
jq manual (excerpt)

Conditionals and Comparisons

==, !=

The expression ‘a == b’ will produce ‘true’ if the results of evaluating
a and b are equal (that is, if they represent equivalent JSON values)
and ‘false’ otherwise. In particular, strings are never considered equal
to numbers. In checking for the equality of JSON objects, the ordering
of keys is irrelevant. If you’re coming from JavaScript, please note
that jq’s == is like JavaScript’s ===, the “strict equality” operator.

!= is “not equal”, and ‘a != b’ returns the opposite value of ‘a == b’

Examples

Filter . == false

Input null

Output false

Filter . == {"b": {"d": (4 + 1e-20), "c": 3}, "a":1}

Input {"a":1, "b": {"c": 3, "d": 4}}

Output true

Filter .[] == 1

Input [1, 1.0, "1", "banana"]

Output true

true

false

false

if-then-else-end

if A then B else C end will act the same as B if A produces a value
other than false or null, but act the same as C otherwise.

if A then B end is the same as if A then B else . end. That is, the else

branch is optional, and if absent is the same as .. This also applies to
elif with absent ending else branch.

Checking for false or null is a simpler notion of “truthiness” than is
found in JavaScript or Python, but it means that you’ll sometimes have
to be more explicit about the condition you want. You can’t test
whether, e.g. a string is empty using if .name then A else B end; you’ll
need something like if .name == "" then A else B end instead.

If the condition A produces multiple results, then B is evaluated once
for each result that is not false or null, and C is evaluated once for
each false or null.

More cases can be added to an if using elif A then B syntax.

Examples

Filter
if . == 0 then "zero" elif . == 1 then "one" else "many"
end

Input 2

Output "many"

>, >=, <=, <

The comparison operators >, >=, <=, < return whether their left
argument is greater than, greater than or equal to, less than or equal
to or less than their right argument (respectively).

The ordering is the same as that described for sort, above.

Examples

Filter . < 5

Input 2

Output true

and, or, not

jq supports the normal Boolean operators and, or, not. They have the
same standard of truth as if expressions - false and null are
considered “false values”, and anything else is a “true value”.

If an operand of one of these operators produces multiple results, the
operator itself will produce a result for each input.

not is in fact a builtin function rather than an operator, so it is called
as a filter to which things can be piped rather than with special
syntax, as in .foo and .bar | not.

These three only produce the values true and false, and so are only
useful for genuine Boolean operations, rather than the common Perl/
Python/Ruby idiom of “value_that_may_be_null or default”. If you want
to use this form of “or”, picking between two values rather than
evaluating a condition, see the // operator below.

Examples

Filter 42 and "a string"

Input null

Output true

Filter (true, false) or false

Input null

Output true

false

Filter (true, true) and (true, false)

Input null

Output true

false

true

false

Filter [true, false | not]

Input null

Output [false, true]

