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Abstract—Understanding the semantic structure of resumes
plays an important role for various intelligent recruitment related
applications. However, due to the unique characteristics of re-
sume documents (e.g., diverse writing styles and multi-page) and
the lack of labeled data, it has been a long-standing challenge to
effectively extract the structural information of resumes through
machine learning models. While considerable efforts have been
made in this direction, existing methods only focus on the
textual information in the document where the rich multi-modal
information (e.g., the visual and layout information) is largely
ignored. To this end, in this paper, we propose ResuFormer for
understanding the semantic structure of resumes. Specifically,
ResuFormer focuses on two typical tasks in this direction, namely
resume block classification and intra-block information extrac-
tion respectively. For the first task, we propose a multi-modal
pre-training model with a hierarchical Transformer encoder,
in which we design three self-supervised training objectives,
i.e., masked layout-language model, self-supervised contrastive
learning and dynamic next-sentence prediction, to pre-train the
model parameters, and fine-tune the model only using a small
amount of training data. For the second task, we introduce a self-
distillation based self-training learning framework to make the
distantly supervised model more robust to the noise data. Finally,
extensive experiments conducted on real-world resume datasets
have clearly validated the performance of our ResuFormer
compared with state-of-the-art (SOTA) baselines.

Index Terms—semantic structure extraction, multimodal pre-
training, distant supervision, self-training

I. INTRODUCTION

With the rapid development of online recruitment ser-
vice, the number of electronic resumes has soared. How
to efficiently and accurately process these resumes into the
structured information becomes a crucial issue that will be
beneficial for many downstream applications, such as person-
job matching [1, 2, 3, 4], talent identification [5, 6], talent
evaluation [7, 8] and job description generation [9].

The resumes are different from other documents like the
form and the receipt. They are more text-centric and have
more flexible formats with rich semantic structure. Gener-
ally, a resume can be segmented into several types of se-
mantic blocks: personal information, education experience,
work&project experience, summary and awards, and each

*Hengshu Zhu and Chuan Qin are corresponding authors.
†Part of the work was done when the author was employed by Baidu Talent

Intelligence Center.

block has the corresponding specific information. For example,
personal information block often contains name, email, phone
number and age, and education experience block often consists
of college, major, degree, start date and end date. It is worth
noting that education, work and project experience are usually
more than one in a resume. We present three styles of resume
templates in Figure 1. It is observed that the three resumes
have different writing styles and each resume contains several
types of text blocks with specific semantic information.

Existing studies for resume semantic structure understand-
ing can be grouped into two categories: resume entity extrac-
tion and resume semantic structure extraction. The entity ex-
traction methods only focus on extracting key entities such as
name, email and school from resumes. Although lots of named
entity recognition (NER) methods [10, 11, 12, 13] achieve
good performance on resume entity recognition, They fail to
understand the hierarchical semantic structure of resume. For
example, a resume usually contains multiple work experiences
and each work experience consists of word date, company
name, job position and work content. It is hard for the NER
methods to obtain the hierarchical structure. To solve this
problem, semantic structure extraction methods [14, 15] are
proposed to extract the structured information from resumes.
Specifically, first, neural networks based models are deployed
to segment resume into text blocks and then the typical NER
methods are used to recognize entities in each segmented
block. However, these approaches only leverage the textual in-
formation while ignore the rich multi-modal information (i.e.,
the visual information and layout information) naturally in the
resume document. They achieve the limited performance.

Recently, Transformer [16] based multi-modal pre-training
models [17, 18, 19] are widely applied in document under-
standing. In the pre-training procedure of model, the self-
supervised objectives make the model parameters to be trained
enough that largely reduce the dependence on annotated
training data. Additionally, except for the textual information,
visual information and layout information naturally existed
in the document are jointly learned and merged as the final
semantic representations that makes these pre-training models
achieve promising results on many downstream tasks such as
form and receipt understanding, document image classifica-
tion. and document visual question answering.
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Fig. 1. Three different styles of resume templates. All contents are fictional to protect the privacy of candidates.

Although the above pre-training strategies can be applied in
the resume semantic structure understanding, there still exists
several challenges: First, the resume documents are different
from forms and invoices. They are more text-centric, and have
more contents with several pages. According to the statistics
on our resume dataset, the average number of tokens for
resumes is more than 1,600, while the above Transformer
architecture based pre-training models are hard to handle
more than 512 tokens at once. Although the token by token
loop processing strategies can solve this problem, high time
costs will affect the efficiency of resume parsing. Second,
the various writing styles for different resumes increase the
difficulty of semantic structure understanding. As shown in
Figure 1, the three resumes have different formats and the
semantic blocks randomly appear in different positions in
the documents. In addition, work experiences and project
experiences often exist in different pages of a document. Third,
the available fine-grained annotated training dataset is limited
for resume semantic structure understanding. Lack of large
scale fine-grained annotation training data will result in the
poor performance for resume block classification and intra-
block information extraction mentioned above.

To address the above challenges, following the above re-
sume semantic structure extraction, we propose ResuFormer
for resume semantic structure understanding, which consists of
a multi-modal pre-training model with a hierarchical Trans-
former for resume block classification and a self-distillation
based distantly supervised NER approach for intra-block infor-
mation extraction. Specifically, we first construct a hierarchical
transformer for resume block classification. The hierarchical
structure is more suitable for long document understanding.
Then, we design three self-supervised objectives, i.e, masked
layout-language model, self-supervised contrastive learning
and dynamical next-sentence prediction, to achieve more effec-
tive representation learning for the multi-modal information.
Meanwhile, the effective pre-training strategies largely reduce
the dependence on labeled training data. After the pre-training,
we fine-tune the model on a small amount of annotated data

for resume block classification. In addition, due to lack of
fine-grained annotated training data for intra-block informa-
tion extraction, we construct multiple entity dictionaries to
automatically annotate the training data, and also adopted
a distantly supervised sequence labeling method for intra-
block fine-grained information extraction. Finally, we conduct
extensive experiments on real-world resume datasets with two
typical tasks, namely resume block classification and intra-
block information extraction. The experimental results clearly
validate the effectiveness of our approaches compared with a
number of SOTA baselines.

The main contributions of this paper can be summarized as
follows:

• To the best of my knowledge, we are the first to propose
the hierarchical multi-modal pre-training model for long
document understanding.

• We propose a distantly supervised sequence labeling
method trained in the self-distillation based self-training
learning framework, which not only overcome the dif-
ficulty of lack of labeled data, but also improve the
model robustness against the noise data in the distantly
supervised scenario.

• We evaluate our ResuFormer with extensive experiments
on real-world resume datasets, which consistently out-
perform a number of SOTA baselines with a significant
margin. Specifically, for the task of resume block classi-
fication, our model achieves more than 4% improvements
on multiple tags than the SOTA baseline. Meanwhile,
our method improves about 15 times for the running
efficiency than the SOTA baseline. For the task of intra-
block information extraction, our method achieves the
best performance on all tags.

II. RELATED WORK

The related works can be grouped into two categories,
namely resume information extraction and multi-modal pre-
training.
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A. Resume Information Extraction

The rapid development of online recruitment results in an
increasing amount of resume data. How to effectively analyze
each resume document has attracted much attention of re-
searchers. Existing methods for resume information extraction
can be grouped into two categories: resume entity extraction
and semantic structure extraction.

Resume entity extraction only focuses on extracting key
entities, such as name, email, major, school and company, from
the resume text. Early studies on them were mainly machine
learning based approaches. The traditional machine learning
such as hidden Markov model (HMM), conditional random
field (CRF), support vector machine (SVM), were used to
construct resume information extraction system [20, 21, 22].
Although these models achieve good performance, they bring
the cost of feature engineering. In recent years, deep learn-
ing based methods have been used for resume information
extraction. The typical named entity recognition method, BiL-
STM+CRF, was used to extract resume information [10]. The
method first used Word2Vec to initialize the word embedding
as inputs. Then it utilized a bidirectional long-short term
memory (BiLSTM) layer to learn contextual semantic of a
word. Finally, the CRF layer outputted the scores of all
possible tag for sequences. Different from the above Word2Vec
embeddings, Van et al. [23] used a CNN+BiLSTM+CRF
structure for various formats of resume information extraction,
which used CNN to learn the representation of character
and combined deep learning with heuristic rules to achieve
superior results than other models. To enhance the semantic
representation, Chen et al. [11] fused the Word2Vec [24]
features with BiLSTM contextual features and then combine
BiLSTM with CRF to parse Chinese resumes. Due to the
powerful semantic representations of pre-training model, Li
et al. [12] established a BERT+BiLSTM+CRF model for the
resume information extraction, in which BERT [25] was used
to extract the deep features of the resume text. To exploit 2D
layout information, Wei et al. [26] combined the pre-trained
model RoBERTa [27] with graph convolutional network [28]
(GCN) to extract resume entity information, in which the
GCN is used to encode layout and positional information. Al-
though these approaches achieved promising results on entity
extraction. They ignored to exact the hierarchical structured
information naturally existed in the resume document.

Semantic structure extraction pipelines resume information
extraction as the task of resume block classification and intra-
block entity extraction, aiming at extracting a hierarchical
structured information from a resume. For example, a resume
has multiple work experiences and each work experience
contains text information like work content and entities such
as work date, company and position. For this kind of extrac-
tions, Ayishathahira et al. [14] leveraged convolutional neural
network (CNN) to classify different text blocks in resumes and
then used BiLSTM+CRF model for resume entity recognition.
Zu et al. [15] proposed a two-step pipeline approach, which
used a neural network text classifier to segment resume text

block and used BiLSTM+CNN+CRF to recognize entities in
segmented text blocks. However, these models only leveraged
the text in the resume to extract information while ignored
visual information and layout information naturally in the
resume document. Therefore, they achieved the limited per-
formance. In addition, their model performs the token-level
classification and it is hard to handle the document-level
semantic structure.

In order to extract the hierarchical structure from the resume
document, we follow the typical semantic structure extraction
pipeline for resume information extraction. We propose a
hierarchical multi-modal pre-training model for resume block
classification and present a distantly supervised NER approach
with self-distillation based self-training learning framework for
intra-block entity extraction.

B. Multimodal Pre-training

Multi-modal [29, 30] pre-training has attracted huge at-
tentions due to its success on vision-language representation
learning. In recent years, to learn visual and textual representa-
tions in a unified framework, Lu et al. [31] proposed a vision-
and-language BERT (ViLBERT), which aims at jointly learn-
ing representations of image content and natural language.
ViLBERT extended the popular BERT architecture to a multi-
modal two-steam model, which used a co-attentional trans-
former layers to accept both visual and textual information
in separate streams as inputs. Li et al. [32] stacked multiple
Transformer layers as a VisualBERT, which used a self-
attention mechanism to align elements of an input text and re-
gions in an associated input. Su et al. [33] introduced a visual-
linguistic BERT (VL-BERT) for visual-linguistic tasks, which
used a Transformer model as backbone and took both visual
and linguistic embedded features as input. Different from the
above simultaneous multi-modal inputs, Chen et al. [34] pro-
posed a universal image-text representation (UNITER) model,
which can power heterogeneous downstream V+L tasks with
joint multi-modal embeddings. It is noted that the approaches
above mostly simply concatenate image region features and
text features as input to the model to be pre-trained and utilize
self-attention to align image-text semantics. Different from
their approach, Li et al. [35] proposed an object-semantics
aligned pre-training (OSCAR) method, which used object tags
detected in images as anchor points to significantly ease the
learning of alignments.

The pre-trained models mentioned above paid more atten-
tion to the multi-modal learning of videos or images. In order
to better understand visually-rich document, Xu et al. proposed
LayoutLM [17], LayoutLMv2 [18] and LayoutXLM [19],
respectively. LayoutLM aimed at jointly modeling interactions
between text and layout information across scanned document
images, LayoutLMv2 is the upgraded version LayoutLM, its
pre-trained strategies used not only the existing masked visual-
language modeling task but also the new text-image alignment
and text-image matching tasks. For LayoutXLM, it is based
on LayoutLMv2 for multilingual document understanding.
Although these approaches achieve promising results on many
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document understanding tasks, they can not better handle the
long document with abundant textual information. Different
from them, our multi-modal pre-trained model adopted a hier-
archical structure that can better deal with the long document.

III. PROBLEM DEFINITION

Resume semantic structure understanding usually involves
two main tasks, namely resume block classification and intra-
block information extraction.

A. Resume Block Classification

Resume block classification aims to segment a resume
document into a listed of blocks and predict the corresponding
label for each block according to the semantic information.
Actually, the process can be considered as a sequence labeling
task. Different from the token-level classification, here we
adopt a sentence-level classification to better cope with long
document.

Formally, given a resume document D, it contains the
semantic tags C ∈ {PInfo, EduExp, WorkExp, ProjExp, Sum-
mary, Awards, SkillDes, Title} 1. We first use an open-source
PDF parser called PyMuPDF 2 to obtain a list of discrete token
set D = {t0, t1, ..., tn} and the page image list V = {v1, v2, ...,
vp} from the PDF file, where each token ti = (w, (x0, y0, x1,
y1), p) consists of a word w, its bounding box coordinates (x0,
y0, x1, y1) and its page number p, n is the number of tokens
and vp is the image data corresponding to the p-th page. Then,
according to the bounding box coordinates of each token, we
concatenate adjacent tokens in t into multiple sentences D
= {s1, s2, ..., sm}, where si = (seq, (x′

0, y′0, x′
1, y′1), p′)

consisting of a sequence of word seq = {w0, w1, ..., w|si|},
the corresponding bounding box coordinates (x′

0, y′0, x′
1, y′1)

and the page number p′, and m is the number of sentences. The
concatenation for tokens need to be guaranteed that the two
tokens are closely spaced and in a row in the document. Thus,
the visual information vi for each sentence si can be obtained
according to the image data V and the corresponding bounding
box coordinates and the page number. It is worth noting that
the sentence si is not a real semantically complete sentence.
It just consists of a sequence of adjacent tokens and then we
merge the coordinates of leftmost token and rightmost token
into the bounding box coordinates of si. Finally, we predict
the tag for each sentence si following the typical IOB tagging
scheme, where “B” denotes the beginning of a tag, “I” denotes
the continuation of a tag, and “O” corresponds to tokens that
are not part of any tag.

B. Intra-block Information Extraction

Resume block classification can obtain a coarse-grained
semantic block structure. As shown in Figure 1, the resume
includes multiple semantic blocks such as person information,
education experience and work experience. Actually, it is

1These eight tags donate personal information, education experience, work
experience, project experience, summary, awards, skill description and section
title, respectively.

2https://github.com/pymupdf/PyMuPDF

also crucial to extract the fine-grained information in each
intra-block. For instance, a personal information block usually
includes many entities such as name, email and age, and
a work experience block usually includes work duration,
company name, job position and work content. In order to
extract these fine-grained entities, we also consider the extrac-
tion process as a sequence labeling task. Different from the
sentence-level resume block classification, it adopts a token-
level sequence tagging strategy. Noted that we extract these
fine-grained entities from the segmented block instead of the
whole document because the token sequence of document is
too long.

Formally, given a intra-text block B = {w1, w2, ..., w|B|},
where wj is the j-th token in the block. Our aim is to predict
the entity tagging label for each word in the block.

IV. METHODOLOGY

In this section, we first present our model architecture
for resume block classification. Then, we introduce intra-
block information extraction model with a distantly-supervised
training samples.

A. Resume Block Classification

The key training procedure is to construct a powerful hierar-
chical Transformer encoder as the encoder backbone, followed
by pre-training the encoder with self-supervised objectives on
a large real-word resume corpus. The next step is to fine-tune
the encoder with a block classification layer only using a small
amount of labeled data. The architecture of the resume block
classification is illustrated in Figure 2.

As shown in Figure 2, for the hierarchical transformer en-
coder, it consists of a sentence-level encoder and a document-
level encoder. The two encoders all encode the text and
layout information, while the document-level also introduce
the visual information. For the downstream task, we use typical
BiLSTM+CRF method for resume block classification.

1) Hierarchical Transformer Encoder: Different from the
previous document understanding model [17, 18, 19] pre-
trained on the single page document like invoice and form
document, the resume document is usually a long document
with several pages. In order to handle the long document, we
adopt a hierarchical transformer encoder architecture as the
encoder backbone, which consists of a sentence-level encoder
and a document-level encoder. The former encodes a sequence
of tokens to produce final representations of sentence and the
latter learns the semantic interactions among these sentence
representations.

Sentence-level Transformer Encoder. The BERT
model [25], based on a multi-layer bidirectional Transformer
encoder, has been verified its powerful abilities of semantic
representation and knowledge transfer by self-supervised pre-
training on large-scale training data. In order to capture the
token-level semantic features, we deployed a 6-layers bidi-
rectional Transformer encoder, which accepts a sequence of
tokens and stacks six layers to produce final representations.
Specifically, given a sentence sj in D, the input embeddings
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Fig. 2. The framework overview of hierarchical multi-modal pre-training model.

are computed by summing two parts: the text embedding and
the layout embedding.

For the text embedding, we follow the common practice
in pre-training BERT model. In detail, we first use Word-
Piece [36] to tokenize the text in the sj into a sequence of
words {w0

j , w
1
j , ..., w

|sj |
j }. Then, each word will be assigned

a certain segment symbol gij ∈ {[A], [B]}, which is used to
distinguish different text segments. In addition, the word index
will also be used to encode the position information. Finally,
the final text embedding oij is the sum of word embedding
emb(wi

j), 1-D positional embedding emb(lij) and segment
embedding emb(gij). Formally, the i-th word in sj can be
formulated as below:

oij = emb(wi
j) + emb(lij) + emb(gij). (1)

For the layout embedding, in the process of PDF parsing, we
obtain the spatial layout information with the format of (x0 ,
y0, x1, y1, p) for the word wj

i , where (x0, y0) and (x1, y1) are
the top-left corner coordinate and bottom-right coordinate for
the word, respectively, and p is the page index. We followed
the work of LayoutLMV2 [18], all coordinates are normalized
and discretized to integers in the range [0, 1000]. For i-th
word, we first convert its layout information into a seven
tuple, i.e., (xmin, ymin, xmax, ymax, width, height p), where
height and width are the height and width of the word. Then
the spatial information will be pass through three embedding
layers to embed x-axis features, y-axis features and page
features, respectively. Thus, the final layout embedding ui

j for
wi

j can be formulated as

uj
i =[embg(p); embx(xmin, xmax, width);

emby(ymin, ymax, height)],
(2)

whre “[;]” is the vector concatenation operation.
Finally, these input embeddings, i.e., oj + uj , are passed

through our sentence-level Transformer encoder that can ob-

tain a sequence of contextualized representations for words
in the sentence. Following the setting in BERT model, we
use [CLS] token as the learned representation of the whole
sentence. As shown in Figure 1, we also add another dense
layer and perform a L2 normalization on the sentence repre-
sentation. Finally, we use hj denote the representation of the
j-th sentence sj .

Document-level transformer encoder. Similar to the
sentence-level transformer encoder architecture, the document-
level encoder adopts a 4-layers bidirectional Transformer
encoder, which accepts a sequence of sentence representa-
tions. Actually, the j-input sentence representations contain
three parts: the sentence representation hj derived from the
sentence-level encoder, the sentence-level layout information
ûj and the sentence-level visual information vj . It is noted that
we do not introduce the visual information in the sentence-
level encoder because we assume it is not easy to distinguish
the word features from the corresponding word image among
different words. However, the sentence-level visual informa-
tion can better reflect an effective feature. For instance, a
section title in the resume document usually has different font
color or a larger font size.

To utilize the visual feature of a sentence in the document
and align it with the corresponding text, for each sentence
sj with the 2-D positional information (x′

0, y′0, x′
1, y′1), we

still use PyMuPDF to extract document images from the
PDF document and then segment the document image into
several pieces according to the position information, which
correspond to the sentence sj . Thus, we can directly leverage
the pre-trained Faster R-CNN [37] to produce the image region
features for these image pieces. After obtaining the visual
features vj for the sentence sj , we concatenate vj with the
contextualized representations hj as the two-modal sentence
embeddings, i.e., h⋆

j = [hj ; vj]. In addition, we adopt the
same approaches in the sentence-level encoder to obtain 2-
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D spatial layout embeddings ûj , 1-D positional embeddings
emb(l̂j) and segment embeddings emb(ĝj). These embedding
will be summed together as the final input embeddings,
which will feed to the document-level encoder to capture the
contextualized representations h′

j with an adaptive attention
mechanism.

2) Pre-training Objectives: For the model training, we
adopt the “pre-training + fine-tuning” paradigm as in BERT.
For the pre-training, we elaborately design three self-
supervised objectives for our hierarchical Transformer en-
coder, which can learn effective semantic representation from
large-scale unlabeled corpus and reduce the dependence on
labeled data in downstream supervised tasks.

Objective #1: Masked Layout-Language Model. Followed
by LayoutLM [17], our sentence-level transformer encoder
learns the language representation with the clues of 2-D layout
embeddings and text embeddings. Due to its textual richness
for resume documents, we initialize the parameters of the
sentence-level encoder with a pre-trained RoBERTa model
with 6 layers so that the external knowledge can transfer to
our encoder. Then, we continue to optimize the parameters on
the large-scale resume document training data. To be specific,
we randomly mask some of the input tokens in a sentence
but retain the corresponding 2-D position embeddings, and
then train the model to predict the masked tokens given the
contexts. Thus, our sentence-level encoder not only under-
stands the language contexts of resume but also utilizes the
corresponding 2-D position information. In addition to adding
2-D positional information, masked layout-language model is
same with the masking word prediction in the BERT [25]. For
convenience, we denote the loss of the masked layout-language
model task as Lwp. The detailed computation process please
refers to the masking word prediction in BERT.

Objective #2: Self-supervised Contrastive Learning. In-
spired by the contrastive learning framework [38, 39], we use
self-supervised contrastive loss as our objective function to
pre-train our document-level transformer encoder. Specifically,
given a sequence of sentence representations Hs = {h⋆

1, h⋆
2,

..., h⋆
m} from a resume document, we randomly replace k

(k < m) sentence representations with a randomly initialized
masked vector ĥ ∈ Rd in current training batch. For instance,
the masked document become Ĥs = {h⋆

1, ĥ2, h⋆
3, ĥ4, ..., h⋆

m}
if we randomly mask the 2nd and 4th sentence representation.
In each pre-training step, we repeat the dynamic sampling
procedure in a batch. Thus, for the same document, the masked
sentence may be occur at the different positions in different
training steps. Thereby, compared with the static masking, the
dynamic masking strategy can obtain more diverse masked
sentences in a document to train the model.

After the dynamic sentence masking, the masked sequence
Ĥs will be passed through the document-level transformer
encoder that can capture contextual block representations Hd

= {h′
1, h′

2, ..., h′
m}. Then, we perform the contrastive learning

for the masked sentence prediction. Specifically, given a batch
of N masked sentences with the generated contextualized
sentence representation h′

d ∈ RN×D and the ground truth

sentence representation h⋆
s ∈ RN×D where N = b × k.

According to the contrastive learning framework, we compute
a similarity score between h′

d and h⋆
s , which ensures that

the sentence representations in the same positions are closer
to each other in the latent embedding space. Formally, we
can compute a pairwise similarity matrix for every masked
sentence pair in the current batch as follow:

Sim(h′
d, h

⋆
s) = h′

dh
⋆
s
T . (3)

In the above equation, Sim(h′
d,i, h

⋆
s,j) is the predicted simi-

larity between the i-th contextual sentence representation and
the j-th original sentence representation. We normalize it with
a softmax function, and then the self-supervised contrastive
loss function is described as follows:

Lcl = −
1

N

N∑
i=1

N∑
j=1

1{i = j}log
exp(Sim(h′

d,i, h
⋆
s,j)/τ)∑N

k=1 exp(Sim(h′
d,i, h

⋆
s,k)/τ)

(4)
where 1{i = j} evaluate to 1 iff i=j, and τ denotes a
temperature parameter.

Objective #3: Dynamic Next-sentence Prediction. Inspired
by the next sentence prediction (NSP for short) in BERT [25],
we propose the dynamic next sentence prediction (DNSP for
short) to learn the dependency relation between two adjacent
sentences. Different from the NSP only considering textual
semantic relations, DNBP models the dependency relation
from the perspectives of visual semantics, text semantics
and spatial positions. In more detail, we randomly sample
L (L < m) sentences H ′ ∈ RL×D and the corresponding
next sentences H ′′ ∈ RL×D from the contextual sentences
representations Hd in each training batch. For instance, the
sampled sentence sequence is H ′ = {h′

2, h′
5, h′

8} and the
adjacent sentence sequence becomes H

′′
= {h′

3, h′
6, h′

9} if
we sample the 2nd, 5th and 8th sentences from Hd. Then, we
use the adjacent sentences to build the ground truth training
pairs {(h′

2, h′
3), (h′

5, h′
6), (h′

8, h′
9)} for the next-sentence

prediction. In addition, we use a parameter matrix Wd ∈
RD×D to model the dependency relation between two adjacent
sentences, which can be formulated as follows:

Md(H
′, H ′′) = H ′WdH

′′T , (5)

Similar to the equation 3, Wd(H
′
i, H

′′
j ) denotes the interac-

tion between the i-th sentence and j-th sentence, and we also
utilize a softmax function to normalize it. Finally, the final
loss function is described as below:

Lns = −
1

L

L∑
i

L∑
j

1{i = j}log
exp(Md(H

′
i, H

′′
j ))∑L

k=1 exp(Md(H ′
i, H

′′
k ))

(6)
Noted that we also adopt dynamic sampling strategies for

next sentence prediction for every document in each training
batch. Finally, the overall objective for the pre-training process
can be formulated as below:

Lpretrain = λ1Lwp + λ2Lcl + λ3Lns (7)

where λ1, λ2 and λ3 are the hyper-parameters, which are used
to balance the three pre-training objectives.
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3) Fine-tuning Objectives: After the hierarchical encoder is
pre-trained based on the three pre-training objectives above,
we begin to fine-tune the model on a small amount of training
data to adapt the pre-trained model to a new task, i.e., resume
block classification. Specifically, we regard it as a sequence
labeling task and apply a BiLSTM network stacked on the
top of hierarchical transformer encoder. More formally, given
a sequence of contextual sentence representation Hd = {h′

1,
..., h′

i, ..., h′
m} derived from the document-level encoder, the

BiLSTM network operates on h′
i at the i-th step to output hi

b

: −→
hi
b =
−−−−→
LSTM(h′

i,
−−→
hi−1
b ),

←−
hi
b =
←−−−−
LSTM(h′

i,
←−−
hi+1
b ),

hi
b = [

−→
hi
s;
←−
hi
s].

(8)

where
−−−−→
LSTM and

←−−−−
LSTM denote the forward LSTM [40] and

the backward LSTM, and “[;]” is the concatenation operation.
Finally, the output of the BiLSTM layer hi

b is used to predict
a score for each possible tag with a multi-layer perceptron
(MLP). Accordingly, we add a conditional random field (CRF)
layer to compute the sentence CRF loss [41] using the forward-
backward algorithm at training time, and using the Viterbi
algorithm [42] to find the most likely tag sequence at test
time.

4) Knowledge Distillation: Labeling data is expensive for
resume block classification task, but unlabeled data is more
likely abundant. In addition to the above pre-training methods,
we also leverage the knowledge distillation technique [43] to
augment training data. Specifically, assuming that we have
resume document data T for the the resume block classifi-
cation task, which can be divided into the training data Tl
annotated by human experts and the unlabeled data Tu. We
first train a teacher model LayoutXLM [19] with Tl, which
is a multi-modal pre-trained model for multilingual document
understanding and can fulfill the token-level classification for
resume blocks. Then, we use the trained LayoutXLM to auto-
annotate a large amount of unlabeled data Tu with (hard)
pseudo labels 3. The augmented data Tp with the pseudo label
can be used train our model. The detailed training process is
described at Algorithm 1. Actually, merging the unlabled data
with pseudo-labels and the training data with real labels can
improve the performance of model [44]. The potential reason
is that LayoutXLM is quite different from our hierarchical pre-
training model and the semantic knowledge in LayoutXLM
can be transferred and leveraged to improve the quality of
prediction of our model.

.B. Intra-block Information Extraction

Intra-block information extraction is, essentially, a NER
problem. After the document is segmented into multiple
blocks, we begin to extract the fine-grained entities from
each block. Although plenty of state-of-the-art NER ap-
proaches [45, 46, 47] have achieved a promising performance,
they are fully supervised learning methods, which strongly

3The original labels are predicted for tokens in the document. We need to
convert them to the labels of sentence.

Algorithm 1 Training Process of our model.
1: Pretrain the hierarchical transformer encoder by Eq. (7);
2: Train the teacher model LayoutXLM using Tl;
3: Use the trained LayoutXLM to auto-generate the pseudo

label data Tp based on unlabeled data Tu;
4: Train our model on Tp;
5: Fine-tune our model on Tl;

depend on a large-scale fine-grained annotated data. Due to
the lack of labeling data, we resort to a distantly-supervised
NER method. Specifically, we first build domain dictionary
for each entity class. Then, the training data is annotated
by the self-built dictionary automatically. Finally, we adopt
a classical “BERT+BiLSTM+MLP” architecture with self-
training framework for the entity extraction.

1) Entity Dictionary Construction: As shown in Table IV,
the resumes contain rich entity information in each segmented
block. In order to generate the training instances, we build
multiple dictionaries to automatically annotate data. In more
detail, in the personal information, the person name entities are
collected from the name database collected from the online
websites. In the education experience, we collect college,
and major entities from web encyclopedia data. In the work
experience, the company entities and job position entities
are collected from encyclopedia data and online recruitment
websites. In the project experience, the project name entities
are extracted from the project information in the candidate
database. In addition, some entities like gender and degree
have the limited value type, and other entities like phone
number, email and date can be recognized by the regular
expression.

2) Automatic Data Annotation: After the entity dictionaries
are built, we automatically generate training data by matching
unlabeled sentences with the dictionaries. The matching can
be achieved by string matching [9], regular expressions [8]
or heuristic rules. Specifically, we match the entity mentions,
such as college name, major and company name, with exactly
the same surface names in the dictionaries. The entities, such
as email, date and phone number, are directly matched with
regular expressions. In addition to the string matching and
regular expression matching, some heuristic rules are also
designed for labelling training data. For instance, the person
name starts with a common family name and usually occurs at
the beginning of the document with a bigger font size. Besides,
some prefix words or suffix words of entities can indicates their
types 4.

To enhance the diversity of training data, we replace the
entity mentions in the sentence with other entities in the
dictionaries. Besides, the order of entities, such as the company
name and the work date in the work experience, and the degree
and the major in the education experience can be adjusted for
data augmentation.

4Some entities usually begin with prefix words or end with suffix words.
For instance, the age entity usually has the prefix: “Age: ”, the email entity
has the prefix: “Email: ” and the company entity often ends with “Co. LTD”.
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3) Distantly-Supervised NER Model: We adopt the typical
“BERT+BiLSTM+MLP” architecture for distantly supervised
NER. Different from resume block classification, it performs
on the word-level and accepts a text sequence as input. Specifi-
cally, given a sequence of input words from a segmented block,
a pre-trained BERT model first captures the contextualized
semantic representation for each word in the input. Then, a
BiLSTM layer is stacked on the top of BERT and projects the
output features into the label space. Finally, we use a MLP
layer to predict the labels of the input sequence.

4) Self-Distillation based Self-Training Learning: The chal-
lenge for distant supervision is the training data with noisy
label or incomplete label. To reduce the impact of this
problem, we proposed a self-training learning approach based
on self-distillation framework to improve the performance of
model [48]. In more detail, we first train a teacher model
f(Xt; θtea), i.e., BERT+BiLSTM+MLP, using the distantly
supervised training set, where θtea is the model learning
parameters and Xt = {X1, ..., Xi, ..., XM} is the training
data with M sentences. Since the teacher model is trained on
a noise training set, we optimize its parameters by using Adam
algorithm [40] with a early stopping trick, which can prevent
the overfitting and improve the generalization of the model.
Then, we deploy a student model f(Xt; θstu) parameterized
identically to the teacher model, i.e., θstu = θtea. During each
training iteration t, the teacher model generates a batch of
samples with (hard) pseudo labels, which will be used to train
the student model. At any iteration step, we re-initialize the
teacher model with the current parameters of the student model
if its performance improves on the validation dataset Xv and
then continue train the student with the same procedure. The
behind intuition is both the teacher and the student benefit
each other that will produce a virtuous cycle. In other words, a
better teacher will produce more accurate pseudo-labels, which
in turn helps train a better student. Meanwhile, the improved
student will be used to re-initialize the teacher. This teacher-
student framework enjoys the merit that it progressively im-
proves the model confidence over data.We formally describes
our training approach in Algorithm 2.

5) High-Confidence Soft Labels: The training data with
the hard pseudo labels generated by the teacher usually ex-
ists two problems: 1) The hard label only retains the most
confident class for each token but misses the confidence of
other classes. 2) The training sample with low confidence
will bring greater possible uncertainty for the student model
training. Accordingly, we propose to utilize soft labels with
re-weighting confidence and propose to filter tokes based on
the prediction confidence, respectively.

Specifically, given the j-th word in the i-th sentence Xi at
the t-th iteration step. We follow the work of [49]. The soft-
pseudo-labels St

i over C classes generated by the teacher are
calculated as follows:

St
i,j = St

i,j,c

∣∣C
c=1

=
f2
j,c(Xi; θ

t
tea)/pc∑C

k=1 f
2
j,k(Xi; θttea)/pk

∣∣∣∣C
c=1

, (9)

where fj,c(X; θtea) denotes the corresponding output

Algorithm 2 Self-training learning based on Self-distillation.
Input: M training sentences Xt, the validation set Xv;
Output: θTstu;

1: Train a teacher model f(Xt; θtea) with early stopping;
2: Initialize a student model f(·; θtea), i.e., θstu = θtea;
3: for t = 1, 2, 3, ..., T do
4: θ

(t−1)
tea = θtea, θ(t−1)

stu = θstu;
5: Sample a minibatch Bt from Xt;
6: Use f(Bt; θ(t−1)

tea ) to generate pseudo-labels Ŷi

∣∣
i∈Bt ;

7: Use Adam algorithm to update the student model, i.e.,
θ
(t)
stu = Adam(θ(t−1)

stu , {(Xi, Ŷi)}i ∈ Bt);
8: if The performance of f(Xv; θ

t
stu) is improved then

9: Re-initialize the teacher using the student, i.e., θttea
= θtstu

10: end if
11: end for

probability score for the c-th class, and pc =∑M
i=1

∑N
j=1 fj,c(Xi; θ

t
tea) computes the unnormalized

frequency of the tokens corresponding to the c-th class. As
can be seen, the above equation adopts a squared re-weighting
method that prefer to the classes with higher confidence
essentially. Thus, the parameters of the student model is then
optimized by minimizing the KL-divergence loss:

θtstu = argmin
θstu

1

M |Xi|

M∑
i=1

|Xi|∑
j=1

C∑
c=1

−St
i,j,clogfj,c(Xi; θstu).

(10)
In addition, we further reduce the uncertainty in the training

data. To be specific, at the t-th iteration step, we choose a set
of high confidence tokens from the i-th sentence by

Ht
i = {j : max

c
St
i,j,c > γ}, (11)

where γ ∈ (0, 1) is a threshold parameter. Thus, we can
optimize the parameters of the student model only using the
selected training tokens

θtstu = argmin
θstu

1

M |Ht
i |

M∑
i=1

|Ht
i |∑

j=1

C∑
c=1

−St
i,j,clogfj,c(Xi; θstu).

(12)
By means of such high confidence token selection, the

student model is actually enforced to better fit training tokens
with high confidence. Thus, the model robustness against low-
confidence tokens can be enhanced.

V. EXPERIMENTS

In this section, we will estimate the performance of Resu-
Former based on the extensive experiments, which conducted
on the real-world datasets.

A. Evaluation on Resume Block Classification

1) Datasets: Our experiments were conducted on a large-
scale resume documents provided by a high-tech company. In
order to fulfill resume block classification, we used 80,000
resume documents for model pre-training. In addition, we
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TABLE I
SOME IMPORTANT STATISTICS OF RESUME DOCUMENT DATASETS.

Datasets
Pre-training
Documents

Finetuning Documents
train validation test

# of samples 80,000 1,100 500 500

avg # of tokens 1,704.20 1,721.98 1,704.37 1,685.43

avg # of sentences 90.28 90.71 89.57 91.26

avg # of pages 2.1 2.02 2.04 2.23

randomly selected 2,100 resume documents and invited ten
experts to annotate them with an open-source PDF annota-
tion tool, i.e., PAWLS 5. Specifically, each resume document
will be divided into several blocks, and each block will be
assigned to one label in eight categories 6. Among the 2,100
annotated documents, 1,100 documents were selected as the
training set, 500 documents as the testing set and the rest of
them as the validation set. Moreover, we also reported some
key statistical information including the average tokens, the
average sentences, and the average pages in Table I.

2) Implementation Details: The sentence-level encoder use
a 6-layer Transformer encoder with 12 heads and the hidden
size is set as 768. Its parameters are initialized with the weight
of a 6-layer pre-trained RoBERTa 7. For the document-level
encoder, we use a 4-layer Transformer encoder. The heads and
the hidden size are same with the sentence encoder. We apply
the Adam optimizer with the weight decay of 0.01 to optimize
parameters. During the pre-training stage, the learning rate is
set as 5e-5. During the fine-tuning stage, the learning rate
for the hierarchical encoder and the BiLSTM with CRF layer
are set as 5e-5 and 1e-3, respectively. In the pre-training
objectives, the number of masked sentence and next sentence
account for 0.2 in all sentences. To limit the size of the model,
the maximum number of tokens in a sentence is 55, and the
maximum number of sentence in a document is limited to 350.
The value for τ is fixed to 0.8. The balance parameters λ1,
λ2 and λ3 for three pre-training objectives are set as 0.4, 1.0
and 0.6, respectively.

3) Baselines: To achieve the comprehensive and
comparative analysis of our proposed methods, we chose
several SOTA methods as baselines:

BERT+CRF [50]: It is a typical information extraction
model for text sequence, which is based on the pretraining
model BERT with conditional random field (CRF) layer and
achieves the resume block classification.

HiBERT+CRF [51]: It is a hierarchical BERT model
with CRF layer for sentence by sentence classification, in
which the sentence-level BERT initializes its parameters with
a pre-trained BERT and the document-level BERT aims to
learn the contextual semantic representation.

RoBERTa+GCN [26]: It combines the power of large
pre-trained language models with graph neural networks to

5https://github.com/allenai/pawls
6The label category includes Title, PInfo, EduExp, WorkExp, ProjExp,

SkillDes., Summary and Awards
7https://github.com/brightmart/roberta zh.

efficiently encode both textual and positional information for
document information extraction.

LayoutXLM [19]: It is a multi-modal pre-trained model
for multilingual document understanding, which jointly
model the text information, the layout information and the
visual information in the large-scale multilingual documents
to obtain more effective semantic representation. Due to
its pretraining on multilingual documents, it can be easily
adapted to resume document and achieve resume block
classification with token by token.

In addition, we also compared several variants of our
model to examine the relative influences of different modules
on performance:

Our Method(w/o KD) is a variant of our method without
using knowledge distillation.

Our Method(w/o WMP) is a variant of our method
without using word-masking prediction in the pre-training of
the masked layout-language model.

Our Method(w/o SCL) is a variant of our method without
using dynamic sentence-masking prediction in self-supervised
contrastive learning.

Our Method(w/o DNSP) is a variant of our model
without using dynamic next sentence prediction mechanism.

4) Evaluation Metrics: Since our model accepts serialized
2-D resume documents as the inputs, we follow the evaluation
metrics of document layout analysis task [52] instead of
the typical IOB-tagging evaluation. Specifically, we compute
Precision, Recall and F1 score as metrics for each kind of
resume semantic structure, which are defined as follows:

P =
Area of Ground truth tokens in Detected tokens

Area of all Detected tokens
, (13)

R =
Area of Ground truth tokens in Detected tokens

Area of all Ground truth tokens
, (14)

F1 =
2 ∗ P ∗R
P +R

, (15)

where P and R denote the precision and recall, respectively.
5) Results: Table II shows the overall performance of our

proposed method as well as the baseline methods. Among
these baselines, “BERT+CRF” and “HiBERT+CRF” are tex-
tual information based non-pretrained models, and the other
two baselines are multi-modal pretrained models. From the
Table II, we can clearly observe that our model performs
the best F1 score except “PInfo” tag. Compared with “Lay-
outXLM”, our model achieves obvious improvements on 6
tags. It improves 7.39%, 6.98%, 6.59%, 4.05%, 4.04% and
3.03% on WorkExp, ProjExp, Summary, Awards, SkillDes, and
Title tags, respectively. In addition, we can find that the pre-
trained models achieve better performance than non-pretrained
models that validates the necessity and importance of self-
supervised training. Moreover, we also compare the average
running efficiency on one resume. Obviously, “HiBERT+CRF”
and our method run more quickly. The main reason is that
the two methods work on the sentence-level, while the other
three baselines run on the token-level. Compared with the
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TABLE II
THE PERFORMANCE OF RESUME BLOCK CLASSIFICATION: F1 SCORE (RECALL/PRECISION)(IN %)

BERT+CRF HiBERT+CRF RoBERTa+GCN LayoutXLM Our Method

Tags

PInfo 77.88 (78.03 / 77.74) 73.28 (68.60 / 78.64) 89.95 (92.38 / 87.65)) 92.99 (95.53 / 90.58) 91.75 (95.91 / 87.93)
EduExp 63.95 (61.47 / 66.64) 60.50 (54.89 / 67.38) 88.68 (91.16 / 86.34) 90.85 (93.06 / 88.73) 91.00 (91.42 / 90.58)

WorkExp 60.77 (53.10 / 71.03) 56.25 (53.81 / 58.92) 84.72 (82.11 / 87.50) 86.20 (83.28 / 89.32) 93.59 (92.52 / 94.68)
ProjExp 66.51 (81.18 / 56.33) 59.88 (69.16 / 52.79) 85.68 (87.72 / 83.74) 86.25 (88.58 / 84.03) 93.23 (95.83 / 90.76)

Summary 43.42 (51.92 / 37.32) 36.60 (28.32 / 51.73) 83.95 (83.72 / 84.19) 85.10 (84.63 / 85.57) 91.69 (90.28 / 93.14)
Awards 15.31 (39.18 / 9.51) 10.48 (9.46 / 11.74) 70.12 (77.51 / 64.02) 71.23 (77.22 / 66.09) 75.28 (74.32 / 76.26)
SkillDes 40.94( 33.07 / 53.72) 35.96 (35.05 / 36.91) 87.01 (86.80 / 87.23) 88.64 (88.71 / 88.58) 92.68 (92.63 / 92.74)

Title 43.10 (28.77 / 85.86) 37.25 (26.24 / 64.14) 84.88 (75.86 / 96.33) 84.77 (75.03 / 97.41) 87.80 (80.93 / 95.94)

Time / Resume 3.26s 0.19s 3.46s 3.88s 0.27s

TABLE III
THE RESULT OF ABLATION TEST: F1 SCORE (RECALL/PRECISION)(IN %)

Our Method w/o KD w/o WMP w/o SCL -w/o DNSP

Tags

PInfo 91.75 (95.91 / 87.93) 89.91 (94.32 / 85.89) 87.39 (92.73 / 82.64) 78.85 (84.62 / 73.81) 83.30 (89.03 / 78.26)
EduExp 91.00 (91.42 / 90.58) 89.35 (89.84 / 88.86) 87.22 (88.23 / 86.24) 79.79 (80.42 / 79.16) 83.93 (84.67 / 83.21)

WorkExp 93.59 (92.52 / 94.68) 88.94 (84.21 / 94.23) 86.20 (82.66 / 90.05) 79.81 (76.65 / 83.25) 83.66 (80.62 / 86.94)
ProjExp 93.23 (95.83 / 90.76) 88.79 (95.65 / 82.84) 86.05 (92.74 / 80.26) 77.13 (84.42 / 71.01) 82.17 (88.93 / 76.36)

Summary 91.69 (90.28 / 93.14) 90.06 (93.21 / 87.12) 88.03 (90.25 / 85.92) 79.01 (81.86 / 76.35) 84.26 (86.93 / 81.74)
Awards 75.28 (74.32 / 76.26) 71.91 (79.84 / 65.42) 69.57 (78.22 / 62.64) 60.73 (70.83 / 53.15) 66.03 (75.78 / 58.51)
SkillDes 92.68 (92.63 / 92.74) 89.84 (86.35 / 93.62) 88.46 (85.74 / 91.35) 79.34 (76.84 / 82.01) 84.42 (81.48 / 87.57)

Title 87.80 (80.93 / 95.94) 85.37 (78.46 / 93.62) 83.85 (77.72 / 91.04) 75.90 (69.75 / 83.25) 80.33 (74.21 / 87.56)

TABLE IV
MAIN RESULTS OF INTRA-BLOCK INFORMATION EXTRACTION: F1 SCORE (RECALL/PRECISION)(IN %)

Blocks Tags D&R Match BERT+BiLSTM+CRF BERT+BiLSTM+FCRF AutoNER Our Method

PInfo

Name 69.59 (56.52 / 90.54) 85.10 (85.27 / 84.93) 93.03 (93.82 / 92.26) 94.38 (95.45 / 93.33) 97.52 (98.38 / 96.67)
Gender 92.76 (87.32 / 98.93) 93.00 (94.32 / 91.72) 95.41 (96.67 / 94.18) 96.17 (97.13 / 95.22) 98.66 (99.41 / 97.92)

PhoneNum 86.74 (80.25 / 94.37) 91.83 (92.87 / 90.82) 93.88 (95.26 / 92.53) 95.86 (97.32 / 94.45) 98.51 (99.31 / 97.72)
Email 87.98 (80.26 / 97.34) 90.95 (91.73 / 90.19) 93.35 (94.28 / 92.43) 95.46 (96.21 / 94.73) 98.31 (99.07 / 97.56)
Age 82.06 (73.63 / 92.68) 84.85 (85.53 / 84.18) 87.54 (88.89 / 86.24) 89.48 (90.73 / 88.26) 92.98 (93.62 / 92.35)

EduExp

College 66.35 (50.45 / 96.88) 71.57 (70.35 / 72.83) 78.10 (77.68 / 78.52) 80.04 (79.93 / 80.16) 85.59 (85.31 / 85.87)
Major 66.37 (51.37 / 93.76) 70.97 (71.23 / 70.72) 76.44 (76.37 / 76.52) 78.53 (78.24 / 78.83) 83.75 (83.77 / 83.72)
Degree 83.30 (72.69 / 97.53) 88.08 (83.52 / 93.16) 90.23 (85.48 / 95.55) 91.14 (86.24 / 96.62) 93.55(89.48 / 98.00)
Date 82.95 (73.72 / 94.83) 86.73 (85.36 / 88.15) 88.43 (87.21 / 89.69) 90.31 (88.94 / 91.73) 92.82 (91.07 / 94.63)

WorkExp
Company 60.22 (44.67 / 92.36) 69.35 (68.43 / 70.29) 76.80 (75.94 / 77.67) 77.92 (76.05 / 79.89) 82.74 (82.13 / 83.36)
Position 55.42 (39.68 / 91.83) 65.80 (63.37 / 68.42) 74.88 (74.74 / 75.02) 77.13 (76.47 / 77.81) 83.45 (81.27 / 85.81)

Date 83.62 (74.28 / 95.65) 86.78 (85.34 / 88.26) 88.74 (87.16 / 90.37) 90.55 (88.92 / 92.25) 92.76 (90.78 / 94.82)

ProjExp
ProjName 43.23 (28.47 / 89.79) 63.24 (61.36 / 65.24) 73.37 (72.68 / 74.07) 75.53 (75.52 / 75.54) 80.19 (78.34 / 82.12)

Date 83.90 (75.22 / 94.84) 86.41 (84.62 / 88.27) 88.20 (86.37 / 90.11) 89.57 (87.74 / 91.48) 91.78 (89.85 / 93.79)

best baseline, i.e., ”LayoutXLM”, our model improves about
15 times for the running efficiency that meets the latency
performance of online model deployment.

6) Ablation Test: We also conduct a ablation test to validate
the effectiveness of different modules. The experimental re-
sults are shown in Table III. We can note that the performance
of our model decreases more or less if we remove each kind
of module. Particularly, the performance decreases the most
and the second when we respectively remove self-supervised
contrastive learning (SCL) and dynamical next sentence pre-
diction (DNSP) that validate the importance and effectiveness
in our self-supervised training objectives for the document-
level encoder. In addition, we can find that the knowledge
distillation (KD) trick increases the performance of our model

due to the enhancement of training data.

B. Evaluation on Intra-block Information Extraction

1) Datasets: Based on the above resume document dataset
used in the task of resume block classification, we first use
the PDF parsing tool to extract the pure text from these PDF
documents. Then, the extracted text are used to build distantly-
supervised training data with the method in Section IV-B2.
It is worth noting that the average number of tokens of a
resume document are more than 1,600. Therefore, we utilize
the resume block classification approach to segment a training
document into several blocks and the text in each block will
be a training instance. We select 20,000 training samples as
the final training dataset, in which each training instance has
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TABLE V
ABLATION TEST FOR INTRA-BLOCK INFORMATION EXTRACTION: F1

SCORE(IN %)

Blocks Tags Our Method w/o HCS w/o SL w/o SD

PInfo

Name 97.52 95.87 94.56 85.10
Gender 98.66 97.54 96.23 93.00

PhoneNum 98.51 97.25 96.11 91.83
Email 98.31 97.12 96.08 90.95
Age 92.98 91.77 90.42 84.85

EduExp

College 85.89 83.68 81.28 71.57
Major 83.75 81.83 80.14 70.97
Degree 93.55 92.74 91.47 88.08
Date 92.82 91.53 90.46 86.73

WorkExp
Company 82.74 80.53 78.36 69.35
Position 83.45 81.57 79.62 65.80

Date 92.76 91.32 90.25 86.78

ProjExp
ProjName 80.19 78.67 76.62 63.24

Date 91.78 90.35 89.87 86.41

TABLE VI
SOME IMPORTANT STATISTICS OF INTRA-BLOCK INFORMATION

EXTRACTION DATASETS.

Datasets # of samples avg # of tokens avg # of entities

Train Set 20,000 362 3.5

Validation Set 400 359 4.1

Test Set 600 381 4.3

at least one matched entity mention. In addition, we also invite
10 experts to annotate 1,000 samples, in which 400 samples
will randomly selected as the validation dataset and the other
600 samples are the test dataset. Some important statistics are
summarized in Table VI.

2) Implementation Details: For the encoder backbone
BERT, we used a pre-trained model, RoBERTa-zh-base 8, to
initialize its parameters, which has 12 layers with 768 hidden
dimensions and 12 attention heads. For BiLSTM, we set the
hidden units to 256 and theirs hidden states are initialized as
zeros. The learning rate for BERT was set to 1e-5, but for
the BiLSTM layer and MLP layer, the learning rate was 1e-3.
In addition, we set the mini-batch size to 128 in the model
training. The threshold for the high-confidence token selection
is set to 0.8.

3) Baselines: We compare our model with several baseline
methods.

D&R Match: It performs string matching with the self-
built entity dictionaries and regular matching to obtain entity
mentions from the input text.

BERT+BiLSTM+CRF [50]: It deploys a typical bidi-
rectional LSTM networks with a CRF layer on the top of a
pre-trained BERT model, which is trained on the distant labels
automatically annotated by the methods in Section IV-B2.

BERT+BiLSTM+FCRF: Compared with the above
“BERT+BiLSTM+CRF”, we replace CRF layer with a fuzzy
CRF layer [53], which are more suitable for distantly-
supervised training data.

AutoNER [53]: Different from typical IOB tags, it adopts

8https://github.com/brightmart/roberta zh

a novel “Tie or Break” tagging scheme, and assigns ambiguous
tokens with all possible labels.

Noted that we deployed our method based on the structure
of “BERT+BiLSTM+MLP” with self-distillation framework,
in which the parameters are trained with the soft labels by
high-confidence token selections in Section IV-B5. In addition,
we also deployed several variants of our method to validate
the effectiveness of different modules:

Our Method (w/o HCS) is a variant of our method without
using high-confidence selection, only using soft pseudo labels.

Our Method (w/o SL) is a variant of our method only
using hard pseudo labels instead of soft labels.

Our Method (w/o SD) is a variant of our method without
using self-distillation framework, which is trained by the
distantly supervised training data with early stopping.

4) Evaluation Metrics: Following the typical IOB-tagging
evaluation metrics, we adopt Precision, Recall, F1 score to
evaluate the performance of proposed methods. Different from
the above metrics for resume block classification, the precision
returns a positive predictive rate, and the recall gives a true
positive rate. These can be defined as:

Precision =
The number of true positive prediction

Total number of positive prediction
, (16)

Recall =
The number of true positive prediction

Total number of actual positives
. (17)

F1 measure is a combination of precision and recall, and gives
the harmonic mean of them. It can be defined by:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
. (18)

5) Results: The overall performance for intra-block infor-
mation extraction is shown in Table IV. Clearly, we observe
that our method achieves the best performance on all tags,
which verifies the effectiveness of our method by combining
self-training learning with the distant supervision. In addition,
we find that the F1 scores for some tags, such as gender,
email, date, and degree, are more than 90% that indicates
these information are more easily extracted since some of
them have the fixed formats and the others have the finite
number of values. Meanwhile, we also note that “D&R Match”
method achieves very high precision score but low recall
score, resulting in a worst F1 score on most tags. It is
worth noting that “BERT+BiLSTM+CRF” are more suitable
for fully-supervised scenario. Therefore, it achieves worse
performances in the distantly supervised setting.

6) Ablation Study: To evaluate the relative influences of
different modules of our distantly supervised model, we con-
ducted ablation test for several variants as we mentioned
before. The experimental results are reported in Table V.
It is observed that our method achieves the best F1 score
when we use the soft labels with high confidence token
selection in the self-distillation framework. It is noted that the
performance for our method (w/o SD) decreases the most that
denotes the importance of self-distillation learning for distantly
supervised training. Obviously, it makes the model robust to
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Fig. 3. The case study for LayoutXLM (subfigure a, b and c) and our method (subfigure d, e and f) on a real-world resume with three pages.

the training data with noise. In addition, we observe that soft
label performs better than hard label slightly that indicates the
soft label has much more effective information than the hard
label. Moreover, high confidence token selection also improve
the performance of model that denotes such selection process
further enhances the model robustness to noise.

7) Case Study: To further illustrate the effectiveness of our
hierarchical multimodal pre-training model, we perform a case
study on resume block classification. As shown in Figure 3,
we present a real-word resume with three pages. To protect the
privacy of the candidate, we delete the personal information
and mask the sensitive information. In Figure 3, the subfigure
a, b and c are the results of resume block classification
generated by the best baseline LayoutXLM, and the subfigure
d, e and f are from our model. We observe that there exists
two differences for the two methods. The first difference
is Awards tag. In the original resume, the candidate inserts
some scholarship information into the education experience.
LayoutXLM classified all contents into EduExp tag, but our
method recognized the scholarship information as Awards
tag. Obviously, our approach is more rational. The second
difference is WorkExp tag. LayoutXLM recognized four work
experiences while our method gave three work experiences.
Clearly, LayoutXLM made a mistake at the second work
experience at page 2. The potential reason is that LayoutXLM
can not process all content in the resume at once so that it

is easy to miss the contextual information when it accepts
the local content as the input. In addition, It took 4.28s for
LayoutXLM to classify the resume block, while our method
only spent 0.29s. It improved about 15 times for the running
efficiency. Due to the effectiveness of our resume semantic
structure extraction, we have deployed our method on Baidu
Cloud as a solution for intelligent talent recruitment 9.

VI. CONCLUSION

In this paper, we divided the resume semantic structure
understanding as two typical tasks, i.e., resume block classi-
fication and intra-block information extraction. For the first
task, we proposed a multi-modal pre-training model based
on the hierarchical Transformer encoder, in which three self-
supervised objectives are designed to effectively train model
parameters that reduce the dependence on the labeled data. For
the second task, we introduced a distantly supervised sequence
labelling method trained in self-distillation based self-training
framework, which can improve the robustness of the model
against the noise data in the distant supervision scenario. Fi-
nally, extensive experiments on the real-world resume datasets
clearly demonstrated the effectiveness of our approaches. In
the future work, we will explore to apply our hierarchical pre-
training model in the other kinds of documents.

9https://cloud.baidu.com/solution/recruitment
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