.

Write who the product is intended to serve.

Describe how the audience will find value in the product.

List the benefits, objectives, and goals of the product.

List the design requirements, graphics requirements, operating system requirements,

and constraints of the product.

Functional requirements

The design requirements for the console version of UVSim are the ability to load and
execute BasicML programs through operations such as Read, Load, and Store, which
will allow users to input their programs and store them in memory. It will allow the use of
arithmetic operators such as Add, Subtract, Divide, and Multiply. The program will also
support the use of output control through the Write operator. It will support the use of
control operators such as Branch, branchNeg, branchZero, and Halt to dictate the flow
of execution.

The program displays an output to the screen that shows where words are stored in
memory and which memory locations are open. In terms of graphics requirements, this
console version of UVSim doesn't have an external interface so all inputs and outputs are
handled in the terminal.

This version of UVSim is compatible with both macOS and windows operating systems.

The constraints of this version of UVSim is the simulated memory limit of 100 words. This
was done to force users to carefully manage memory in order to gain valuable memory
management experience.

2

External interface requirements

3.1 User interface

requirements

3.2 Hardware interface

requirements

3.3 Software interface

requirements

3.4 Communication

interface requirements

3

List any requirements for the communication programs

your product will use, like emails or embedded forms.

Include the connections between your product and other

software components, including frontend/backend

framework, libraries, etc.

List the supported devices the software is intended

to run on, the network requirements, and the communication

protocols to be used.

Describe the logic behind the interactions between

the users and the software (screen layouts, style guides, etc).

Non-functional requirements

4.1 Security

4.2 Capacity

4.3 Compatibility

4.4 Reliability

4.5 Scalability

4.6 Maintainability

4.7 Usability

Our goal is to provide a user-friendly experience for students learning BasicML using UVSim

4.8 Other

4

List any additional non-functional requirements.

Describe how easy it should be for end-users to use

your software.

Describe how continuous integration should be used to

deploy features and bug fixes quickly.

Calculate the highest workloads under which your software

will still perform as expected.

Calculate what the critical failure time of your product

would be under normal usage.

List the minimum hardware requirements for your software.

Describe the current and future storage needs

of your software.

Include any privacy and data protection regulations

that should be adhered to.

Definitions and acronyms

5

Appendix

User Stories:

As a student, I want to write and execute BasicML programs so that I can become familiar with machine
language and gain a better understanding of computer architecture. By using the BasicML simulator, I will
develop my coding skills as well as be more prepared for exams.

As an educator, I want to analyze the BasicML programs submitted by my students so that I can assess their
understanding of key concepts in computer architecture and provide useful and constructive feedback. This will
help to make the understanding of this abstract subject easier to grasp and establish a good foundation of
computer architecture knowledge.

Use Cases

The system is UVSim for all use cases

Use Case 1: Read Input from Keyboard

Primary Actor: Student

Scenario: During program execution, the program requests user input. The user enters the required data using
the keyboard, and the system stores this data in the specified memory location.

Use Case 2: Write Output to Screen

Primary Actor: Student

Scenario: Upon completing the program execution, the user can request output to be displayed using the Write
command. The system retrieves the specified memory content and presents it on the screen.

Use Case 3: Load a word into accumulator

Actor: Student

Scenario: The student will be able to successfully load a word from memory into the accumulator.

Use Case 4: Store a word from the accumulator into memory

Actor: Student

Scenario: The student will be able to store the contents of the accumulator into a memory location.

Use Case 5: Add

Primary Actor: Student

Scenario: The user writes a BasicML program that includes the add operator. This operator correctly adds the
word in the accumulator to a word from memory and the results are stored in the accumulator.

 Use Case 6: Subtract

Primary Actor: Student

Scenario: The user writes a BasicML program that includes the subtract operator. This operator correctly
subtracts the word in the accumulator from a word in memory and the results are stored in the accumulator.

Use Case 7: Divide

Primary Actor: Student

Scenario: The user writes a BasicML program that includes the divide operator. This operator correctly divides
the word in the accumulator by a word from memory and the results are stored in the accumulator.

Use Case 8: Multiply

Primary Actor: Student

Scenario: The user writes a BasicML program that includes the subtract operator. This operator correctly
subtracts the value in the accumulator from a value stored in memory and the results are stored in the
accumulator.

Use Case 9: Halt Program Execution

Primary Actor: Student

Scenario: While the program is running, the user chooses to halt execution. The system stops processing the
program.

Use Case 10: Handle Invalid Instructions

Primary Actor: System

Scenario: The user runs a program that contains invalid BasicML instructions. The system detects the error,
displays an appropriate error message, and halts execution.

Use Case 11: Load Instructions from Text File

Actor: Student

Scenario: The student selects a valid text file. The instructions from the file are successfully loaded into the
memory registers, starting at the specified memory location.

Use Case 12: Execute Program

Primary Actor: Student

Scenario: The student executes the program they have loaded into UVSim using the user interface.

State Transition Diagram

Use Case Diagram

Test Case Spreadsheet

Test cases: Description: Input:

Expected
Out:

Pass
or Fail

TestWritePos

Testing the write function with a Positive
Number. 10 Pass

TestWriteNeg

Testing the write function with a Negative
Number. -10 Pass

TestAddPos

Testing the Add function with 2 positive
numbers. 10 and 10 20 Pass

TestAddNegToPos

Testing the Add function with a positive
number and a negative number. 10 and -10 0 Pass

TestSubPos

Testing the Subtract function with 2 positive
numbers. 10 and 5 5 Pass

TestSubNegFromPos

Testing the Subtract function with a positive
number and a negative number. 10 and -5 15 Pass

TestDividePos

Testing the Divide function with 2 positive
numbers 10 and 5 2 Pass

TestDivideNegFromPos

Testing the Divide function with a positive
number and a negative number. 10 and -5 -2 Pass

TestMultPos

Testing the Multiply function with 2 positive
numbers 10 and 5 50 Pass

TestMultNeg

Testing the Multiply function with 2 Negative
numbers -5 and -4 20 Pass

TestBranch

Testing the Branch function to jump to another
location in memory

Initial location
= 3
Branch
location = 25

location =
25 Pass

TestBranchNeg

Testing the BranchNeg function to jump to
another location in memory if conditions are
met

Initial location
= 0
Branch
location = 34
accumulator =
-20

location =
34 Pass

TestBranchNeg2

Testing the BranchNeg function to not jump to
another location in memory if conditions are
not met.

Initial location
= 0
Branch
location = 34
accumulator =
17 location = 0 Pass

TestBranchZero

Testing the BranchZero function to jump to
another location in memory if conditions are
met

Initial location
= 0
Branch
location = 21
accumulator =
0

location =
21 Pass

TestHalt

Testing the Halt function to stop executing
code and jump out of memory Pass

