DTU Compute Department of Applied Mathematics and Computer Science

Naoki Sakai¹, Tania Goia², Amal M. A. Algamdi³, Chao Zhang³, Jakob S. Jørgensen^{3,*}

¹ The University of Tokyo, ²Technical University of Hamburg, ³ Technical University of Denmark,^{*} Corresponding authors

1 Introduction

This project focuses on benchmarking the sam-

The Sampling Methods

2. **D03-sixmodal.ipynb**

pling methods in CUQIpy [2].

A good benchmark is neither too simple, nor too complicated, while also being able to reflect properties of real life applications [1].

Aim

- create a collection of benchmarks for CUQIpy
- sampling with different methods simultaneously
- compare the methods by different criterias
- visualize the distribution (in case of 1D and 2D)

2 Types of benchmarks

1. **Distribution based benchmarks**

- a specified target distribution
- not inverse problem

Donut: the target distribution $\log(p(\mathbf{x})) \propto -\frac{1}{\sigma^2} (\|\mathbf{x}\| - r)^2$ **Sixmodal** [3]: the target distribution $\log(p(x,y)) \propto -\frac{x^2}{2} - \frac{(\csc^5(y)-x)^2}{2}$

2. Inverse Problem benchmarks

Bayesian inverse problem (BIP)

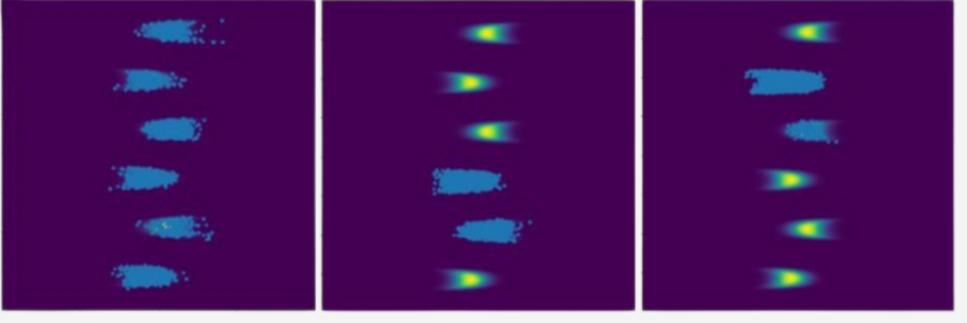
- Non-gradient based
- Random Walk Metropolis Hastings (MH)
- Component-wise Metropolis Hastings (CWMH) Gradient based
- Unadjusted Langevin algorithm (ULA)
- Metropolis-adjusted Langevin algorithm (MALA)
- No-U-Turn Sampler (NUTS)

Criteria

ESS	Effective Sample Size Higher is better
Acc.Rate	Acceptance Rate Ideal value is dependent on methods
RHAT	Rank normalized split R-hat for multiple chains Closer to 1 is better
LogPDF	How many times logpdf is computed Lower is better
Gradient	How many times gradient is computed Lower is better

The CUQIpy-Benchmarks collection 4

We present two examples from our repos-



DTU

Figure 2: MH, MALA, NUTS sampling

	MH	MALA	NUTS
ESS	39.05	2.2	349.18
Acc. Rate	0.248	0.492	0.987
RHAT	1.075	1.982	1.35
LogPDF/ESS	256.08	4545.45	4842.69
Gradient/ESS	0	4545.45	4842.69

 Table 2: Comparison for Sixmodal

- NUTS & MALA : high computational costs
- MH: lower cost & explores every mode
- RHAT high (MALA , NUTS) \rightarrow lack of exploration of modes

- leads to a specified target distribution
- has likelihood, posterior, prior
- can be a PDE problem

World's Simplest BIP: Linear-Gaussian model

Heat 1D: Heat equation with noisy measurement

3 Process

How it works

INPUTS	ALGORITHM	OUTPUTS
- methods - criteria - parameters	- generates samples - flexible - multi dimensional	- table of values -representative images

Key Features

• **flexibility**: the user can choose the criteria and sampling methods they desire:

itory, available at https://github.com/CUQI-DTU/CUQlpy-Benchmarks.

You can also access the repository by scanning the QR code at bottom right of this poster. 1. **D01-donut-table.ipynb**

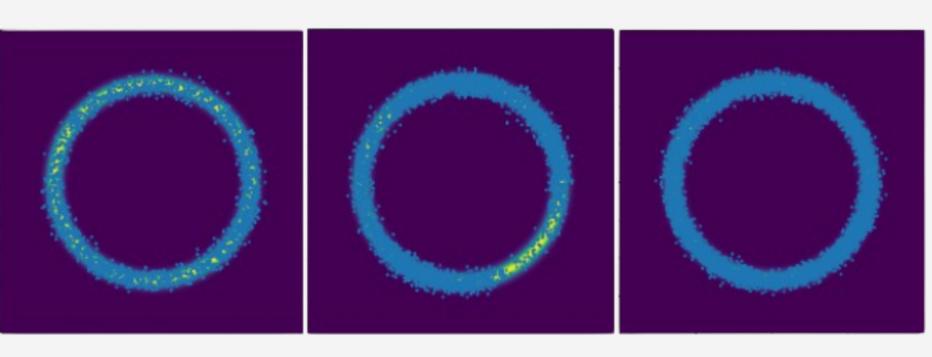


Figure 1: MH, MALA, NUTS sampling

	MH	MALA	NUTS
Samples	8500	8500	8500
Burn-ins	1500	1500	1500
ESS	36.35	10.1	3084.9
Acc. Rate	0.223	0.506	0.784
RHAT	1.035	1.068	1.0
_ogPDF/ESS	275.1	990.1	94.19
Cradiant /ECC	\cap	000 1	0/10

5 Conclusion and Future Work

What we did: developed a comprehensive benchmark collection that simplifies the evaluation of the CUQIpy sampling methods. **Interesting finding:** gradient-based methods, which are often perceived as more efficient, may sometimes perform less accurately than nongradient-based methods.

Looking ahead: enhance our suite by integrating additional problems, including the one proposed in [1].

References

[1] David Aristoff and Wolfgang Bangerth. "A Benchmark for the Bayesian Inversion of Coefficients in Partial Differential Equations". Computational Methods in Applied Mathe*matics*, 21(1):23–51, 2021.

[2] Nicolai A. B. Riis et al. "CUQIpy: I. Computational Uncertainty Quantification for Inverse Problems in Python". Inverse Problems, 40(4):045009, 2024.

methods = ["ULA"], criteria=["ESS"]

- **simplicity**: the user can easily test the benchmarks via classes:
- import benchmarksClass as BC target_donut = BC.Donut()
- versatility: the sampling methods can be configured in different ways

Gradient/ESS 0 990.1 94.19

 Table 1: Comparison for Donut

- MH: accurate, but sparse sampling
- MALA: high computational cost, and somewhat inaccurate results
- NUTS: accurate sample representation

[3] Vivekananda Roy. "Convergence Diagnostics for Markov Chain Monte Carlo". Annual Review of Statistics and Its Application, 7:387– 412, 2020.

