
PWA Navigation Capturing

dmurph@chromium.org
2024/09/23
Self-link: https://bit.ly/pwa-navigation-capturing-pres
Doc version: https://bit.ly/pwa-navigation-capturing

mailto:dmurph@chromium.org
https://bit.ly/pwa-navigation-capturing-pres
https://bit.ly/pwa-navigation-capturing

Context?

● Installable PWAs exist.

● Native apps exist.

● Users click on links & they can open in an app.

● This doesn’t yet exist for installed PWAs.

Goal: Clicking a link to app will open in that app.

"I installed Adobe Express. When I click on a link to a Adobe Express I want it to open in the
app, not in a new browser tab."

● This is not new. Web links on mobile (iOS and Android) can open apps.

● Android handles https scheme capturing for patterns

Shouldn’t this be simple?

Naive: If URL is within app, launch app at that url. This should be simple!

However, when launching a similar implementation on Desktop on CrOS, we ran

into many issues….

Shouldn’t this be simple?

First approach: If the url is being navigated to is within app scope, cancel that navigation

and launch the app at the url!

Easy.

What if the app wants to customize the behavior a bit? We can have declarative options,

easy!

● Only use one window (don’t create a new window every time).

● Just tell me in javascript instead of navigating me.

● etc.

Shouldn’t this be simple?
Apps need to control this
behavior

The app declares a launch handler

client_mode in the manifest:

● focus-existing
● navigate-existing
● navigate-new
● auto (default)

Important concept: Capturable

Backing up: Definitions

When a url is ‘within scope’ of an app, then the app controls that url.

Scope is currently defined as a prefix that includes an origin, but there are requests to

change this to allow other origins as well as inclusions / exclusions patterns.

A user link click / navigation is capturable if it COULD be handled by an app as a launch

(and thus handled holistically by an app’s ’launch_handler’ behavior).

If a link click/navigation is capturable, and an app is installed that controls that url, then

that navigation is considered captured.

Shouldn’t this be simple? - Not ALL navigations

Navigations happen from anchor elements (<a>) and window.open.

Need to exclude

● navigations from the URL bar
● same-frame navigations
● form submissions
● POST navigations?

What about redirection?

● We can wait for the final 20X url, and make a decision then.
● But - let’s also try to ignore common redirector patterns like bit.ly so they don’t accidentally

get captured before redirection completes…

Shouldn’t this be simple? - Not ALL navigations

What about client-side redirection?

● window.open(‘’).location = <url>
● Let’s handle that too - detect about:blank redirecting.

Described is basically what is shipped on ChromeOS.

Unfortunately - Problems

● I install Chrome Remote Desktop

● Chrome Remote Desktop authentication opens a popup, which creates a new app window. … but it

somehow breaks?

● I install MSFT 365 as an app.

● I create a new ‘word’ document in Microsoft 365 opens a new window but… fails?

● Hint: It was a request with form data…

Unfortunately - Problems

● I install Gmail
● Ctrl-clicking on email from the app
● Weird: … it opened in a browser tab, and then in

an app window, and then it’s blank?
● Even worse, this happens when I’m using gmail

from a browser tab too.

Learnings - Auxiliary browsing contexts!

● Gmail & Chrome Remote Desktop were creating these.
● window.opener is null
● let window = window.open(‘url’); window.callJsMethod();

○ This doesn’t work!

Examples

● Anchor links require rel="opener"
○ Open link in new

window
● window.open creates auxiliary browsing contexts by default (also popups sometimes)

○ window.open("www.foo.com/a", "_blank")
○ window.open("www.foo.com/a")
○ window.open("").location = "www.foo.com/a"

Spec links: creating top-level traversable, auxiliary browsing context

https://html.spec.whatwg.org/multipage/document-sequences.html#creating-a-new-top-level-traversable
https://html.spec.whatwg.org/multipage/document-sequences.html#creating-a-new-auxiliary-browsing-context

Learnings - Top-level browsing contexts!

There is no window.opener, and window.open(‘url’, ‘noopener’) returns null

Examples

● Anchor links that create new frames imply noopener (and thus don’t create aux contexts)
○ Open link in new window
○ navigate current window

● window.open needs to pass a "noopener" argument.
○ window.open("www.foo.com/a", "_blank", "noopener")

● Clients API always creates top-level browsing contexts
○ clients.openWindow(e.notification.data.url).then((windowClient) => (windowClient ?

windowClient.focus() : null));

Spec links: creating top-level traversable, auxiliary browsing context

https://developer.mozilla.org/en-US/docs/Web/API/Clients/openWindow
https://html.spec.whatwg.org/multipage/document-sequences.html#creating-a-new-top-level-traversable
https://html.spec.whatwg.org/multipage/document-sequences.html#creating-a-new-auxiliary-browsing-context

How are these contexts created?

Links can have properties

● target
○ “_blank”
○ “_self”
○ “<name>”

■ (can exist as an embedded frame or not)
● rel

○ “noopener”
○ “opener”

Test pages:

● https://sulky-lopsided-bean.glitch.me/
● https://intriguing-veiled-butternut.glitch.me/

https://sulky-lopsided-bean.glitch.me/
https://intriguing-veiled-butternut.glitch.me/

How are these contexts created?

When is “Auxiliary” created?

● Anchor link (Left-click only)
○ NOT rel=’noopener’
○ rel=‘opener’
○ target=<non-existant-frame>

● Window.open (all without ‘noopener’)
○ ’opener’ / other combinations also can

make a ‘popup’ window.

Generally: We can simply check for

window.opener to know if a given browsing

context is “Auxiliary”.

When is “Top-level browsing context” created?

● Anchor link
○ Left-click

■ NOT rel=‘opener’
■ target=’_blank’
■ rel=’noopener’

● (target kind of ignored*)

○ Any modified click

● Window.open
○ ‘noopener’ MUST be explicitly specified

Learnings - Navigation properties are important!

We cannot simply ‘abort’ the navigation and do an app launch.

The navigation has a ton of important information form data, impression data, and a bunch of other

important properties for privacy & security.

Learnings - Cancelling navigation is wasteful

Navigations occur after creating the frame and web contents, and a lot of work is done (including network

stack work).

It also is taking advantage of prerendering.

Destroying all of that to start over is wasteful and likely not needed.

Learnings - User-modified clicks, what do they do?

● Shift click = “open in a new window”

● Middle click = “open in a new background tab”

● Ctrl click = “open in a new background tab”

This generally opens a new top level browsing context - do we always want to capture this?

(calling window.open from user-modified click doesn’t force a top-level browsing context)

Learnings - Putting it all together

So what do we want?

● When a site makes a new frame that is tied to the current experience, it

should stay in the same experience.

● When a site makes a new frame that is NOT tied to the current experience,

then that can be ‘captured’ by an applicable app.

● We should carefully consider what the user may want with modified clicks.

● Redirection needs to somehow work.

Learnings - Previous ‘auxiliary’ concept is perfect!

The ‘auxiliary’ browsing context is exactly the case where we want to

maintain ‘container’s for the user.

 🎉🎉🎉🎉🎉

Learnings - Putting it all together

There are 4 main categories of support / changes:

● Same Browsing Group Fixes
○ Keep newly created frames in the same container (app or browser) if the site opens an auxiliary browsing

context.

● User Link Capturing
○ Support navigation capturing to occur when a user clicks on a link controlled by an app, in a way that is

compatible with the web platform & controllable by the user.

● App Windows from Modified Clicks
○ Define what aux-click behavior should be so that this can open app windows when appropriate.

● Redirection support
○ Redirection should result in the same behavior as if the final URL was the one that was first navigated to.

User-modified clicks?

Likely going to be per-user-agent, but Chomium’s take:

● Any user-modified clicks coming from a browser window should never be capturable.

● User-modified clicks from an app that ‘create a new window’
○ should be capturable but force the ’navigate-new’ behavior.

○ E.g. Shift-click

● User-modified clicks from an app that ‘create a new tab’ AND are controlled by the same app
○ should be capturable but force the ’navigate-new’ behavior.

○ E.g. Ctrl-click, middle-click

Behavior flowchart!

Table versions

See https://bit.ly/pwa-navigation-capturing

https://bit.ly/pwa-navigation-capturing

Redirection? (server-side)

● “Redirection should result in the same behavior as if the final URL

was the one that was first navigated to.”

● The ‘end’ of redirection is know.

Redirection? (server-side)

● Potential edge case - redirectors that can be apps?
○ bit.ly redirector

○ What if bit.ly is installed as an app?

○ We can still ‘do the right thing’ at the end of the redirection.

● “Blinking” into apps or the browser sometimes seems unavoidable.

● Weird case: redirection to ‘navigate-existing’. Cancel navigation? Reparent

(breaks client ids and other things)?

Redirection? (client-side)

● “Redirection should result in the same behavior as if the final

URL was the one that was first navigated to.”

● MUCH hard with client-side.

Redirection? (client-side)

● Example
○ User clicks on a link that opens a new top-level browsing context to a random site.

○ Site eventually does: window.location = <url>
○ …. Is this a redirect that should be captured? Or a same-frame navigation?

● Possible can support:
○ window.open(‘’).location = <url>
○ Technically this creates an ‘auxiliary’ browsing context (and the frame is referencable by the

parent)

○ MAYBE this can be a special-case that transforms it into a top-level browsing context, and is

capturable.

○ Prior art: The Cross-Origin-Opener-Policy header ‘breaks’ an aux context into a

top-level.

Questions?

