
PWA Navigation Capturing
(public version)
This Document is Public

Authors: , , ,Daniel Murphy Marijn Kruisselbrink Dibyajyoti Pal Robbie McElrath
Last Modified: Jul 31, 2024

https://bit.ly/pwa-navigation-capturing
AKA - “User Link Capturing”

Reviewer Status:🕑Requested,🙏
In Review,✓ Approved

Date Comments

scheib@chromium.org ✓ Aug 30, 20…

reillyg@chromium.org ✓ Sep 12, 2024

robko@chromium.org ✓ Aug 2, 2024

nasko@chromium.org 🕑

tsteiner@chromium.org ✓ Sep 12, 2024

yuchanghu@google.com ✓ Aug 16, 20…

One-page overview

Summary
Navigation capturing allows an app to 'capture' a user's click on a link to launch their app for that
link url. The current implementation of navigation capturing has unacceptable bugs and the
feature behavior must be re-evaluated and reimplemented. This will result in about 2 extra SWE
months of work required, and pushes the feature back from m121 to likely m130/31.

This feature is being released on Desktop platforms, specifically Windows, Mac, and Linux
(ChromeOS already has a shipped implementation that is unacceptable for our use-cases)

The new implementation can be described as 4 things:

mailto:dmurph@chromium.org
mailto:mek@chromium.org
mailto:dibyapal@google.com
mailto:rmcelrath@google.com
https://bit.ly/pwa-navigation-capturing

1. User Link Capturing: Tightly scoped navigation capturing to occur when a user clicks
on a link controlled by an app, in a way that is compatible with the web platform,
controllable by the user.

2. Same Browsing Group Fixes: Keep newly created frames in the same container (app
or browser) if the site opens an .

3. App Windows from Modified Clicks: Define what all types aux-click does & when it
opens an app window.

4. Redirection support: Redirections can become capturable for safe cases.

Platforms
Mac, Windows, Linux.
Sketch/future: reimplement on ChromeOS

Team
pwa-dev@chromium.org

Bug
crbug.com/351775835

Code affected
browser_navigator.cc, Navigation throttles, WebAppProvider system, and other
minorly related code..

Design Doc
bit.ly/pwa-navigation-handling-dd
Previous design (Internal Only): go/link-capturing-design-wml

http://crbug.com/351775835
https://bit.ly/pwa-navigation-handling-dd
http://go/link-capturing-design-wml

Goals
Feature Goal: Allow users to experience sites they have elected to install from link clicks.
"I installed Google Chat, when I click on a link to a Google Chat I want it to open in the app, not in a new
tab"

1. User Link Capturing: Support navigation capturing to occur when a user clicks on a link
controlled by an app, in a way that is compatible with the web platform, controllable by
the user.

○ Support `target=_blank` links that rely on opener relationships like (customized)
ctrl-click in Gmail.

○ Support `target=_blank` links that use Form post relationships
(crbug.com/331246741).

2. Same Browsing Group Fixes: Keep newly created frames in the same container (app
or browser) if the site opens an auxiliary browsing context.

3. App Windows from Modified Clicks: Define what aux-click behavior should be so that
this can open app windows when appropriate.

4. Redirection support: Redirection should result in the same behavior as if the final URL
was the one that was first navigated to.

5. Stretch / V2
○ POST requests should also be capturable.
○ Link clicks can also be captured from the OS while chrome is the default browser

(easy)
○ Link clicks can also be captured from the OS while Chrome is not the default

browser (harder, requires registering url patterns in the OS for the app)

Background- User "Link Capturing" & Launch
Handling
The following graphic illustrates the basic flowchart for user link capturing & launch handling:

http://crbug.com/331246741

Happening today: when a user launches an app from the OS or from chrome://apps, it
"launches" the app at the app's start_url, following the above launch handler algorithm.

Sadly, this is currently only implemented in the user agent. Integration with the OS for this
feature is a future task below: Allow link capturing from links in the OS.

Launch Handling
The launch handling algorithm is used to determine the behavior of loading that url for that app,
which the app controls. This can:

● Open a new window at the link url for that app.
● Focus on an existing app window and load the link url there.

https://developer.mozilla.org/en-US/docs/Web/Manifest/launch_handler#navigate-existing

● Focus on an existing app window & do nothing.
After, the LaunchParams is added to the LaunchQueue on the web contents, for the site to
handle as it wishes.

Link Capturing & User Setting
When a user clicks on a link that is determined to be 'capturable' and the user has link capturing
turned on for that app, the click is considered 'captured', and its navigation is sent to the launch
handling algorithm.

Thus, capturable means that the link click action can be captured by an app if:
● The app controls the url (AKA the url is within scope of the app).
● The 'link capturing' user setting on.

Defining when a link is 'capturable' is part of this document's proposal below.

This behavior was controlled by a user setting in the app's settings page like so (launched on
ChromeOS today):

The launch on Windows/Mac/Linux had two experiment arms: Default on, and default off. We
hope to ship the 'default on' version, where all installed apps capture links by default, and the
user can turn it off (we have IPH to help them).

Test with chrome://flags/#enable-user-link-capturing-pwa

Links:
● History below for CrOS launch & documents.
● See also PWA Link Capturing and URL Handling - The New Taxonomy 2021

Background - User-modified link clicks / Aux clicks
There are many ways users can modify a link click. For example, here is the right-click menu on
a link, assuming that link is to an installed app that has link capturing turned on (Google Meet):

https://docs.google.com/document/d/1w9qHqVJmZfO07kbiRMd9lDQMW15DeK5o-p-rZyL7twk/edit?usp=sharing
https://developer.mozilla.org/en-US/docs/Web/API/LaunchParams
https://developer.mozilla.org/en-US/docs/Web/API/LaunchQueue

From the Chrome browser: From an app browser

The user can also hold keyboard keys during a link, and these can apply to most of the ways
that a site can present a link:

● Ctrl/Command-Click: Open the url in a new (background) tab.
● Shift-Click: Open the url in a new window.

One of these link clicks is called a "user modified" link click.

"User modified" link clicks mostly create a fresh top-level traversable, all links can be
clicked in this way, and the spec has a section defining what this can do. However,
window.open() can behave differently - see Edge Case: window.open() with User-modified
clicks.

Background - "Same Browsing Group Fixes"
A link click can create different types of frame configurations - it can 'target' a frame on the
current document, the current document itself, or a new frame. It can also make a relationship
with the new frame, where it receives a javascript reference to the window (and the new frame's
window has an opener property) to reference the creator. Those windows / frames
(traversables) are part of the same browsing context group.

Basically when a new traversable is being created in the same browsing context group, the new
traversable must maintain the same window context (app or browser).

This is the largest area of 'breakage' that the current implementation has, see the problems with
current implementation below.

Background - Terminology
To fully describe how this "same browser group" is happening & the different ways links can
occur, the following terminology is necessary.

https://html.spec.whatwg.org/multipage/document-lifecycle.html#nav-traversal-ui:create-a-fresh-top-level-traversable

JavaScript

Navigable / Traversable / Browsing Context (go/browsing-contexts) - For our purposes, we
can generally use these names interchangeably. Each navigable has:

● "window" - the window associated with this.
● "target name" - the target name associated with this.
● "opener" - if the current navigable has an opener, or null if not.

Top-level browsing context / traversable - This navigable has its own group, does not have a
parent, and opener is null. Spec algorithm, and called from creating a top-level navigable.

Auxiliary Browsing Context - This has a window.opener, and is part of a browsing context
group with its "opener". This is created by default from window.open or from an anchor tag if it
specifies rel="opener".

Browsing Context Group / Same Browser Group (spec link and navigables, see
go/browsing-contexts) - Browsing contexts that can refer to each-other via things like
window.opener and window.frames are part of the same browsing context group.

Browsing contexts in the same group are basically tightly-coupled and can reference each other
through window.opener and (sometimes) window.frames. Same-origin browsing contexts in the
same group can synchronously script each other, and thus share a process & thread.
Otherwise, they may be distributed across processes, and can communicate asynchronously
with postMessage().

Navigation type: Anchor tag
● rel="opener" means the new browsing context will be part of the same browsing

context group as this window, and will have the window.opener property set.
● Note: By default, target="_blank" links are rel="noopener" (and thus no

window.opener, and a top-level browsing context is created)

create window
create
window
navigate current
window

Navigation type: Window.open(url, target, windowFeatures)
● Javascript API that opens a window and navigates it to the given url.
● This API synchronously returns a reference to the created window.
● Note: By default, "window.opener" is set on new windows unless "noopener" or

"noreferrer" is specified. (and thus a new auxiliary browsing context is created).

https://html.spec.whatwg.org/multipage/document-sequences.html#navigable
https://html.spec.whatwg.org/multipage/document-sequences.html#traversable-navigable
https://html.spec.whatwg.org/multipage/document-sequences.html#browsing-context
https://goto.google.com/browsing-contexts
https://html.spec.whatwg.org/multipage/document-sequences.html#creating-a-new-top-level-browsing-context
https://html.spec.whatwg.org/multipage/document-sequences.html#creating-a-new-top-level-traversable
https://html.spec.whatwg.org/multipage/document-sequences.html#browsing-context-group
https://html.spec.whatwg.org/multipage/document-sequences.html#child-navigables:tlbc-group
https://goto.google.com/browsing-contexts
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/a
https://html.spec.whatwg.org/multipage/links.html#get-an-element%27s-noopener
https://developer.mozilla.org/en-US/docs/Web/API/Window/open

JavaScript

JavaScript

● User-modified clicks only apply selectively when calling this API, as it doesn’t take a JS
event (but sometimes references the current one). See this table for how they work.

window.open("www.foo.com/a", "_blank")
window.open("www.foo.com/a", "_blank", "noopener")
window.open("www.foo.com/a", "_self")
window.open("www.foo.com/a") // The default target is "_blank"

Navigation type: Clients.openWindow(url) - Serviceworker API to open a new client window.
● Always creates a new top-level browsing context.

clients.openWindow(e.notification.data.url).then((windowClient) =>
(windowClient ? windowClient.focus() : null));

Navigation type: "about:blank navigation" - window.open('').location.href = url
● This always creates an auxiliary browsing context, as the window reference is given

back to the creating page.

Window.opener - This property is a direct javascript reference to the window that opened this
current window. This being set means that the current window and the opener are in the same
browsing context group.

Rel "noreferrer" and "noopener"
● "noopener" means that window.opener isn't populated, and it will create a new

browsing context group.
● "noreferrer" automatically implies noopener, and also means that referrer information

isn't included in the network request headers. This option is less common, as often the
'referrer' information is required for SEO.

Target (MDN, spec) - For both anchor links and window.open, this specifies where the link will
load. The important target here is _blank, which is the only target that is defined to always
create a new top-level browsing context.

Container (invented term here). "App A", "browser tab", "App A Tab" - This is the style of
window a browsing context lives in. This can be a browser tab, an app window, or an app tab in
'tabbed' mode.

Choosing a navigable for a navigation (link click / window.open): - spec algo - Given an
optional frame name, this algorithm determines if:

http://www.foo.com/a
https://developer.mozilla.org/en-US/docs/Web/API/Clients/openWindow
https://developer.mozilla.org/en-US/docs/Web/API/Window/opener
https://privacyinternational.org/guide-step/4150/http-referer-explanation
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/a#target
https://html.spec.whatwg.org/multipage/document-sequences.html#navigable-target-names
https://html.spec.whatwg.org/multipage/document-sequences.html#the-rules-for-choosing-a-navigable

● An existing browsing context is used.
● A new top-level browsing context will be created.
● A new auxiliary browsing context will be created with optional frame name.

Background - Redirection
Redirects make determining what context to open a link in more tricky, since the origin (and app)
associated with the link that was clicked might not be the same as that of the URL that
ultimately gets loaded.

Redirects can be split into server side and client side redirects. Server side redirects are
triggered by the server or service worker returning a 30x status code, while client side redirects
are implemented in javascript or using a `<meta>` tag after a page has loaded. As such client
side redirects are not “true” redirects, but Chrome does have code to identify certain client side
navigations as redirects.

Background - Putting it all together & common
behavior
Important conclusions & behaviors given the above terminology.

● When a user does a modified click on a link, it always opens in a new top-level browsing
context.

● When a user clicks on an anchor tag with opener or window.open without nooopener,
this creates an auxiliary browsing context.

○ This means that the new browsing context is part of a shared browsing context
group with the parent.

● The cases that create a new top-level browsing context (NOT an auxiliary browsing
context):

○ An anchor tag with target="_blank" without rel="opener".
○ A call to window.open(url, "_blank", "noopener")
○ All calls to clients.openWindow from a serviceworker.

● Browsing contexts that are in the same group often affect each other. Often closing
a parent browsing context will close its auxiliary contexts (via dev logic), as the auxiliary
contexts depend on the parent. (see how gmail's custom ctrl-click window works).

https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/loader/frame_loader.cc;l=280;drc=2017cd8a8925f180257662f78eaf9eb93e8e394d;bpv=1;bpt=1

Background - Problems with current
implementation
The current implementation intercepts links using a navigation throttle (Design Doc (Googler
only)) in the browser, which occurs after a WebContents is already created & added to a
browser window. If a navigation is 'capturable', it cancels the navigation & launches the
applicable app at the url.

This is bad because:
1. All navigation data & parameters are blown away (like window.opener, originator, etc),

breaking flows & some security things.
○ Internal bug: issuetracker.google.com/318422881

2. Browser flashes for app-to-app capture
○ When capturing between two apps (e.g. click on a youtube link from gmail app to

launch youtube), the browser is focused briefly as the interception happens after
a new WebContents is created & navigation begins.

3. Further bugs:
○ issuetracker.google.com/319142353
○ crbug.com/338216059: User link capturing breaking Chrome Remote Desktop

Gmail example: Gmail overrides ctrl-click on emails, opening a new window using
window.open, and that window loads the email contents using window.opener. When the
gmail parent window closes, it iterates over all created frames like this and closes them. (If it
doesn’t, the window.opener becomes null in that frame.) Internal bug:
http://issuetracker.google.com/318422881

Additionally the behavior exhibited by the CrOS implementation seems incorrect for Web
Platform links:

● Link navigations that specify a frame (_self or a specific frame name) are capturable,
even if a frame with that name already exists.

● Other bugs noticed in (Googler only) Link Capturing use-cases for URL Navigations, like
window.open from inside an app never launches an app window.

Design

Non User-Modified Clicks Changes
Assume that:

● A and B are apps and urls for respective apps
● C is not an installed app.

https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/apps/link_capturing/link_capturing_navigation_throttle.h
http://docs/document/d/1g0BRl-CZCqoQpfQbq3Vl9VagmNts3i9SjgpmWHp55e0?tab=t.0#heading=h.6h2cgepuljeg
http://issuetracker.google.com/318422881
http://issuetracker.google.com/319142353
http://crbug.com/338216059
http://issuetracker.google.com/318422881
https://docs.google.com/document/u/0/d/1WeyQF4a79EocpM4tGw3n-t-a-4w4_nDJGmz87Y0nUow/edit

● The link click isn't modified by the user.

Current
URL,
Container

URL for all types
of link
navigations

Browsing context type
created

Resulting behavior
(bold = new behavior)

A, App A A new top-level browsing
context

Capturable by App A

new auxiliary browsing
context

new App A container

existing browsing context navigate

B new top-level browsing
context

Capturable by App B

new auxiliary browsing
context

new App A container, with 'custom tab'
banner (standard)

existing browsing context navigate with 'custom tab' banner (existing
behavior)

C new top-level browsing
context

Browser tab

new auxiliary browsing
context

new App A container, with 'custom tab'
banner (standard)

existing browsing context navigate with 'custom tab' banner (existing
behavior)

A,
browser
tab

A new top-level browsing
context

Capturable by App A

new auxiliary browsing
context

Browser tab (or window)

existing browsing context navigate

B new top-level browsing
context

Capturable by App B

new auxiliary browsing
context

Browser tab (or window)

existing browsing context navigate

Should we be enqueuing launch params for auxiliary context creations?
Probably not, since there can be an out of scope navigation happening in the same app
context, and it doesn’t make sense to queue those params.

User-Modified Clicks Changes
Here is a table of the behavior for "user modified" link clicks.

Summary / precondition: To keep this simple, this ‘new behavior’ should only happen if the
navigating-to app has the ‘link capturing’ user setting turned on. Otherwise the behavior is
unchanged from the current behavior.
Exception: window.open() with auxiliary browsing contexts will work independent of the link
capturing user setting, see this section for more information.

Current URL,
Container

navigating-to
URL

Custom Link User Action Proposed behavior
(bold = new behavior)

A, App A A (installed app) shift-click new App A container

middle-click / metakey-click new App A container *

context-menu: new tab new browser tab

context-menu: new window N/A

context-menu: open link in A new App A Container

B (installed app) shift-click new App B container

middle-click / metakey-click new browser tab

context-menu: new tab new browser tab

context-menu: new window N/A

context-menu: open link in B new App B Container

C (not an app) shift-click new browser window

middle-click / metakey-click new browser tab

context-menu: new tab new browser tab

context-menu: new window N/A

context-menu: open link in N/A

A, browser tab A (installed app) shift-click new browser window

middle-click / metakey-click new browser tab

context-menu: new tab new browser tab

context-menu: new window new browser window

context-menu: open link in A new App A Container

B (installed app) shift-click new browser window

middle-click / metakey-click new browser tab

context-menu: new tab new browser tab

context-menu: new window new browser window

context-menu: open link in B new App B Container

C (not an app) shift-click new browser window

middle-click / metakey-click new browser tab

context-menu: new tab new browser tab

context-menu: new window new browser window

context-menu: open link in N/A

* if app A is 'tabbed' display mode, this can open a new tab in the current window rather than
a entirely new window

When user does a modified link click:
● No changes to the behavior of the context menu clicks.
● Otherwise, if coming from an app container A

○ If the url is within scope of A, create a new app A container for the url.
○ If the url is within scope of another app B AND the modification was to open a

new window, create a new app B container for the url.
When creating a new app container for a modified click:

● Populate the launchQueue with LaunchParams for the url, mimicking a 'new-client'
launch behavior.

Reasoning:
● This respects the user's choice to open the link in a new container/context.
● This respects the user's current container (browser or app)
● This only opens in an app container if the user is already in an app container

● Populating the launchQueue helps ensure behavior is consistent with a launch of that
app at the given url.

Edge Case: window.open() with User-modified clicks
window.open() is executed from javascript, unlike being a native click behavior on the
anchor element. Thus it doesn’t inherently take a click event, and so it might be expected that it
doesn’t change its behavior for user-modified link clicks / aux clicks. That is not always the case.

When the window.open is executed in a click event listener, and the click was a user-modified
click:

1. If the API call targets an existing frame, behavior matches non-user-modified
clicks.

a. For example if the target is ”_self”, ”existingFrameInPage”, or
”alreadyOpenedFrame”.

2. If the API call would create a new browsing context, then the user-modified state
DOES have an effect, but only in the way the frame is presented. E.g. new
background tab, new foreground tab, new window.

a. This occurs when the target is ”_blank” or ”uncreatedFrameName” or
empty.

b. Importantly - this will still respect the opener state - it can open a new top-level or
a new auxiliary browsing context.

Thus, the proposed behavior for handling window.open() + user-modified click is:

Chosen Frame Browsing Context Proposed Behavior

Existing Auxiliary Current Behavior (No change)

Top-Level Current Behavior (No change)

New Auxiliary Use proposed behavior for
auxiliary browsing context for

non-user-modified clicks
(but keep modifier for the new

frame being created)

Top-Level Use proposed behavior for user
modified link clicks

Putting it together: Behavior Flow Chart for “Capturable” and “New App
Container”
Below is the resulting behavior flowchart for this feature.

Text version: Text version of the Final Nav Capturing Flowchart (non-redirect)

Redirection Handling Section
Ideal Result: The final behavior of a redirect will be the same as if there was never a
redirect, and the final post-redirect URL was the original URL being navigated to.

This behavior is possible, although in the process another window or tab might flash
briefly.

Product behaviors
● If the first URL is captured & focus-existing, the chain doesn’t occur at all.
● Otherwise, the final state will match as if the final url is the first url navigated to.
● Edge cases

○ Sometimes a window flashes on-screen before navigation completes.
○ Sometimes we will fetch twice.

At the point in time when we determine how to handle a specific navigation above we don't
know yet if later redirects might happen. As such in the case of redirects, the "regular"
non-redirect behavior will happen first, and afterwards when we reach the end of the
redirect chain one of three different things can happen:

1. Nothing special, complete the navigation in the tab/container picked originally.
2. We'll reparent the tab being navigated into a new or existing app or browser window
3. We'll abort the original navigation and trigger a launch event and focus an existing

app window. In case of a server-side redirect we'll also close the tab being navigated
originally if this was the first navigation in that tab.

4. We'll abort the original navigation and trigger a new navigation in an existing app
window, preserving as much as possible of the original navigation. If the original
navigation was the first navigation in the tab being navigated, we'll also close the tab
that was being navigated.

a. See Proposal: Redirection with Capturable to "navigate-existing" apps will
cancel navigation, start a new navigation in an existing app window below,
and Alternative: Other options for redirection + navigate_existing

b. Note: This is different from the "navigate-existing" behavior for non-redirect
navigation. In the non-redirect case we can immediately pick the tab to
navigate, starting the navigation there; but with redirects unfortunately we
have to restart the navigation in the new location after detecting the redirect.

Proposal: Redirection with Capturable to "navigate-existing" apps will cancel
navigation, start a new navigation in an existing app window

https://docs.google.com/document/d/1vNdKj11_iORhiDbzFgzUVMeARHARy14Rd9vD_3F3KhQ/edit

This most closely matches the intended behavior. Chrome already has methods to create
an `OpenURLParams` instance from a `NavigationHandle` forwarding all the relevant
information from the original navigation to a new (`WebContents`) navigation, so this also
would be fairly simple to implement. There is a slight risk that some information about the
navigation is lost in this conversion.

Note that while similar, this is explicitly not the same as the current (broken) navigation
capturing implementation has. We're not triggering an "app launch" with the target URL,
we're directly navigating the target web contents while maintaining the full metadata of the
original request, including things like the redirect chain.

How these changes can be reflected in the HTML specification.
Change 1 (Capturable): When creating a new top-level traversable

● If
○ The URL being navigated to is within scope of an app AppBeingNavigatedTo.
○ The opener is null (AKA it's NOT an auxiliary browsing context).

● This is capturable, and the behavior now depends according to the launch handler of
App 'navigating to"

○ "navigate existing" will instead cause this algorithm to return an existing
traversable, if it exists for the app "navigating to".

○ "navigate new" and "auto" will create a new traversable as standard, put it into an
App "navigating to" window.

○ "focus-existing" will abort this whole process and simply focus an existing App
"navigating to" window.

Example: An anchor link with a target of "_blank" is left-clicked by the user, and the url is
within the scope of an installed app.

Change 2 (Same Browsing Context Group = Same Container): When creating a new
top-level traversable

● If
○ The opener is NOT null. (AKA it's an auxiliary browsing context).
○ If the current container is an app AppBeingNavigatedFrom.

● Create a new app AppBeingNavigatedFrom window for the new traversable.
○ (This means that any url provided will open into an App A window, even if it is out

of scope.)

Example: Gmail example: Gmail overrides ctrl-click on emails, opening…

Change 3 (User Modified Browsing Context): When creating a fresh top-level traversable
(AKA from a "user modified" link click):

● Same-app case:

https://html.spec.whatwg.org/multipage/document-sequences.html#creating-a-new-top-level-traversable
https://developer.mozilla.org/en-US/docs/Web/API/Launch_Handler_API
https://html.spec.whatwg.org/multipage/document-sequences.html#creating-a-new-top-level-traversable
https://html.spec.whatwg.org/multipage/document-sequences.html#creating-a-new-top-level-traversable
https://html.spec.whatwg.org/multipage/document-sequences.html#create-a-fresh-top-level-traversable

○ If
■ The current container is an app.
■ The URL being navigated to is within scope of the same app
■ The modifier is a keyboard key (shift or ctrl/command).

○ Then
■ Create a new app window for the new top-level traversable.

● Other-app case:
○ If

■ The current container is an app.
■ The URL being navigated to is within scope of another app

AppBeingNavigatedTo.
■ The modifier is a keyboard key that results in a 'new window' (shift key)

○ Then
■ Create a new app window for the new top-level traversable.

Examples:
● A user shift-clicks a link to foo.com/app, which is in scope of the Foo app.

○ If they click on this link in a browser window, it will open a new browser window
○ If they click on this link in an app window, it'll open the Foo app.

● A user middle-clicks on a link to foo.com/notapp, which is not in scope of an app, it
will always open in a browser tab.

"Same Browsing Context Group = Same Container" Explained: Always
open the url in app A window.
Using the Gmail example: Gmail overrides ctrl-click on emails, opening…

Non-controversial: Links that create auxiliary browsing contexts from app A to app A will
always open in another app A window. This seems correct - this is how the gmail ctrl-click
above will stay in the gmail app.

Potentially surprising: Links that create auxiliary browsing contexts from app A to any URL
will always open in another app A container.

Why? Browsing contexts that are in the same group can affect each-other. For example,
closing gmail will close all of the 'preview' windows that are created, as the developer closes
that window as it depend on the parent.

● If we allowed a frame with window.opener to be captured into an app while the parent
stayed in the browser, that would mean that if you opened an email preview window in
Gmail-in-a-browser-tab, then that will open in the gmail app. This is visually separate and
can be command-tab switched to as a separate application. Closing Gmail in the tab
would close that app window - this is weird!

● Same if Gmail was in an app context & the preview opened in a browser tab. Very weird
to have browser tabs close if the Gmail app is closed.

This might not always be expected by developers if they are incorrectly not using noopener for
window.open() external links. However this correctly reflects the tight coupling of these browsing
context. If the dev doesn't want external links to open in their app window, then they need to
update the links to not contain an 'opener', which is a security risk for them.

Note: noopener is implied by default for <a target="blank_"... links, so this should only
affect window.open() calls that don't specify "rel=noopener" in the 3rd (optional)
argument. So the impact will likely be small.

Edge Case on Mac: Double-clicking on application, when application is
already open.
TODO(mek@) - propose something here, circle back with Rob or Yuchang on expectation.

Options
● Focus the window (which sends an activation event / visibility event) but don’t do

anything else.
● Same, but add launchParams as we’re doing the focus-existing behavior.
● Same, but fully follow the site’s launch handler clientMode - sometimes we’ll create

a new window, sometimes we’ll navigate existing, sometimes we’ll just focus on
existing.

Edge Case: Target name specified, but opener is null (or noopener)
When a frame name is specified, the frame doesn't exist on the page (and hasn't been created
before with an opener), and opener is null, then the link effectively acts as
target="_blank", but the window has a frame name that doesn't seem to do anything.

● Modified case: If a frame name was specified in the past with a non-null opener, then
the above behavior would navigate in the previously opened frame.

Proposed behavior: Only check opener on newly created contexts to determine if it is an
auxiliary context. This means all of the clicks in the example above are considered non-auxiliary.
But in the modified case the first would be auxiliary and subsequent clicks don’t create a new
browsing context, so none of our code would trigger.

“Popup” or “Normal” window?
We want to respect existing behavior for auxiliary contexts for when a popup window is
created. So if a window would have been a popup window, then it should continue to be so.

Code locations
See https://bit.ly/pwa-navigation-handling-dd

Decision - 'User modified' link clicks that open app windows queue a
LaunchParams
The middle-click case could also put an item on the launch queue, to better model how
launching will now always do this when launching in an app context. This could be captured with
a launch handler override of "new-client" and behave as usual, no suppression of launch queue
events.

Con:
● This is a bit weird & might be unexpected.

Alternative: Other options for redirection + navigate_existing

Don't support "navigate-existing", reparent into a new app window instead
This doesn't match what the site asked for, but does not interrupt the in-progress
navigation, and still results at least in the redirect ending up in the correct app.

Don't capture redirects to "navigate-existing" apps at all
This kind of "punished" sites for selecting "navigate-existing". If they didn't use that launch
behavior navigation would have been captured but they aren't because of it. While easy to
implement this seems strictly worse than capturing into a new window.

Swap the existing tab/web contents with the one being navigated
There used to be code in Chrome to swap out a WebContents with another for features like
<portal>. That code was largely removed though as it proved to be too much of a
maintenance burden. As such re-introducing that for this feature seems undesirable.

Alternative - Middle-clicks should be capturable
For product change case 1), this could just enter the capturable pipeline.

Pros:
● Gives devs control over middle-click case

Cons:
● Opens room for developer footgun to not open new context when user wants to

https://bit.ly/pwa-navigation-handling-dd

● Devs can already preventDefault() this and customize it if they want to.

Alternative - Middle-clicks should never open in an app
For product change case 1), this could always open in a browser.

Pros:
● Very predictable

Cons:
● Users have said they want links to X to capture in X, so they likely want it to open in

apps sometimes.

Alternative - Middle-clicks should always open in an app window.
For product change case 1), this could always open in a browser.

Pros:
● Very predictable
● Users have said they want links to X to capture in X, so they likely want it to open in

apps sometimes.

Cons:
● Hard to open a tab if you turn on user link capturing.

Alternative - Add new target types or html attributes for link capturing
Possible product change, too much work for MVP.

If the developer wants the user to always open in an app, they can either do that by a new html
attribute `link-capture=` or a new target type `target=`link-capture``.

As long as the flag is enabled, the link would always open in a new top level browsing context in
the app if installed, otherwise it will always open in a new tab.

Possibly requires changes to spec and a bunch of other places to drive developer acceptance
and usage.

Metrics

Success metrics
You should list what metrics you will be tracking to measure the success of your feature or
change. This could be a mix of existing and new metrics. If they are new metrics, explain
how they will work. If you aim to improve performance with your feature or change, you
should measure your impact on one of the speed launch metrics.

Regression metrics
You should define what metrics you will be tracking to look for potential regressions
associated with your feature or change. This could be a mix of existing and new metrics.
The speed launch metrics are good candidates for use as performance regression metrics.
If you’re using new metrics, explain how they will work.

Experiments
If you are using Finch to run experiments (see go/newChromeFeature for advice), describe
what experiments you intend to run and what you are looking for in the results. It’s
important that you know in advance what the acceptance criteria are. List the experiment
names so people can look them up (links to the dashboard are even better).

Rollout plan
If you’re just checking in the code and doing a dev-beta-stable progression, just write
“Waterfall” here. If you’re doing a standard experiment-controlled rollout, write that with
the experiment name. If you’re not doing the standard rollout, describe what you’re doing
and why it needs to be different.

If there are external deadlines, call them out (if you don’t want these to be public, use the
internal template). Otherwise, releases should be quality driven and you shouldn't be
targeting a milestone.

Core principle considerations
Everything we do should be aligned with and consider Chrome’s core principles. If there are
any specific stability concerns, be sure to address them with appropriate experiments.

Speed

https://docs.google.com/document/d/1Ww487ZskJ-xBmJGwPO-XPz_QcJvw-kSNffm0nPhVpj8/edit
https://docs.google.com/document/d/1Ww487ZskJ-xBmJGwPO-XPz_QcJvw-kSNffm0nPhVpj8/edit
http://go/finch-guide
http://goto.google.com/newChromeFeature
https://uma.googleplex.com/p/chrome/histograms
https://docs.google.com/document/d/1VRG_eL9YdTerilvoDv6zambq4JvK18lSzUOFZ7Gkbw8
https://dev.chromium.org/developers/core-principles

This implementation greatly increases the speed of captured navigation as
● This no longer destroys a WebContents that is already loading the page to recreate

it using the WebAppLaunchProcess.
● This is compatible with prerendering.

Simplicity
This integrates tightly with already existing navigation logic, reusing already supported
features like choosing an existing tab to load a navigation.

Security
The main security concern is ensuring that the navigation initiator properties are
preserved, which includes all of the properties in NavigateParams that have been
constructed during a navigation. Other properties that are not included in NavigateParams
but could be preserved include the following (not comprehensive):

- ReferredPolicies.
- WebSandboxFlags
- PolicyContainerPolicies
- Ip_address_space

Doing this was essentially the whole premise of this design - the current implementation
does not do this at all.

Non-risks:
● Spoofing: There is no way to pretend to be another app here - the most a malicious

website can do is present a link to a url controlled by an installed app, and have it
possibly open that installed app. This is the same behavior as if that link was loaded
in a browser tab for that app.

●

Privacy considerations
N/A

Testing plan
Browsertests should be able to handle everything here. See
https://bit.ly/pwa-navigation-handling-dd.

https://source.chromium.org/chromium/chromium/src/+/main:net/url_request/referrer_policy.h;l=19;bpv=1;bpt=1?q=ReferrerPolicy%20-f:out&ss=chromium%2Fchromium%2Fsrc
https://source.chromium.org/chromium/chromium/src/+/main:content/browser/renderer_host/navigation_request.cc;l=967?q=GetSandboxFlagsInitiator()
https://source.chromium.org/chromium/chromium/src/+/main:content/browser/renderer_host/policy_container_host.h;l=34?q=PolicyContainerPolicies%20-f:out
https://source.chromium.org/chromium/chromium/src/+/main:services/network/public/mojom/ip_address_space.mojom;drc=82dff63dbf9db05e9274e11d9128af7b9f51ceaa;l=10
https://bit.ly/pwa-navigation-handling-dd

Followup work

Allow link capturing from links in the OS
Possibly technical complexity about PWAs installed by Chrome when the default browser is
Safari. Not sure how to pass that information in just a link.

There is a lot of interest here though, especially from third-party users like Zoom and
Salesforce.
Also brought up in the public tracking bug:
https://issues.chromium.org/issues/40255471#comment61

Need to prototype if this can be done, but this might require some form of OS integration once a
PWA is installed.

Salesforce Request: crbug.com/330282442

Browsing context group switches
Documents can set the Cross-Origin-Opener-Policy header to same-origin or
same-origin-allow-popups to prevent them from being included in a browsing context
group with cross-origin content. When a cross-origin document is loaded into a top-level
frame, and either the parent or popup frame have this header, the popup is kicked out of
its opener’s browsing context group and loaded into a new group. Its window.opener will
be null.

Navigations that get kicked out of their opener’s browsing context group due to headers
will not have launch params enqueued. Maybe they should? This has the potential to
impact IWAs.

Popup window behavior
This table assumes a page is calling window.open(popupUrl, ‘_blank’, ‘popup’):

Current URL,
Container

Current COOP Value Popup URL Popup COOP Value Popup
Container

Popup
window.opener

A, App A * A * App A

A, App A unsafe-none B unsafe-none App A

A, App A unsafe-none B same-origin[-allow-popups] null

A, App A same-origin B * null

https://issues.chromium.org/issues/40255471#comment61
http://crbug.com/330282442
https://html.spec.whatwg.org/multipage/browsers.html#browsing-context-group-switches-due-to-cross-origin-opener-policy

A, App A same-origin-allow-popups B unsafe-none App A

A, App A same-origin-allow-popups B same-origin[-allow-popups] null

Service Worker Launch handling behavior
SW launch handling cannot support window.open, as that is a synchronous JS API that
immediately returns a window reference, and SWs are inherently asynchronous.

Open question - Navigate self OR capture behavior
TODO:

● Add use-case for a site that wants to create a link w/ the behavior "link capture this if the
app is installed w/ link capturing turned on, otherwise navigate the current frame". e.g.
Google. This might require a new target attribute. This can be remedied by link capturing
+ middle click behavior outlined below.

Open question - ChromeOS Behavior
The desired behavior from ChromeOS is unclear and requires confirmation from their product
team. ChromeOS will need to provide resources to rectify their implementation with our final
decision here for the Web Platform behavior on Windows/Mac/Linux.

Complications that may lead to a difference in behavior:
● Android apps expect to be launched if a link url is within that apps scope, no matter what

(even if it's navigating self, etc).
● Others?

Appendix

Alternative User-Modified Clicks Changes, allowing more
app-to-same-app -> app container
This adds extra configuration allowing app-to-same-app creation to work whether or not link
capturing is turned on.

Current URL,
Container

navigating-to
URL

Custom Link User Action ‘Link capturing’
User setting

Proposed behavior
(bold = new behavior)

A, App A A (installed app) shift-click on new App A container

off new browser window

middle-click / metakey-click on new App A container *

off new browser tab

context-menu: new tab new browser tab

context-menu: new window N/A

context-menu: open link in A new App A Container

B (installed app) shift-click on new App B container

off new browser window

middle-click / metakey-click on new browser tab

off new browser tab

context-menu: new tab new browser tab

context-menu: new window N/A

context-menu: open link in B new App B Container

C (not an app) shift-click new browser window

middle-click / metakey-click new browser tab

context-menu: new tab new browser tab

context-menu: new window N/A

context-menu: open link in N/A

A, browser tab A (installed app) shift-click new browser window

middle-click / metakey-click new browser tab

context-menu: new tab new browser tab

context-menu: new window new browser window

context-menu: open link in A new App A Container

B (installed app) shift-click new browser window

middle-click / metakey-click new browser tab

context-menu: new tab new browser tab

context-menu: new window new browser window

context-menu: open link in B new App B Container

C (not an app) shift-click new browser window

middle-click / metakey-click new browser tab

context-menu: new tab new browser tab

context-menu: new window new browser window

context-menu: open link in N/A

History
The CrOS team originally launched this feature in 2016 (bug), enabling Android-style intent
linking to installed ARC apps, which doesn't necessarily align with web platform expectations for
how link clicks work. In 2021, this implementation was expanded to also handle links to web
apps. The core link handling logic is old and mostly predates the current CrOS team members
owning this feature.

The Web Platform team picked this up in mid-2023 to launch on Windows, Mac, and Linux, and
directly modeled their implementation on the already-shipped CrOS implementation.

The CrOS implementation has no documentation for "what are applicable web platform link
clicks", and it seems like this exploration was never done or at least never written down. There
are various 'bugs' fixed for the CrOS link capturing implementation into 2024, with unfixed
outstanding bugs of the browser 'blinking' on app-to-app capture, and Gmail ctrl-click link
capturing being broken.

CCT / 'custom tab' banner
See the banner with the 'x' button below the title bar. This automatically shows for any url that is
showing in an app that is not within scope of the app.

http://b/27876127

