
Formal Security Analysis of the OpenID
Federation Specification: Private Key JWT

Replay

Pedram Hosseyni Ralf Küsters Tim Würtele
{pedram.hosseyni, ralf.kuesters, tim.wuertele}@sec.uni-stuttgart.de

Institute of Information Security – University of Stuttgart, Germany

September 21, 2024

Overview.
For automatic registration, the Federation specification uses Pushed Authorization Requests.

Furthermore, Federation lists private_key_jwt as a client authentication method without any
further restrictions, therefore, private key JWTs can contain the token endpoint of an OP as the
audience value. However, a malicious OP can declare arbitrary endpoints in its metadata, in
particular, token endpoints of other OPs. As a result, the attacker can obtain valid private key
JWTs for an RP which can be used at honest OPs, thus, impersonate the RP.

Audience of Private Key JWTs.
According to OIDC, for the private_key_jwt authentication method, the “Audience SHOULD

be the URL of the Authorization Server’s Token Endpoint” [OIDC, Section 9]. This is also permitted
by PAR, which states: “In order to facilitate interoperability, the authorization server MUST accept
its issuer identifier, token endpoint URL, or pushed authorization request endpoint URL as values
that identify it as an intended audience.” [RFC9126, Section 2].

We note that [Fed38, Section 5.1.3] may (depending on how one reads that section, we think
that there are several possible interpretations) require the audience value to be either OP’s autho-
rization endpoint or OP’s Entity Identifier. The attack described in the following still works if the
authorization endpoint is used instead of the token endpoint.

Assumptions.

• PAR endpoint can also be used for all regular OIDC flows: [Fed38, Section 12.1.1.2] specifies
the usage of the PAR endpoint for automatic registration. We assume that the OP allows the
PAR endpoint for all subsequent OIDC flows (i.e., without re-registration).

• Redirect URIs can be chosen by the RP for each authenticated pushed authentication request
(regardless of whether that URI was registered before). This is in line with both the Federation
specification and with PAR: “The exact matching requirement MAY be relaxed when using
PAR for clients that have established authentication credentials with the authorization server.
This is possible since, in contrast to a conventional authorization request, the authorization
server authenticates the client before the authorization process starts and thus ensures it is
interacting with the legitimate client. The authorization server MAY allow such clients to

1

mailto:pedram.hosseyni@sec.uni-stuttgart.de
mailto:ralf.kuesters@sec.uni-stuttgart.de
mailto:tim.wuertele@sec.uni-stuttgart.de
https://openid.net/specs/openid-connect-core-1_0.html#rfc.section.9
https://datatracker.ietf.org/doc/html/rfc9126#section-2
https://openid.net/specs/openid-federation-1_0-38.html#section-5.1.3-4.6
https://openid.net/specs/openid-federation-1_0-38.html#section-12.1.1.2


specify redirect_uri values that were not previously registered with the authorization server”.
[RFC9126, Section 2.4]

Involved Parties, Identifiers, and Relevant Endpoints.

• Honest OpenID Provider: Let op be an honest OpenID Provider with the Entity Identifier
entityIDop and token endpoint tokenEPop.

• Honest Relying Party: Let rp be an honest Relying Party with the Entity Identifier entityID rp.
Let privKeyrp be the private signature key of entityID rp (as used for OIDC, i.e., not the
Federation key) and let pubKeyrp be the corresponding public verification key.

• Attacker: The attacker can act both as an RP and OP, which we denote by att rp and attop, with
the Entity Identifier entityIDatt. In its OP metadata, the attacker chooses the token endpoint
of the honest OP as its token endpoint, i.e., tokenEPop. Furthermore, let redirectURI att be
an endpoint of attop.

We assume that rp already obtained the metadata for op and attop, and describe the attack in
the following.

Part 1: RP registers at OP.
First, rp performs automatic registration at op using the PAR endpoint as specified in [Fed38,

Section 12.1.1.2], which, amongst others, allows client authentication using Request Objects and
the private_key_jwt method. In line with Federation PR#83, we assume that Request Objects
are required.1 For this first step, for the attack to work, it would be sufficient if rp uses a Request
Object without any other client authentication mechanism. However, the attack does not rely on
this, i.e., rp may also use an additional client authentication mechanism for this request.2

1 POST entityIdop/parPOST entityIdop/par

request : [iss : entityIDrp, aud : entityIDop, client_id : entityIDrp, . . . ]request : [iss : entityIDrp, aud : entityIDop, client_id : entityIDrp, . . . ]

2 201 Created201 Created
request_uri : . . .request_uri : . . .

Relying Party rp OpenID Provider op

OpenID Provider opRelying Party rp

PAR endpointPAR endpoint

Figure 1: Private Key JWT Replay Attack Part 1: Honest RP registers at honest OP.

Figure 1 shows the relevant values of the pushed authorization request. The OP processes the
request and registers entityID rp using the Federation protocol; in particular, the OP registers
pubKeyrp as the signature verification key. The remaining steps of the protocol flow are not relevant
and omitted.

1We note that it remains somewhat unclear whether one of the other three authentication mechanisms listed in
[Fed38, Section 12.1.1.2] must be used during registration (in addition to the signed Request Object).

2Note that according to [RFC6749, Section 2.3], clients must not use more than one authentication method in each
request – however, request objects are usually not considered as a client authentication method (see [RFC6749, Sec-
tion 2], [OIDC, Section 9], and [Fed38, Section 5.1.3]). On the other hand, as noted before, [Fed38, Section 12.1.1.2]
may allow using request objects for client authentication.

2

https://datatracker.ietf.org/doc/html/rfc9126#section-2.4
https://openid.net/specs/openid-federation-1_0-38.html#section-12.1.1.2
https://github.com/openid/federation/pull/83
https://openid.net/specs/openid-federation-1_0-38.html#section-12.1.1.2
https://datatracker.ietf.org/doc/html/rfc6749#section-2.3
https://datatracker.ietf.org/doc/html/rfc6749#section-2
https://datatracker.ietf.org/doc/html/rfc6749#section-2
https://openid.net/specs/openid-connect-core-1_0.html#rfc.section.9
https://openid.net/specs/openid-federation-1_0-38.html#section-5.1.3-4.6.5
https://openid.net/specs/openid-federation-1_0-38.html#section-12.1.1.2


Part 2: RP registers at Attacker.
The rp performs automatic registration at attop, and the RP performs client authentication using

private key JWT authentication.3

As noted above, the RP creates the private key JWT such that the audience value is the token
endpoint from attop’s metadata (i.e., the token endpoint of op). More precisely, the private key
JWT looks as follows:

pkJWT = sig([iss : entityID rp, sub : entityID rp, aud : tokenEPop, jti : . . . , exp : . . . ], privKeyrp),

with privKeyrp being the private signature key of entityID rp.
This step is done twice, i.e., the attacker obtains two private key JWTs pkJWT 1 and pkJWT 2.

To do so, the attacker (posing as a user of rp) could either trigger rp’s registration at two different
attacker-controlled OPs (both listing tokenEPop as their token endpoint), or start the same flow
twice at the same attacker-controlled OP to obtain the private key JWTs at the PAR endpoint.

1 POST entityIdatt/parPOST entityIdatt/par

request : [iss : entityIDrp, aud : entityIDatt, client_id : entityIDrp, . . . ]request : [iss : entityIDrp, aud : entityIDatt, client_id : entityIDrp, . . . ]
client_assertion : pkJWT (see above)client_assertion : pkJWT (see above)

2 201 Created201 Created
request_uri : . . .request_uri : . . .

Relying Party rp Attacker (OP) attop

Relying Party rp Attacker (OP) attop

PAR endpointPAR endpoint

Figure 2: Private Key JWT Replay Attack Part 2: Honest RP registers at malicious OP. attop’s OP
metadata lists tokenEPop as token endpoint (i.e., the honest OP’s token endpoint).

Part 3: Attacker Impersonates Honest RP.
The attacker can use the private key JWTs to impersonate the honest RP.4 We show a possible

attack in Figure 3: In Step 2 , the attacker starts a flow and uses one of the previously obtained
private key JWTs, thus, impersonating rp. The attacker also specifies an endpoint that he controls
as the redirection URI. After receiving the request_uri, the attacker redirects the honest user to
op in Step 4 .

Note that the user will be asked to authorize rp in Step 6 (from OP’s perspective, the honest user
performed an OIDC authorization code flow with rp – not with att rp). We assume that the user
will accept that request – however, consider the following scenario: The attacker sends an email to
the user, copying the corporate design of rp, and asks the user to “confirm” their registration with
rp in order to continue using rp’s services. Conveniently, that email contains a link that the user
can click to do so; this link points to an attacker website that resembles rp’s website, where the user
now starts the OIDC flow (cf. Step 1 ). Hence, the user expects to authorize rp at op (note that we
do NOT assume the user to enter any credentials on an attacker site).

After the OP redirects the user back to att rp in Steps 7 and 8 , the attacker can send a token
request to op, again using one of the previously obtained private key JWTs.

3Note: Even if Federation PR#83 in combination with [RFC6749, Section 2.3] would prohibit the use of authentication
mechanisms besides request objects for automatic registration, then such a private key JWT will be created and
sent to the attacker-controlled attop in all subsequent OIDC protocol flows between rp and attop.

4As described in [RFC6749, Section 10.2], preregistered redirect URIs would prevent such an impersonation, which,
however, is not mandatory when using PAR with client authentication at the PAR endpoint.

3

https://github.com/openid/federation/pull/83
https://datatracker.ietf.org/doc/html/rfc6749#section-2.3
https://datatracker.ietf.org/doc/html/rfc6749#section-10.2


1 Start (e.g., social engineering)Start (e.g., social engineering)
user-start-flow

2 POST entityIdop/parPOST entityIdop/par
par-request

client_assertion : pkJWT 1, client_id : entityID rp,client_assertion : pkJWT 1, client_id : entityID rp,
redirect_uri : redirectURI att, . . .redirect_uri : redirectURI att, . . .

3 201 Created201 Created
request_uri : . . .request_uri : . . .

4 Redirect toRedirect to
entityIDop/authz?client_id=entityID rp&request_uri=. . .entityIDop/authz?client_id=entityID rp&request_uri=. . .

att-part3-redirect-user

5 GET entityIDop/authz?client_id=entityID rp&request_uri=. . .GET entityIDop/authz?client_id=entityID rp&request_uri=. . .
par-authz-request

6 User authentication and consent (out of scope)User authentication and consent (out of scope)
authz-authn+consent

7 Redirect to redirURI att?code=acRedirect to redirURI att?code=ac
authz-response-redirect

8 GET redirURI att?code=acGET redirURI att?code=ac
authz-response

9 POST /tokenPOST /token
token-request

code : ac, client_id : entityID rp, client_assertion : pkJWT 2code : ac, client_id : entityID rp, client_assertion : pkJWT 2

10 ResponseResponse
token-response

access_token : at , id_token : idToken, ...access_token : at , id_token : idToken, ...

Attacker (RP) att rp OpenID Provider opBrowser (Honest User)

Attacker (RP) att rp OpenID Provider opBrowser (Honest User)

PAR endpointPAR endpoint

authorization endpointauthorization endpoint

redirection endpointredirection endpoint

token endpointtoken endpoint

Figure 3: Private Key JWT Replay Attack Part 3: The attacker uses the private key JWTs obtained
before to impersonate the honest rp towards the honest op.

Attack on Authorization. The attacker can use the access token obtained in Step 10 to gain
access to resources of an honest user (that are managed by the honest rp, i.e., the token can contain
any scope that the honest rp may request).

Attack on Authentication. Instead of redeeming the authorization code at the token endpoint
in Step 9 , the attacker could also start another flow at the honest rp and inject the authorization
code, thus logging in at rp as the honest user.

Note that state/nonce do not prevent this attack: Before luring the honest user into starting a
flow, the attacker would first start its own flow at rp to obtain the nonce value in the authentication
request. The attacker can then include this value in the authentication request in Step 2 . Likewise,
in “its” flow, the attacker can take the state value from the authentication request and include it in
the authentication response.

References

[RFC6749] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749. Oct. 2012. doi: 10.
17487/RFC6749. url: https://www.rfc-editor.org/info/rfc6749.

[RFC9126] T. Lodderstedt, B. Campbell, N. Sakimura, D. Tonge, and F. Skokan. OAuth 2.0
Pushed Authorization Requests. RFC 9126. Sept. 2021. doi: 10.17487/RFC9126. url:
https://www.rfc-editor.org/info/rfc9126.

4

https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC6749
https://www.rfc-editor.org/info/rfc6749
https://doi.org/10.17487/RFC9126
https://www.rfc-editor.org/info/rfc9126


[Fed38] M. B. Jones, A. Å. Solberg, J. Bradley, G. De Marco, and V. Dzhuvinov. OpenID
Federation 1.0. Draft 38. Ed. by R. Hedberg. OpenID Foundation, Aug. 19, 2024. url:
https://openid.net/specs/openid-federation-1_0-38.html.

[OIDC] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. OpenID Connect
Core 1.0 incorporating errata set 2. OpenID Foundation, Dec. 15, 2023. url: http:
//openid.net/specs/openid-connect-core-1_0.html.

5

https://openid.net/specs/openid-federation-1_0-38.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html

