
Applications and Challenges for Large Language
Models: From Data Management Perspective

Meihui Zhang†, Zhaoxuan Ji†, Zhaojing Luo†∗, Yuncheng Wu‡, Chengliang Chai†
†Beijing Institute of Technology,‡National University of Singapore

{meihui zhang, jizhaoxuan, zjluo, ccl}@bit.edu.cn wuyc@comp.nus.edu.sg

Abstract—Data management is indispensable for informed
decision-making in the big data era. In the meantime, Large Lan-
guage Models (LLMs), equipped with billions of model parame-
ters and trained on extensive data corpora, have recently achieved
record-breaking results in various real-world applications, such
as machine translation, content generation, information retrieval,
etc. The emergent abilities of LLMs, e.g., in-context learning and
advanced reasoning ability, have great potential to revolutionize
data management. In this paper, we first present some promising
categories of data management applications where LLMs can
be adapted, including data generation, data transformation,
data integration, and data exploration. We then discuss the
corresponding challenges for such adaption. Finally, we envision
potential solutions to these challenges.

Index Terms—Large Language Models, Data Management,
Vector Database.

I. INTRODUCTION

In the big data era, the ever-increasing volumes of data

generated are indispensable for making better-informed de-

cisions [1]–[4]. This requires proper data management that

covers a series of steps, from data storage and data pro-

cessing to governance of how data is used for analytics.

Meanwhile, recently, we have witnessed the success of Large

Language Models (LLMs) in various real-world tasks such as

machine translation [5], content generation [6], information

retrieval [7], etc. With hundreds of billions of model parame-

ters and pre-trained on large-scale corpora (e.g., millions of

books, articles, and web pages) [8], LLMs are showing a

revolutionary ability to understand, process, and synthesize

complex programming [9] and natural languages.

The rapid advancements in LLMs naturally lead to the

question of their adaptability for data management applica-

tions. Given the significant strides in LLM technology, it is

imperative for the data management community to thoroughly

examine the intersection between LLMs and data management,

uncovering new opportunities and technologies for enhancing

data management practices.

Specifically, LLMs possess several distinct advantages that

make them particularly suitable for data management. First,

the emergent abilities distinguish LLMs from other mod-

els. LLMs have the in-context learning (ICL) ability, which

can learn from a few examples and directly predict without

additional training. While existing machine learning meth-

ods in the data management field often have task-specific

∗ contact author

architectures, which require computationally intensive fine-

tuning or retraining the entire model for a new task, ICL is

training-free and has the potential to significantly reduce the

computational cost of adapting to a new data management task.

Furthermore, LLMs have the advanced step-by-step reasoning

ability, such as chain-of-thought [10], tree-of-thought [11],

etc. LLMs can utilize the prompting mechanism to perform

intermediate reasoning steps to derive the final answers, which

is particularly crucial for complex data management tasks like

multiple-step data processing.

Second, LLMs acquire essential generation skills via pre-

training on large-scale corpora, e.g., LLMs can synthesize

code from natural language. This capability can be exploited in

a wide range of data management applications like Structured

Query Language (SQL) generation and data transformation.

For example, a data analyst may ask: ”Write an SQL code

to show the top 10 items that have been searched in the last

month”. LLMs can generate an SQL draft for the data analyst

to verify and refine.

Third, the combination of LLMs and vector databases

achieves revolutionary performances in multi-modal data ap-

plications, encompassing text, tables, images, videos, and

more. LLMs can generate better embedding vectors for multi-

modal data, while vector databases can store these vectors

and accelerate the query processing with efficient indexing

mechanisms [12]. This integration not only facilitates the

incorporation of external knowledge into traditional relational

databases but also significantly improves the management of

diverse, heterogeneous multi-modal data.

In this paper, we envision that LLMs can be adapted to

promising applications in different steps of data management

that form a pipeline, including data generation, data transfor-

mation, data integration, and data exploration, to improve the

quality of data management, as shown in Figure 1. With the

ability to synthesize both text and code by learning from a few
examples, LLMs are promising for data generation tasks such

as SQL generation, training data generation, etc. Meanwhile,

the multi-step reasoning ability like chain-of-though is useful

for discovering the transformation logic or rules for different

data transformation scenarios such as transformation for SQL,

tables, and columns. For traditional difficult data integration
tasks, including entity resolution [13], [14] and column type

annotation [15], they have a high demand for understanding

the semantics of the underlying tabular data [16]. With the

advanced reasoning ability, LLMs have the potential for better

5530

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00441

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
04

41

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:44:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Data management application pipeline that LLMs can be adapted to.

table understanding to tackle data integration problems in a

more effective way. Moreover, LLMs are proven to have the

extraordinary ability to understand and process multi-modal
data. This would greatly revolutionize our approaches to multi-

modal data exploration.

While the adaptation of LLMs to data management ap-

plications holds great promise, it also presents substantial

challenges. We summarize these challenges from the database

system’s point of view, including LLM prompt optimization,

LLM query optimization, LLM cache optimization, LLM secu-
rity and privacy concerns, as well as LLM output validation.

First, data management users may have different requirements

across different domains, it is thus important to optimize

the prompts to make them user-friendly and easy to use.

Second, data management involves large data volumes and

a variety of data types (e.g., multi-modal data), which makes

it necessary to ensure cost-efficient and effective LLM queries

for wider accessibility. Third, while different data management

users may exploit LLMs to process similar tasks, there is

great potential to reuse previous LLM queries by caching

them. However, given that the LLM queries can hardly be

exactly matched, which is different from that in conventional

data management, it is challenging to design an efficient

and effective LLM cache for data management applications.

Fourth, the management of data, especially involving health

or financial information, demands stringent privacy protection.

This is crucial in light of privacy regulations (GDPR [17],

CCPA [18]) and the risks of data exposure during the LLM

training and inference stages. This triggers the need to develop

privacy-preserving LLM model training and inference. Last,

data management applications typically require deterministic

and highly reliable solutions. However, the probabilistic nature

of LLM outputs poses a challenge to their reliability. Incor-

porating new technologies, such as interpretable LLMs and

human-in-the-loop LLM exploitation, is crucial for validating

the LLM outputs for data management applications.

In this paper, we first present a number of promising data

management applications where LLMs can make significant

contributions. Subsequently, we discuss a series of challenges

arising from adapting LLMs to data management applications.

In the meantime, we envision new research directions for

Fig. 2. SQL generation with LLMs. The table information and SQL
constraints are input into LLMs. Then, LLMs reason the database tables and
output multiple SQL queries that meet the constraints. For example, LLM
can generate various types of SQL queries, such as simple query, multi-join
query, and sub-query.

developing novel technologies to address these challenges.

The rest of the paper is organized as follows. In Section II,

we present four categories of applications of LLMs in the data

management field. In Section III, we present challenges and

opportunities arising from adapting LLMs to data management

applications. Finally, we conclude the paper in Section IV.

II. APPLICATIONS OF LLMS IN DATA MANAGEMENT

In this section, we present a series of promising applications

that LLMs can be utilized in the four steps of the data

management application pipeline in Figure 1.

A. LLM for Data Generation

Data management tasks usually require a large volume

of data [19]. For example, to comprehensively detect the

bugs of DBMS, it is important to feed the database with a

huge number of SQL queries [20]. For another example, to

train better AI4DB models (e.g., learning-based cardinality

estimator, query optimizer and so on [21], [22]), it requires

substantial training data, like < query, execution time >
pairs. However, acquiring such vast real data is challenging

due to privacy issues and high collection costs (i.e., collecting

the execution time or cardinality of complex queries are

time-consuming). Next, we will illustrate two important data

generation tasks in data management, i.e., SQL generation and

training data generation, and demonstrate the application of

LLMs in these tasks.

1) SQL Generation: While the research on SQL generation

has been improving over the years, there are also some

challenges. The first challenge is how to generate complex

queries, e.g., SQL queries containing sub-queries or multi-

table joins, which need a deep understanding of the underlying

databases. The second challenge is how to generate SQL

queries that meet certain user-defined constraints [23]. For

example, it is significant to generate diverse and correctly

executable SQL queries for thoroughly testing the performance

of DBMS. Meanwhile, to detect the logic bugs of DBMS, we

need to generate some SQL queries with semantic equivalence,

which produce the same results [20].

LLMs can play a significant role in generating SQL queries

by leveraging their natural language understanding and gen-

eration capabilities, as shown in Figure 2. Specifically, LLMs

5531

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:44:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Training data generation with LLMs. We feed some labeled training
data (e.g., the < query, execution time > pairs) and database information
(e.g., the table schema, table statistical information, etc.) into LLMs. For the
coming query (i.e., the data to be predicted), LLMs can assist in predicting
its execution time.

can use their powerful reasoning ability to handle complex

SQL queries, e.g., LLMs can exploit textual data such as

comments and documentation to understand the databases. For

the generated SQL queries, LLMs can help users identify and

correct errors. They can provide suggestions for fixing syntax

errors or generating semantic-equivalence SQL queries. As

such, LLMs have the potential to simplify the process of SQL

generation.

2) Training Data Generation: Machine Learning (ML)

plays a prominent role in data management tasks [24]. For

instance, ML-based methods have been proposed for cardinal-

ity estimations, query optimization, etc. Meanwhile, tabular

data is usually used to train an ML model, where one column

is used as the data label and the other columns as features [4],

[16], [25]. As mentioned before, collecting the training data

for learning-based models is time-consuming, which leads

to inefficient training of these models. In addition, labels in

tabular data are often missing, which is a common challenge in

supervised learning tasks. Consequently, estimating the label

of training data is also important in data management tasks.

Previously, data programming [26] and data-driven [27] esti-

mating methods have been proposed. They mainly emphasize

the labeling accuracy, as opposed to the model generality, i.e.,

the trained models may not well align with human expectations

in some scenarios [28]. For the new data to be predicted, we

often need a small amount of labeled data to fine-tune the

model, even retrain from scratch.

LLMs can be powerful tools for training data generation.

For example, to generate training data for learning-based

query optimization, we can input a set of queries and their

corresponding execution times into the LLM and instruct it

to generate additional examples with corresponding execution

time, which is shown in Figure 3.

Additionally, LLMs can assist in annotation for missing

fields in existing tabular data. Specifically, we can first serialize

the attribute names and values into a natural language string for

each row in tabular data. Then, we use prompts to feed a few

labeled data (rows with complete data) to LLMs as examples

in the few-shot setting. Finally, we can exploit the LLMs with

powerful in-context learning (ICL) to infer the missing fields

with specific prompts.

Furthermore, LLMs can generate synthetic datasets that

mimic the characteristics of real-world tabular data, which can

be used to supplement the training data and diversify the use

scenarios for the models. After that, we can replace the tabular

data with the generated datasets to train the ML model1.

B. LLM for Data Transformation

Data transformation is a crucial step for data management

tasks. It involves converting data from one format or structure

into another [29], [30]. For example in healthcare applica-

tions [31]–[33], there are various sources of data, such as

patients’ demographics, diagnoses, lab tests, etc. However,

their formats are typically inconsistent, e.g., variations in

data units, abbreviations, different data types (structured or

unstructured), etc., which makes data analysis challenging.

If these data could be converted into a unified format (e.g.,

relational tables), it would make the analysis more convenient.

In the following, we illustrate some promising scenarios where

LLMs can be employed for data transformation.

1) Transformation for SQL: Natural Language to SQL

(NL2SQL) is a technology that converts natural language

queries into SQL queries, making it accessible for non-

technical domain experts to analyze and manipulate data. De-

spite the impressive performance of current NL2SQL methods,

their adaptability to real-world scenarios remains limited. The

biggest challenge for NL2SQL is how to reason the complex

natural language (NL) queries that contain multiple tables and

involve implicit matching between the entities in the NL query

and the database tables. LLMs have demonstrated remarkable

complex reasoning abilities across a range of domains and

tasks, and thus they have the potential for complex NL2SQL

tasks. Specifically, LLMs can exploit their chain-of-thought

ability to produce complex queries step by step given the

natural language, i.e., to generate sub-queries first which will

then be merged to get the final complex query.

As an extension of the NL2SQL application, the need for

converting the natural language to a sequence of SQL queries

(i.e., a transaction in DBMS) is also significant. We call this

application NL2Transaction. Let us consider an example in

the finance field: Alice wants to buy a laptop from Bob,

they agree on a price of $1,000, and Bob needs to pay $5

to the express company as the freight. This trading process

requires multiple SQL queries to complete, which is known

as a transaction in the database. LLMs can help people do

this transformation using their powerful step-by-step reasoning

abilities to generate a sequence of SQL queries.

2) Transformation for Tables: Relational tables can be

easily queried by SQL-based tools, which saves a lot of time

for downstream tasks, such as data analytics [4], [34], and

decision-making [35], etc. However, in real-world applica-

tions, most data does not conform to this data format. It is thus

significant to transform different types of data (e.g., XML [36],

JSON documents, spreadsheets in Excel) to structured tables.

We illustrate two examples in Figure 4. For transforming

semi-structured data to relational tables, we need to have

1The real-world tabular data may have missing data or privacy issues, so
the generated synthetic datasets can be considered new training datasets for
ML models.

5532

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:44:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Transformation for tables. There is massive semi-structured data in the
wild, such as XML, JSON documents, etc. It is laborious to query from them.
Meanwhile, the spreadsheets in Excel are inconvenient to query with SQL-
based tools. LLMs can help transform semi-structured data into structured
tables for easier queries.

a deep understanding of the semi-structured data, and then

extract the schema information [37], which is difficult. Another

example is transforming non-relational tables into relational

forms. Tables in the wild are commonly non-relational (e.g.,

spreadsheet or web tables, which may contain a hierarchical

structure, or redundant rows and columns) and are hard to

query with SQL-based tools. Prior works [30], [38] emphasize

the transformation performance, as opposed to generality.

Specifically, current state-of-the-art methods, which adopt ML

models, are significantly dependent on the training data, and

they often assume that all transformations are composed of

some pre-defined operators, which can hardly be satisfied.

LLMs will be a boost to these tasks from two aspects.

The first is to transform directly. We can input the source

format (e.g., XML and JSON) into LLMs, and design specific

prompts to generate the destination format (i.e., relational

tables). For example, we can guide LLMs to extract schema

information and the corresponding values from unstructured

or semi-structured data using prompts and then generate

relational tables. The second approach is code synthesis. Most

transformation tasks refer to generating a series of operators,

e.g., transpose, pivot, explode and so on [30]. We can exploit

LLMs to generate the operator sequences so that they can be

used to transform other unprocessed data. In this way, we only

need to call LLMs once or a few times, which consumes less

cost.

3) Transformation for Table Columns: In many data man-

agement tasks, we also need to transform two table columns,

which is to find the joinable columns between two tables. Note

that the joinable columns here mean that the two columns

can be transformed into each other by some operations. For

example, one date column has the form of “Aug 14 2023”,

while another date column in the other table has the form of

“8/14/2023”. These two values refer to the same day, but they

cannot be automatically merged.

A natural solution is to generate the transformation program

between two columns, where the first step is to mine the

patterns of the source column and the destination column. The

pattern of “Aug 14 2023” can be expressed as “< letter >
{3} < digit > {2} < digit > {4}”. It can also be

expressed as “Aug < digit > {2} 2023”. Obviously, the

latter pattern representation has a smaller scope. Overall, it is

difficult to find the accurate pattern for a specific column. With

the powerful reasoning capacity, LLMs will be competent for

mining column patterns to help perform transformation. To be

specific, LLMs are able to find the common characteristics

of each column, and then use the chain-of-thought ability to

generate the transformation rule.

Meanwhile, after the data patterns (such as column patterns

and row patterns) of the dataset are generated, we can utilize

them to improve data quality. In today’s ML systems, data is

significant for performance. However, data is often refreshed.

Consequently, data quality issues(e.g., data drift and schema

drift) [39], [40] may arise, which causes the model to be

inaccurate and need to be retrained. To validate whether the

data is updated is thus important. Hence, the column patterns

discovered by LLMs can help validate the data quality with

much more ease.

4) Data Preparation Pipeline: Data preparation

pipeline [41], [42] refers to the procedure of processing

data for the best performance on downstream ML tasks. For

example, in financial data analytics, data scientists aim to

predict the trend of a certain stock by extracting relevant

information from extensive datasets. This procedure consists

of data cleaning, data integration, data extraction, etc.,

which can be considered as a series of data transformation

operations. It is non-trivial for ML practitioners because there

are various data operations that lead to a huge search space.

Additionally, many domain experts may not have sufficient

knowledge of data processing programming languages, such

as Python and R. LLMs can be applied to data preparation

pipelines in two aspects. On the one hand, LLMs can

use the chain-of-thought ability and advanced reasoning

abilities [11] to recommend candidate pipelines, significantly

reducing the search space. On the other hand, LLMs can help

non-technical experts synthesize codes for every operation in

the data preparation pipeline.

C. LLM for Data Integration

Data integration is the core of the data management commu-

nity [43], which includes entity resolution, schema matching,

column type annotation, and data cleaning [44]–[47], etc. For

example, in the context of retail businesses, various inputs

from different individuals may cause issues such as inconsis-

tencies in formatting, as well as missing information, leading

retailers to draw inaccurate conclusions from the data. Data

integration facilitates more effective management of inventory

and revenue data for retailers. While a large number of

research has been proposed to solve these problems [16], [48],

data integration remains challenging because the proposed

solutions are only applicable in certain scenarios.

1) Entity Resolution, Schema Matching, Column Type An-
notation and Data Cleaning: These are common and signif-

icant tasks in the data management community and LLMs

can be naturally adapted to address them. For instance, we

can design a prompt as “Are the following entity descriptions

the same real-world entity?” in the entity resolution task.

5533

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:44:21 UTC from IEEE Xplore. Restrictions apply.

For another example, in the column type annotation task,

we first give the following prompts to the LLM “Given the

following column types: country, person, date, movie, sports.

You need to predict the column type according to the column

values. (1) USA||UK||France, this column type is country. (2)

Michael Jackson||Beckham||Michael Jordan, this column type

is person”, and ask “Basketball||Badminton||Table Tennis,

this column type is .” With the powerful natural language

processing and understanding ability, LLMs offer greater op-

portunities for performing data integration tasks [49].

2) Table Understanding: This task refers to comprehending

the tabular data [50], which includes databases, spreadsheets,

and so on. Table understanding is essential for data integration

applications and most state-of-the-art data integration methods

need to understand tables well [48]. Recent works on table

understanding mainly use pre-trained language models (PLMs)

like BERT-based models to resolve it [16], [51]. However,

there are still some challenges for better table understanding.

Specifically, for existing methods, less attention was paid to

capturing the semantic and structural information of tables

well. Also, PLMs cannot do well with large tables, i.e., tables

with a substantial number of rows or columns, due to the

input limitations of PLMs. With LLMs, the quality of table

understanding can be enhanced in the following ways.

First, while it is common to serialize the tabular data to

construct the input data to the PLMs for table understand-

ing, the serialization of prior works is usually simple (e.g.,

linearization by rows or by columns [51]), overlooking the

semantic information of tabular data. LLMs can enhance this

process by transforming each row or column of the tabular

data into a natural language description, thereby capturing the

table’s semantic information for improved table understanding.

Second, PLMs benefit from input that includes structural

information for reasoning of large volumes of tabular data.

SQL queries, which inherently contain both structural and

statistical data insights, can be leveraged in this context.

Therefore, LLMs can be exploited to transform SQL into

natural language expressions that capture both structural and

statistical information of data. Subsequently, these expressions

and the corresponding query results can be input to PLMs for

better table understanding. For example, we can construct the

SQL like “SELECT AVG(SALARY) FROM EMPLOYEE”,

which captures the statistical information of the table. Then,

we put this SQL and the corresponding result into LLMs,

which output a sentence like “the average salary of all the

employees in the EMPLOYEE table is $500”. Subsequently,

this sentence is used as one piece of training data for PLMs.

Third, to feed the PLMs with large tables, a natural solution

is to split the tables into chunks and train every chunk

separately. The method of splitting these tables is critical for

the model’s performance. LLMs can assist in splitting big

tables. Specifically, we can uniformly sample some data and

give statistical table information to LLMs. Then, LLMs reason

about them and provide split suggestions. Additionally, we can

let LLMs recommend specific compression methods to reduce

the size of tables or to choose representative tuples that will

be input to PLMs.

D. LLM for Data Exploration

Data exploration is a key step in mining insights from the

data [52], [53]. Nowadays, apart from structured data, a vast

amount of multi-modal data are generated and need to be

explored. For example, in healthcare applications [54]–[58],

electronic medical records (EMR) data consists of structured

data, text data, medical image data, etc. However, exploring

the multi-modal data using current data management methods

is not easy [59], which requires high human costs to integrate

multi-modal data and lacks convenient query tools like SQL.

With the abilities to process multi-modal data, LLMs can be

powerful tools for data exploration. In this section, we present

two potential data exploration tasks that LLMs can contribute

to, namely, multi-modal data lake management and LLMs as

databases.

1) Multi-Modal Data Lake Management: In real-world

applications, multi-modal data is usually stored in data lakes.

As a result, how to gain insights from the multi-modal data

lakes is significant for multi-modal data exploration. However,

current methods for exploring multi-modal data have difficul-

ties in processing the data [59], e.g., entity resolution, data

transformation, data query, etc. Moreover, SQL queries are

not well supported in multi-modal data lakes, which hinders

users from effectively exploring the data, such as querying,

processing, and analyzing the data.

With LLMs, users can query multi-modal data with much

more ease. Specifically, items of different modalities in the

data lakes can be encoded in the same embedding space, by

using an LLM that has been pre-trained with a huge volume

of multi-modal data, e.g., relational databases, documentation,

log files, knowledge graphs, etc. With this unified representa-

tion of different modalities, the query problem can be turned

into the similarity search problem among embedding vectors.

Different from traditional search which uses table titles and

column names, the query process using LLMs can take the

semantics into consideration.

2) LLM as Databases: Traditional queries over databases

are on relational data, which cannot work for other modalities

of data such as text and images. However, with the increasing

amounts of multi-modal data, the querying and processing of

these non-relational data types are becoming necessary.

One promising application of adapting LLMs for querying

multi-modal data is to query LLMs as databases [60]. This will

enable users to effectively query data across different modal-

ities using SQL queries. Specifically, SQL queries can be

decomposed by query optimization as in traditional databases.

The decomposed sub-queries extract multi-modal information

from corresponding LLMs, just like searching from tables in

traditional databases.

E. Further Discussion

In previous sections, we have envisioned a series of promis-

ing data management applications where LLMs can excel.

However, there are some applications that LLMs are not

5534

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:44:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. An overview of the challenges and opportunities.

suitable for. The first category is numerical data understand-

ing tasks. LLMs possess strong text reasoning capabilities,

but they have poorer comprehension of numerical data. For

instance, when floating-point data is inputted into LLMs as

strings, it often results in loss of its inherent meanings [61].

The second category is data management applications that

require low latency and high throughput, such as cardinality

estimation, query optimization and transaction processing [62].

LLMs are very expensive at inference [63], which may result

in poor performance on these applications.

III. CHALLENGES AND OPPORTUNITIES

From the above data management applications where LLMs

can be adapted, we note there are technical challenges that

need to be tackled for better data management quality. From

the database systems’ perspective, we outline these challenges,

encompassing LLM prompt optimization, LLM query opti-

mization, LLM cache optimization, LLM security and privacy

concerns, and LLM output validation. An overview of the

challenges and opportunities is shown in Figure 5.

Typically, users in data management may have diverse

requirements across different domains, emphasizing the im-

portance of optimizing prompts for user-friendliness and ease

of use. Furthermore, the large volume of data with diverse

data types (e.g., multi-modal data) inherent in data manage-

ment necessitates cost-efficient and effective LLM queries to

enhance accessibility. Also, since different users may utilize

LLMs for similar tasks, reusing previous LLM queries through

caching presents potential benefits. However, the non-exact

match nature of LLM queries poses challenges in designing

an efficient and effective LLM cache. Moreover, the use of

LLMs in handling sensitive, proprietary organizational data

necessitates stringent data protection techniques, e.g., privacy-

preserving LLM model training and inference for data man-

agement applications. Last, the high reliability requirements in

data management applications pose new challenges to LLMs,

which are probabilistic models in nature. The incorporation

of new technologies, such as interpretable LLMs and human-

in-the-loop LLM exploitation, is crucial for validating LLM

outputs in the context of data management applications. In

what follows, we elaborate on these key challenges and discuss

potential solutions for effectively and efficiently adapting

LLMs in data management.

A. LLM Prompt Optimization

In data management, different users may have different re-

quirements; therefore, how to provide appropriate and effective

prompts for users to easily select and use is important. While

the design of prompts has been studied in the context of

Natural Language Processing (NLP) [64], prompting in data

management is more challenging as it demands a high degree

of domain knowledge. In the example of utilizing LLMs to

generate different SQL queries for logic bug detection in

databases, we need to provide comprehensive database schema

information and subsequently create sufficient SQL query

examples to assist LLMs in generating more varied and precise

results. Existing prompts for data management applications are

mainly generated manually or based on templates, which is

inefficient. Also, it is typically not effective because insuffi-

cient examples are provided. In this case, we envision that

selecting appropriate historical prompts and then using them

to generate new prompts automatically can be a good choice.

A key point here is historical prompt selection, for which we

discuss several opportunities below.

Considering prompts are typically represented as vectors,

vector databases are suitable for storing historical prompts for

selection. A promising research direction for better prompt

selection is to develop efficient and effective indexes. While

the common practice is to construct indexes for vector similar

search [65], [66], the vector with the highest similarity does

not necessarily indicate the optimal prompt for improving

LLM performance. We may need to design an indexing

method to cater to the optimal prompt. For instance, we

can incorporate the performance of LLMs as a target for

the learned index. Meanwhile, determining which historical

prompts should be stored within a limited budget is also

important. We envision that reinforcement learning algorithms

can be designed to determine the most promising prompts that

can increase the performance of LLMs.

B. LLM Query Optimization

Query optimization is a crucial component for enhancing

performance in traditional data management applications. It

is also important for LLM queries since data management

typically involves large data volumes and various data types

(e.g., multi-modal data). Next, we identify two key challenges

in LLM query optimization for data management applications

and present potential solutions to address them.

1) Cost-efficient LLM Query: The large volume of data in

data management applications can be very costly for LLMs

to process. For example, LLMs can facilitate the process

of transforming semi-structured data to structured data as

described in Section II-B. However, there may be hundreds

of thousands of HTML documents in reality. Given the latest

price of GPT-3.5 Turbo is $0.001/1k input tokens, and GPT4 is

5535

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:44:21 UTC from IEEE Xplore. Restrictions apply.

TABLE I
PRELIMINARY RESULTS ON LLM CASCADE.

Model babbage-002 gpt-3.5-turbo gpt-4 cascade
Accuracy 27.5% 82.5% 92.5% 92.5%
API Cost $0.0327 $0.0417 $0.8 $0.0512

Fig. 6. The procedure of the LLM cascade. A new query is sent to a sequence
of LLMs with size and cost spanning from small to large. Additionally,
a decision model is required to determine whether the LLM results are
acceptable.

$0.03/1k input tokens [67], reasoning these HTML documents

with LLMs can pose significant costs for both individual users

and organizations. Consequently, how to reduce the costs of

applying LLMs to data management applications is significant.

We discuss two opportunities for cost-efficient LLM queries.

LLM Cascade. As mentioned above, different LLMs have

various costs. And also, they have their own strengths for

various data management applications. If the queries that

need domain knowledge without much deep reasoning, the

performance of small LLMs (with less parameters) may be

similar to, or even surpass, that of large LLMs. For example,

in the healthcare data labeling [33], we need to label whether

the patients have a certain disease. For diseases with obvious

symptoms, such as heart disease, only a small LLM is needed

for classification. Overall, using smaller LLMs that mimic the

performance of large LLMs can help cost reduction. However,

how to select appropriate LLMs for a given data management

task is the biggest challenge. A possible solution is the LLM

cascade, as shown in Figure 6. We can send a query to

a sequence of LLMs. These models vary in size and cost,

spanning from small to large. A decision model can be trained

to determine whether a more expensive and larger LLM is

needed. If the less expensive LLMs can consistently produce

reliable results, there will be substantial cost savings.

Some preliminary results are shown in Table I. We first se-

lect 40 queries from HotpotQA [68] and then assess the perfor-

mance of these queries on three LLMs and LLM cascade. The

results show that the performance of LLMs improves as the

cost (model complexity) increases, e.g., the accuracy of gpt-4

is 92.5% while babbage-002 is 27.5%. LLM cascade achieves

performance similar to gpt-4 but with significantly lower costs,

which demonstrates that LLM cascade is a promising solution.

Query Decomposition and Combination. In real-world ap-

plications, a proxy connected to popular LLMs such as GPT-

3.5 Turbo or GPT-4 often receives multiple simultaneous

queries. Many of these queries may be similar, presenting

an opportunity to reduce LLM usage costs by exploiting this

query similarity. For example, several users need to translate

natural language queries into SQL, i.e., NL2SQL described

in Section II-B. The LLM provider may encounter multiple

queries simultaneously, as exemplified below:

• Q1:“What are the names of stadiums that had concerts in

2014 or had sports meetings in 2015?”;

• Q2:“What are the names of stadiums that had the most

number of concerts in 2014”;

• Q3:“Show the names of stadiums with most number of

sports meetings in 2015”;

• Q4:“Show the names of stadiums that had concerts in

2014 and had sports meetings in 2015 ”;

• Q5:“Show the names of stadiums that had concerts in

2014 but did not have sports meetings in 2015”.

Given the similarities among these queries, they can be

decomposed into sub-queries for more efficient query han-

dling. The detailed decomposition is shown in Figure 7. For

example, Q1 and Q2 have a common sub-query, i.e, Q11 and

Q21 are the same sub-query. Likewise, Q3 and Q4 also have

a common sub-query. As a result, we can call LLMs only

once for the common sub-query to minimize the total costs

of LLMs. However, determining which (sub-)queries to input

into LLMs is non-trivial. Specifically, the total costs (i.e., the

total number of input tokens) of decomposed sub-queries (i.e.,

Q11, Q12, Q13) is larger than the original query Q1. That is,

query decomposition may even increase the LLM costs. But,

if we consider all five queries, it is cost-efficient to input the

sub-queries into LLMs. Therefore, efficient algorithms need

to be designed to find the set of (sub-)queries with minimum

costs that can cover all the original queries.

Furthermore, query combination can also decrease the costs

of LLMs. Specifically, to enhance the quality of LLM outputs,

it is common to provide some examples in the prompt. For

multiple queries, there may be overlapping examples in their

respective prompts. To save the cost, several queries can be

combined into a single query to eliminate redundant examples.

In this context, we need to explore how to combine queries

with similar examples, aiming to reduce the costs.

Last, query decomposition and combination can be ex-

ploited together to reduce the costs of querying LLMs for data

management applications. We can first decompose complex

queries into simpler ones2. After the query decomposition,

the same or similar sub-queries can thus be found. Subse-

quently, we exploit query combinations for queries or sub-

queries to further reduce the costs of LLMs. As an additional

benefit, query decomposition and combination can improve the

accuracy of LLM outputs. Specifically, query decomposition

can decompose complex queries into simpler sub-queries,

which are easier for LLMs to handle. Additionally, after query

combination, the number of examples in the prompt will

increase for each query, which can help LLMs reason the query

better.

To evaluate the above vision, we craft a set of NL2SQL

data inspired by the Spider dataset [69], and then use DAIL-

SQL [70] to measure the performance of query decomposi-

2The query decomposition methods are different for different data manage-
ment tasks.

5536

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:44:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. An illustration of query decomposition. The queries colored blue
are the original queries. The sub-queries colored yellow are the decomposed
queries, e.g., Q1 can be decomposed into Q11, Q12, and Q13. Different
queries may have the same sub-queries. For example, Q11 and Q21 are the
same sub-query, so they only need to call the LLM once.

TABLE II
PRELIMINARY RESULTS ON QUERY DECOMPOSITION AND COMBINATION.

Origin Decomposition
Decomposition
+Combination

Accuracy 79% 91% 91%
API Cost $0.435 $0.289 $0.129

tion and combination. The preliminary results are shown in

Table II. We find that query decomposition can reduce costs

while improving accuracy. This is because query decomposi-

tion can reuse sub-queries, thereby decreasing costs, and in the

meantime, the sub-queries tend to be simpler, increasing the

possibility of converting them into correct SQL. Additionally,

query combination can further reduce the cost by eliminating

redundant examples.

2) Multi-modal Data Query: LLMs can be exploited to

manage multi-modal data because they have the extraordinary

ability to understand and process the data. However, querying

multi-modal data is challenging as it needs to extract relevant

information from various modalities, striving to provide a

reasonable result. For example, a user may ask a query that

encompasses data from various modalities, including text,

images, and tables. In this scenario, multi-modal data is typ-

ically stored as embedding vectors and retrieved by different

similarity functions. Hence, the quality of embedding vectors

and the performance of vector search are two important factors

to consider for improving the effectiveness and efficiency of

adapting LLMs to multi-modal data management.

For the quality of embedding vectors, we need to consider

the granularity of embeddings. Specifically, for tables, an

embedding can represent a table or specific rows (columns) of

the table. For text, an embedding may represent a document

or specific paragraphs of a certain document, and for images,

an embedding can represent a single image or several similar

images. Varied granularities can influence query performance

differently. Consequently, we envision the necessity of choos-

ing an appropriate granularity for different data modalities to

precisely represent the data information.

Next, we should consider how to query effectively and

efficiently. For multi-modal data applications, merely using

embedding vectors for querying may lose important informa-

tion, and similar vectors may not represent related information.

For example, given the query “Could Prof. Michael Jordan

play basketball”, there are texts in the data lake “Michael

Jordan, the greatest basketball player of all time, found the

secret to success” and a table containing information about

university professors, including details about Michael Jordan.

The embedding vectors of the query and the texts are similar

but not relevant, whereas the table is related to the query. So

only using vector search is not enough to query accurately.

Supplement information is needed to assist the query, e.g.,

attribute information such as entity types, to filter some inaccu-

rate items. However, how to efficiently search in this scenario

is also a challenge, which is known as attribute filtering [71].

For this hybrid search that involves both vector and non-vector

data, one key consideration is the order of filtering. If there is a

small number of candidates after the attribute search, then it is

better to search by attributes first. Conversely, the vector search

should be performed first. An adaptive mechanism should be

designed to determine the order of attribute search and vector

data search for different scenarios. We envision that learning-

based methods can mitigate this limitation. For example, we

can extract some significant features of the searched data and

historical queries, and then train a classification model to

predict which order to use for a new query. We can also exploit

reinforcement learning-based methods to make decisions based

on past query workloads.

Another challenge for attribute filtering comes from the

approach of ”vector search first”. Specifically, we denote k as

the number of items returned by the vector search. In reality,

all the k items may not meet the attribute constraints, leading

to null value returned. So in production environments, k is

often set as a large number to improve the accuracy, which

may degrade the efficiency of attribute filtering. A promising

solution is to develop machine learning models to predict an

appropriate k value for each query based on data distribution

and query workload or to take advantage of hyperparameter

optimization methods like Bayesian optimization to obtain a

good k value. Recent works [72], [73], which propose to tune

the knobs used in approximate nearest neighbor algorithms

through learning-based methods, are a good starting point.

C. LLM Cache Optimization

In reality, different data management users may process

similar tasks. For example, LLMs can aid users with limited

programming proficiency in generating code for each operation

in the data preparation pipeline, such as generating the codes

of normalization, feature selection, etc. These operations may

be reused by different users, leading to potentially redundant

queries for code generation. As a result, caching the previous

queries and the corresponding responses from LLMs can

improve the efficiency and effectiveness of similar queries. On

one hand, if a new query bears a high degree of similarity to

the cached responses or the cached queries, it is possible that

the responses of these similar cached queries can be reused

to reduce the response time and LLM costs, i.e., there is

no need to call LLMs again. On the other hand, the cached

5537

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:44:21 UTC from IEEE Xplore. Restrictions apply.

queries can be used to augment the new query, which is

related to the challenge of prompt selection described above.

Overall, by caching the commonly accessed history queries

or responses, better results are likely provided with reduced

response time [74]. However, there are two key factors we

need to consider regarding for effective and efficient caching

of vector representations.

First, different from traditional cache systems [75], [76],

which utilize an exact match between the new query and

cached queries, for LLMs, since the stored queries are in

the form of vectors3, the matching relies on the comparison

between vectors. In such a scenario, the exact match is not

effective. In contrast, identifying similar query vectors instead

of exactly the same query vector is a more practical solution.

However, how to determine the cache hits for the LLM cache

is challenging. Since similarity matching is adopted here,

how to define the similarity function is thus important. In

addition, we need to set the appropriate similarity threshold

for determining whether the history query is matched and this

similarity threshold should be different for various scenarios.

Second, how to design a memory-efficient caching algo-

rithm is also challenging. In most cases, the memory budget

is limited. We need to evict some useless data when the cache

space is full. However, traditional caching algorithms, such

as LRU and LFU [77], are not suitable as the scenario here

is more intricate. As described above, the cached data can

be (1) reused or (2) used as additional prompts for the new

query, both of which refer to cache hits. However, the two

cases are of different importance for LLMs. Specifically, case

(1) does not need to call LLMs again, but case (2) needs to

call LLMs. Consequently, they should have different weights

when considering eviction. For example, we can assign the

cached data of case (1) with a larger weight and evict the

cached data with the smallest weight when the cache is

full. Additionally, since query decomposition helps enhance

the similarity between queries as described in Section III-B,

caching sub-queries could improve the hit ratio. As a result,

after LLMs generate the results for the queries, we need to

decide whether to cache the original queries and sub-queries,

or refrain from caching based on the likelihood of future

access. Predictive methods, such as machine learning models,

can be designed to predict the probability of future access.

Table III shows some preliminary results. We use the same

dataset as in LLM Cascade in Section III-B. Note that we

randomly select 10 queries and query them twice to verify

the cache performance. In Table III, Cache(O) means we only

cache original queries, and Cache(A) means we cache both

original and sub-queries. It is observed that caching can reduce

the cost and Cache(A) can further improve performance. This

is because Cache(O) may cache incorrectly answered queries,

which are not helpful in improving performance. However, in

Cache(A), caching sub-queries, which exhibits higher accu-

racy, is beneficial for enhancing overall performance.

3Vectors can be regarded as “search key” of the cache, where both the
original queries and responses are also stored.

TABLE III
PRELIMINARY RESULTS ON LLM CACHE OPTIMIZATION.

w/o Cache Cache(O) Cache(A)
Accuracy 77.5% 77.5% 85%
API Cost $1.123 $0.842 $0.887

D. LLM Security and Privacy Concerns

A crucial consideration in data management is to ensure that

user’s data security and privacy is preserved for complying

with the increasingly strict regulations, such as GDPR [17]

and CCPA [18]. For example, when doctors utilize LLMs

to transform patient’s semi-structured data (e.g., diagnostic

report in XML format) or unstructured data (e.g., discharge

summary) to structured data (e.g., the CSV format), the

patient’s health data needs to be carefully protected in both

training stage and inference stage due to its high sensitivity.

There are three main challenges for privacy-preserving LLMs

in data management applications.

First, LLMs are typically deployed on the cloud or hosted

by third-party services, and users access the LLMs via API

requests with specific input data for inference. However, as

mentioned in the above example, the doctors need to send the

whole table of the patient’s health data to LLMs, which is often

not acceptable in practice. A straightforward solution is to

adopt open-source LLMs so that users can deploy the services

within their own regions. However, the open-sourced LLMs

may not be suitable and effective for various data management

applications. Another approach is to use privacy-preserving

technologies, such as trusted execution environment (TEE)

(e.g., Intel SGX [78], [79]) or cryptographic encryptions [80]

to ensure the cloud can provide services without knowing the

input data. Nevertheless, the TEE technique is shown to be

vulnerable to various side channel attacks [81], [82] while

the cryptographic technique incurs huge communication and

computation overhead. It calls for research to design secure

TEE algorithms that can resist various attacks and lightweight

cryptographic techniques for efficient LLM inference.

Second, for applications that require customized LLMs,

users need to utilize their own databases to train or fine-

tune the LLMs. For example, the doctors may want to train

(or fine-tune) a specific LLM to do data transformation for

high accuracy. Nonetheless, one user may not have sufficient

data for such training or fine-tuning. A natural solution is

data collaboration [83], where multiple users pool their data

together for more meaningful insights. Federated learning

(FL) [84], [85] has emerged as a promising paradigm for

multiple users to collaboratively train or fine-tune a machine

learning model [86] without disclosing the private data to

each other. However, how to securely and efficiently support

the LLM training under the FL paradigm still needs to be

investigated. Furthermore, the users tend to be heterogeneous

with regard to data distributions, qualities, quantities, and com-

putation capabilities. This makes the design space of the FL

strategies for LLMs complicated and challenging. A potential

solution is to use the reinforcement learning technique to

5538

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:44:21 UTC from IEEE Xplore. Restrictions apply.

adjust the FL training strategies for LLMs adaptively.

Third, since LLMs for the aforementioned data management

applications could be trained over a set of private datasets, the

LLMs must contain sensitive information about the training

datasets (e.g., health data). We note that there are numerous

attacks, such as model inversion attacks [87], membership in-

ference attacks [88], and feature inference attacks [89], which

allow malicious users to extract sensitive information from the

original training datasets in the inference stage. To address

these issues, a potential solution is to integrate differential

privacy (DP) [90] into the training process of LLMs [91], such

that the trained models are indistinguishable with respect to

whether a specific data is in or not in the training dataset. Still,

it is important to design new algorithms that inject minimal

noise into the training process while maximizing the model

utility of LLMs.

E. LLM Output Validation

Data management tasks typically have a high demand for

the reliability of the data. For example, in the data integration

step, e.g., data cleaning, an error will make the data less

usable [92]. Even 10% error may make the data meaningless

for real-world applications like healthcare analytics. Conse-

quently, the LLM outputs for data management applications

must be of high quality and should be verified and validated

before being used.

However, given that LLMs are probabilistic in nature and

the outputs are provided with uncertainty, how to ensure that

the results generated by LLMs are trustworthy and reliable is

challenging. In contrast, data management tasks involve less

uncertainty, and the errors generated by LLMs will greatly

affect the quality of adapting LLMs to data management tasks.

We envision two research directions to validate the LLM

outputs for data management tasks.

1) Interpretable LLMs: Interpretable techniques that pro-

vide easy-to-understand interpretations for the model are valu-

able tools for validating the LLM outputs. We can design

specific interpretable mechanisms such as causal inference, at-

tention learning and Bayesian modeling for the LLMs. Mean-

while, we input database-specific data, e.g., database docu-

ments (database manual, white paper, blogs, etc.), database

logs, database constraints, and structural information to the

model as external knowledge to guide the training and fine-

tuning, so that the model can integrate the database knowledge

to generate database-specific explanations for validation. For

this direction, we need to consider that the formats and forms

of interpretation should be different and customized for various

data management applications.

2) Human-in-the-loop LLM Exploitation: Feedback [93] is

an important source of information that can be incorporated to

validate the LLM outputs for data management applications.

We envision that the human-in-the-loop techniques developed

by the database community [94] can be a viable option. We can

define a score function, and then utilize crowdsourcing [95] for

scoring the LLM outputs. Specifically, we can invite humans to

participate in different reasoning steps of LLMs, (e.g., prompts

can be provided for humans to interact with the LLM in each

intermediate reasoning step), gathering feedback and eliciting

suggestions for LLM output validation.

IV. CONCLUSIONS

The LLM technologies have revolutionized a wide range

of real-world applications with their impressive emergent

abilities. While data management is indispensable for informed

decisions in the big data era, it is thus important for the

data management community to explore how LLMs can

contribute to better data management. In this paper, we first

present a number of data management applications where

LLMs can be adapted, and subsequently, we discuss the

corresponding challenges and envision research directions for

these challenges. We expect this paper to be one of the first

steps towards exploring the relationships between LLMs and

data management, and we encourage members from the data

management field to join us!

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for

their constructive comments. This work is supported by Na-

tional Key Research and Development Program of China

(2022YFB2405700), National Natural Science Foundation of

China (62072033) and National Natural Science Foundation

of China (62050099). Yuncheng Wu’s work is supported

by the National Research Foundation, Singapore under its

Emerging Areas Research Projects (EARP) Funding Initiative.

Any opinions, findings and conclusions or recommendations

expressed in this material are those of the author(s) and do not

reflect the views of National Research Foundation, Singapore.

Chengliang Chai is supported by the NSFC (62102215), CCF-

Huawei Populus Grove Fund (CCF-HuaweiDB202306).

REFERENCES

[1] C. Mohan, “Big data: Hype and reality,” Datenbanksysteme für Business,
Technologie und Web, 2015.

[2] B. C. Ooi, K.-L. Tan, S. Wang, W. Wang, Q. Cai, G. Chen, J. Gao,
Z. Luo, A. K. Tung, Y. Wang et al., “Singa: A distributed deep learning
platform,” in Proceedings of the 23rd ACM international conference on
Multimedia, 2015, pp. 685–688.

[3] Z. Luo, S. Cai, J. Gao, M. Zhang, K. Y. Ngiam, G. Chen, and W.-C.
Lee, “Adaptive lightweight regularization tool for complex analytics,” in
International Conference on Data Engineering, 2018, pp. 485–496.

[4] Z. Luo, S. Cai, Y. Wang, and B. C. Ooi, “Regularized pairwise
relationship based analytics for structured data,” Proceedings of the ACM
on Management of Data, vol. 1, no. 1, pp. 1–27, 2023.

[5] M. Ghazvininejad, H. Gonen, and L. Zettlemoyer, “Dictionary-based
phrase-level prompting of large language models for machine transla-
tion,” arXiv preprint arXiv:2302.07856, 2023.

[6] Y. Cai, S. Mao, W. Wu, Z. Wang, Y. Liang, T. Ge, C. Wu, W. You,
T. Song, Y. Xia et al., “Low-code llm: Visual programming over llms,”
arXiv preprint arXiv:2304.08103, 2023.

[7] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang, “Retrieval
augmented language model pre-training,” in International Conference
on Machine Learning, 2020, pp. 3929–3938.

[8] C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang, C. Ji, Q. Yan,
L. He et al., “A comprehensive survey on pretrained foundation models:
A history from bert to chatgpt,” arXiv preprint arXiv:2302.09419, 2023.

[9] Y. Lu, S. Chaudhuri, C. Jermaine, and D. Melski, “Data-driven program
completion,” arXiv preprint arXiv:1705.09042, 2017.

5539

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:44:21 UTC from IEEE Xplore. Restrictions apply.

[10] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 24 824–24 837, 2022.

[11] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and
K. Narasimhan, “Tree of thoughts: Deliberate problem solving with large
language models,” arXiv preprint arXiv:2305.10601, 2023.

[12] J. Mohoney, A. Pacaci, S. R. Chowdhury, A. Mousavi, I. F. Ilyas, U. F.
Minhas, J. Pound, and T. Rekatsinas, “High-throughput vector similarity
search in knowledge graphs,” Proceedings of the ACM on Management
of Data, vol. 1, no. 2, pp. 1–25, 2023.

[13] Y. Li, J. Li, Y. Suhara, J. Wang, W. Hirota, and W.-C. Tan, “Deep
entity matching: Challenges and opportunities,” Journal of Data and
Information Quality, vol. 13, no. 1, pp. 1–17, 2021.

[14] Y. Li, J. Li, Y. Suhara, A. Doan, and W.-C. Tan, “Deep entity matching
with pre-trained language models,” arXiv preprint arXiv:2004.00584,
2020.

[15] Y. Suhara, J. Li, Y. Li, D. Zhang, Ç. Demiralp, C. Chen, and W.-C. Tan,
“Annotating columns with pre-trained language models,” in Proceedings
of the 2022 International Conference on Management of Data, 2022, pp.
1493–1503.

[16] P. Yin, G. Neubig, W.-t. Yih, and S. Riedel, “Tabert: Pretraining
for joint understanding of textual and tabular data,” arXiv preprint
arXiv:2005.08314, 2020.

[17] European Commission, “Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation) (Text with EEA relevance),”
2016. [Online]. Available: https://eur-lex.europa.eu/eli/reg/2016/679/oj

[18] “California consumer privacy act. bill no. 375 privacy: personal infor-
mation: businesses. https://leginfo.legislature.ca.gov/.” 2018.

[19] I. Absalyamov, M. J. Carey, and V. J. Tsotras, “Lightweight cardinality
estimation in lsm-based systems,” in Proceedings of the 2018 Interna-
tional Conference on Management of Data, 2018, pp. 841–855.

[20] M. Rigger and Z. Su, “Testing database engines via pivoted query
synthesis,” in USENIX Symposium on Operating Systems Design and
Implementation, 2020, pp. 667–682.

[21] P. Sioulas and A. Ailamaki, “Scalable multi-query execution using
reinforcement learning,” in Proceedings of the 2021 International Con-
ference on Management of Data, 2021, pp. 1651–1663.

[22] A. Dutt, C. Wang, A. Nazi, S. Kandula, V. Narasayya, and S. Chaudhuri,
“Selectivity estimation for range predicates using lightweight models,”
Proceedings of the VLDB Endowment, vol. 12, no. 9, pp. 1044–1057,
2019.

[23] L. Zhang, C. Chai, X. Zhou, and G. Li, “Learnedsqlgen: Constraint-
aware sql generation using reinforcement learning,” in Proceedings of
the 2022 International Conference on Management of Data, 2022, pp.
945–958.

[24] W. Wang, M. Zhang, G. Chen, H. Jagadish, B. C. Ooi, and K.-L. Tan,
“Database meets deep learning: Challenges and opportunities,” ACM
Sigmod Record, vol. 45, no. 2, pp. 17–22, 2016.

[25] Z. Luo, S. Cai, C. Cui, B. C. Ooi, and Y. Yang, “Adaptive knowledge
driven regularization for deep neural networks,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, no. 10, 2021, pp.
8810–8818.

[26] B. Denham, E. M. Lai, R. Sinha, and M. A. Naeem, “Witan: unsu-
pervised labelling function generation for assisted data programming,”
Proceedings of the VLDB Endowment, vol. 15, no. 11, pp. 2334–2347,
2022.

[27] H. Zhang, L. Cao, S. Madden, and E. Rundensteiner, “Lancet: labeling
complex data at scale,” Proceedings of the VLDB Endowment, vol. 14,
no. 11, 2021.

[28] D. Zha, Z. P. Bhat, K.-H. Lai, F. Yang, and X. Hu, “Data-centric
ai: Perspectives and challenges,” in Proceedings of the 2023 SIAM
International Conference on Data Mining, 2023, pp. 945–948.

[29] Y. He, X. Chu, K. Ganjam, Y. Zheng, V. Narasayya, and S. Chaudhuri,
“Transform-data-by-example (tde) an extensible search engine for data
transformations,” Proceedings of the VLDB Endowment, vol. 11, no. 10,
pp. 1165–1177, 2018.

[30] P. Li, Y. He, C. Yan, Y. Wang, and S. Chauduri, “Auto-tables: Synthe-
sizing multi-step transformations to relationalize tables without using
examples,” arXiv preprint arXiv:2307.14565, 2023.

[31] H. Wang, Z. Luo, J. W. Yip, C. Ye, and M. Zhang, “Ecggan: A
framework for effective and interpretable electrocardiogram anomaly
detection,” in Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2023, pp. 5071–5081.

[32] K. Zheng, G. Chen, M. Herschel, K. Y. Ngiam, B. C. Ooi, and
J. Gao, “Pace: learning effective task decomposition for human-in-
the-loop healthcare delivery,” in Proceedings of the 2021 International
Conference on Management of Data, 2021, pp. 2156–2168.

[33] K. Zheng, S. Cai, H. R. Chua, M. Herschel, M. Zhang, and B. C. Ooi,
“Dyhealth: making neural networks dynamic for effective healthcare
analytics,” Proceedings of the VLDB Endowment, vol. 15, no. 12, pp.
3445–3458, 2022.

[34] M. Wawrzoniak, I. Müller, R. Fraga Barcelos Paulus Bruno, and
G. Alonso, “Boxer: Data analytics on network-enabled serverless plat-
forms,” in Conference on Innovative Data Systems Research, 2021.

[35] S. Cai, K. Zheng, G. Chen, H. Jagadish, B. C. Ooi, and M. Zhang,
“Arm-net: Adaptive relation modeling network for structured data,” in
Proceedings of the 2021 International Conference on Management of
Data, 2021, pp. 207–220.

[36] P. Bohannon, X. Dong, S. Ganguly, H. F. Korth, C. Li, P. Narayan, and
P. Shenoy, “Rolex: relational on-line exchange with xml,” in Proceedings
of the 2003 International Conference on Management of Data, 2003, pp.
673–673.

[37] C. Lei, A. Quamar, V. Efthymiou, F. Özcan, and R. Alotaibi, “Hermes:
data placement and schema optimization for enterprise knowledge
bases,” The VLDB Journal, vol. 32, no. 3, pp. 549–574, 2023.

[38] Z. Jin, M. R. Anderson, M. Cafarella, and H. Jagadish, “Foofah:
Transforming data by example,” in Proceedings of the 2017 International
Conference on Management of Data, 2017, pp. 683–698.

[39] M. Gertz, M. T. Özsu, G. Saake, and K.-U. Sattler, “Data quality on the
web (dagstuhl seminar 03362),” 2021.

[40] S. Sadiq, T. Dasu, X. L. Dong, J. Freire, I. F. Ilyas, S. Link, M. J.
Miller, F. Naumann, X. Zhou, and D. Srivastava, “Data quality: The
role of empiricism,” ACM SIGMOD Record, vol. 46, no. 4, pp. 35–43,
2018.

[41] Y. Li, X. Wang, Z. Miao, and W.-C. Tan, “Data augmentation for
ml-driven data preparation and integration,” Proceedings of the VLDB
Endowment, vol. 14, no. 12, pp. 3182–3185, 2021.

[42] Z. Luo, S. H. Yeung, M. Zhang, K. Zheng, L. Zhu, G. Chen, F. Fan,
Q. Lin, K. Y. Ngiam, and B. C. Ooi, “Mlcask: Efficient management
of component evolution in collaborative data analytics pipelines,” in
International Conference on Data Engineering, 2021, pp. 1655–1666.

[43] A. Halevy, A. Rajaraman, and J. Ordille, “Data integration: The teenage
years,” in Proceedings of the 2006 International Conference on Very
Large Data Bases, 2006, pp. 9–16.

[44] J. Zhang, Z. Luo, Q. Xu, and M. Zhang, “Pa-feat: Fast feature selection
for structured data via progress-aware multi-task deep reinforcement
learning,” in 2023 IEEE 39th International Conference on Data En-
gineering (ICDE), 2023, pp. 394–407.

[45] R. Fu, Y. Wu, Q. Xu, and M. Zhang, “Feast: A communication-efficient
federated feature selection framework for relational data,” Proceedings
of the ACM on Management of Data, vol. 1, no. 1, pp. 1–28, 2023.

[46] Z. Cai, C. Jermaine, Z. Vagena, D. Logothetis, and L. L. Perez, “The
pairwise gaussian random field for high-dimensional data imputation,”
in 2013 IEEE 13th International Conference on Data Mining, 2013, pp.
61–70.

[47] Z. Zhong, M. Zhang, J. Fan, and C. Dou, “Semantics driven embedding
learning for effective entity alignment,” in 2022 IEEE 38th International
Conference on Data Engineering (ICDE), 2022, pp. 2127–2140.

[48] N. Tang, J. Fan, F. Li, J. Tu, X. Du, G. Li, S. Madden, and M. Ouzzani,
“Rpt: relational pre-trained transformer is almost all you need towards
democratizing data preparation,” arXiv preprint arXiv:2012.02469,
2020.

[49] A. Halevy and J. Dwivedi-Yu, “Learnings from data integration for
augmented language models,” arXiv preprint arXiv:2304.04576, 2023.

[50] N. Chen, L. Shou, M. Gong, J. Pei, C. You, J. Chang, D. Jiang, and J. Li,
“Bridge the gap between language models and tabular understanding,”
arXiv preprint arXiv:2302.09302, 2023.

[51] H. Dong, Z. Cheng, X. He, M. Zhou, A. Zhou, F. Zhou, A. Liu,
S. Han, and D. Zhang, “Table pre-training: A survey on model archi-
tectures, pre-training objectives, and downstream tasks,” arXiv preprint
arXiv:2201.09745, 2022.

[52] H. Doraiswamy, E. Tzirita Zacharatou, F. Miranda, M. Lage, A. Aila-
maki, C. T. Silva, and J. Freire, “Interactive visual exploration of spatio-

5540

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:44:21 UTC from IEEE Xplore. Restrictions apply.

temporal urban data sets using urbane,” in Proceedings of the 2018
International Conference on Management of Data, 2018, pp. 1693–1696.

[53] P. Sinthong and M. J. Carey, “Exploratory data analysis with database-
backed dataframes: A case study on airbnb data,” in 2021 IEEE
International Conference on Big Data, 2021, pp. 3119–3129.

[54] C. Lee, Z. Luo, K. Y. Ngiam, M. Zhang, K. Zheng, G. Chen, B. C.
Ooi, and W. L. J. Yip, “Big healthcare data analytics: Challenges and
applications,” Handbook of large-scale distributed computing in smart
healthcare, pp. 11–41, 2017.

[55] J. Dai, M. Zhang, G. Chen, J. Fan, K. Y. Ngiam, and B. C. Ooi,
“Fine-grained concept linking using neural networks in healthcare,” in
Proceedings of the 2018 International Conference on Management of
Data, 2018, pp. 51–66.

[56] S. Ahmetaj, V. Efthymiou, R. Fagin, P. G. Kolaitis, C. Lei, F. Özcan, and
L. Popa, “Ontology-enriched query answering on relational databases,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 17, 2021, pp. 15 247–15 254.

[57] K. Yang, Z. Luo, J. Gao, J. Zhao, B. C. Ooi, and B. Xie, “Lda-
reg: Knowledge driven regularization using external corpora,” IEEE
Transactions on Knowledge and Data Engineering, vol. 34, no. 12, pp.
5840–5853, 2022.

[58] Z. Luo, S. Cai, G. Chen, J. Gao, W.-C. Lee, K. Y. Ngiam, and M. Zhang,
“Improving data analytics with fast and adaptive regularization,” IEEE
Transactions on Knowledge and Data Engineering, vol. 33, no. 2, pp.
551–568, 2019.

[59] Z. Chen, Z. Gu, L. Cao, J. Fan, S. Madden, and N. Tang, “Symphony:
Towards natural language query answering over multi-modal data lakes,”
in Conference on Innovative Data Systems Research, 2023, pp. 8–151.

[60] M. Saeed, N. De Cao, and P. Papotti, “Querying large language models
with sql,” arXiv preprint arXiv:2304.00472, 2023.

[61] A. Müller, C. Curino, and R. Ramakrishnan, “Mothernet: A foun-
dational hypernetwork for tabular classification,” arXiv preprint
arXiv:2312.08598, 2023.

[62] S. Wang, D. Maier, and B. C. Ooi, “Lightweight indexing of ob-
servational data in log-structured storage,” Proceedings of the VLDB
Endowment, vol. 7, no. 7, pp. 529–540, 2014.

[63] Z. Liu, J. Wang, T. Dao, T. Zhou, B. Yuan, Z. Song, A. Shrivastava,
C. Zhang, Y. Tian, C. Re et al., “Deja vu: Contextual sparsity for
efficient llms at inference time,” in International Conference on Machine
Learning, 2023, pp. 22 137–22 176.

[64] J. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and Q. Yang, “Why
johnny can’t prompt: how non-ai experts try (and fail) to design llm
prompts,” in Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, 2023, pp. 1–21.

[65] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Abbadi, “Vector
approximation based indexing for non-uniform high dimensional data
sets,” in Proceedings of the 2000 International Conference on Informa-
tion and Knowledge Management, 2000, pp. 202–209.

[66] H. D. Chon, D. Agrawal, and A. E. Abbadi, “Range and k nn query
processing for moving objects in grid model,” Mobile Networks and
Applications, vol. 8, pp. 401–412, 2003.

[67] “Openai api pricing,” 2023, https://openai.com/pricing.
[68] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and

C. D. Manning, “Hotpotqa: A dataset for diverse, explainable multi-hop
question answering,” arXiv preprint arXiv:1809.09600, 2018.

[69] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li,
Q. Yao, S. Roman et al., “Spider: A large-scale human-labeled dataset
for complex and cross-domain semantic parsing and text-to-sql task,”
arXiv preprint arXiv:1809.08887, 2018.

[70] D. Gao, H. Wang, Y. Li, X. Sun, Y. Qian, B. Ding, and J. Zhou, “Text-
to-sql empowered by large language models: A benchmark evaluation,”
arXiv preprint arXiv:2308.15363, 2023.

[71] C. Wei, B. Wu, S. Wang, R. Lou, C. Zhan, F. Li, and Y. Cai, “Analyticdb-
v: A hybrid analytical engine towards query fusion for structured and
unstructured data,” Proceedings of the VLDB Endowment, vol. 13,
no. 12, pp. 3152–3165, 2020.

[72] C. Li, M. Zhang, D. G. Andersen, and Y. He, “Improving approximate
nearest neighbor search through learned adaptive early termination,” in
Proceedings of the 2020 International Conference on Management of
Data, 2020, pp. 2539–2554.

[73] P. Zhang, B. Yao, C. Gao, B. Wu, X. He, F. Li, Y. Lu, C. Zhan, and
F. Tang, “Learning-based query optimization for multi-probe approxi-
mate nearest neighbor search,” The VLDB Journal, vol. 32, no. 3, pp.
623–645, 2023.

[74] F. Bang, “Gptcache: An open-source semantic cache for llm applications
enabling faster answers and cost savings,” in 3rd Workshop for Natural
Language Processing Open Source Software, 2023.

[75] M. Altinel, Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, B. G.
Lindsay, H. Woo, and L. Brown, “Dbcache: Database caching for
web application servers,” in Proceedings of the 2002 International
Conference on Management of Data, 2002, pp. 612–612.

[76] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. Zdonik, “Anti-
caching: A new approach to database management system architecture,”
Proceedings of the VLDB Endowment, vol. 6, no. 14, pp. 1942–1953,
2013.

[77] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim, “On the existence of a spectrum of policies that subsumes the
least recently used (lru) and least frequently used (lfu) policies,” in
Proceedings of the 1999 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, 1999, pp. 134–143.

[78] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptology
ePrint Archive, p. 86, 2016.

[79] T. Lee, Z. Lin, S. Pushp, C. Li, Y. Liu, Y. Lee, F. Xu, C. Xu, L. Zhang,
and J. Song, “Occlumency: Privacy-preserving remote deep-learning
inference using SGX,” in MobiCom, 2019, pp. 46:1–46:17.

[80] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
USENIX, S. Capkun and F. Roesner, Eds., 2020, pp. 2505–2522.

[81] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems,” in IEEE S&P, 2015,
pp. 640–656.

[82] J. V. Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying microar-
chitectural timing leaks in rudimentary CPU interrupt logic,” in CCS,
D. Lie, M. Mannan, M. Backes, and X. Wang, Eds., 2018, pp. 178–195.

[83] Y. Wang, Y. Wu, X. Chen, G. Feng, and B. C. Ooi, “Incentive-
aware decentralized data collaboration,” Proceedings of the ACM on
Management of Data, vol. 1, no. 2, pp. 158:1–158:27, 2023.

[84] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving
vertical federated learning for tree-based models,” Proc. VLDB Endow.,
vol. 13, no. 11, pp. 2090–2103, 2020.

[85] Y. Wu, N. Xing, G. Chen, T. T. A. Dinh, Z. Luo, B. C. Ooi, X. Xiao,
and M. Zhang, “Falcon: A privacy-preserving and interpretable vertical
federated learning system,” Proc. VLDB Endow., vol. 16, no. 10, pp.
2471–2484, 2023.

[86] Z. Zhang, Y. Yang, Y. Dai, Q. Wang, Y. Yu, L. Qu, and Z. Xu,
“Fedpetuning: When federated learning meets the parameter-efficient
tuning methods of pre-trained language models,” in ACL. Association
for Computational Linguistics (ACL), 2023, pp. 9963–9977.

[87] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in CCS,
2015, pp. 1322–1333.

[88] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” IEEE S&P, pp. 3–
18, 2016.

[89] X. Luo, Y. Wu, X. Xiao, and B. C. Ooi, “Feature inference attack on
model predictions in vertical federated learning,” in 2021 IEEE 37th
International Conference on Data Engineering, 2021, pp. 181–192.

[90] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
CCS, E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, Eds., 2016, pp. 308–318.

[91] Z. Xu, Y. Zhang, G. Andrew, C. A. Choquette-Choo, P. Kairouz,
H. B. McMahan, J. Rosenstock, and Y. Zhang, “Federated learning
of gboard language models with differential privacy,” arXiv preprint
arXiv:2305.18465, 2023.

[92] F. Nargesian, A. Asudeh, and H. Jagadish, “Responsible data integration:
Next-generation challenges,” in Proceedings of the 2022 International
Conference on Management of Data, 2022, pp. 2458–2464.

[93] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” Advances in Neural
Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.

[94] G. Li, “Human-in-the-loop data integration,” Proceedings of the VLDB
Endowment, vol. 10, no. 12, pp. 2006–2017, 2017.

[95] E. Estellés-Arolas and F. González-Ladrón-de Guevara, “Towards an
integrated crowdsourcing definition,” Journal of Information science,
vol. 38, no. 2, pp. 189–200, 2012.

5541

Authorized licensed use limited to: East China Normal University. Downloaded on September 21,2024 at 07:44:21 UTC from IEEE Xplore. Restrictions apply.

