
Chapter 36. RISC-V Cryptography Extensions Volume III: Additional Vector
Instructions

This document describes additional Vector Cryptography extensions to the RISC-V Instruction Set
Architecture.

This document is Discussion Document. Assume everything can change. This document is not
complete yet and was created only for the purpose of conversation outside of the document. For more
information, see here.

36.1. Extensions Overview

The section introduces all of the extensions in the Additional Vector Cryptography Instruction Set
Extension Specification.

All the Additional Vector Crypto Extensions can be built on any embedded (Zve*) or application ("V")

base Vector Extension. In particular Zvbc32e allows Zve32* implementations to support vector
carry-less multiplication.

As the instructions defined in this specification might be used to implement cryptographic primitives
they may be implemented with data-independent execution latencies as defined in the RISC-V Scalar
Cryptography Extensions specification.

If Zvkt is implemented, all the instructions from Zvbc32e (vclmul[h].[vv,vx]) shall be
executed with data-independent execution latency.

Whether Zvkt is implemented or not, all instructions from Zvkgs (vgmul.vs, vghsh.vs) shall be
executed with data-independent execution latency.

Detection of individual cryptography extensions uses the unified software-based RISC-V discovery
method.

 At the time of writing, these discovery mechanisms are still a work in progress.

36.1.1. Zvbc32e - Vector Carryless Multiplication

General purpose carryless multiplication instructions which are commonly used in cryptography and
hashing (e.g., Elliptic curve cryptography, GHASH, CRC).

These instructions are only defined for SEW=32. Zvbc32e can be supported when ELEN >=32.

This extension covers two gaps of Zvbc:

⚫ allowing vector implementations with smaller ELEN=32 (e.g. implementations selecting Zve32*)

to implement some support for vector carry-less multiplication (this is not allowed by Zvbc which

requires ELEN >= 64)

⚫ for implementations which have ELEN >= 64: allowing more efficient implementations of
algorithms relying on 32-bit carry less multiplications. The list of such algorithms includes the
CLM-based folding algorithm used to compute the widespread 32-bit CRCs (e.g. ethernet CRC).

This technique can already be implemented with Zvbc but only half the 64-bit multiplication is

36.1. Extensions Overview | Page 598

The RISC-V Instruction Set Manual Volume I | © RISC-V International

exploited. Selecting Zvbc32e only allows implementations to save area while providing identical
performance on those algorithms.

Note

The extension Zvbc32e is independent from Zvbc which defines the same instructions for

SEW=64. When ELEN>=64 both extensions can be combined to have vclmul.v[vx] and

vclmulh.v[vx] defined for both SEW=32 and SEW=64.

Note

The extra cost of supporting Zvbc32e on top of Zvbc should be minimal, as the hardware

required to implement the instructions in Zvbc32e is a subset of the hardware required to
implement `Zvbc’s instructions.

Mnemonic Instruction

vclmul.[vv,vx] Vector Carry-less Multiply

vclmulh.[vv,vx] [insns-vclmulh-32e]

36.1.2. Zvkgs - Vector-Scalar GCM/GMAC

Instructions to enable the efficient implementation of parallel versions of GHASHH which is used in
Galois/Counter Mode (GCM) and Galois Message Authentication Code (GMAC).

Zvkgs depends on Zvkg. It extends the existing vghsh.vv and vgmul.vv instructions with new

vector-scalar variants: vghsh.vs and vgmul.vs.

The instructions inherit the constraints defined in Zvkg:

⚫ element group size (EGS) is 4

⚫ data independent execution timing

⚫ vl/vstart must be multiples of EGS=4

All of these instructions work on 128-bit element groups comprised of four 32-bit elements, in element

group parlance EGS=4, EGW=128 and the instructions are only defined for SEW=32.

To help avoid side-channel timing attacks, these instructions shall always be implemented with data-
independent timing.

The number of element groups to be processed is vl/EGS. vl must be set to the number of SEW=32

elements to be processed and therefore must be a multiple of EGS=4.

Likewise, vstart must be a multiple of EGS=4.

One of the key use cases for the vector instructions vghsh.vv and vgmul.vv defined in Zvkg is to
speed-up GCM cipher mode for a single stream by computing the GHASH algorithm for multiple
blocks of the same message in parallel. The parallel processing accumulates and multiplies multiple

blocks of the message by the same power of H (encryption of 0 by the cipher key). The power being
equal to the number of blocks processed in parallel. The processing completes by reducing the parallel

accumulators into a single output tag. With Zvkg only, a full vector register was required to old the

multiple copies of the power of H. Zvkgs reduces the size of the vector register group needed for

36.1. Extensions Overview | Page 599

The RISC-V Instruction Set Manual Volume I | © RISC-V International

powers of H: it just needs to contain a 128-bit wide element group, freeing some vector registers. This
exploits the same scalar element group broadcast mechanism used in other instructions defined in the

vector crypto extensions (e.g. vaesem.vs from Zvkned).

SEW EGW Mnemonic Instruction

32 128 vghsh.vs Vector-Scalar GHASH Add-Multiply

32 128 vgmul.vs [insns-vgmul-vs]

36.2. Instructions

36.2.1. vclmul.[vv,vx]

Synopsis

Vector Carry-less Multiply by vector or scalar - returning low half of product.

Mnemonic

vclmul.vv vd, vs2, vs1, vm
vclmul.vx vd, vs2, rs1, vm

Encoding (Vector-Vector)

06711121415192024252631

OP-VvdOPMVVvs1vs2vm001100

Encoding (Vector-Scalar)

06711121415192024252631

OP-VvdOPMVXrs1vs2vm001100

Reserved Encodings

⚫ SEW is any value other than 32 (Zvbc32e only)

⚫ SEW is any value other than 64 (Zvbc only)

⚫ SEW is any value other than 32 or 64 (Zvbc and Zvbc32e)

Arguments

Register Direction Definition

vs1/rs1 input multiplier

vs2 input multiplicand

vd output lower part of carry-less multiply


vclmul instruction was initially defined in Zvbc with only SEW=64-bit support, this

page describes how the specification is extended in Zvbc32e to support SEW=32 bits.

Description

Produces the low half of 2*SEW-bit carry-less product.

36.2. Instructions | Page 600

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Each SEW-bit element in the vs2 vector register is carry-less multiplied by either each SEW-bit

element in vs1 (vector-vector), or the SEW-bit value from integer register rs1 (vector-scalar). The
result is the least significant SEW bits of the carry-less product.


The 32-bit carryless multiply instructions can be used for implementing GCM in the

absence of the zvkg extension. In particular for implementation with ELEN=32 where

Zvkg cannot be implemented. It can also be used to speed-up CRC evaluation.

Operation

function clause execute (VCLMUL(vs2, vs1, vd, suffix)) = {

 foreach (i from vstart to vl-1) {

 let op1 : bits (SEW) = if suffix =="vv" then get_velem(vs1, i)

 else zext_or_truncate_to_sew(X(vs1));

 let op2 : bits (SEW) = get_velem(vs2, i);

 let product : bits (SEW) = clmul(op1, op2, SEW);

 set_velem(vd, i, product);

 }

 RETIRE_SUCCESS

}

function clmul(x, y, width) = {

 let result : bits(width) = zeros();

 foreach (i from 0 to (width - 1)) {

 if y[i] == 1 then result = result ^ (x << i);

 }

 result

}

Included in

Zvbc32e, Zvbc

36.3. vclmulh.[vv,vx]

Synopsis

Vector Carry-less Multiply by vector or scalar - returning high half of product.

Mnemonic

vclmulh.vv vd, vs2, vs1, vm
vclmulh.vx vd, vs2, rs1, vm

Encoding (Vector-Vector)

06711121415192024252631

OP-VvdOPMVVvs1vs2vm001101

36.3. vclmulh.[vv,vx] | Page 601

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Encoding (Vector-Scalar)

06711121415192024252631

OP-VvdOPMVXrs1vs2vm001101

Reserved Encodings

⚫ SEW is any value other than 64 (Zvbc only)

⚫ SEW is any value other than 32 (Zvbc32e only)

⚫ SEW is any value other than 32 or 64 (Zvbc32e and Zvbc)

Arguments

Register Direction Definition

vs1/rs1 input multiplier

vs2 input multiplicand

vd output upper part of carry-less multiply


vclmulh instruction was initially defined in Zvbc, this page describes how the

specification is extended in Zvbc32e to support SEW=32 bits.

Description

Produces the high half of 2*SEW-bit carry-less product.

Each SEW-bit element in the vs2 vector register is carry-less multiplied by either each SEW-bit

element in vs1 (vector-vector), or the SEW-bit value from integer register rs1 (vector-scalar). The
result is the most significant SEW bits of the carry-less product.

Operation

function clause execute (VCLMULH(vs2, vs1, vd, suffix)) = {

 foreach (i from vstart to vl-1) {

 let op1 : bits (SEW) = if suffix =="vv" then get_velem(vs1,i)

 else zext_or_truncate_to_sew(X(vs1));

 let op2 : bits (SEW) = get_velem(vs2, i);

 let product : bits (SEW) = clmulh(op1, op2, SEW);

 set_velem(vd, i, product);

 }

 RETIRE_SUCCESS

}

function clmulh(x, y, width) = {

 let result : bits(width) = 0;

 foreach (i from 1 to (width - 1)) {

 if y[i] == 1 then result = result ^ (x >> (width - i));

 }

36.3. vclmulh.[vv,vx] | Page 602

The RISC-V Instruction Set Manual Volume I | © RISC-V International

 result

}

Included in

Zvbc32e, Zvbc

36.4. vghsh.vs

Synopsis

Vector-Scalar Add-Multiply over GHASH Galois-Field

Mnemonic

vghsh.vs vd, vs2, vs1

Encoding (Vector-Scalar)

06711121415192024252631

OP-VEvdOPMVVvs1vs21100011

Reserved Encodings

⚫ SEW is any value other than 32

⚫ the vd register group overlaps the vs2 scalar element group

Arguments

Register Direction EGW EGS SEW Definition

vd input 128 4 32 Partial hash (Yi)

vs1 input 128 4 32 Cipher text (Xi)

vs2 input 128 4 32 Hash Subkey (H)

vd output 128 4 32 Partial-hash (Yi+1)

Description

A single "iteration" of the GHASHH algorithm is performed.

The previous partial hashes are read as 4-element groups from vd, the cipher texts are read as 4-

element groups from vs1 and the hash subkeys are read from the scalar element group in vs2. The

resulting partial hashes are writen as 4-element groups into vd.

This instruction treats all of the input and output element groups as 128-bit polynomials and performs
operations over GF[2]. It produces the next partial hash (Yi+1) by adding the current partial hash (Yi) to
the cipher text block (Xi) and then multiplying (over GF(2128)) this sum by the Hash Subkey (H).

The multiplication over GF(2128) is a carryless multiply of two 128-bit polynomials modulo GHASH’s
irreducible polynomial (x128 + x7 + x2 + x + 1).

The operation can be compactly defined as Yi+1 = ((Yi ^ Xi) · H)

The NIST specification (see Zvkg) orders the coefficients from left to right x0x1x2…x127 for a polynomial

36.4. vghsh.vs | Page 603

The RISC-V Instruction Set Manual Volume I | © RISC-V International

x0 + x1u +x2 u
2 + … + x127u

127. This can be viewed as a collection of byte elements in memory with the
byte containing the lowest coefficients (i.e., 0,1,2,3,4,5,6,7) residing at the lowest memory address.
Since the bits in the bytes are reversed, This instruction internally performs bit swaps within bytes to
put the bits in the standard ordering (e.g., 7,6,5,4,3,2,1,0).

This instruction must always be implemented such that its execution latency does not depend on the
data being operated upon.


We are bit-reversing the bytes of inputs and outputs so that the intermediate values are
consistent with the NIST specification. These reversals are inexpensive to implement as
they unconditionally swap bit positions and therefore do not require any logic.

Operation

function clause execute (VGHSHVS(vs2, vs1, vd)) = {

 // operands are input with bits reversed in each byte

 if(LMUL*VLEN < EGW) then {

 handle_illegal(); // illegal instruction exception

 RETIRE_FAIL

 } else {

 eg_len = (vl/EGS)

 eg_start = (vstart/EGS)

 // H is common to all element groups

 let helem = 0;

 let Hinit = brev8(get_velem(vs2, EGW=128, helem)); // Hash subkey

 foreach (i from eg_start to eg_len-1) {

 let Y = get_velem(vd,EGW=128,i); // current partial-hash

 let X = get_velem(vs1,EGW=128,i); // block cipher output

 // Since H is destroyed by the inner loop it must be reset

 // on every element-group iteration (even if loop independent)

 let H = Hinit;

 let Z : bits(128) = 0;

 let S = brev8(Y ^ X);

 for (int bit = 0; bit < 128; bit++) {

 if bit_to_bool(S[bit])

 Z ^= H

 bool reduce = bit_to_bool(H[127]);

 H = H << 1; // left shift H by 1

 if (reduce)

 H ^= 0x87; // Reduce using x^7 + x^2 + x^1 + 1 polynomial

 }

36.4. vghsh.vs | Page 604

The RISC-V Instruction Set Manual Volume I | © RISC-V International

 let result = brev8(Z); // bit reverse bytes to get back to GCM

standard ordering

 set_velem(vd, EGW=128, i, result);

 }

 RETIRE_SUCCESS

 }

}

Included in

Zvkgs

36.5. vgmul.vs

Synopsis

Vector-Scalar Multiply over GHASH Galois-Field

Mnemonic

vgmul.vs vd, vs2

Encoding (Vector-Scalar)

06711121415192024252631

OP-VEvdOPMVV10001vs21101001

Reserved Encodings

⚫ SEW is any value other than 32

⚫ the vd register group overlaps the vs2 scalar element group

Arguments

Register Direction EGW EGS SEW Definition

vd input 128 4 32 Multiplier

vs2 input 128 4 32 Multiplicand

vd output 128 4 32 Product

Description

A GHASHH multiply is performed.

The multipliers are read as 4-element groups from vd, the multiplicands subkeys are read from the

scalar element group in vs2. The resulting products are written as 4-element groups into vd.

This instruction treats all of the inputs and outputs as 128-bit polynomials and performs operations
over GF[2]. It produces the product over GF(2128) of the two 128-bit inputs.

The multiplication over GF(2128) is a carryless multiply of two 128-bit polynomials modulo GHASH’s
irreducible polynomial (x128 + x7 + x2 + x + 1).

36.5. vgmul.vs | Page 605

The RISC-V Instruction Set Manual Volume I | © RISC-V International

The NIST specification (see Zvkg) orders the coefficients from left to right x0x1x2…x127 for a polynomial
x0 + x1u +x2 u

2 + … + x127u
127. This can be viewed as a collection of byte elements in memory with the

byte containing the lowest coefficients (i.e., 0,1,2,3,4,5,6,7) residing at the lowest memory address.
Since the bits in the bytes are reversed, This instruction internally performs bit swaps within bytes to
put the bits in the standard ordering (e.g., 7,6,5,4,3,2,1,0).

This instruction must always be implemented such that its execution latency does not depend on the
data being operated upon.


We are bit-reversing the bytes of inputs and outputs so that the intermediate values are
consistent with the NIST specification. These reversals are inexpensive to implement as
they unconditionally swap bit positions and therefore do not require any logic.



Similarly to how the instruction vgmul.vv is identical to vghsh.vv with the value of

vs1 register being 0, the instruction vgmul.vs is identical to vghsh.vs with the value
of vs1 being 0. This instruction is often used in GHASH code. In some cases it is followed
by an XOR to perform a multiply-add. Implementations may choose to fuse these two
instructions to improve performance on GHASH code that doesn’t use the add-multiply

form of the vghsh.vv instruction.

Operation

function clause execute (VGMUL(vs2, vs1, vd, suffix)) = {

 // operands are input with bits reversed in each byte

 if(LMUL*VLEN < EGW) then {

 handle_illegal(); // illegal instruction exception

 RETIRE_FAIL

 } else {

 eg_len = (vl/EGS)

 eg_start = (vstart/EGS)

 // H multiplicand is common for all loop iterations

 let helem = 0;

 let Hinit = brev8(get_velem(vs2,EGW=128, helem)); // Multiplicand

 foreach (i from eg_start to eg_len-1) {

 let Y = brev8(get_velem(vd,EGW=128,i)); // Multiplier

 let Z : bits(128) = 0;

 // Since H is destroyed by the inner loop it must be reset

 // on every element-group iteration (even if loop independent)

 let H = Hinit;

 for (int bit = 0; bit < 128; bit++) {

 if bit_to_bool(Y[bit])

 Z ^= H

 bool reduce = bit_to_bool(H[127]);

36.5. vgmul.vs | Page 606

The RISC-V Instruction Set Manual Volume I | © RISC-V International

 H = H << 1; // left shift H by 1

 if (reduce)

 H ^= 0x87; // Reduce using x^7 + x^2 + x^1 + 1 polynomial

 }

 let result = brev8(Z);

 set_velem(vd, EGW=128, i, result);

 }

 RETIRE_SUCCESS

 }

}

Included in

Zvkgs

36.6. Encodings

Appendix A: Additional Vector Cryptographic Instructions

OP-VE (0x77) Vector Crypto instructions, including Zvkgs, except Zvbb and Zvbc. The
new/modified encodings are in bold.

Integer Integer FP

funct3 funct3 funct3

OPIVV V OPMVV V OPFVV V

OPIVX X OPMVX X OPFVF F

OPIVI I

funct6 funct6 funct6

100000 100000 V vsm3me 100000

100001 100001 V vsm4k.vi 100001

100010 100010 V vaesfk1.vi 100010

100011 100011 V vghsh.vs 100011

100100 100100 100100

100101 100101 100101

100110 100110 100110

100111 100111 100111

101000 101000 V VAES.vv 101000

101001 101001 V VAES.vs 101001

101010 101010 V vaesfk2.vi 101010

101011 101011 V vsm3c.vi 101011

36.6. Encodings | Page 607

The RISC-V Instruction Set Manual Volume I | © RISC-V International

funct6 funct6 funct6

101100 101100 V vghsh 101100

101101 101101 V vsha2ms 101101

101110 101110 V vsha2ch 101110

101111 101111 V vsha2cl 101111

36.6. Encodings | Page 608

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Table 75. VAES.vv and VAES.vs encoding space

vs1

00000 vaesdm

00001 vaesdf

00010 vaesem

00011 vaesef

00111 vaesz

10000 vsm4r

10001 vgmul

36.6. Encodings | Page 609

The RISC-V Instruction Set Manual Volume I | © RISC-V International

