
GraphLingo: Domain Knowledge Exploration by
Synchronizing Knowledge Graphs and Large

Language Models

Duy Le
Case Western Reserve Univ.

dhl64@case.edu

Kris Zhao
Case Western Reserve Univ.

kxz167@case.edu

Mengying Wang
Case Western Reserve Univ.

mxw767@case.edu

Yinghui Wu
Case Western Reserve Univ.

yxw1650@case.edu

Abstract—Knowledge graphs (KGs) are routinely curated to
provide factual data for various domain-specific analyses. Nev-
ertheless, it remains nontrivial to explore domain knowledge
with standard query languages. We demonstrate GraphLingo,
a natural language (NL)-based knowledge exploration system
designed for exploring domain-specific knowledge graphs. It
differs from conventional knowledge graph search tools in that
it enables an interactive exploratory NL query over domain-
specific knowledge graphs. GraphLingo seamlessly integrates
graph query processing and large language models with a graph
pattern-based prompt generation approach to guide users in
exploring relevant factual knowledge. It streamlines NL-based
question & answer, graph query optimization & refining, and
automatic prompt generation. A unique feature of GraphLingo
is its capability to enable users to explore by seamlessly switching
between a more ‘open’ approach and a more relevant yet
‘conservative’ one, facilitated by diversified query suggestions.
We show cases of GraphLingo in curriculum suggestion, and
materials scientific data search.

I. INTRODUCTION

Various domain-specific knowledge graphs (KGs) [1] [2]

have been curated to host factual knowledge about specific

topics rather than generic Web or common knowledge. Notable

examples include material science, healthcare and disease,

education, cybersecurity, biology, and chemistry. While knowl-

edge curation has been extensively studied, searching and

annotating domain data remains nontrivial. Domain experts

are still expected to write complex declarative queries (such

as SPARQL), or data scripts to parse their requests, in order to

access the KGs. There is a gap between the need of accessing

KGs with (domain) languages and optimized performance of

query processing within state-of-the-art KG data systems.

The emergence of large language model (LLM), such as

GPT [3], provides promising capabilities in generating natural

language solutions in response to users’ prompts. Although

desirable, LLMs often fall short at verifying the truth of

the generated results and may produce false statement that

do not reflect commonsense or scientific facts (known as

“Hallucination”). Furthermore, they have limited capacity to

reason without proper contextualized domain knowledge.

In response, the possibility of bridging KGs and LLMs has

attracted increasing interest. For example, advanced LLMs like

GPT-4 [3] and PaLM [4] is allowed to browse Web knowledge

and learn from a broader context by recent effort studying the

coupling of knowledge graphs and LLMs [5]. On one hand,

LLMs can be enhanced with KGs to provide answers with

more contextualized facts. On the other hand, fundamental

tasks such as KG curation, embedding, and search can also

benefit by adopting LLMs. Can we have a system that marries
the merits of both directions, to enable domain knowledge
exploration with natural language style Q&A?
GraphLingo. We demonstrate GraphLingo, a system that

synchronizes domain-specific KGs and LLMs to guide users in

exploring domain knowledge with natural language. It differs

from prior systems with the following unique features.
Automatic Prompt Generation. GraphLingo uses an automatic

prompt generation algorithm to bridge NL responses of LLMs

and graph search. Inspired by Query-By-Example (QBE) [6],

it transforms NL questions into triple templates (graph pattern

queries), and jointly exploit graph topological properties and

textual representations as “examples” to generate in-context

prompts and request NL responses from LLMs.
Preference-aware Exploration. GraphLingo allows users to

pose ad-hocly a tunable preference, to explore factual knowl-

edge (a) in a more “explorative” manner with open-ended

questions and results from external Web knowledge in LLM, or

(b) be more “conservative”, favoring more in-context questions

and answers in KG search. This is enabled by a diversified

prompting strategy which leads to the generation of more in-

context or open-end queries and answers. The desired feature

in turn lets users explicitly control their knowledge preference.
Visual Exploration with Graph Views. GraphLingo supports a

dual-design of interface that illustrate (1) NL-based conversa-

tional interface, and simultaneously, (2) a fraction of facts that

are responsible for the generated results. This allows a visual

explanation of the NL-based question & answer process.
Scalability. GraphLingo adopts a parallel computation friendly

design and allow effective multi-query optimization and paral-

lelism, to support large-scale diversified exploration efficiently.

A proof-of-concept system of GraphLingo is available [7].

We next provide an overview of its workflow with major

modules (Section II) and the architecture (Section III).

II. FRAMEWORK OVERVIEW

We start with several notations used by GraphLingo. (1) A

(knowledge) graph G is a set of triple statements E in the

5477

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00432

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
04

32

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:27:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: GraphLingo Workflow

form of <s, r, o>, where s and o are two (attributed) nodes

that refer to two real world entities, and r is a relation between

s and o. (2) A graph pattern query is a graph Q as a set of

triple template. A triple template eQ parameterizes a triple

<s, r, o> by assigning one or all of s, r and o a variable

(denoted by ?, e.g., ?s) to indicate an output set, which refers

to the “matches” of eQ in terms of graph pattern matching such

as subgraph isomorphism. (3) A language model LLM L is a

function that takes as input a prompt and generates a natural

language answer ANL. (4) A prompt P is a NL statement

that follows a general template of context description, a set
of examples, and a task description. GraphLingo generates

prompt templates by instantiating a set of prompts that specify

NL statements and triple expressions.

Example 1: Consider the task that requests to transform an

NL statement to a graph pattern query. A fraction of prompt

P1 generated by GraphLingo is shown below1:

Example: ‘What are the topics of CSDS 310?’ has an equivalent
graph query: [[‘?:Topic’,‘of’, ‘CSDS 310’]].
Task: What is the graph query equivalent to ‘What professor is
teaching Data Mining?’

Setting LLM as ChatGPT, we get correct answer as

“[[‘?:Professor’,‘teaches’, ‘Data Mining’]]”.

A. GraphLingo Workflow

GraphLingo works with a domain-specific knowledge graph

G and a pre-trained LLM model L, and four major functional

modules that enables multi-session domain knowledge explo-

ration. Each session starts with an input NL question QNL

from a queryer, and performs three steps to yield a set of NL

answers ANL, along with a set of suggested NL questions
Q′

NL, to promote the next session of exploration.

Query Extraction. Upon receiving a NL query QNL,

GraphLingo uses a QueryExtractor module (denoted as MQ)

to translate QNL into an initial graph pattern query QI with

a set of triple templates EI
Q. This step incurs the first round

of communication between module MQ and the LLM model

L (e.g., ChatGPT), which (1) consults a bridging prompt

1Prompts are plain text; we underlined the structures for ease of reading.

generator modular MP to produce a set of prompts P1, and

(2) feed P1 to L to obtain QI in the form of EI
Q.

P1 ← MQ(MP , QNL)

EI
Q ← L(P1)

Query Transformation. Upon receiving graph query QI ,

GraphLingo next invokes a QueryTransformer module, de-

noted as MQT , to transform QI (as EI
Q) to a set of triple

templates EQ (and accordingly, a query set Q) that are more

semantically relevant to G (see “Query Transformer”).

This step incurs a second round of communication be-

tween module MQX and the LLM model L. In this process,

MQX adopts a novel Pattern-of-Thought Prompting (PoT)

that extends Chain-of-Thought (CoT) [8], which exploits the

topology and connectivity of graph pattern queries to generate

prompts (see “Prompt Generator”).

Pi
2 ← MQX(MP , Q

Ii)

Ei
Q ← L(Pi

2)

Query Processing and Suggestion. GraphLingo then invokes a

LLM-enhanced QueryProcessor Module MS to process the

queries and obtain both their answers ANL and suggested

queries Q′
NL. This completes the third round of communi-

cation, between the query processor Ms and L.

Qi(G) ← MS(Qi)(in parallel)

L(EQ) ← Ms(MP , EQ)

(ANL, Q
′
NL) ← Ms(Q(G) ∪ L(EQ))

Knowledge Augmentation. An (optional) post processing step

is then performed to augment KG G with the statements

from L(EQ) (via an augmentation operator ⊕). This step

(characterized as Gi+1 = Gi ⊕ L(EQ)) can be performed via

additional validation by domain experts.

At this step, users can choose from a suggested query from

Q′
NL or issue a new question to start the next session. Below

we summarize the computation of GraphLingo.

Example 2: Consider a student exploring a curriculum KG

G with an initial question QNL: “What professor is teaching

Data Mining?” and prefers a more “conservative” explo-

ration. GraphLingo responds in a single session as follows.

(1) It exploits LLM (ChatGPT by default) with a prompt

(P1) in Example 1, and translates QNL into a graph query

QI with a single triple template EI
Q={(?:Professor, teaches,

Data Mining)} (step 1). (2) QI is then further refined to a

set of relevant queries Q (step 2). One top ranked query

Qi contains a path with two triple templates (?:Professor,
instructorOf,?:Course) and (?:Course, hasTopic, Data Mining)
under e.g., ontological edge to path transformation [9], which

is more likely to have in-context matches in G. (3) GraphLingo
then performs both graph search in G as well as an “open-

ended” search with ChatGPT, and selects a top in-context

answer as a path (J.Ma, instructorOf, CSDS 435), (CSDS 435,
hasTopic, Data Mining). Meanwhile, it generates exploration

5478

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:27:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: GraphLingo Architecture

questions by jointly diversifying triple templates from KG and

LLM, such as an “in-context” question: “What CSDS courses
have the topic Knowledge Graph?” and a more “open-ended”

question “What is the relationship between Data Mining and
Machine Learning?” for users to choose.

B. Modules and Algorithms

Prompt Generator (MP). This module plays a central role

and is invoked by all other three modules. For communication

steps (1) and (3), it follows the Prompt template P1 and P3

to generate corresponding prompts.

Prompt (Template) P1: Examples of pairs {Qi
NL, EI

Q} Task:
Extrapolate a graph query equivalent to: (input NL query QNL)

Prompt (template) P3: Context: Description of triples e ∈ EQ;
Task: Based on the given context, answer QNL.

For step (2) with input graph pattern QI as triple templates

EI
Q, it follows a “Pattern-of-thought” (PoT) strategy, to best

guide LLM to reasoning following paths as follows. (1) It

starts by prompting L to reason from a “start node” (a variable

node by default), and dynamically induces a set of weighted

neighboring triples to be processed. The weight w(eQ) for a

triple template eQ is estimated by a holistic aggregation of

its processing cost, semantic closeness to G, and the amount

of new information it may introduce if processed. (2) It

follows a weighted spanning tree algorithm to dynamically

induce the weighted triple templates as a sub-pattern, and use

prompt template P2 to generate up to a bounded number of

prompts. This mechanism enables LLM to comprehend the

intricate relations between entities within the subgraphs, hence

providing more “in-context” examples and prompts.

Prompt (Template) P2: Context: Description of each triple
template eIQ ∈ EI

Q;

Description of neighbors of eIQ ∈ G;
Description of transformations (e.g., ontology transformations);
Description of EI

Q’s constraint
Examples of identified transformation pairs
Task: Stepwise reasoning about context and exemplars; Give
top-k transformed queries.

Query Transformer (MQT). This module maps QI to a

query space that aligns better with G. It transforms each triple

of QI by applying a predetermined set of transformation func-

tions [9], then prompts LLM through the Prompt Generator
with prompt P2 to step-by-step reason about each possible

transformation and determine the best one.

Example 3: Continuing with the task transforming EI
Q =

{(?:Professor, teaches, Data Mining)}. A fraction of P2,

automatically generated by MP is given as follows:

Context: CSDS 435 is a 3-cred course: Data Mining. CSDS 435
has Topic: Data Mining, Topic:Cluster Analysis and (is) taught
by Prof. J.Ma. A Professor (is) an instructor of a Course that has
a Topic. EI

Q is finding a professor teaches Data Mining.
Examples: Ontological transformation indicates {(?:Professor,
teaches, data mining)} can transform to {(?:Professor, instruc-
torOf,?:Course), (?:Course, hasTopic, Data Mining)}
Task: Step-wise reasoning about each node, edge, and the rela-
tional structure given in context. Then based on that, continue
to reason about provided examples. Finally, determine top-k best
transformed queries.

LLM enhanced Query Processor (MS). This module applies

parallel graph query processing to obtain the matched triples

Q(G) over the query load Q (supported by graph databases).

Meanwhile, it treats LLM L as a “query processor”, and

directly requests to transform the extended queries (as triple

templates EQ) to a set of triple statements L(EQ) “in the wild”

inherently from L’s external knowledge. GraphLingo then

performs a diversified selection over the union Q(G)∪L(EQ)
that conforms to user’s preference on “exploratory”, by max-

imizing a bi-criteria function (1− λ)
∑

e∈Q(G) rev(e,Q) + λ∑
e∈L(EQ) sim(e,Q). Here function rev (resp. sim) quantifies

the semantic closeness measure of Q(G) (resp. similarity of

the representations of those found by LLM on Web) with Q.

III. ARCHITECTURE

GraphLingo is built upon a three-tier architecture, as illus-

trated in Fig.2 and conceptually presented in Figure 1. (1)

Users engage GraphLingo through an interactive GUI that is

built in Angular framework, extended to support an interactive

visual knowledge graph (KG) panel (Fig. 3). (2) At the core

of GraphLingo are graph exploration modules deployed using

Django and Docker, serving as a bridge between pluggable

knowledge graph and a Language Model (LLM). The KG is

stored using Neo4j graph database. We adopt GPT 3.5 in our

demo. Hugging Face models are utilized to furnish encoded

similarity measurements within the modules. (3) We also

optimize the system by storing session history in DynamoDB.

This not only helps accelerating query processing by accessing

past queries views, but also allows a “rewind” to re-explore

from a certain timestamp. We report the details in [7].

IV. DEMONSTRATION OVERVIEW

Set up. We demonstrate GraphLingo through an interactive

Q & A session, navigating a real-world, specialized academic

information KG from the Department of Computer and Data

Sciences at Case Western Reserve University. This KG encom-

passes diverse academic information, including details about

courses, professors, and degrees. We also showcase application

of GraphLingo in material science search with a specialized

XRD data, scripts and workflows KG from CRUX [1].

5479

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:27:16 UTC from IEEE Xplore. Restrictions apply.

(a) Academic KG Exploration: In-context vs. Exploratory (b) Material Science KG Exploration

Fig. 3: GraphLingo Interface: Natural Language Q & A with Knowledge Graph View

NL-based Domain-Knowledge Exploration. We invite users

to explore the academic KG through the interactive Q&A
interface of GraphLingo. Users can effortlessly input their

exploration queries in natural language. GraphLingo subse-

quently processes the queries automatically through a series

of continuous interactions with the KG and LLM. The results

are then presented in natural language for novice users, while

professional users can engage with the visual graph interface

to gain a more nuanced understanding for exploration.

Exploring with preference tuning. Users may not be satisfied

with the provided answers that are either too “constrained”

or too “open-end”. We invite users to experience the ad-hoc

tuning of GraphLingo to let it output answers and suggest

questions towards more desired preference, with a simple

“slide and play” action, and let them observe the difference.

Example 4: Figure 3a showcases preference tuning. (1) With

a more conservative manner, i.e. λ = 0.01, GraphLingo
prefers “in-context” answer with courses directly related to

‘graph data’ like Data Structures or Web Data Mining. A

more explorative preference, where λ = 0.6, included Data

Science System and Senior Project, which involve ‘graph data’

in a different perspective, such as subtopics including graph

visualization, based on inferred context from the KG.

Online academic advising. In this scenario, we invite users

to experience how GraphLingo supports a new data science

education program as a chatbot application. Knowing little

about the syllabus of the many newly opened courses, students

start with vague questions such as “what to learn to know more

about AI?” GraphLingo will guide them through course infor-

mation, study plan and advisor information, among others, by

exploring curriculum knowledge graph enhanced with GPT.

This helps students retrieve desired knowledge, ranging from

detailed courses to more open-end questions.

Material Scientific Data Search. In our second scenario, we

invite users to explore factual materials science knowledge

from X-ray diffraction (XRD) data analysis, and in partic-

ular, peak analysis. Supported by a crowd-sourced domain-

specific materials knowledge graph (CRUX) [1], GraphLingo
will support more in-context questions to help material data

scientists find the datasets, filtering specific peak locations, and

experimental setting (e.g., temperature ranges), or help general

public to obtain common knowledge by LLM from Web.

ACKNOWLEDGMENT

This work is supported by NSF under CNS-1932574, CNS-

2028748 and OAC-2104007.

REFERENCES

[1] M. Wang, H. Ma, A. Daundkar, S. Guan, Y. Bian, A. Sehirlioglu, and
Y. Wu, “Crux: Crowdsourced materials science resource and workflow
exploration,” in CIKM, 2022.

[2] Y. Li, V. Zakhozhyi, D. Zhu, and L. J. Salazar, “Domain specific
knowledge graphs as a service to the public,” in KDD, 2020.

[3] OpenAI, “Gpt-4 technical report,” in ArXiv, 2023.
[4] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,

P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, and et al., “Palm:
Scaling language modeling with pathways,” in ArXiv, 2022.

[5] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu, “Unifying large
language models and knowledge graphs: A roadmap,” in ArXiv, 2023.

[6] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri, “Querying
knowledge graphs by example entity tuples,” in TKDE, 2015.

[7] D. Le, K. Zhao, M. Wang, and Y. Wu, “Graphlingo(full version),” 2023.
[Online]. Available: https://github.com/Escanord/GraphLingo

[8] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in
large language models,” in NeurIPS, 2022.

[9] S. Yang, Y. Wu, H. Sun, and X. Yan, “Schemaless and structureless graph
querying,” in PVLDB, 2014.

5480

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:27:16 UTC from IEEE Xplore. Restrictions apply.

