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Abstract—Instruction tuning is crucial for enabling Language
Learning Models (LLMs) in responding to human instructions.
The quality of instruction pairs used for tuning greatly affects
the performance of LLMs. However, the manual creation of high-
quality instruction datasets is costly, leading to the adoption
of automatic generation of instruction pairs by LLMs as a
popular alternative. To ensure the high quality of LLM-generated
instruction datasets, several approaches have been proposed. Nev-
ertheless, existing methods either compromise dataset integrity
by filtering a large proportion of samples, or are unsuitable
for industrial applications. In this paper, instead of discarding
low-quality samples, we propose CoachLM, a novel approach
to enhance the quality of instruction datasets through automatic
revisions on samples in the dataset. CoachLM is trained from the
samples revised by human experts and significantly increases the
proportion of high-quality samples in the dataset from 17.7%
to 78.9%. The effectiveness of CoachLM is further assessed
on various real-world instruction test sets. The results show
that CoachLM improves the instruction-following capabilities
of the instruction-tuned LLM by an average of 29.9%, which
even surpasses larger LLMs with nearly twice the number of
parameters. Furthermore, CoachLM is successfully deployed in
a data management system for LLMs at Huawei, resulting in an
efficiency improvement of up to 20% in the cleaning of 40k real-
world instruction pairs. We release various assets of CoachLM,
including the training data, code and test set1.

Index Terms—large language model, instruction tuning, data
quality, instruction revision

I. INTRODUCTION

The rapid progress of Large Language Models (LLMs)

has brought a profound impact on various domains. Notable

examples include ChatGPT [1] and GPT-4 [2], which have

demonstrated the ability to perform complex tasks and pro-

vide appropriate responses based on human instructions [3]–

[5]. Furthermore, these models possess an understanding of

their limitations in terms of capabilities [1]. The capabilities

of LLMs are developed through a three-stage process. The

first stage involves pre-training, where a foundation model

is trained to predict subsequent words within large corpora

[6]. However, while foundation models like LLaMA [7] can

complete input sentences, they lack the ability to effectively

respond to human instructions. To address this limitation,

LLMs undergo fine-tuning on diverse instructions, leveraging

desired responses as learning signals in order to generalize

1https://github.com/lunyiliu/CoachLM

Fig. 1. Illustration of instruction tuning LLMs on pairs of INSTRUCTION and
RESPONSE.

to unseen instructions [8]–[10]. This process is commonly

referred to as instruction tuning. Some LLMs also incorpo-

rate Reinforcement Learning (RL) pipelines to dynamically

learn the boundaries of their responses, thereby avoiding the

generation of harmful or sensitive content [1], [11], [12].

Among these techniques, instruction tuning is considered

a crucial process to enhance the capabilities of LLMs by

leveraging stored knowledge from pre-training and effectively

aligning with human expectations [13]. The process involves

further training LLMs on instruction datasets, which consist of

formatted instruction pairs. As illustrated in Fig. 1, an instruc-

tion pair can be represented as (INSTRUCTION, RESPONSE),

with INSTRUCTION denoting the human instruction for the

model and RESPONSE representing the desired output follow-

ing the instruction. Crafting a high-quality instruction dataset

is essential to elicit the desired behaviors of LLMs through

instruction tuning. Prominent LLMs, such as ChatGPT [1],

GPT-4 [2], and Bard 2, utilize proprietary instruction datasets

constructed with significant amounts of human annotation.

However, the collection of human-written instruction pairs is

expensive, requiring comprehensive knowledge of annotators.

Alternatively, Wang et al. proposed Self-Instruct, an automatic
approach to construct instruction datasets by leveraging LLMs

to produce instruction pairs with high diversity [14]. With

the increasing capabilities and flexibility of LLMs, instruction

tuning using LLM-generated instruction datasets has emerged

2https://bard.google.com/
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as a paradigm [15]–[17]. Notably, the Alpaca project [15]

utilizes the GPT-3.5 model and the Self-Instruct strategy to

generate 52k instruction pairs (referred to as the ALPACA52K

dataset). The Alpaca model, fine-tuned from LLaMA using

this dataset, demonstrates a strong ability to follow instructions

compared to the GPT-3.5 model.

However, recent studies have raised concerns about the

quality of instruction pairs generated by LLMs. These studies

[17]–[19] suggest that the quality of the instruction dataset

used for instruction tuning significantly impacts performance.

In response to these concerns, the Alpaca-cleaned project3 has

identified various issues in the ALPACA52K dataset, including

empty responses and inconsistent formats. To address these

issues, regular expressions were employed to clean a subset

of instruction pairs within the dataset, resulting in improved

performance of the subsequently fine-tuned Alpaca-cleaned

model. Additionally, AlpaGasus [20] utilized ChatGPT to filter

out 9k high-quality instruction pairs from the ALPACA52K

dataset. The fine-tuned model using this filtered dataset outper-

formed the original Alpaca model trained on the full dataset.

However, despite these efforts, there remains a need for a

systematic investigation into the quality of LLM-generated

instruction datasets, as rule-based approaches are unable to

address all issues. Furthermore, simply discarding low-rated

instruction pairs may reduce the diversity of the dataset,

thereby diminishing the generalization ability of LLMs.

In this paper, our objective is to propose a systematic and

efficient approach to address the issue of unguaranteed data

quality in LLM instruction tuning. Instead of discarding low-

quality data, our approach focuses on improving their quality

through revisions. To achieve this, we conducted a meticulous

manual examination of 6k instruction pairs sampled from the

ALPACA52K dataset. We engaged 17 language experts to

review from nine different dimensions, encompassing basic

correctness and advanced experiences. During the primary

revision, deficiencies were identified in 46.8% of the ex-

amined instruction pairs. Subsequently, the language experts

were asked to rewrite the identified low-quality instruction

pairs. This generated an expert revision dataset consisting of

approximately 2.3k revised instruction pairs and their original

counterparts. Using this dataset, we trained a coach language

model (CoachLM) to learn the expert revision process and au-

tomatically provide revisions for low-quality instruction pairs.

To evaluate the effectiveness of our approach, we conducted

experiments on four instruction-following test sets, compris-

ing real-world tasks from various categories. The Alpaca-

CoachLM model, which was fine-tuned on the CoachLM-

revised ALPACA52K dataset, outperformed other Alpaca vari-

ants on all test sets in terms of win rates. Remarkably, it

even outperformed stronger LLMs with more parameters and

training stages. Our contributions are summarized as follows:

• We conducted a comprehensive examination of the AL-

PACA52K dataset, a widely-used LLM instruction tuning

dataset. This examination resulted in the identification

3https://github.com/gururise/AlpacaDataCleaned

and rewriting of low-quality instruction pairs, leading to

an average improvement of 8.4% in the win rates of

our tuned Alpaca-human model, where the expert-revised

subset was merged back into the ALPACA52K dataset.

• We introduced CoachLM, an industry-friendly coach lan-

guage model that automatically revises instruction pairs.

CoachLM significantly increased the proportion of high-

quality samples in the ALPACA52K dataset, improving

it from 17.7% to 78.9%. Furthermore, CoachLM was

trained from open-sourced backbone models, facilitating

easy and customized deployment.

• We demonstrated the effectiveness of CoachLM in

enhancing the instruction-following capabilities of

instruction-tuned LLMs. Our Alpaca-CoachLM model,

fine-tuned on the CoachLM-revised ALPACA52K dataset,

outperformed the top-performing Alpaca variants by up

to 21.5% and even stronger LLMs with more parameters

and training stages.

II. METHODOLOGY

A. Motivation

Our work is motivated by the challenges of data quality in

instruction tuning and the limitations of existing approaches.

(1) A systematic and deeper examination on the data
quality of LLM-generated instruction datasets is in need,
as unguaranteed quality of instruction pairs will hinder the

instruction-following abilities of subsequently tuned LLMs.

Recent studies have shown that LLM-generated instruction

datasets, such as the ALPACA52K dataset, contain errors in

the surface form, such as invalid formats, which negatively

impact the performance of LLMs. Although the Alpaca-

cleaned project has designed a rule-based approach to correct

these surface mistakes, our expert examination reveals deeper

deficiencies in the LLM-generated instruction dataset. These

deficiencies include incomplete or irrelevant responses and in-

feasible instructions, which cannot be fully detected by regular

expressions. As will be discussed in Section III-C, fixing these

deficiencies can further enhance model performances.

(2) There is a need for an automated and industry-
friendly approach to improve the quality of instruction
datasets, which arises from the high cost associated with man-
ual revisions on a large scale and the uncertainties introduced

by relying on API-dependent LLMs. Despite the improvement

in the performance of model through expert revisions, a

substantial amount of work, totaling 129 person-days, was

required to examine only 6k out of 52k instruction pairs. The

significant cost makes it challenging to further enhance the

performance of LLMs by scaling up the human revisions.

Therefore, an automatic approach is necessary to provide an

efficient refinement of instruction datasets. Recent approaches,

such as AlpaGasus [20], have utilized off-the-shelf and cloud-

based LLMs, such as ChatGPT, to automatically enhance the

overall quality of instruction datasets. However, the application

of such API-dependent methods is often limited in industrial

scenarios due to difficulties in reproducing results caused by
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(a) The training process of CoachLM

(b) The workflow of CoachLM in boosting LLM instruction tuning
Fig. 2. Illustration of CoachLM: (a) in the training stage and (b) in the inference stage. CoachLM learns from the expert revision process in the training stage
and perform revisions on instruction pairs in the inference stage. The displayed instruction pairs from the ALPACA52K dataset were revised by CoachLM.
For convenience of display, core revisions were marked red, and the line breaks in the instruction pairs were adjusted. CoachLM rewrote the ambiguous
instruction in the first sample, added explanations for the response in the second, and corrected the less appropriate response in the third.

frequent updates to the LLM and uncertainties in accessibility

due to increasingly stringent blocking strategies. Furthermore,

it is not feasible to locally deploy these approaches in private

domains with limited internet access, emphasizing the need

for an industry-friendly approach that ensures reproducibility,

accessibility, and privacy protection.

(3) Existing filtering-based approaches have the potential
to negatively impact the diversity of instruction datasets,
which in turn hampers the generalization ability of LLMs.

These approaches typically select a small subset of instruction

pairs with high ratings from the dataset and fine-tune LLMs

on this subset, resulting in improved performance compared to

LLMs tuned on the full dataset [19], [20]. Although it has been

extensively demonstrated that including low-quality instruction

pairs in LLM instruction tuning diminishes the instruction-

following capability of the models [17], [19], [21], dropping

the majority of instruction pairs poses a risk of compromising

the integrity of the instruction dataset, as this may lead to a

lack of instructions from certain categories and a reduction

in the instruction-following abilities of subsequently tuned

LLMs in those areas. For instance, Chen et al. [20] observed
that the high filtering ratio of code-related instruction pairs

in the training dataset of AlpaGasus resulted in relatively

weaker performance in responding to coding instructions. One

potential solution to address this issue is to improve the low-

quality portion of the dataset by revising it to ensure diversity,

rather than simply discarding low-quality instructions.

B. Overview of CoachLM
The architecture of CoachLM, our proposed model for

automatic instruction pair revision, is depicted in Fig. 2. In

the training stage (Fig. 2(a)), we construct an expert revision

dataset consisting of original low-quality instruction pairs and

their corresponding manually revised versions. The revisions,

carried out by experts considering deficiencies in nine dimen-

sions, involve corrections, adjustments, diversifications, and

rewrites. Then, the process of coach instruction tuning adapts

a backbone LLM to CoachLM, eliciting its instruction-pair

revision ability through tuning on the expert revision samples.
In the inference stage, each instruction pair in an instruction

dataset is input to CoachLM for revisions, resulting in a
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CoachLM-revised instruction dataset. This revised dataset is

subsequently employed as a training dataset in LLM instruc-

tion tuning. As shown in Fig. 2(b), the displayed CoachLM-

revised versions of the instruction pairs, when compared

with those in the ALPACA52K dataset, alleviate ambiguity

in instructions, expand the necessary reasoning process in

responses, and enhance adherence to the requirements in

instructions. Consequently, when used as a training dataset in

LLM instruction tuning, the higher quality of the CoachLM-

revised instruction dataset provides better guidance to the

foundation LLM in modeling the connection between user

instructions and appropriate responses, thereby improving the

instruction-following abilities of the instruction-tuned LLMs.

The remainder of Section II is organized as follows. Section

II-C introduces the expertise and grouping of the language

experts involved in our work. Section II-D discusses the

definition of data quality in instruction tuning and presents our

criteria for evaluating the quality of instruction pairs. Section

II-E describes the human revision process of instruction pairs

from the ALPACA52K dataset. Section II-F provides a detailed

illustration of the methodology used in the training and in-

ference stages of CoachLM. Finally, Section II-G introduces

CoachLM150, the instruction-following test set we created.

C. Profile of Involved Language Experts

TABLE I
EXPERTISE AND GROUPING OF INVOLVED LANGUAGE EXPERTS

Group Task Number of
Experts

Average Years of
Experience

A Revise Instruction Pairs 17 11.29 years
B Create Test Set 6 5.64 years
C Evaluate CoachLM 3 12.57 years

To ensure a comprehensive and rigorous assessment of

data quality and to provide precise and scholarly revisions

on instruction pairs, we established a collaboration with the

language service center of a prominent international corpo-

ration. We recruited a team of highly experienced language

experts who dedicated their full-time efforts to this project.

These experts possess diverse skill sets encompassing trans-

lation, localization, proofreading, editing, copy-writing, tech-

nical writing, and linguistic testing. All participating experts

have acquired advanced levels of education. Thus, in addition

to their exceptional logical reasoning and writing proficiencies,

they possess a solid foundation in arithmetic, coding, science,

and general knowledge. Furthermore, owing to the existence

of multilingual instructions in the ALPACA52K dataset, the

multiple language capabilities of our team members, such as

English, Chinese, Spanish, Arabic and French, render them

uniquely qualified for this project.

As shown in Table I, a total of 26 language experts

participated in the study, and they were divided into three

non-overlapping groups, each assigned with specific tasks. The

allocation of experts into groups was based on their expressed

preferences, while we initially provided an estimated size

for each group that roughly corresponded to the workload

of the respective tasks. Consequently, group A comprised

17 experts, possessing an average experience of 11.29 years.

Their primary responsibility entailed identifying low-quality

instruction pairs and manually revising them as necessary.

Group B consisted of six experts tasked with creating an

instruction-following test set based on real-world scenarios, as

well as providing human responses as reference for the test set.

Group C comprised three experts responsible for conducting

a human evaluation of CoachLM and the subsequently fine-

tuned LLM. Moreover, all experts in the three groups actively

participated in the formulation of the quality evaluation criteria

for instruction pairs. Notably, there was no overlap between

the authors of this paper and the language experts.

D. Quality Evaluation Criteria for Instruction Pairs

Before examining the data quality of the instruction dataset,

it is crucial to establish a comprehensive definition of the

quality of instruction pairs. Previous studies [18]–[20] gen-

erally agree that for LLMs, high-quality instruction pairs

are advantageous for instruction tuning, while low-quality

pairs may impede the instruction-following ability of LLMs

trained on such data. To enhance the capabilities of models to

follow human instructions, instruction pairs used for training

should adhere to a human-expectation paradigm. Existing

research [16], [22]–[24] suggests that human expectations

for LLM behavior encompass various dimensions, including

basic language safety and advanced expectations, such as

factual correctness, contextual richness, and helpfulness of

responses. A robust evaluation criterion should incorporate

these dimensions to ensure high-scored training samples align

well with human expectations.

By incorporating the dimensions outlined in existing eval-

uation criteria [16], [22]–[24], a comprehensive set of criteria

encompassing nine different evaluation dimensions (as shown

in Table II) has been proposed to assess the quality of

(INSTRUCTION, RESPONSE) pairs. The INSTRUCTION and

RESPONSE are evaluated independently, yielding two sepa-

rate scores ranging from 0 to 100 based on their respective

criteria. While all dimensions are necessary, they vary in

their significance to the overall human interaction experience.

Consequently, the dimensions are grouped into three levels

based on their importance, which determines their contribution

to the final score. The red-line level (e.g., safety) represents
the minimum acceptable standard for human tolerance, where

any violation results in a score no higher than 40. The basic

level (e.g., correctness and relevance) signifies dimensions that
enable effective human-model interaction, and any flaws in

this level restrict the score to a maximum of 80. Finally,

the advanced level encompasses higher human expectations,

including rich context and politeness, and accounts for the

top 20 points in the criteria. To mitigate bias, evaluators

are instructed to independently and separately assess each

dimension, since, for example, a response may still be relevant

even if it contains factual inaccuracies.
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TABLE II
HUMAN EVALUATION CRITERIA FOR THE QUALITY OF INSTRUCTION PAIRS

Criteria for INSTRUCTION

Level Dimension Description Main Checklist Score Range

Advanced
Requirement

Contextualization
The instruction includes a rich context or effective prompt-
ing skills to facilitate detailed and accurate responses.

Check for scenarios, roles, examples, or other require-
ments, and for skills like chain-of-thought.

80-100

Basic
Requirement

Feasibility
The instruction is clear, specific, feasible, and easily un-
derstandable.

Check for ambiguous or vague expressions, logical
errors, or requests beyond the ability of an AI model.

0-80

Readability
The instruction adheres to the conventions and stylistic
norms of the target language.

Check for language-related issues such as grammar,
spelling, and punctuations.

Criteria for RESPONSE

Level Dimension Description Main Checklist Score Range

Advanced
Experience

Humanization
Responses should be warm, empathetic,
and engaging, tailored to the user’s
background and preferences.

Check: (1) Emotional Perception. Respond to users’ emotions with empa-
thy; (2) Humanized Tone. Interact with users in a natural and friendly way,
avoiding machine-like tone.

90-100

Richness
Responses should be diverse, informa-
tive, creative, and expanded.

Check: (1) Provide detailed and diverse information with depth and breadth;
(2) Enrich the content with novelty, uniqueness, and imagination.

80-90

Basic
Experience

Readability
Responses should use fluent, concise
and correct language and be properly
structured.

Check (1) Language: Error-free writing using precise vocabulary; (2)
Content: Meaningful content without redundancy; (3) Structure: Clear,
ordered, and logical organization of information with user-friendly layout.

40-80

Comprehensive-
ness

Responses comprehensively cover all
necessary angles and information.

Check (1) No omissions or deficiencies in fully explaining user questions.
(2) Multiple angles, sufficient contexts and details for an unbiased response.

Relevance
Responses should be effective and di-
rect, and provide in-topic solutions.

Check (1) Irrelevance: Response misinterprets user’s intention; (2) Devia-
tion: Response is related to user’s topic, but deviates from the focus.

Correctness

Responses should be grounded in fac-
tual information, common sense, and
logical reasoning, while also staying
up-to-date and adhering to the user’s
specific requirements.

Check (1) Factual Error: Inconsistent with reality; (2) Common Sense
Error: Contradict with human common sense; (3) Logical Error: Include
concept substitution, self-contradiction, ambiguity and circular reasoning,
etc.; (4) Compliance with Constraints: Include word count, genre and style,
etc.; (5) Timeliness: The provided information is up-to-date.

Experience
Red Line

Safety
Responses should be harmless, protect-
ing users’ emotions, body and property.

Check for violation of laws, personal attacks, exposure of user privacy and
irresponsible advises on medical or financial matters.

0-40

Regarding the criteria for assessing the quality of the

INSTRUCTION in an instruction pair in Table II, firstly, an

INSTRUCTION should be grammatically correct and logically

feasible. Readability issues may impede accurate understand-

ing of user intent during the training process. Additionally,

infeasible INSTRUCTIONS containing logical errors in the

training dataset may prevent the model from learning correct

connections between instructions and responses, thereby ex-

acerbating the hallucination of tuned LLMs [16], [17], [25].

Moreover, recent studies have shown that including more

contextual information and details in user instructions leads

to better model responses [26], [27]. Therefore, a high-quality

INSTRUCTION should also be rich in specific contexts, such

as requirements and examples.

Similarly, a high-quality RESPONSE to the user’s instruction

ensures a desirable user experience. Firstly, the red line of a

RESPONSE is the safety aspect for the user and other entities.

Additionally, a basic requirement for a good user experience

is a relevant and comprehensive response without factual and

language errors. Furthermore, providing a RESPONSE with

expanded information and a humanized tone is essential for

delivering an advanced user experience.

E. Manual Instruction Revision with Experts

In this section, we present details of the human revision pro-

cess conducted on a randomly selected subset of 6k instruction

pairs from the ALPACA52K dataset.

TABLE III
THE DISTRIBUTION OF THE 1088 EXCLUDED INSTRUCTION PAIRS

Reason Example Ratio

Invalid Input: The key content
of the instruction is invalid.

Generate a creative title for this
article. Input: [Link to an article].

41.7%

Beyond Expertise: Overly pro-
fessional scenes.

Generate the chords for an E mi-
nor scale.

27.7%

Massive Workload: Poem or
lyric requiring massive rewriting.

From the given lyrics, create a
haiku poem.

8.2%

Multi-modal: Image, video and
audio, which are not supported.

List the products in the photo.
Input: (photo of a grocery store).

6.5%

Safety: Overly toxic content, copyrighted content and sensitive content. 15.9%

1) Preliminary Filtering: Before the primary revision, ex-
perts from group A conducted a preliminary filtering on the

sampled 6k instruction pairs to exclude unsuitable pairs. As

shown in Table III, a total of 1088 pairs were excluded,

mainly due to missing or invalid key parts, excessive expertise

or workload requirements, inclusion of unsupported multi-

modal information, and overly toxic or sensitive content. These

excluded pairs still participated in subsequent LLM training

for fair comparison. A small proportion of such pairs were

retained during the revision to ensure diversity of revision.
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TABLE IV
THE STATISTICS OF EXPERT REVISIONS MADE ON INSTRUCTION PAIRS

Revision Dimension Ratio

Distribution of the 1079 revised INSTRUCTIONS

Adjust the language and layout of the in-
struction to be clear and correct.

Readability 68.1%

Rewrite infeasible instructions; Rewrite the
confusing and ambiguous part of instructions.

Feasibility 24.9%

Diversify the context; Add specific require-
ments and examples.

Contextuali-
zation

7.0%

Distribution of the 2301 revised RESPONSES

Diversify angles of the responses; Add nec-
essary explanations and backgrounds; Ex-
pand the reasoning process.

Comprehen-
siveness,
Richness

43.7%

Rewrite the language to be fluent and natu-
ral; Rewrite the content to be relevant, useful
and logically consistent.

Relevance,
Readability,
Correctness

24.5%

Adjust response layout to be clear; Adjust
the tone to be empathetic and personalized.

Readability,
Humanization

23.3%

Correct miscalculations, factual mistakes
and common sense violations.

Correctness 6.7%

Other complex and creative revisions; miti-
gate safety issues.

Safety,
Others

1.9%

2) Expert Revision: After excluding the 1088 filtered in-
struction pairs, the remaining 4.9k instruction pairs under-

went the primary revision. To ensure an effective revision

process, we adopted an expertise-based approach to assign

instruction pairs to experts [28], [29]. Based on the categories

proposed in [15], the instruction pairs were classified into

three classes representing different levels of difficulty (i.e.,
expertise required) for revision. The first class involved lan-

guage tasks that require mostly certain and objective answers,

such as information extraction, grammatical correction, and

summarizing. The second class included question answering

(Q&A), which entails open dialogue completion, suggestion

recommendation, and in-domain Q&A. Revising instruction

pairs in this class demands higher language expertise due to

the diverse and subjective nature of desired answers. The third

and most challenging class involved creative composition, such

as story creation and copywriting, which often necessitate

substantial revision of creative content. In our expertise-based

selection approach, the expertise of experts were estimated

by their years of experience and the 17 experts from group A

were divided into three units according to their expertise, with

each unit responsible for revising one class. As a result, the

average years of experience for experts in each unit are 9.4

years for language task performing, 11.2 years for Q&A, and

13.1 years for creative composition.

In addition, each unit was assigned an owner whose re-

sponsibility was to assess the quality of the revised instruction

pairs produced by unit members. The revision process strictly

adhered to the criteria outlined in Table II, following the

principle of “making all necessary revisions,” regardless of the

importance of the revised dimensions. If an instruction pair

was identified as lacking in one or more dimensions in the

criteria, the expert was required to make substantial revisions

in those dimensions until the instruction pair achieved a score

of 95 or higher based on the criteria. Consequently, consider-

ing the workload of preliminary filtering, quality control, and

primary revision, a total of 129 person-days were expended,

resulting in 2301 instruction pairs receiving revisions either on

the INSTRUCTION or RESPONSE side. Among the 2.3k revised

pairs, 1079 of them underwent revisions on INSTRUCTION.

During the revision, each instruction pair may have received

revisions in multiple dimensions. The revised instruction pairs

were categorized based on the primary type of revisions they

underwent, and the distribution of each revision category is

displayed in Table IV. For revisions on the INSTRUCTION

side, approximately 68.1% consisted of minor adjustments

in language and layout, while the remaining 31.9% involved

improvements in feasibility and the inclusion of additional

contextual information. As for RESPONSES, the most com-

mon types of revisions comprised expanding the depth of

the response or providing necessary supporting explanations,

accounting for 43.7% of the revisions. Other revisions include

content rewrites in terms of logic and relevancy, adjustments

related to layout and tone, and corrections of factual and

calculation errors. In order to ensure a diverse range of

revisions, approximately 1.9% of the revisions were cases that

should have fell into the categories listed in Table III. See more

analysis details from the technical report in our repository.

F. Design of CoachLM

The effectiveness of our criteria and revision process is

evident from the advantage of Alpaca-human over Alpaca in

Table IX. However, it is important to note that our manual

examination only encompasses a limited portion of the AL-

PACA52K dataset, leaving the quality of the majority of the

dataset uncertain. Given the high cost associated with expert

revision, expanding the manual revision process on a larger

scale is impractical, which necessitates the need for CoachLM,

the proposed approach for efficient automatic revisions.

1) Coach Instruction Tuning: CoachLM is trained by tak-

ing content revision as a type of instruction, which LLMs

can follow via instruction tuning. Similar to general instruc-

tions, the requisite knowledge for content revision exists in

the pre-training stage of LLMs, and is aligned with human

expectations during instruction tuning. For instance, content-

revision instructions found in the ALPACA52K dataset, such

as “correct the grammatical errors in the sentence”, elicit

the basic capacity of instruction-tuned LLMs like Alpaca to

engage in content revision. Thus, we propose the process of

coach instruction tuning that involves fine-tuning an LLM

using specifically designed instruction pairs. These instruction

pairs prompt the LLM to provide revisions to input instructions

and align its responses with expert-revised outcomes. Through

this approach, the LLM is anticipated to develop the ability

to revise instruction pairs in a manner consistent with expert

revision practices.
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Specifically, given an instruction dataset V of instruction

pairs x = (INSTRUCTION, RESPONSE) with x ∈ V , each
instruction pair x undergoes a revision through the expert

revision process, resulting in a revised instruction pair xr. The
expert revision dataset R is then formed, which comprises

both the original and revised instruction pairs, denoted as

R = {(x, xr) | x ∈ V }. During the coach instruction

tuning process, each (x, xr) ∈ R is leveraged to construct

an instruction pair xc, leading to an instruction dataset C =
{xc | x ∈ V }.

Fig. 3. Illustration on format of the instruction pairs xc in the coach
instruction tuning. x denotes the original instruction pair and xr represents
the revised version by experts.

As shown in Fig. 3, the INSTRUCTION of xc instructs the
LLM to enhance the quality of x, the original instruction
pair, while the RESPONSE of xc is xr, the expert-revised
counterpart. When designing the INSTRUCTION component,

we provide a succinct revision instruction that highlights the

primary areas for revision based on the expert revision results.

We deliberately refrain from composing an exhaustive and

detailed instruction that fully encompasses all criteria, as a

lengthy instruction could potentially distract the LLM from

capturing the connections between the input instruction pairs

and their expert-revised versions. Nonetheless, it is worth

exploring whether the design of the instruction pair in Fig. 3

is optimal in future research.

Given an LLM with parameters θ as the initial model for
coach instruction tuning, training the model on the constructed

instruction dataset C results in the adaption of the LLM’s

parameters from θ to θc, denoted as CoachLM. Specifically,
θc is obtained by maximizing the probability of predicting the
next tokens in the RESPONSE component of xc, conditioned
on the INSTRUCTION of xc ∈ C, which is formulated as:

θc = argmax
θ

∑

xc∈C

logP (RESPONSE | INSTRUCTION; θ, xc).
(1)

2) Quality Control of Human Input: In the pre-LLM era,

models were required to learn both task-specific knowledge

and the alignment between task input and desired output. This

is why training on negative samples was sometimes beneficial,

as it provided the model with supplementary knowledge and

boundaries for the task-specific information [19]. However,

with the adoption of current LLM techniques, most of the

required knowledge is learned during pre-training. Numerous

pieces of evidence suggest that when fine-tuning an LLM

through instruction tuning, the introduction of low-quality

instruction pairs actually hinders the performance of the tuned

LLM [18]–[20], [30]. This phenomenon can be explained

by the assumption that the instruction tuning process mainly

promotes the alignment between the model and the expected

user responses, and low-quality samples impede the model’s

ability to correctly establish connections between its stored

knowledge and following user instructions.

This concern also applies to the proposed coach instruction

tuning process, as it may lead to sub-optimal performance of

CoachLM if all the 2.3k available revision examples in R
are used to construct the training dataset C. Although the
expert revision process includes a quality control stage that

ensures each revised instruction pair xr meets the criteria in
Table II, the original instruction pair x may still influence the
overall quality of the constructed instruction pair xc. If x is
already in good shape, only minor revisions are made to obtain

xr. In extreme cases where x is identical to xr, including
such samples in the construction of C is akin to introducing

negative samples into the coach instruction tuning process,

which may hinder the performance of CoachLM as described

above. In other words, the quality of xc can be determined
by the difference between xr and x, with a higher difference
indicating more revisions that CoachLM can learn from.

To avoid biased results from the experts, we did not impose

a minimum amount of revision for each revised sample in the

expert revision process. Instead, we employ the edit distance

metric to assess the quality of (x, xr) ∈ R and define α, the
human input ratio, to determine the final subset of samples

used in C. The edit distance, also known as the Levenshtein
distance, quantifies the minimum number of single-character

edits needed to transform one string into another [31]. The

edit distance reflects the difference between x and xr, thereby
measuring the quality of xc. Then, by defining a ratio α
between 0 and 1, we can ensure that Cα comprises human

input samples from R with the highest α proportion of edit

distances. By replacing C with Cα in Eq. (1), we obtain a

CoachLM trained with a high-quality subset of the constructed

instruction dataset C.

3) Automatic Revision with CoachLM: Through coach in-
struction tuning, CoachLM generates automatic revisions on

input instruction pairs, creating a CoachLM-revised instruction

dataset. This high-quality dataset can subsequently be used as

a training dataset for LLM instruction tuning. Let D represent

an input instruction dataset (e.g., the ALPACA52K dataset),

consisting of instruction pairs x. Each x ∈ D is combined with

the revision prompt shown in Fig. 3 to form an instruction pair

x′c ∈ D′, with an empty RESPONSE to be filled by CoachLM.
The CoachLM-revised instruction dataset, denoted as Dc, is

obtained by applying θc, the CoachLM, on D
′:

Dc = {θc(x′c) | x′c ∈ D′}, (2)

G. CoachLM150 Test Set

As mentioned in Section II-C, the primary task of experts

in group B is to create a high-quality LLM test suite called

the CoachLM150 test set. This test set aims to evaluate the

diverse abilities of LLMs acquired in the instruction tuning

process. To construct this test set, the experts analyzed the
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categories of instructions in existing instruction tuning datasets

[14], [15] and identified 42 distinct categories, including in-

formation extraction, scientific inference, dialogue completion,

brainstorming, in-domain question answering, and more, to

assess the instruction-following ability of LLMs.

The 42 categories were evenly assigned to five out of the

six experts in group B. Each expert searched for real-world

user cases related to their assigned categories and organized

them into instructions. The sources of these user cases include

tutorial websites4, online blogs5, and user forums6. For each

instruction, the corresponding expert composed a reference

response. Among all the reference responses, approximately

one third were post-edited from LLM-generated responses

provided by the user case sources, while the remaining two

thirds were written by experts from scratch. The quality

control of the curated instruction pairs was performed by the

remaining expert, who evaluated them based on the criteria

mentioned in Table II and rejected low-quality pairs. This

process resulted in a final test set consisting of 150 instructions

with their corresponding reference responses.

III. EXPERIMENTS AND EVALUATIONS

In Section III-A, we provide an overview of the exper-

imental set-up of CoachLM. Section III-B investigates the

effectiveness of CoachLM in enhancing the data quality of

the revised instruction dataset. Section III-C assesses the per-

formance improvement achieved by tuning the LLM using the

CoachLM-revised instruction dataset. Furthermore, in Sections

III-D and III-E, we conduct an ablation study on the influence

of parameter settings and backbone models on CoachLM.

A. Experimental Setup

TABLE V
EVALUATION APPROACHES UTILIZED IN THE EXPERIMENT

Approach Evaluation Task Type Efficiency Availability

Human Both Direct Score Low Low
ChatGPT [20] Instruction Dataset Direct Score Medium Medium
GPT-4 [16] LLM Performance Comparison Medium Low
PandaLM [24] LLM Performance Comparison High High

1) Evaluation Approach: In the experiment, a comprehen-
sive evaluation of CoachLM is conducted using both automatic

and human approaches, as shown in Table V.

a) Human: Three experts from group C (denoted by R1,
R2, and R3, respectively) independently assign scores between

0-100 to each INSTRUCTION or RESPONSE based on the

criteria in Table II, unaware of the sources of rated samples.

The experts evaluate the satisfaction of dimensions and assign

scores within the range of satisfied dimensions. However,

human evaluation is limited in efficiency and availability due

to its high cost and the requirement for expertise.

4cookup.ai/chatgpt/usecases
5writesonic.com/blog/chatgpt-use-cases
6sharegpt.com

b) ChatGPT: Following AlpaGasus [20], the overall

quality of the CoachLM-revised instruction dataset is rated

using ChatGPT (i.e., the GPT-3.5-turbo API). This method

prompts ChatGPT to evaluate the accuracy of the RESPONSE

in an instruction pair, using a rating scale ranging from 0 to

5. The desired output from ChatGPT consists of a score and

an accompanying rationale for its assignment.

c) GPT-4: To evaluate the performance of LLMs, GPT-
4 is used to compare and rate the RESPONSES from two

candidate models [16]. A sophisticated prompt is designed by

Chiang et al. [16]. The prompt firstly displays two candidate
responses to an instruction from the test set, and asks GPT-

4 to assess the relative quality of the two responses based

on helpfulness, relevance, accuracy, and level of detail. The

desired output from GPT-4 consists of two scores from 0 to

10, denoting the quality of each candidate response, along

with an accompanying rationale. However, this approach has

limitations due to its vulnerable API-dependent nature and

the reported evaluation biases when swapping candidates [24],

despite the strong ability of GPT-4 against humans [2].

d) PandaLM: This open-source judge model allows for
local deployment and offers efficient evaluations on LLMs

[24]. By fine-tuning LLaMA [7] using 300k evaluation sam-

ples (generated by GPT-3.5), this model, with only 7B pa-

rameters, achieves an evaluation ability of 88.3% compared to

GPT-4 and effectively addresses biases that may arise when

swapping candidates. PandaLM takes an instruction and two

candidate responses as inputs. It then generates a comparative

conclusion (“win”, “tie”, or “lose”) of the two candidates and a

rationale for its decision, considering factors like correctness,

conciseness, and adherence to the given instruction.

To address biases in comparison-based evaluations, we used

the approach in AlpaGasus [20]. This involves conducting two

ratings for each comparison by swapping the order of the two

candidates. Conflicting results, where a candidate is rated as a

“win” in the first rating but a “lose” in the reversed order, are

modified to a “tie”. Notably, a combination of “win” and “tie”

(or “lose” and “tie”) is still considered a “win” (or “lose”).

TABLE VI
TEST SETS ON INSTRUCTION-FOLLOWING ABILITY OF LLMS

Name Size Number of
Categories

Reference
Response

CoachLM150 150 42 Human
PandaLM170 [24] 170 11 ChatGPT
Vicuna80 [16] 80 9 Bard
Self-Instruct252 [14] 252 15 Human

2) Instruction-following Test Sets: As shown in Table VI,
in addition to the CoachLM150 test set, we also utilize three

popular public LLM test sets in our experiments, namely

the Self-Instruct252 test set [14], the PandaLM170 test set

[24], and the Vicuna80 test set [16]. The Self-Instruct252 test

set was curated by Wang et al., who provided instructions

under various application scenarios such as Gmail, Twitter,

and Github, along with human responses. The PandaLM170
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test set was created by sampling instructions from the Self-

Instruct252 test set, with reference responses generated by

ChatGPT. The Vicuna80 test set comprises instructions related

to writing, role-play, math, and knowledge, for which the

responses from Bard were used as reference responses due

to the absence of human responses.

3) Implementation Details: We explored different backbone
models θ and different α values for CoachLM. In our main

experiment, we used ChatGLM2 [32] as the backbone model,

which has 6B parameters, and set α to 0.3. To efficiently

adapt the backbone LLMs, we employed LoRA [33], a partial

fine-tuning technique. See detailed parameter settings in our

repository. CoachLM was trained for seven epochs with a

learning rate of 2×10−4. For training the instruction-following

models, we utilized the same settings as the official Alpaca

repository7, with the exception of using different instruction

datasets. During the inference stage, the beam size for decod-

ing was set to one for all models.

B. Data Quality of CoachLM-revised Instruction Dataset

TABLE VII
STATISTICS OF THE COACHLM-REVISED ALPACA52K DATASET

Dataset

INSTRUCTION RESPONSE

Average
Length

Word-level
Edit Distance

Average
Length

Word-level
Edit Distance

Original 17.7 - 43.9 -
CoachLM-revised 16.8 3.4 143.1 128.7

1) CoachLM-revised ALPACA52K Dataset: By inputting

every instruction pair from the ALPACA52K dataset into

CoachLM for revisions as described in Eq. (2), a CoachLM-

revised ALPACA52K dataset was obtained. We performed

automatic post-processing on the outputs of CoachLM using

regular expressions to remove invalid characters and repeated

strings that were occasionally produced. Approximately 1.3%

of the outputs were not valid instruction pairs and were

replaced with the original instruction pairs. To avoid data

leakage, instructions appeared in the training of CoachLM

were kept from the inference and the original samples were

directly adopted, which accounted for around 1.3% as well.

Three examples revised by CoachLM are shown in Fig. 2.

Table VII presents the statistics of the ALPACA52K dataset

before and after revision, including the average length and

average edit distance at the word-level. The CoachLM-revised

dataset showed significant revisions on RESPONSES in most

instruction pairs and resulted in longer responses on average

compared with the original dataset, indicating the addition

of substantial new content in the revised responses. In con-

trast, only around 8k instruction pairs exhibited revisions

on INSTRUCTIONS. The relatively small number of revisions

and nearly unchanged average length suggest that CoachLM

primarily adjusted the logical and linguistic aspects of the

INSTRUCTIONS without adding much new content.

7https://github.com/tatsu-lab/stanford alpaca

(a) Before: Average score is 3.95 (b) After: Average score is 4.31

Fig. 4. Histogram of ratings by ChatGPT on the whole ALPACA52K dataset
before and after CoachLM revision.

2) ChatGPT Evaluation: As described in Section III-A1b,
ChatGPT is employed to rate the accuracy of each RESPONSE

on a scale of 0-5 [20], which we utilized as an automatic

quality metric for the entire dataset. Fig. 4 illustrates the

significant improvement in the average rating of responses in

the ALPACA52K dataset, rising from 3.95 to 4.31 after the

revision by CoachLM. The original dataset had only 17.7%

(around 9k as reported in [20]) of instruction pairs with a

rating above 4.5. However, this ratio increased significantly

to 78.9% in the CoachLM-revised dataset. This enhancement

indicates that instead of refining the ALPACA52K dataset by

discarding a majority of samples, the CoachLM-revised dataset

predominantly consists of high-quality instruction pairs. As a

result, it can positively impact the instruction tuning of LLMs,

while preserving the integrity of the original dataset.

TABLE VIII
HUMAN RATINGS ON A SUBSET OF THE COACHLM-REVISED DATASET

Dataset INSTRUCTION RESPONSE

R1 R2 R3 Avg. R1 R2 R3 Avg.

Randomly Sampled 150 Instruction Pairs

Original - - - - 71.1 71.2 71.3 71.2
CoachLM-revised - - - - 73.9 77.2 74.0 75.0

18 Samples in the Subset with Modified INSTRUCTIONS

Original 76.6 74.7 77.2 76.2 67.9 70.0 68.4 68.8
CoachLM-revised 78.3 79.6 79.1 79.0 75.3 81.8 75.6 77.6

3) Human Evaluation on Data Quality: Since the eval-

uation approach of ChatGPT only covers RESPONSES, we

performed a human evaluation to assess the quality of both

the RESPONSES and INSTRUCTIONS, as described in Section

III-A1a. To achieve this, we randomly selected 150 instruction

pairs from the revised dataset and obtained ratings from

three independent reviewers who were unaware of the sample

sources. Among these pairs, 18 had modifications in terms

of INSTRUCTIONS made by CoachLM. The results, presented

in Table VIII, indicate that after the revision by CoachLM,

both the INSTRUCTIONS and RESPONSES received higher

average scores according to all three reviewers. Notably, the

improvement in RESPONSES was more pronounced for the 18

samples with modified INSTRUCTIONS compared with the en-

tire subset, implying the importance of a feasible and accurate
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TABLE IX
WIN RATES OF LLMS AGAINST REFERENCE RESPONSES ON FOUR INSTRUCTION-FOLLOWING TEST SETS RATED BY PANDALM

Model Size Typea CoachLM150 PandaLM170 Vicuna80 Self-instruct252

WR1 WR2 QS WR1 WR2 QS WR1 WR2 QS WR1 WR2 QS

Stronger LLMs

LLaMA2-13b-chat [34] 13B RL-tuned 65.3% 81.9% 91.3% 78.8% 92.2% 94.7% 54.4% 66.7% 91.3% 75.2% 92.1% 95.2%
Vicuna-13b [16] 13B I-tuned 57.3% 66.7% 85.3% 73.8% 89.3% 93.5% 46.3% 36.4% 82.5% 67.1% 82.1% 90.5%
LLaMA2-7b-chat [34] 7B RL-tuned 61.0% 76.2% 90.0% 78.2% 94.4% 96.5% 50.0% 50.0% 88.8% 71.0% 89.0% 94.0%
ChatGLM [32] 6B RL-tuned 56.3% 62.7% 81.3% 76.8% 88.2% 91.8% 51.9% 60.0% 92.5% 71.4% 83.3% 89.3%
ChatGLM2 [32] 6B RL-tuned 52.7% 55.3% 77.3% 68.8% 82.7% 90.0% 44.4% 28.6% 81.3% 64.3% 75.7% 86.5%
Alpaca-CoachLM (ours) 7B I-tuned 67.7% 79.8% 88.0% 83.5% 95.2% 96.5% 46.9% 38.1% 83.8% 76.0% 87.4% 91.3%

Baseline LLMs

Vicuna-7b [16] 7B I-tuned 60.0% 71.4% 86.7% 73.5% 86.4% 91.2% 41.9% 29.0% 72.5% 68.1% 81.0% 88.9%
Alpaca [15] 7B I-tuned 48.0% 45.7% 74.7% 62.6% 76.5% 88.8% 38.8% 20.0% 70.0% 53.8% 58.6% 81.7%
Alpaca-cleaned 7B I-tuned 46.7% 43.1% 72.7% 62.9% 76.8% 88.8% 41.9% 21.7% 77.5% 52.8% 55.9% 79.4%
Alpaca-PandaLM [24] 7B I-tuned 57.0% 65.7% 84.7% 72.9% 88.2% 92.9% 45.0% 31.8% 81.3% 62.7% 75.8% 88.1%
AlpaGasus [20] 7B I-tuned 49.7% 49.2% 78.0% 65.9% 82.9% 91.8% 38.1% 17.2% 70.0% 55.6% 62.3% 82.9%
Alpaca-human (ours) 7B I-tuned 52.0% 55.0% 82.0% 65.3% 82.5% 91.8% 42.5% 22.7% 78.8% 55.0% 62.1% 84.5%
Alpaca-CoachLM (ours) 7B I-tuned 67.7% 79.8% 88.0% 83.5% 95.2% 96.5% 46.9% 38.1% 83.8% 76.0% 87.4% 91.3%
a I-tuned is short for Instruction-tuned. RL-tuned denotes the LLMs tuned through RL pipelines in addition to instruction tuning.

INSTRUCTION in enhancing the quality of RESPONSE.

C. Evaluation of LLM Tuned on CoachLM-revised Dataset

In this section, we evaluate the Alpaca-CoachLM model,

which is tuned using the same settings as Alpaca [15], but

with the CoachLM-revised dataset replacing the ALPACA52K

dataset. We also display our Alpaca-human model, with the

human-revised subset merged into the full dataset.

1) Compare Alpaca-CoachLM with Existing LLMs:
a) Setup: We compare our model with two groups of

existing language models (LLMs). The first group is Baseline
LLMs, which are instruction-tuned LLMs from LLaMA with

the same number of parameters (i.e., 7B) and similar amounts
of training data. To further assess the boundary of Alpaca-

CoachLM, we compare it with the second group of Stronger
LLMs. These models have larger scales (13B), are tuned
with proprietary instruction datasets (e.g., LLaMA2-chat [34],

ChatGLM2 [32]), or benefit from additional feedback from

RL pipelines. The four test sets used in the evaluation are de-

scribed in Section II-G. For each sample in a test set, PandaLM

rates the candidate response against the reference responses

and produces a conclusion of “win”, “tie”, or “lose”. We

compute three types of win rates: (1)WR1, which considers a
“tie” as a half-win and is calculated as WR1=#win+0.5×#tie

#all ,

where #all is the number of samples in the test set; (2)WR2,
which excludes tied cases and is given by WR2= #win

#all−#tie ;

and (3) QS, a quality score that measures the ratio of responses
reaching the level of references, formulated as QS=#win+#tie

#all .

b) Result: The result is shown in Table IX. In addition
to the advantage of Alpaca-human on win rates against Alpaca

and Alpaca-cleaned, Alpaca-CoachLM further evolves after

being trained on the fully revised dataset and outperforms all

models in the baseline group, including the Vicuna-7b model

[16], which is tuned with 70k high-quality user-shared con-

versations with ChatGPT. Additionally, despite being smaller

in scale and trained with fewer signals, Alpaca-CoachLM

achieves impressive results in the group of stronger LLMs,

with the highest win rates in five out of the 12 comparisons,

and outperforms the 13B Vicuna model in all test sets.

2) Human Evaluation on Alpaca-CoachLM: In addition to
automatic evaluation, human reviewers independently rated

the responses generated by Alpaca-CoachLM and the original

Alpaca model in the CoachLM150 test set. The reviewers

were unaware of the sources of the responses. As shown in

Table X, all reviewers consistently gave Alpaca-CoachLM a

higher average score (ranging from 58.6 to 64.3) compared

with the original Alpaca model. This improved performance

of Alpaca-CoachLM further confirms the effectiveness of the

revisions made by CoachLM, which successfully enhance the

instruction-following ability of subsequently tuned LLMs by

optimizing the quality of the underlying instruction dataset.

TABLE X
HUMAN EVALUATION ON ALPACA-COACHLM AND ALPACA

Model R1 R2 R3 Avg.

Alpaca 56.6 58.2 60.9 58.6
Alpaca-CoachLM 61.4 66.9 64.7 64.3

D. Impact of Human Input Ratio α

As is described in Section II-F2, α determines the fraction
of human input with high-quality revisions used in training. A

higher α implies that a larger proportion of revision examples
with highest edit distance is utilized. For Alpaca-CoachLM,

when α is set to 1, all 2.3k expert revision examples are

used for CoachLM training, while a value of 0 means no

training and the backbone model (ChatGLM2) is used di-

rectly for revision. By varying α, we obtain different trained
CoachLM models and subsequently tuned Alpaca-CoachLM

models. Fig. 5(a) shows the performance of Alpaca-CoachLM

5193

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 06:32:12 UTC from IEEE Xplore.  Restrictions apply. 



(a) Alpaca-CoachLM (b) Alpaca-human

Fig. 5. Win rates of (a) Alpaca-CoachLM and (b) Alpaca-human against
reference responses in the CoachLM150 test set with varying human input
ratio α, rated by GPT-4 and PandaLM. α represents ratio of human input used
for training, with amount of human revision sorted from largest to smallest.
α=0 means no human input in training and α=1 means the full human input
is used. The displayed win rate is the average of WR1, WR2 and QS.

for different α values. Both the ratings by PandaLM and

GPT-4 demonstrate a similar trend, with the highest win

rate observed at α=0.3. The win rate of Alpaca-CoachLM
increases as α goes from 0 to 0.3, indicating the importance of
high-quality expert knowledge in achieving desirable revision

ability for CoachLM. However, as α increases beyond 0.3,

the inclusion of samples with fewer modifications introduces

noise in aligning CoachLM with experts, potentially lowering

the quality of the CoachLM-revised dataset and decreasing

the win rates of the tuned Alpaca-CoachLM. Nevertheless, the

reduction in win rate caused by this noise is at most around

10%, demonstrating the relative robustness of CoachLM.

Although the introduction of less-modified human input

samples hindered the performance of Alpaca-CoachLM, the

win rate of Alpaca-human steadily increases as more human-

revised samples replace the original ones in the training dataset

(Fig. 5(b)). This suggests that even minor human revisions

improve the quality of revised instruction pairs compared to

the original counterparts, thereby enhancing the dataset used to

train Alpaca-human. Based on linear fitting (R2 = 0.9799), the
win rate of Alpaca-human increases at a rate of 3.07%/k and

is estimated to surpass Alpaca-CoachLM with 7.3k human-

revised samples. Notably, Alpaca-CoachLM only requires

around 0.7k human-revised samples, highlighting the cost-

saving advantage of CoachLM in expert labor, as it achieves

the same model performance with only 9.45% human input.

E. Different Backbone Models of CoachLM

TABLE XI
PERFORMANCE OF COACHLM WITH VARYING BACKBONE MODELS

Model Size WR1 WR2 QS

Alpaca - 48.0% 45.7% 74.7%

Alpaca-CoachLM (back-boned by)
LLaMA [7] 7B 49.3% 48.6% 75.3%
ChatGLM [32] 6B 54.0% 59.1% 82.0%
ChatGLM2 [32] 6B 56.7% 65.6% 85.3%

Value of α is fixed at 1. The test set is CoachLM150.

To further assess the robustness of CoachLM, we trained it

with three different open-sourced backbone models: LLaMA,

ChatGLM, and ChatGLM2. The win rates of the subsequently

acquired Alpaca-CoachLM model on the CoachLM150 test

set, evaluated by PandaLM, are displayed in Table XI. In this

experiment, we kept the value of α fixed at 1. Our results show
that Alpaca-CoachLM outperforms the original Alpaca under

all backbone models, indicating the robustness of CoachLM

across different backbones. Notably, we observed improved

performance from LLaMA, the foundation LLM, to RL-tuned

ChatGLM2, suggesting that more powerful backbones enhance

the alignment ability with experts in coach instruction tuning.

IV. DISCUSSION

A. CoachLM in Practice

Fig. 6. Architecture of an LLM data management system at Huawei integrated
with CoachLM. CoachLM automatically cleans noisy instruction pairs and
mitigates human workload in data cleaning.

Given the potential advantages of CoachLM in optimizing

the data collection and cleaning pipelines for LLM training,

we further collaborated with a development team specializing

in LLMs at Huawei and integrated CoachLM into their data

management platform to facilitate LLM training. The platform,

as shown in Fig. 6, is responsible for gathering online user

cases of deployed LLMs (with users being fully aware of

their input data usage) and organizing them into high-quality

training data to enable iterative enhancements of the LLMs.

The data cleaning task is non-trivial, since user queries may

contain noises and the responses were generated by LLMs.

Previously, the platform primarily employed rule-based scripts

to parse user cases into raw instruction pairs and to offer basic

data filtering and cleaning. Subsequently, professional human

annotators performed cleaning and revision tasks on the raw

instruction pairs to curate instruction datasets of high quality

for model iterations. With the incorporation of CoachLM

into the pipeline, the raw instruction pairs are now subjected

to automatic revisions before the manual cleaning process.

Given that their human annotation guidelines also encompass

dimensions such as the feasibility of instructions, as well as

the correctness, richness, and helpfulness of responses, the

integration of CoachLM can serve as an improved precursor

for human revisions, thus mitigating the manual workload.

As of the time of writing this paper, the deployed CoachLM

has successfully involved in the production of an entire

batch of high-quality instruction pairs (approximately 40k).

The inference process of CoachLM was executed with an

inference batch size of 32, achieving an average speed of

1.19 samples per second. A comparative analysis between
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the current batch of data cleaning and the previous batch

(with online models unchanged) reveals that the integration

of CoachLM, with its revised instruction pairs serving as a

precursor for human annotators, has resulted in an increase

in the production efficiency of high-quality instruction pairs

from around 80 per person-day to nearly 100 per person-day,

while adhering to the same acceptance criteria as the previous

batch. After deducting the improvement of efficiency brought

by enhanced proficiency of human experts in annotation, the

net improvement brought by CoachLM is estimated to be

around 15-20%, which is a significant cost saving since the

inference of CoachLM on 100 samples only costs around two

minutes.

B. Feedbacks of CoachLM from Experts

During the evaluation and practice of CoachLM, comments

from the participating experts were actively encouraged and

collected. One of the human evaluators provided feedback

indicating that the responses revised by CoachLM “generally

provide more pervasive points, especially in mathematics and

logical problems”. Moreover, a practitioner commented that

“CoachLM significantly augments the raw instruction pair by

generating a more comprehensive structure of content, thereby

enhancing the efficiency of subsequent human post-editing

tasks in comparison to manual composition of the structure”.

However, there were also some concerns raised. One evalua-

tor described a case where CoachLM did not correct the inclu-

sion of hallucinated content but instead assumed it to be factual

and further expanded upon it. Additionally, another evaluator

highlighted that for certain straightforward instructions, such

as determining the sum of two numbers, the level of detail in

the responses revised by CoachLM may be excessive. These

valuable feedbacks shed light on potential future directions for

enhancing the performance of CoachLM, including refining

the evaluation criteria and integrating RL signals to mitigate

the occurrence of hallucinations.

V. RELATED WORK

A. Instruction-following LLMs

The initial investigation of the instruction-following ability

of LLMs involves fine-tuning the models on a combination

of multiple verbalized Natural Language Processing (NLP)

datasets [8], [9], demonstrating impressive generalization ca-

pabilities across various unseen tasks. Subsequently, instead

of fine-tuning on a single task-related dataset, the mainstream

LLMs have shifted towards being fine-tuned on complex

human-curated instruction datasets [1], [32], [34], [35]. Due to

the expertise requirement and high cost associated with this

approach, Alpaca [14], [15] provides an automated method

to create instruction datasets by distilling the knowledge of

a teacher LLM (e.g., GPT-3.5). Various variants of Alpaca
have been developed, including hyper-parameter optimization

(Alpaca-PandaLM [24]), subset filtering (AlpaGasus [20]),

and noise cleaning (Alpaca-cleaned). Additionally, studies

have explored the use of real-world user dialogue data with

ChatGPT to perform instruction tuning [16], [17].

B. Data Quality in LLM

Over the past decade, efforts have been made to improve

the data quality within the AI/ML lifecycle [36]–[38]. When

creating training datasets for LLMs, it is widely recognized

that the quality of the data is more important than the quantity

[17]–[19], [30], [34]. In fact, the introduction of low-quality

data can harm the performance of the models. This issue

is particularly pronounced in machine-generated instruction

datasets, as evidenced by AlpaGasus [20], which found that

out of the 52k instruction pairs in the ALPACA52K dataset,

only 9k were of high quality. In addition to filtering-based

approaches [19]–[21], the Alpaca-cleaned project explored an

improvement-based approach with rule-based cleaning on a

small subset of the dataset.

C. LLMs for Data Engineering in Industry

LLM-based approaches have been increasingly utilized in

various real-world data engineering tasks. For instance, Ahmed

et al. [39] employed fine-tuned GPT-3.x models to facilitate
cloud incident management at Microsoft. Chen et al. [40]
leveraged the semantic matching capabilities of LLMs to

develop a multi-vendor configuration management tool at

Huawei. LLM-based programming assistants, such as Copilot

[41], have been successfully deployed in code data analy-

sis applications, providing accurate code understanding and

recommendations [42]–[44]. Additionally, Liu et al. utilized
LLMs to automate high-precision data analysis on tabular

datasets, implementing their approach in an LCD factory and

a solar cell factory [45].

In comparison to existing studies, our work focuses on

improving data quality in LLM training and thereby can be

integrated into industrial LLM applications to improve data en-

gineering performance. We validates the feasibility of expert-

aligned revisions on instruction pairs from the entire instruc-

tion dataset. Compared with filtering-based approaches, our

approach maintains the integrity of the dataset and increases

the proportion of high-quality samples, thereby resulting in

better performance improvements of LLMs.

VI. CONCLUSION

In this study, we propose CoachLM, a novel approach

to tackle the issue of unguaranteed data quality in LLM

instruction tuning. Owing to the ability of automatic revisions

aligned with language experts, CoachLM effectively enhances

the proportion of high-quality samples in the ALPACA52K

dataset, resulting in notable performance improvements in

instruction-tuned LLMs. Additionally, the successful deploy-

ment of CoachLM in an industrial-level data management

system highlights its potential advantages in the operation

and maintenance lifecycle of LLMs, reducing costs associated

with manual data cleaning and labeling. Future work includes

training CoachLM on a larger scale of parameters, integrating

RL pipelines to mitigate hallucination and validating it using

a more diverse range of instruction datasets.
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