
Chat2Query: A Zero-Shot Automatic Exploratory
Data Analysis System with Large Language Models

Jun-Peng Zhu†‡, Peng Cai†∗, Boyan Niu‡∗, Zheming Ni‡, Kai Xu‡∗

Jiajun Huang‡, Jianwei Wan‡, Shengbo Ma‡, Bing Wang‡, Donghui Zhang‡, Liu Tang‡, Qi Liu‡
†East China Normal University, ‡PingCAP

zjp.dase@stu.ecnu.edu.cn, pcai@dase.ecnu.edu.cn, {brian.niu, nizheming, xukai}@pingcap.com
{huangjiajun, jianwei.wan, shengbo.ma, bing.wang}@pingcap.com, {zhangdonghui, tl, liuqi}@pingcap.com

Abstract—Data analysts often encounter two primary chal-
lenges while conducting exploratory data analysis by SQL: (1)
the need to skillfully craft SQL queries, and (2) the requirement
to generate suitable visualizations that enhance the interpretation
of query results. The emergence of large language models (LLMs)
has inaugurated a paradigm shift in text-to-SQL and data-to-
chart. This paper presents Chat2Query, an LLM-empowered
zero-shot automatic exploration data analysis system. Firstly,
Chat2Query provides a user-friendly interface that allows users
to employ natural languages to interact with the database
directly. Secondly, Chat2Query offers an LLM-empowered text-
to-SQL generator, SQL rewriter, SQL formatter, and data-to-
chart generator. Thirdly, Chat2Query is uniquely distinguished
by its underlying incorporation of the TiDB Serverless, fostering
superior elasticity and scalability. This strategic integration
empowers Chat2Query with the capability to seamlessly adapt
to change workloads, aligning with the evolving demands of
the user. We have implemented and deployed Chat2Query in
the production environment, and demonstrate its usability and
efficiency in three representative real-world scenarios.

Index Terms—EDA, Text-to-SQL, LLMs, Prompting, Usability

I. INTRODUCTION

Exploratory Data Analysis (EDA) [1], [2] technique, cou-

pled with SQL, assumes a crucial role for data analysts

engaging in data exploration and analysis. This technique

harnesses SQL to construct queries capable of extracting vital

information from databases. These queries empower users to

perform tasks like data aggregation, filtration, and sorting,

generating statistical insights and constructing comprehensive

views and reports. EDA facilitates deeper comprehension of

data, unveiling latent patterns and trends, which subsequently

offer valuable insights to guide subsequent decision-making

endeavors. However, EDA has two pain points for junior data

analysts: (1) the need to skillfully craft SQL queries, and

(2) the requirement to generate suitable visualizations that

enhance the interpretation of query results.

Text-to-SQL [3], [4], [5], [6], a transformative technol-

ogy that translates natural language (NL) inquiries into SQL

queries, holds the potential to empower data analysts with the

ability to conduct intricate data analysis using the natural lan-

guages. Existing works for text-to-SQL have some limitations.

(1) Limited Accuracy for Out-of-Domain Queries. The
recently published Learn-to-Rank [3], [4] (LTR) approach

∗ Corresponding Author

Storage � �Data Exploration Vistualization

SELECT
MIN(column_name)
FROM table_name
WHERE condition;

SELECT
AVG(column_name)
FROM table_name
WHERE condition; D3JS

LLMs

(a) Traditional EDA

(b) Chat2Query

Fig. 1. A comparison illustration for traditional EDA and Chat2Query.
(a) Traditional EDA encompasses data storage, data exploration via SQL,
and visualization using d3js. Both SQL query and visualization creation
demand expertise. (b) In contrast, Chat2Query incorporates an SQL generation
engine and a chart generation engine empowered by LLMs, streamlining these
processes.

assumes that the given observed sample queries are represen-
tative enough to cover all unobserved user-intended queries. In
real applications, this assumption might not hold for “out-of-

domain” queries, which could result in inadequate coverage

of diverse query variations. On the other hand, this implies

that LTR methods typically require substantial annotated data

for model training. This can be challenging to acquire in

specific domains such as databases world, thereby limiting the

applicability of approaches.

(2) Insufficient Domain-Specific Knowledge. Large lan-
guage models (LLMs) like ChatGPT, BLOOM, and LLaMA

have undergone rapid development to enable the realization of

general artificial intelligence, boasting an impressive zero-shot

capabilities across diverse linguistic applications. However,

those LLMs excel in the realm of general knowledge, their

performance within specific knowledge domains, such as the

database industry world, often results in answers that are

somewhat erroneous and should not be wholly relied upon

due to lacking specific training.

Figure 1 illustrates the difference of traditional EDAs (a)

with our Chat2Query 1 (b). In Figure 1(a) traditional EDA,

users have had to dedicate substantial efforts to manually sift-

ing through data using SQL and visualizing data through tools

like d3.js (https://d3js.org/). These limitations impeded the

1https://www.pingcap.com/chat2query-an-innovative-ai-powered-sql-
generator-for-faster-insights/

5429

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00420

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
04

20

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:12:26 UTC from IEEE Xplore. Restrictions apply.

efficient extraction of valuable insights. Simultaneously, exist-

ing EDA systems are unable to harness the elastic scalability

provided by the cloud to accommodate change workloads.

To address the above mentioned limitations, we present

a solution by introducing an LLM-empowered real-time ex-

ploratory data analysis system called Chat2Query as shown

in Figure 1(b). Chat2Query streamlines the EDA workflow,

enabling users to explore their data with minimal exper-

tise required. Driven by user queries in natural language,

Chat2Query provides a seamless transition from text to SQL

and further generates charts. This innovative system offers the

following distinctive features.

To begin with, Chat2Query offers a user-friendly interface

that enables users to effortlessly interact with the database

using natural language. Secondly, Chat2Query encompasses

an LLM-empowered text-to-SQL generator, SQL rewriter,

SQL formatter, and data-to-chart generator. The third key

feature empowers Chat2Query to enable online real-time data

exploration through the utilization of the TiDB Serverless. This

integration provides Chat2Query with remarkable elasticity

and scalability performance. With these capabilities at its

disposal, Chat2Query showcases its value across a wide range

of data analysis scenarios.

In this paper, we demonstrate Chat2Query in three repre-

sentative real-world scenarios. The first is the Steam Game

[7] which is a dataset within the target industry business of

PingCAP. The second dataset is Fortune 500 companies [8]

from 1996 to 2023, which is a common data analysis scenario

at PingCAP during the Proof of Concept (POC) phase. The

third is Spider [9] which is Yale semantic parsing and text-to-

SQL challenge dataset.

Key Contributions. To summarize, this paper makes the
following contributions:

• We develop an LLM-empowered zero-shot real-time

automatic exploration data analysis system called

Chat2Query.

• Chat2Query provides an easy-to-use user interface and

supports an LLM-empowered zero-shot text-to-SQL gen-

erator. Meanwhile, Chat2Query also provides the LLM-

empowered SQL rewriter, SQL formatter, and data-to-

chart generator.

• Chat2Query facilitates online real-time data exploration

by utilizing the TiDB Serverless.

• We deploy Chat2Query in three representative real-world

scenarios for the system demonstration.
II. SYSTEM IMPLEMENTATION

In this section, we first present the Chat2Query system

overview, and then introduce the LLM-empowered generative

engine of Chat2Query. Finally, we provide the end-to-end

usability evaluation of EDA system using real-world datasets.

A. System Overview

Chat2Query is an LLM-empowered exploratory data anal-

ysis system. Figure 2 presents the system overview of our

Chat2Query. Due to space limitations, we refrain from pro-

viding an exhaustive list of the prompts employed. As can be

Chat2Query

Data Import

NL Input

LLM-empowered SQL Generator

Embedding Service (Pinecone)

User Settings

TiDB Serverless

Results Export

User Interface

Chart Type Setting

Appearance Settings

Visualization

LLM-empowered Generative Engine

Cloud Storage Engine

Schemas

LLM-empowered Chart Generator LLM-empowered SQL Formatter

LLM-empowered SQL Rewriter

Fig. 2. Architecture of Chat2Query EDA System.

seen, the architecture of Chat2Query can be roughly divided

into the following four components:

(1) User Interface. The user interface of Chat2Query offers
a wide range of capabilities. Users have the flexibility to

import their own data for exploration purposes. Additionally,

it features an intuitive interface enabling users to interact with

their personal data through natural language. Simultaneously,

the interface supports result export in CSV format, enabling

accessibility for other applications.

(2) Visualization. The component simplifies the process
of setting recommended visualization charts suggested by

Chat2Query. Users have the option to visualize specific data

columns or select from a range of available chart types. It

also enables users to customize the appearance of the chart.

Ultimately, the generated chart can be saved to any desired

location.

(3) LLM-empowered Generative Engine. This constitutes
the core module of Chat2Query, encompassing the text-to-

SQL generator, SQL rewriter, data-to-chart generator, and SQL

formatter all under the guidance of LLM. Section II-B provides

a comprehensive overview of these modules.

(4) Cloud Processing Engine. Chat2Query leverages TiDB
Serverless, a fully managed and auto-scaling deployment of

the TiDB database. This deployment provides the complete

Hybrid Transactional/Analytical Processing (HTAP) capabili-

ties for individuals and organizations. It enables real-time data

exploration possibilities to accommodate change workloads.

B. LLM-empowered Generative Engine

Act as a MySQL expert, you are tasked with writing a SQL statement to answer
question based on the following database schema: %s.
The question is: "%s". Let's think step by step and use the following answer template
to generate an json file: {
1. Output the revised question, including all necessary keywords. Marked as RQ.
{"RQ": string}
2. List all necessary tables involved in answering the RQ. Mark as NT.
{"NT": string[]}
3. List all necessary columns of NT involved in answering the RQ, do not introduce
non-existent columns. Marked as NC.
{"NC": {table: string, Columns: string[]}}
4. Using best practices of MySQL to write a single SQL statement to answer the RQ.
{"sql": string}

Chat2Query Prompt Example

Fig. 3. The Illustration Fragment of CoT Prompting for SQL Generator.

Text-to-SQL generator. Figure 3 illustrates a fragment
of the SQL generation process for Chat2Query employing

the Chain-of-Thought (CoT) [10] prompting. The text-to-SQL

process includes the following steps: (1) Revise questions
and identify keywords: Gain a comprehensive understanding
of the task’s objective, expected outcomes, and any pertinent

5430

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:12:26 UTC from IEEE Xplore. Restrictions apply.

conditions. Ensure a clear comprehension of the task’s require-

ments. Recognize all pertinent keywords linked to tables and

columns referenced in the clarified task. (2) Table recall:
In this step, the tables should be listed according to their

relevance to the question. Subsequently, the model needs to

verify whether all tables have been taken into consideration.

(3) Column recall: Building upon the outcomes of table recall,
we proceed to extract the columns from the potential candidate

tables. We devise a zero-shot prompt to facilitate the retrieval

of columns. Each candidate table is then presented with a

list of its corresponding columns, organized according to their

relevance to the question.

SQL Rewriter. The SQL rewriter component in

Chat2Query serves the purpose of enhancing the generated

SQL queries to ensure accuracy, optimization, and adherence

to best practices. It fine-tunes and refines the initial SQL

statements produced by the natural language to the SQL

generation process. This includes tasks such as identifying and

correcting any ambiguous column references and ensuring the

proper usage of aliases for table names. This also involves the

implementation of suitable query simplification and redundant

column elimination techniques. In the past, PingCAP utilized

a collection of rewriting rules to govern the operation of

TiDB databases, and these rules are conveyed to the LLM

using a prompting template.

Data-to-Chart Generator. The data-to-chart generator

within Chat2Query is responsible for producing visual rep-

resentations, often in the form of charts, based on the out-

comes derived from the SQL queries. These charts serve as a

means of conveying insights to the user in a visually intuitive

manner. Furthermore, choose a chart type from the provided

options that are best suited for effectively visualizing the data

generated by your SQL statement, such as: (1) pie chart; (2)

line chart; (3) bar chart; (4) table. This process is facilitated

through the application of zero-shot prompting, which aids in

the creation of suitable charts that align with user preferences.

On the other hand, the visualization component of Chat2Query

empowers users with the freedom to explore charts extensively.

This entails the selection of chart types and customization

of their appearances, thereby allowing users to configure and

visualize data in ways that best suit their analytical needs.

SQL Formatter. The SQL formatter component in

Chat2Query is responsible for structuring the generated SQL

queries in a standardized and readable format. It ensures

that the SQL statements are properly indented, aligned, and

organized, making them easier for users to comprehend and

review. The SQL formatter helps enhance the clarity and

consistency of the generated SQL code, contributing to better

code quality and reducing the likelihood of syntax errors.

C. The End-to-End User Usability Evaluation of EDA System

We employed the Spider dataset (200 examples, 1:2:1 for

easy:medium:hard) for assessing the usability of various text-

to-SQL techniques, including vanilla GPT-3.5 with prompt

“Translate the user inquiry into an SQL query” and GenSQL,

as a designated SQL generation engine as shown in Table I.

TABLE I
THE END-TO-END USER USABILITY EVALUATION, WHERE THE SYMBOL
‘-’ SIGNIFIES ALMOST USABILITY, ‘+’ INDICATES HIGH USABILITY, AND

‘.’ DENOTES FINELY TUNED USABILITY.

Method Easy Medium Hard
Vanilla GPT-3.5 - - -

GenSQL · · -
Chat2Query + + +

When employing vanilla GPT-3.5 as the text-to-SQL engine

for our system, it falls short of producing end-to-end exe-

cutable SQL statements. Users expend a substantial amount of

effort on manual adjustments to the generated SQL statements.

Similarly, we use text-to-SQL ranking model of GenSQL in

our system. We have the following findings in Spider dataset

at Section III-C:

(1) For “easy” and “medium” tasks, it necessitates additional

user intervention, often requiring the specification of appro-

priate filtering conditions and ensuring correct column name

capitalization to make the generated SQL executable (denoted

as ‘·’). Figure 4 gives an example from a Spider dataset with

easy difficulty. The Chat2Query generates the accurate SQL

statement. In contrast, while GenSQL produces SQL with

the correct formal structure, it lacks accurate filtering values,

leading to reduced end-to-end user usability.

What is the numer of cars with more than 4 cylinders?
-- Chat2Query
SELECT COUNT(*) FROM `cars_data` WHERE `cars_data`.`cylinders` > 4
--GenSQL
SELECT COUNT (*) FROM cars_data WHERE cylinders > 'value'

Require users to manually fill in the values.

Fig. 4. The Example between Chat2Query and GenSQL for Easy Difficulty.

(2) GenSQL struggles to produce accurate SQL statements

for “hard” tasks, however, such as the column recall phase,

often yielding entirely incorrect results (denoted as ‘-’). In

Figure 5, we observe an instance of a Spider dataset charac-

terized by a hard level of complexity. It is evident that the

Chat2Query system produces correct SQL statements in this

scenario, whereas GenSQL encounters errors such as column

recall and filtering conditions. We are unable to populate the

countryname value even.

Require users to
manually fill in the values.

Fig. 5. The Example between Chat2Query and GenSQL for Hard Difficulty.

Despite the inability SQL generation engine of Chat2Query

to consistently generate accurate SQL statements across all

scenarios, it demonstrates superior end-to-end user usability

(denoted as ‘+’) compared to tools like GenSQL. Furthermore,
we conducted experiments on real-world datasets (c.f., Steam

Game and Fortune 500 datasets in Section III) by assessing the

availability for SQL generation. In this context, Chat2Query

outperformed GenSQL and vanilla GPT-3.5 for end-to-end

user usability. We also attained a SQL generation accuracy

comparable to that of GenSQL across tasks of varying diffi-

culty levels.

5431

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:12:26 UTC from IEEE Xplore. Restrictions apply.

Import Data

Schemas and SQL Files

User Inquiry and SQL

Run

Chart

1

3

4

5

2

Fig. 6. Demonstration Scenarios of Steam Game Dataset.

III. DEMONSTRATION SCENARIOS

We present a web application to the participants and il-

lustrate Chat2Query in three real-world scenarios, which are

presented below. The Steam Game and Fortune 500 were

selected for demonstration purposes, as they are frequently

employed to assess the effectiveness of EDA tasks within

the activities of PingCAP. Meanwhile, these datasets have

accumulated a considerable number of natural language to

SQL validation scenarios. The Spider is a large-scale complex

and cross-domain semantic parsing and text-to-SQL dataset.

These scenarios are derived from real-world situations and

are readily understandable to the ICDE audience. Considering

space constraints, this paper primarily concentrates on illustrat-

ing demo scenarios using the Steam Game dataset, while also

briefly touching upon those involving others. A demonstration

video can be found on YouTube2.

A. Scenario 1: Steam Game Dataset

To enhance the usability for regular users, Chat2Query

offers a conversational dialog interface, enabling user-system

interaction. We use the natural language query “What are the
top 10 companies by profit in 2022?”. Figure 6 shows that the
user interface primarily encompasses five key functionalities.

� Import Data. Users can import their personalized data
and establish corresponding databases and tables according to

specific needs. Users can upload a CSV file to TiDB or import

data from S3. Additionally, within the Preview interface, users
can configure primary keys, column names, data types, and

other pertinent information, which is crucial to ensure precise

SQL generation.

� Schemas and SQL Files. The component encapsulates
the specific details of columns associated with a table imported

by a legitimate user. As a service on TiDB Cloud, Chat2Query

only needs to access database schema to generate SQL. SQL
Files tab stores SQL files produced by users, enabling them
to rename and delete these files as needed.

� User Inquiry and SQL. When provided with a database,
users input natural language inquiry into the designated input

box and await to generate SQL from the Chat2Query.

� Run. Click the Run button (�) to execute the generated
SQL statement and generate a chart visualization the results.

The SQL statement produced by Chat2Query is sent to TiDB

Serverless for execution, and the corresponding result is re-

trieved.

� Chart. The suggested chart type is provided, and users
can customize the chart according to their preferences. In

2https://youtu.be/BcDIj7H6mxw

particular, users can select from a variety of chart types; at

present, Chat2Query offers options such as pie, line, bar, and

table. By conveniently clicking and selecting the replacement

data, users can augment their insights. Lastly, users also retain

the ability to customize the appearance of the chart. This

flexibility empowers users to delve into and adapt the resultant

outcomes to meet their specific exploration needs.

B. Scenario 2: Fortune 500 Companies Dataset
In this demonstration, we have opted to utilize the queries

“What are the top 10 companies by profit in 2022?” and
“Which 10 companies had the highest revenue increase from
2018 to 2022?” as exemplars. For a more comprehensive
understanding of features, Please refer to our video for more

details.

C. Scenario 3: Spider Dataset
In this demonstration, we have opted to utilize the queries

“Which countries in Europe have at least 3 car manufactur-
ers?” and “What are the average and maximum capacities
for all stadiums?” as exemplars to explore the capabilities of
Chat2Query. Please refer to our video for more details.

IV. CONCLUSION

In this paper, we introduced Chat2Query system to provide

LLM-empowered exploration data analysis. Chat2Query facil-

itates online real-time data exploration by utilizing the TiDB

Serverless. We have implemented and deployed Chat2Query

in the PingCAP production environment. We presented the

implementation of Chat2Query and demonstrated on three

representative datasets.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful

comments and feedback. This work was supported in part by

the National Natural Science Foundation of China under Grant

No. U22B2020, and in part by PingCAP. Peng Cai, Boyan Niu,
and Kai Xu are the corresponding authors.

REFERENCES

[1] T. Milo and A. Somech, “Automating exploratory data analysis via
machine learning: An overview,” in SIGMOD, 2020, pp. 2617–2622.

[2] P. Ma, R. Ding, S. Wang, S. Han, and D. Zhang, “Xinsight: explainable
data analysis through the lens of causality,” SIGMOD, pp. 1–27, 2023.

[3] Y. Fan, T. Ren, Z. He, X. Wang, Y. Zhang, and X. Li, “GenSQL: A
generative natural language interface to database systems,” in ICDE,
2023, pp. 3603–3606.

[4] T. R. D. G. L. C. R. Z. G. C. Y. J. K. Z. X. W. Yuankai Fan,
Zhenying He, “GAR: A generate-and-rank approach for natural language
to sql translation,” in ICDE, 2023, pp. 110–122.

[5] A. Liu, X. Hu, L. Wen, and P. S. Yu, “A comprehensive eval-
uation of chatgpt’s zero-shot text-to-sql capability,” arXiv preprint
arXiv:2303.13547, 2023.

[6] G. Katsogiannis-Meimarakis and G. Koutrika, “A survey on deep
learning approaches for text-to-sql,” The VLDB Journal, pp. 1–32, 2023.

[7] M. B. Roman, “Steam games dataset,” 2022. [Online]. Available:
https://www.kaggle.com/ds/2109585

[8] “Fortune 500 from 1996 to 2023,” https://www.kaggle.com/datasets/
rm1000/fortune-500-companies?resource=download.

[9] “Spider dataset,” https://yale-lily.github.io/spider.
[10] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,

D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” NIPS, pp. 24 824–24 837, 2022.

5432

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:12:26 UTC from IEEE Xplore. Restrictions apply.

